
An invitation to
Safe and Secure Software

John Barnes
With contributions by Ben Brosgol

Courtesy of



 

 

© 2013 AdaCore 

www.adacore.com 

 

First printed 2008. Reprinted with revisions 2009, 2013. 

V.20130212 

 

 

 



 

Foreword 

The aim of this booklet is to show how the study of Ada in general, and the 
features introduced by Ada 2005 and Ada 2012 in particular, can help anyone 
designing safe and secure software regardless of the programming language in 
which the software is eventually written. After all, successful implementers of 
safe and secure software write in the spirit of Ada in any language!  

Thank you John for showing this throughout your papers, Ada rationales, 
books, and this booklet. 

AdaCore dedicates this booklet to the memory of Dr. Jean Ichbiah (1940-
2007), the principal designer of the original Ada language, who established the 
safe and secure foundations on which succeeding versions of the language have 
built. 
 

Franco Gasperoni 
Chief Executive Officer, AdaCore  
Paris, January 2013 

 

 iii 





 

 v 

Preface 

This revised version of the “Safe and Secure Software” booklet updates the 
content to take into account the important new facilities introduced in Ada 2012 
which include support for contract-based programming. Ada 2012 marks the 
most significant advance in Ada since 1995 and is especially relevant for 
software that needs to meet safety and/or security certification standards. 

I am very grateful for the assistance of Ben Brosgol of AdaCore in the 
preparation of the new content in this version of the booklet. Not only did Ben 
draft the new sections but he also ironed out several vague, misleading or plain 
incorrect bits in the original, and moreover has added a comprehensive index 
which I am sure will be of great value to all readers. 
 

John Barnes 
Caversham, England 
January 2013 
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Introduction 

The aim of this booklet is to show how Ada – up to and including the Ada 2012 
version of the language – addresses the needs of designers and implementers of 
safe and secure software. The discussion will also show that those aspects of 
Ada that make it ideal for safety-critical and security-critical application areas 
will also simplify the development of robust and reliable software in many other 
areas. 

The world is becoming more and more concerned about both safety and 
security. Moreover, software now pervades all aspects of the workings of 
society. Accordingly, it is important that software for systems in which safety or 
security are a major requirement should be safe and secure. 

There has been a long tradition of concern for safety going back to the 
development of railroad signaling and more recently with aviation, nuclear 
reactor control, and other areas in which a software flaw could lead to loss of 
human life or major environmental damage. Software in such domains has to 
meet well established certification criteria, for example DO-178B [1] (revised in 
December 2011 to DO-178C [2]) for airborne systems. 

There is also a growing concern with security, not just in domains such as 
banking and communications where this issue would naturally be anticipated 
but also in safety-critical systems (automotive, avionics, medical devices, etc.) 
where networking can introduce vulnerabilities that might not have been 
possible earlier. This has been heightened with concern for the activities of 
terrorists. 

Safety and security are intertwined through communication. An interesting 
characterization of the difference is 
▪ safety – the software must not harm the world, 
▪ security – the world must not harm the software. 

So a safety-critical system is one in which the program must be correct, 
otherwise it might wrongly change some external device such as an aircraft flap 
or a railroad signal, with serious real-world consequences. 

And a security-critical system is one in which it must not be possible for 
some incorrect or malicious input from the outside to violate the integrity of the 
system, for example by corrupting a password checking mechanism and stealing 
social security information. 

The key to guarding against both problems is that the software must be 
correct in the aspects affecting the system’s integrity. And by correct we mean 
that it meets its specification. Of course if the specification is incomplete or 
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itself incorrect then the system will be vulnerable. Capturing requirements 
correctly is a hard problem and is the focus of much attention from the software 
development community (as exemplified by the growing use of modelling 
languages and tools). 

One of the trends of the second half of the twentieth century was a universal 
concern with freedom. But there are two aspects of freedom. The ability of the 
individual to do whatever they want conflicts with the right to be protected from 
the actions of others. Maybe A would like the freedom to smoke in a pub 
whereas B wants freedom from smoke in a pub. Concern with health in this 
example is changing the balance between these freedoms. Maybe the twenty-
first century will see further shifts from “freedom to” to “freedom from”. 

In terms of software, the languages Ada and C have very different attitudes to 
freedom. Ada introduces restrictions and checks, with the goal of providing 
freedom from errors. On the other hand C gives the programmer more freedom, 
making it easier to make errors.  

One of the historical guidelines in C was “trust the programmer”. This would 
be fine were it not for the fact that programmers, like all humans, are frail and 
fallible beings. Experience shows that whatever techniques are used it is hard to 
write “correct” software. It is good advice therefore to use tools that can help by 
finding bugs and preventing bugs. Ada was specifically designed for this 
purpose. There have been four versions of Ada – Ada 83, Ada 95, Ada 2005, 
and now Ada 2012. 

The purpose of this booklet is to illustrate the ways in which Ada, with a 
focus on Ada 2005 and Ada 2012, can help in the construction of reliable, safe, 
and secure software, by illustrating some aspects of its features. It is hoped that 
it will be of interest to programmers and managers at all levels. 

It must be stressed that the discussion is not complete. Each chapter selects a 
particular topic under the banner of Safe X where Safe is just a brief token to 
designate both safety and security. For the most critical software, use of the 
related SPARK language appears to be very beneficial, and this is outlined in 
Chapter 11. 

Topics with which Ada has much synergy are lean and agile software 
development – there is not enough space in this booklet to expand on these 
concepts but the reader is encouraged to explore their good ideas elsewhere. 

As the twenty-first century progresses we will see software becoming even 
more pervasive. It would be nice to think that software in automobiles for 
example was developed with the same care as that in airplanes. But that is not 
so. My wife recently had an experience where her car displayed two warning 
icons. One said “stop at once”, the other said “drive immediately to your 
dealer”. Another anecdotal motor story is that of a driver attempting to select 
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channel 5 on the radio, only to see the car change into 5th gear! Luckily he did 
not try Replay. 

For references to books and papers on Ada 2005, Ada 2012, SPARK, lean and 
agile software development, and related topics, please consult the bibliography. 

 





 

1   Safe Syntax 

Syntax is often considered to be a rather boring mechanical detail. The argument 
being that it is what you say that matters but not so much how it is said. That of 
course is not true. Clarity and unambiguity are important aids to any 
communication in a civilized world.  

Similarly, a computer program is a communication between the writer and 
the reader, whether the reader be that awkward thing known as the compiler, or 
another team member, a reviewer or some other human soul. Indeed, most 
communication regarding a program is between two people. Clear and 
unambiguous syntax is a great help in aiding communication and, as we shall 
see, avoids a number of common errors.  

An important aspect of good syntax design is that it is a worthwhile goal to 
try to ensure that typical simple typing errors cause the program to become 
illegal and thus fail to compile, rather than having an unintended meaning. Of 
course it is hard to prevent the accidental typing of X rather than Y or + rather 
than * but many structural risks can be prevented. Note incidentally that it is best 
to avoid short identifiers for just this reason. If we have a financial program 
about rates and times then using identifiers R and T is risky since we could 
easily type the wrong identifier by mistake (the letters are next to each other on 
the keyboard). But if the identifiers are Rate and Time then inadvertently typing 
Tate or Rime will be caught by the compiler. This applies to any language of 
course. 

Equality and assignment 

It is obvious that assignment and equality are different things. If we do an 
assignment then we change the state of some variable. On the other hand, 
equality is simply an operation to test some state. Changing state and testing 
state are very different things and understanding the distinction is important.  

Many programming languages have confused these fundamentally different 
logical operations.  

In Fortran, since its earliest days, one wrote 

X = X + 1 

But this is really rather peculiar. In mathematics x never equals x + 1. What the 
Fortran statement means of course is “replace the current value of X by the old 
value plus one”. But why misuse the equals sign in this way when society has 
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been cheerfully using the equals sign to mean equals for hundreds of years? 
(The equals sign dates from around 1550 when it was introduced by the English 
mathematician Robert Recorde.) The designers of Algol 60 recognized the 
problem and used the combination of a colon followed by an equals sign to 
mean assignment, thus 

X := X + 1; 

and this has the helpful consequence that the equals sign can unambiguously be 
used to mean equality, as in 

if X = 0 then ... 

The C language (like Fortran) adopted = for assignment and as a consequence C 
uses a double equals (==) to mean equality. This can cause much confusion. 

Here is a fragment of a C program controlling the crossing gates on a railroad  

if (the_signal == clear) 
{ 
   open_gates( ... ); 
   start_train( ... ); 
} 

The same program in Ada might be 

if The_Signal = Clear then 
   Open_Gates( ... ); 
   Start_Train( ... ); 
end if; 

Now consider what happens if a programmer gets confused and accidentally 
forgets one of the equals signs in C thus 

if (the_signal = clear) 
{ 
   open_gates( ... ); 
   start_train( ... ); 
} 

This still compiles but instead of just testing the_signal it actually assigns the 
value clear to the_signal. Moreover C unifies expressions (which have values) 
with assignments (which change state). So the assignment also acts as an 
expression and the result of the assignment is then used in the test. If the 
encoding is such that clear is not zero then the result will be true and so the 
gates are always opened, the_signal set to clear and the train started on its 
perilous journey. Conversely, if clear is encoded as zero, the test fails, the gates 
remain closed, and the train is blocked. In either case, things go badly wrong. 
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The pitfalls associated with the use of “=” for assignment and “==” for 
equality, and allowing assignments as expressions, are well known in the C 
community and have given rise to coding guidelines such as MISRA C [3] and 
analysis tools such as lint. However it is preferable for such pitfalls to be 
avoided in the first place, through appropriate language design and that is how 
Ada has approached this issue 

If the Ada programmer were to accidentally use an assignment in the test 

if The_Signal := Clear then  -- illegal 

then the program will simply fail to compile and all will be well. 

Statement groups 

It is often necessary to group a sequence of statements together – for example 
following a test using a keyword such as if. There are two typical ways of doing 
this  
▪ by bracketing the group of statements so that they act as one (as in C), 
▪ by closing the sequence with something matching the if (as in Ada). 
These are also illustrated by the railroad example. The statements to open the 
gates and to start the train both need to be obeyed if the condition is true. 

In C we had 

if (the_signal == clear) 
{ 
   open_gates( ... ); 
   start_train( ... ); 
} 

and now suppose we inadvertently add a semicolon at the end of the first line 
(easily done). The program becomes 

if (the_signal == clear) ; 
{ 
   open_gates( ... ); 
   start_train( ... ); 
} 

We now find that the condition is governing the null statement which is 
implicitly present between the test and the newly inserted semicolon. We cannot 
see it because a null statement is just nothing. So no matter what the state of the 
signal, the gates are always opened and the train set going. 
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In Ada the corresponding error would result in 

if The_Signal = Clear then ;   -- illegal 
   Open_Gates( ... ); 
   Start_Train( ... ); 
end if; 

This is syntactically incorrect and so the error is safely caught by the compiler 
and the train wreck cannot occur. 

Named notation 

Another feature of Ada which is of a syntactic nature and can detect many 
unfortunate errors is the use of named associations in various situations. Dates 
provide a good illustration, because the order of the components varies 
according to local culture. Thus 12 January 2008 is written in Europe as 
12/01/08 but in the US it is usually written as 01/12/08 (but not on the latest 
customs forms) whereas the ISO standard gives the year first, so would be 
08/01/12. 

In C we might declare a structure for manipulating dates as follows: 

struct date { 
   int day, month, year; 
   } ; 

which corresponds to the following type declaration in Ada 

type Date is 
   record 
      Day, Month, Year: Integer;  
   end record; 

In C we might write 

struct date today = {1, 12, 8}; 

But without looking at the type declaration we do not know whether this means 
1 December 2008, 12 January 2008 or even 8 December 2001. 

In Ada we have the option of writing 

Today: Date := (Day => 1, Month => 12, Year => 08); 

which uses named associations. Now it will be crystal clear if we ever write the 
values in the wrong order. (Note incidentally that Ada permits leading zeroes.). 
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We can also write the declaration as 

Today: Date := (Month => 12, Day => 1, Year => 08); 

which has the correct meaning and reveals the advantage that we do not need to 
remember the order in which the fields are declared. 

Named associations can be used in other contexts in Ada as well. We might 
make similar errors with a function that has several parameters of the same type. 
Suppose we have a function to compute the obesity index of a person. The two 
parameters are the height and the weight which could be given as floating point 
values in pounds and inches (or kilograms and centimeters if you are metric). So 
we might have in C: 

float index(float height, float weight) { 
   ... 
   return ... ; 
} 

or in Ada 

function Index(Height, Weight: Float) return Float is 
   ... 
   return ... ; 
end; 

Now in the case of the author, the appropriate call of the index function in C 
might be 

my_index = index(68.0, 168.0); 

But if by mistake the call were reversed 

my_index = index(168.0, 68.0); 

then we would have a very thin and very tall giant! (It’s a curious coincidence 
that both values end in 68.0 as well.) 

Such an unhealthy disaster can be avoided in Ada by using named parameter 
calls thus 

My_Index := Index(Height => 68.0, Weight => 168.0); 

Again we can give the parameters in whatever order we wish and no error will 
occur if we forget the order in the declaration of the function. 

Named notation is a very valuable feature of Ada. Its use is optional but it is 
well worth using freely since not only does it help to prevent errors but it also 
makes the program easier to understand. 
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 10 

Integer literals 

Integer literals should not occur frequently in programs, apart from common 
values such as 0 and 1. Integer literals should mainly appear in initializations for 
constants. But when a literal does occur, its value should be obvious to the 
human reader. Intuitive notations for expressing the base (decimal, octal, 
hexadecimal, etc.) and for indicating groupings of digits will prevent errors. 

Ada addresses both of these needs. It provides a clear syntax for numeric 
bases between 2 and 16 inclusive (10 is of course the default); for example 
16#2B# is an integer literal in base 16 with the value forty-three. In order to 
make large-magnitude literals more readable, Ada allows the use of an 
underscore symbol as separator between groups of digits. Thus the value of the 
integer literal 16#FFFF_FFFF_FFFF_FFFF# is directly understandable as 264–1 

In contrast, the same literal in C (and in C++, Java, and other languages that 
have stayed with C-based syntax) would look like 0xFFFFFFFFFFFFFFFF and 
it is easy to get eyestrain trying to figure out how many Fs are present. Adding 
insult to injury, C interprets a leading 0 to mean octal, so a literal such as 031 
does not mean what every schoolchild thinks it means, but rather has the value 
twenty-five. 

 



 

2   Safe Typing 

Safe typing is not about preventing heavy-handed use of the keyboard, although 
it can detect errors made by typos! 

Safe typing is about designing the type structure of the language in order to 
prevent many common semantic errors. It is often known as strong typing. 

Early languages such as Fortran and Algol treated all data as numeric types. 
Of course, at the end of the day, everything is indeed held in the computer as a 
numeric of some form, usually as an integer or floating point value and usually 
encoded using a binary representation. Later languages, starting with Pascal, 
began to recognize that there was merit in taking a more abstract view of the 
objects being manipulated. Even if they were ultimately integers, there was 
much benefit to be gained by treating colors as colors and not as integers by 
using enumeration types (just called scalar types in Pascal). 

Ada takes this idea much further as we shall see, but other languages treat 
scalar types as just raw numeric types, and miss the critical idea of abstraction, 
which is to distinguish semantic intent from machine representation. The Ada 
approach provides more opportunities for detecting programming errors. 

Using distinct types 

Suppose we are monitoring some engineering production and checking for 
faulty items. We might count the number of good ones and bad ones. We want 
to stop production if the number of bad ones reaches some limit and perhaps 
also stop when the number of good ones reaches some other limit. In C or C++ 
we might have variables 

int badcount, goodcount; 
int b_limit, g_limit; 

and then perhaps 

badcount = badcount + 1; 
... 
if (badcount == b_limit) { ... }; 

and similarly for the good items. Since everything is really an integer, there is 
nothing to prevent us writing by mistake 

if (goodcount == b_limit) { ... } 
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where we really should have written g_limit. Maybe it was a cut and paste error 
or a simple typo (g is next to b on a qwerty keyboard). Anyway, since they are 
integers the compiler will be happy even if we are not. 

We could do the same in any language. But Ada gives us the opportunity to 
be more precise about what we are doing. We can write 

type Goods is new Integer; 
type Bads is new Integer; 

These declarations introduce new types, which have all the properties of the 
predefined type Integer (such as operations + and –) and indeed are 
implemented in the same way, but are nevertheless distinct. We can now write 

Good_Count, G_Limit: Goods; 
Bad_Count, B_Limit: Bads; 

and now we have quite distinct groups of entities for our manipulation; any 
accidental mixing will be detected by the compiler and prevent the incorrect 
program from running. So we can happily write 

Bad_Count := Bad_Count + 1; 

if Bad_Count = B_Limit then 

but are prevented from writing 

if Good_Count = B_Limit then   -- illegal 

since this is a type mismatch. 
If we did indeed want to mix the types, perhaps to compare the bad items and 

good items then we can do a type conversion (known as a cast in other 
languages) to make the types compatible. Thus we can write 

if Good_Count = Goods(B_Limit) then 

Another example might be when computing the difference between the counts 
of good and bad objects as an Integer: 

Diff : Integer := Integer(Good_Count) – Integer(Bad_Count); 

We can use the same technique to avoid accidental mixing of floating types. 
Thus when dealing with weights and heights in the chapter on Safe Syntax, 
rather than 

My_Height, My_Weight: Float; 

it would better to write 
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type Inches is new Float; 
type Pounds is new Float; 

My_Height: Inches := 68.0; 
My_Weight: Pounds := 168.0; 

and then confusion between the two would be detected by the compiler. 

Enumerations and integers 

In the chapter on Safe Syntax we discussed an example of a railroad crossing 
which included a test 

if (the_signal == clear) { ... }; 

if The_Signal = Clear then ... end if; 

in C and Ada respectively. In C the variable the_signal and associated constants 
such as clear might be declared thus 

enum signal { 
   danger, 
   caution, 
   clear 
}; 

enum signal the_signal; 

This convenient notation in fact is simply a shorthand for defining constants 
danger, caution and clear of type int. And the variable the_signal is also of type 
int. 

As a consequence, nothing can prevent us from assigning a nonsensical value 
such as 4 to the_signal. In particular, such a nonsensical value might arise from 
the use of an uninitialized variable. Moreover, suppose other parts of the 
program are concerned with chemistry and use states anion and cation; nothing 
would prevent confusion between cation and caution. We might also be dealing 
with girls’ names such as betty and clare or weapons such as dagger and spear. 
Nothing prevents confusion between dagger and danger or clare and clear.  

In Ada we write 

type Signal is (Danger, Caution, Clear); 

The_Signal: Signal := Danger; 

and no confusion can ever arise since an enumeration type in Ada truly is a 
different type and not a shorthand for an integer type. If we did also have 
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type Ions is (Anion, Cation); 
type Names is (Anne, Betty, Clare, ... ); 
type Weapons is (Arrow, Bow, Dagger, Spear); 

then the compiler would prevent the compilation of a program that mixed these 
things up. Moreover the compiler would prevent us from assigning to Clear or 
Danger since these are literals and this would be as nonsensical as trying to 
change the value of an integer literal such as 5 by writing 

5 := 2 + 2; 

At the machine level the various enumeration types are indeed encoded as 
integers and we can access the default encodings if we really need to, by using 
the attribute Pos thus 

Danger_Code: Integer := Signal'Pos(Danger); 

We can also specify our own encodings, as we shall see in the chapter on Safe 
Communication. 

Incidentally, a very important built-in type in Ada is the type Boolean, which 
formally has the declaration 

type Boolean is (False, True); 

The result of a test such as The_Signal = Clear is of the type Boolean, and there 
are operations such as and, or, not which operate on Boolean values. It is never 
possible in Ada to treat an integer value as a Boolean or vice versa. In C it will 
be recalled, tests yield integer values and zero is treated as false, and nonzero as 
true. Again we see the danger in 

if (the_signal == clear)  
{ 
 ...  
}; 

As mentioned earlier, omitting one equals turns the test into an assignment and 
because C permits an assignment to act as an expression the syntax is 
acceptable. The error is further compounded since the integer result is treated as 
a Boolean for the test. So altogether C has several pitfalls illustrated by the one 
example: 
▪ using = for assignment, 
▪ allowing assignments as expressions, 
▪ treating integers as Booleans in conditional expressions. 
Most of these flaws have been carried over into C++. None of these issues are 
present in Ada. 
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Constraints and subtypes 

It is often the case that we know that the value of a certain variable is always 
going to be within some meaningful range. If so we should say so and thereby 
make explicit in the program some assumption about the external world. Thus 
My_Weight could never be negative and would hopefully never exceed 300 
pounds. So we can declare 

My_Weight: Float range 0.0 .. 300.0; 

or if we had been methodical programmers and had previously declared a 
floating type Pounds then 

My_Weight: Pounds range 0.0 .. 300.0; 

If by mistake the program generates a value outside this range and then attempts 
to assign it to My_Weight thus 

My_Weight := Compute_Weight( ... ); 

then the exception Constraint_Error will be raised (or thrown) at run time. We 
might handle (or catch) this exception in some other part of the program and 
take remedial action. If we do not, the program will stop and the runtime system 
will produce an error message indicating where the violation occurred. This all 
happens automatically – appropriate checks are inserted into the compiled code. 
(The careful reader who is familiar with the concurrency features in Ada will 
note that our statement “the program will stop” requires qualification: it applies 
to sequential programs. The situation with concurrent programs is somewhat 
different but the topic is outside the scope of this chapter.) 

This idea of subranges was first introduced in Pascal and improved in Ada. It 
is not available in most other languages and we would have to program our own 
checks all over the place but more likely we wouldn’t bother, and any error 
resulting from violating these bounds would be that much harder to detect. 

If we knew that every weight to be dealt with by the program was in a 
restricted range, then rather than putting a constraint on every variable 
declaration we can impose it on the type Pounds in the first place. 

type Pounds is new Float range 0.0 .. 300.0; 

On the other hand if some weights in the program are unrestricted and it is only 
the weight of people that are known to lie in a restricted range then we can write 

type Pounds is new Float; 
subtype People_Pounds is Pounds range 0.0 .. 300.0; 

My_Weight: People_Pounds; 
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We can also apply constraints and declare subtypes of integer types and 
enumeration types. Thus when counting good items we would assume that the 
number was never negative and perhaps that it would never exceed 1000. So we 
might have 

type Goods is new Integer range 0 .. 1000; 

If we just wanted to ensure that it was never negative but did not wish to impose 
an upper limit then we could write 

type Goods is new Integer range 0 .. Integer'Last; 

where Integer'Last gives the upper value of the type Integer. The restriction to 
positive or nonnegative values is so common that the Ada language provides the 
following built-in subtypes: 

subtype Natural is Integer range 0 .. Integer'Last; 
subtype Positive is Integer range 1 .. Integer'Last; 

The type Goods could then be declared as 

type Goods is new Natural; 

and this would just impose the lower limit of zero as required. 
As an example of a constraint with an enumeration type we might have 

type Day is (Monday, Tuesday, Wednesday, Thursday, Friday,  
  Saturday, Sunday); 
subtype Weekday is Day range Monday .. Friday; 

and then a runtime check will prevent assigning Sunday to a variable of the 
subtype Weekday. 

Inserting constraints as in the above examples may seem to be tiresome but 
makes the program clearer. Moreover, it enables the compiler and runtime 
system to verify that the assumptions being expressed by the constraints are 
indeed correct. 

Subtype predicates 

The subtype feature of Ada is very valuable and enables the early detection of 
errors that linger in many programs in other languages and cause disaster later. 
However, although valuable, the subtype mechanism is somewhat limited. We 
can only specify a contiguous range of values in the case of integer and 
enumeration types.  
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Accordingly, Ada 2012 has introduced subtype predicates that can be applied 
to type and subtype declarations. The requirements proved awkward to satisfy 
with a single feature so in fact there are two, depending on whether the predicate 
is static or dynamic. They both take a Boolean expression and the key difference 
is that the static predicate is restricted to certain types of expressions so that it 
can be used in more contexts.  

Suppose we are concerned with seasons and that we have a type Month thus 
type Month is (Jan, Feb, Mar, Apr, May, Jun,  
   Jul, Aug, Sep, Oct, Nov, Dec); 

Now suppose we wish to declare subtypes for the seasons. For northern 
hemispherians winter is December, January, February. (From the point of view 
of solstices and equinoxes, winter is from December 21 until March 21 or 
thereabouts, but March seems to me generally more like spring rather than 
winter and December feels more like winter than autumn.) So we would like to 
declare a subtype embracing Dec, Jan and Feb. We cannot do this with a 
constraint but we can use a static predicate by writing 

subtype Winter is Month 
   with Static_Predicate => Winter in Dec | Jan | Feb; 

and then we are assured that objects of subtype Winter can only be Dec, Jan or 
Feb. Note the use of the subtype name (Winter) in the expression where it stands 
for the current instance of the subtype.  

This usage of the with syntax was introduced in Ada 2012 and is known as an 
aspect. 

The aspect is checked whenever an object is default initialized, on 
assignments, on conversions, on parameter passing and so on. If a check fails 
then Assertion_Error is raised. (Whether subtype predicate checking is 
performed is controlled by the Assertion_Policy pragma; it is enabled by 
specifying the pragma’s argument as Check.) 

If we want the expression to be dynamic then we have to specify the 
Dynamic_Predicate aspect thus 

type T is ... ; 
function Is_Good(X: T) return Boolean; 

subtype Good_T is T 
   with Dynamic_Predicate => Is_Good(Good_T): 

Note that a subtype with predicates cannot be used in some contexts such as 
index constraints. This is to avoid having arrays with holes and similar nasty 
things. However, static predicates are allowed in a for loop meaning to try every 
value. So we could write 

for M in Winter loop... 
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The loop uses values for M in the order, Jan, Feb, Dec, which is the same as the 
order in the declaration of the type Month itself. 

Arrays and constraints 

An array is an indexable set of things. As a simple example, suppose we are 
playing with a pair of dice and wish to record how many throws of each value 
(from 2 to 12) have been obtained. Since there are 11 possible values, in C we 
might write  

int counters[11]; 

int throw; 

and this will in fact declare 11 variables referred to as counters[0] to 
counters[10] and a single integer variable throw. 

If we wish to record the result of another throw then we might write: 

throw = ... ; 

counters[throw–2] = counters[throw–2] + 1; 

Note the need to decrement the throw value by 2, since C arrays are always 
zero-indexed (that is, have a lower bound of zero). Now suppose the counting 
mechanism goes wrong (some joker produces a die with 7 spots perhaps or 
maybe we are generating the throws using a random number generator and we 
have not programmed it correctly) and a throw of 13 is generated. What 
happens? The C program does not detect the error but simply computes where 
counters[11] would be and adds one to that location. Most likely this will be the 
location of the variable throw itself since it is declared after the array and it will 
become 14! The program just goes hopelessly wrong. 

This is an example of the infamous buffer overflow problem. It is at the heart 
of many serious and hard-to-detect programming problems. It is ultimately a 
gaping loophole which permits viruses to attack systems such as Windows. This 
is discussed further in Chapter 7 on Safe Memory Management. 

Now consider the same program in Ada, we can write 

Counters: array (2 .. 12) of Integer; 

Throw: Integer; 

and then 
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Throw := ... ; 

Counters(Throw) := Counters(Throw) + 1; 

And now if Throw has a rogue value such as 13 then since Ada has runtime 
checks to ensure that we cannot read or write to a part of an array that does not 
exist, the exception Constraint_Error is raised and the program is prevented 
from running wild. 

Note that Ada gives control over the lower bound of the array as well as the 
upper bound. Array indices in Ada do not all start at zero. Lower bounds in real 
programs are more often one than zero. Specifying the lower bound as 2 in the 
above example means that the variable throw can be used directly in the index, 
without the complication of deciding on and subtracting the appropriate offset as 
in the C version. 

The problem with the dice program was not so much that the upper bound of 
the array was exceeded (that was the symptom) but rather that the value in 
Throw was out of bounds. We can catch the mistake earlier by declaring a 
constraint on Throw thus 

Throw: Integer range 2 .. 12; 

and now Constraint_Error is raised when we try to assign 13 to Throw. As a 
consequence the compiler is able to deduce that Throw always has a value 
appropriate to the range of the array, and no checks will actually be necessary 
for accessing the array using Throw as an index. Indeed, placing a constraint on 
variables used for indexing typically reduces the number of runtime checks 
overall. Incidentally, we can reduce the double appearance of the range 2 .. 12 
by writing 

subtype Dice_Range is Integer range 2 .. 12; 
Throw: Dice_Range; 
Counters: array (Dice_Range) of Integer; 

The advantage of only writing the range once is that if we need to change the 
program (perhaps adding a third die so that the range becomes 3 .. 18) then this 
only has to be done in one place. 

Range checks in Ada are of enormous practical benefit during testing and can 
be turned off for a production program. Ada compilers are not unique in 
applying runtime checks in programs. The Whetstone Algol 60 compiler dating 
from 1962 did it. Ada (like Java and C#) specifies the checks in the language 
definition itself. 

Perhaps it should also be mentioned that we can give names to array types as 
well. If we had several sets of counter values then it would be better to write 
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type Counter_Array is array (Dice_Range) of Integer; 
Counters: Counter_Array; 
Old_Counters: Counter_Array; 

and then if we wanted to copy all the elements of the array Counters into the 
corresponding elements of the array Old_Counters then we simply write 

Old_Counters := Counters; 

Giving names to array types is not possible in many languages. The advantage 
of naming types is that it introduces explicit abstractions, as when counting the 
good and bad items. By telling the compiler more about what we are doing, we 
provide it with more opportunities to check that our program makes sense. 

All objects of the type Counter_Array have the same number of components 
as give by the subtype Dice_Range. Accordingly, the type is called a 
constrained array type. Sometimes it is convenient to introduce a more flexible 
type which embraces objects with the same index and component type but with 
different numbers of components. Consider 

type Float_Array is array (Positive range <>) of Float; 

The type Float_Array is known as an unconstrained array type. When an object 
of this type is declared, the upper and lower bounds have to be supplied either as 
a constraint or from the initial value. Thus we can write 

An_Array: Float_Array(1 .. N); 

The inquisitive reader may wonder what happens when the upper bound is less 
than the lower bound; for example, suppose N has the value 0 This is permitted 
in Ada and is referred to as a null array. Interestingly, the upper bound is thus 
allowed to be less than the lower bound of the index subtype. 

Unconstrained array types are very useful as parameters since they enable us 
to write subprograms that manipulate arrays of any size. We will see examples 
of this later. 

Default initialization 

The assurance given by subtype predicates (and by type invariants as we will 
see later) can depend upon the object having a sensible initial value. The 
original Ada design provided a partial solution to this issue. Values of access 
types (“pointers”) are guaranteed a default initialization to a special value null, 
and the programmer can define default initializations for record components as 
in 
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type Font is (Arial, Bookman, Times_New_Roman);  
type Size is range 1..100; 

type Formatted_Character is 
   record 
      C: Character; 
      F: Font := Times_New_Roman; 
      S: Size := 12; 
   end record; 

FC: Formatted_Character; 
   -- Now FC.F = Times_New_Roman, FC.S = 12, 
   -- FC.C is uninitialized 

Default initialization is somewhat controversial. There is a school of thought 
that giving default initial values (such as zero) is bad since it can obscure flow 
errors. A counterargument is that it can also ensure that objects have consistent 
initial state, which can help prevent certain kinds of vulnerabilities. 
In any event, it is strange that early versions of Ada did allow default initial 
values to be given for components of records but not for scalar types or array 
types. This is rectified in Ada 2012 by aspects Default_Value and 
Default_Component_Value. Here’s an alternative version of the scalar types 
shown above: 

type Font is (Arial, Bookman, Times_New_Roman) 
    with Default_Value => Times_New_Roman; 

type Size is range 1..100 
    with Default_Value => 12; 

With these declarations we can define Formatted_Character without needing to 
provide default values for the components F and S 

type Formatted_Character is 
   record 
      C: Character; 
      F: Font; -- Times_New_Roman by default 
      S: Size; -- 12 by default 
   end record; 

We can also set a default value for an array component as in 
type Text is new String  
   with Default_Component_Value =>  
 Ada.Characters.Latin_1.Space; 
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Note that, unlike default initial values for record components, these have to be 
static. 

Real errors 

The title of this section is an example of those nasty puns so hated by the 
software pioneer Christopher Strachey as mentioned in the Conclusion. This is 
about accuracy in arithmetic and in particular with real as opposed to integer 
types. 

In floating point arithmetic (using types such as real in Pascal, float in C and 
Float in Ada) the computation is done with the underlying floating point 
hardware. Floating point numbers have a relative accuracy. A 32-bit word might 
allocate 23 bits for the mantissa, one bit for the sign and 8 bits for the exponent. 
This gives an accuracy of 23 binary digits or about 7 decimal digits.  

So a large value such as 123456.7 is accurate to one decimal place, whereas a 
very small value such as 0.01234567 is accurate to eight decimal places, but in 
all cases the number of significant digits is always 7. So the accuracy is relative 
to the magnitude of the number. 

Relative accuracy works well most of the time but not always. Consider the 
representation of an angle giving the bearing of a ship or rocket. Perhaps we 
would like to hold the accuracy to a second of arc. Remember that there are 60 
seconds in a minute, 60 minutes in a degree and 360 degrees in a whole circle.  

If we hold the angle as a floating point number 

float bearing; 

then the accuracy at 360 degrees will be about 8 seconds which is not good 
enough, whereas the accuracy at 1 degree will be about 1/45 second which is 
unnecessary.  

We could of course hold the value as an integral number of seconds by using 
an integer type 

int bearingsecs; 

This works but it means we have to remember to do our own scaling for input 
and display purposes. 

But the real trouble with floating point is that the accuracy of operations such 
as addition and subtraction is affected by rounding errors. If we subtract two 
nearly equal values then we get cancellation errors. And of course certain 
numbers will not be held exactly. If we have a stepping motor which works in 
1/10 degree steps then because 0.1 cannot be held exactly in binary the result of 
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adding 10 steps will not be exactly one degree at all. So even if the accuracy 
required is quite coarse so that the notional accuracy is more than adequate the 
cumulative effect of tiny computational errors can be unbounded. 

Scaling everything to use integers is acceptable for simple applications but 
when we have several types held as scaled integers and we have to operate on 
several together we often get into problems and have to do our own scaling 
(perhaps even by using raw machine operations such as shifting). This is all 
prone to errors and difficult to maintain. 

Ada is one of the few languages to provide fixed point arithmetic. This does 
the scaling automatically for us. Thus for the stepping motor we might declare 

type Angle is delta 0.1 range –360.0 .. 360.0;  
for Angle'Small use 0.1; 

and this will hold the values internally as scaled integers that represent multiples 
of 0.1 but we can think about them as the abstract values they represent, that is 
degrees and tenths of degrees. And our arithmetic operations will not suffer 
from rounding errors. 

In summary, Ada has two forms of real arithmetic 
▪ floating point, which provides relative accuracy, 
▪ fixed point, which provides absolute accuracy. 
Ada also supplies a specialized form of fixed point for decimal arithmetic, 
which is the standard model for financial calculations.  

The topic of this section is rather specialized but it does illustrate the breadth 
of facilities in Ada and the care taken to encourage safety in numerical 
calculations.  





 

3   Safe Pointers 

Primitive man made a huge leap forward with the discovery of fire. Not only did 
this allow him to keep warm and cook and thereby expand into more 
challenging environments but it also enabled the creation of metal tools and thus 
the bootstrap to an industrial society. But fire is dangerous when misused and 
can cause tremendous havoc; observe that society has special standing 
organizations just to deal with fires that are out of control. 

Software similarly made a big leap forward in its capabilities when the notion 
of pointers or references was introduced. But playing with pointers is like 
playing with fire. Pointers can bring enormous benefits but if misused can bring 
immediate disaster such as a blue screen, or allow a rampaging program to 
destroy data, or create the loophole through which a virus can invade. 

High integrity software typically limits drastically the use of pointers. The 
access types of Ada have the semantics of pointers but in addition carry 
numerous safeguards on their use, which makes them suitable for all but the 
most demanding safety-critical programs. 

References, pointers and addresses 

Pointers introduce several opportunities for programming errors such as 
▪ Type safety violations – creating an object of one type and then 

accessing it (through a pointer) as though it were of some other type. 
Or, more generally, using a pointer to access an object in a manner that 
is inconsistent with some of the object’s semantic properties (for 
example, assigning to a constant or violating a range constraint). 

▪ Dangling references – accessing an object through a pointer after 
the object has been freed; either a local variable that has gone out of 
scope, or a dynamically allocated object that has been explicitly freed 
through some other pointer. 

▪ Storage exhaustion – failing to allocate an object, because of the 
unavailability of sufficient space. This may be caused by a number of 
factors: 

• Allocating objects that later become inaccessible (“garbage”) 
but which are never freed; 

• Heap fragmentation, where there may be sufficient total space 
for a given allocation but not enough contiguous space;  
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• Heap size underestimation; 
• Storage leakage (allocating accessible objects ad infinitum, for 

example continually adding elements onto a linked list) 
Although the details are different, type safety violations and dangling references 
may similarly arise if the language allows pointers to subprograms. 

Historically, languages have taken different approaches to these problems. 
Early languages such as Fortran, COBOL and Algol 60 did not have a notion of 
pointers at the level of the user program. Programs in all languages use 
addresses for basic operations such as calling a subprogram, but addresses in 
these languages cannot be directly manipulated by the user. 

C (and C++) permit pointers to both heap-allocated and declared (stack-
allocated) objects, and also to functions. Although these languages offer some 
checks, it is basically the programmer’s responsibility to use pointers correctly. 
For example, since C treats an array as a pointer to its initial element, and allows 
pointer arithmetic as the equivalent of array indexing, all the necessary low-
level ingredients are provided that can get programmers into trouble. 

Java and other “pure” object-oriented languages do not expose pointers to the 
application but rely on pointers and dynamic allocation as the basis of the 
language semantics. Type checking is preserved, dangling references are 
prevented (there is no explicit “free”), but to prevent inaccessible objects from 
cluttering up the heap the implementation has to provide automatic storage 
reclamation (garbage collection). This is a reasonable approach for certain kinds 
of programs. It is still a questionable technology for real-time applications, 
especially ones with safety-critical or security-critical requirements.  

Note also that garbage collection does not by itself prevent storage leaks: a 
program that adds objects onto a linked list in an infinite loop will eventually 
exhaust the heap despite the most heroic efforts of a garbage collector. (Infinite 
loops are not necessarily program bugs; process control and similar applications 
are often written as non-terminating programs, requiring an external action such 
as an operator pressing a reset button in order to halt the process.) 

The history of Ada with respect to pointers is interesting. The original version 
of the language, Ada 83, provided pointers only for dynamic allocation (thus no 
pointers to declared objects, no pointers to subprograms) and also supplied an 
explicit free operation known as Unchecked_Deallocation. This preserved type 
safety, and avoided dangling references caused by pointers to out-of-scope local 
variables, but introduced the possibility of dangling references through incorrect 
uses of Unchecked_Deallocation. 

The decision to include Unchecked_Deallocation was unavoidable, since the 
only alternative – requiring implementations to supply garbage collection – was 
not an appropriate option given Ada’s intended domain of real-time and high-
integrity systems. However, the Ada philosophy is that if a feature defeats 
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checks that are normally performed, then its use must be explicit. And indeed, if 
we are using Unchecked_Deallocation we need to “with” and then instantiate a 
generic procedure. (The concepts of a with clause and generic instantiation are 
explained in the next chapter.) This somewhat heavyweight syntax both 
prevents accidental usage and makes our intent clear to whoever needs to read 
or maintain our code.  

Ada 95 extended the Ada 83 mechanism, allowing pointers to declared 
objects and also to subprograms. Ada 2005 has taken things a bit further – for 
example, making it easier to pass (pointers to) subprograms as runtime 
parameters. How these were accomplished without sacrificing safety will be the 
subject of this chapter. 

A final note before going into further detail. Perhaps because pointers and 
references have a hardware-level connotation, Ada uses the term access types. 
This enforces the view that values of an access type give access to other objects 
of some designated type (are like dynamic names for these objects) and should 
not be thought of as simply machine addresses. Indeed, at the implementation 
level, the representation of an access value might be different from a physical 
pointer. 

Access types and strong typing 

Using a feature introduced by Ada 2005, we can declare a variable Ref whose 
values give access to objects of type T: 

Ref: access T; 

If we do not give an initial value then a special value null is assumed. Ref can 
refer to a normal declared object of type T (which must be marked aliased) by 

Obj: aliased T; 
... 
Ref := Obj'Access; 

The analogous C version is: 

t* ref; 
t obj; 
ref = &obj; 

T might be a record type such as 
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type Date is 
   record 
      Day: Integer range 1 .. 31; 
      Month: Integer range 1 .. 12; 
      Year: Integer; 
end record; 

so we might have 

Birthday: aliased Date := (Day => 10, Month => 12, Year => 1815); 
AD: access Date := Birthday'Access; 

and then to retrieve the individual components of the date referred to indirectly 
by AD we can write for example 

The_Day: Integer := AD.Day; 

A variable such as AD can also refer to an object dynamically allocated on the 
heap (called a storage pool in Ada). We can write 

AD := new Date'(Day => 27, Month => 11, Year => 1852); 

(The two dates are those of the birth and death of Ada, Countess of Lovelace 
after whom the language is named.) 

A common application of access types is to create linked lists – we might 
declare 

type Cell is 
   record 
      Next: access Cell; 
      Value: Integer; 
   end record; 

and then we can create chains of objects of the type Cell linked together. 
It is often convenient to give a name to an access type 

type Date_Ptr is access all Date; 

The “all” in the syntax indicates that this named type can refer to both objects 
on the heap and also to those declared locally on the stack that are marked as 
aliased. 

Having to mark objects as aliased is a useful safeguard. It alerts the 
programmer to the fact that the object might be referred to indirectly (good for 
walkthrough reviews) and it also warns the compiler that any optimizations need 
to take heed of the possibility of multiple and indirect accesses. 
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But the key point is that an access type always identifies the type of the 
object that its values refer to and strong typing is enforced on assignments, 
parameter passing, and all other uses. Moreover, an access value always has a 
legitimate value (which could be null). At runtime, whenever we attempt to 
access an object referred to by an object of the type Date_Ptr, there is a check to 
ensure that the value is not null – the exception Constraint_Error is raised if this 
check fails. 

We can explicitly state that an access value cannot be null by declaring it as 
follows (this syntax was introduced in Ada 2005): 

WD: not null access Date := Wedding_Day'Access; 

and then of course it must be given an initial value which is not null. The 
advantage of a so-called null exclusion is that we are guaranteed that an 
exception cannot occur when accessing the indirect object. 

Finally, note that an access value can denote a component of a composite 
structure, provided the component type is marked as aliased. For example 

A: array (1 .. 10) of aliased Integer := (1,2,3,4,5,6,7,8,9,10); 
P: access Integer := A(4)'Access; 

But we cannot perform any incremental operations on P such as P++ or P+1 to 
make it refer to A(5) as can be done in C. (Indeed, the ++ operator is not even 
part of the Ada language.) This sort of thing in C is prone to errors since nothing 
prevents us from pointing beyond either end of the array. 

Access types and accessibility 

We have just seen that the strong typing of Ada ensures that an access value can 
never refer to an object of the wrong type. The other requirement is to ensure 
that the object referred to cannot cease to exist while access objects still refer to 
it. This is achieved for declared objects through the notion of accessibility. 
Consider 

package Data is 
   type Int_Ref is access all Integer; 
   Ref1: Int_Ref; 
end Data; 

with Data; use Data; 
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procedure P is 
   K: aliased Integer; 
   Ref2: Int_Ref; 
begin 
   Ref2 := K'Access;  -- illegal 
    
   Ref1 := Ref2; 
   ... 
end P; 

This is clearly a very artificial example but illustrates the key points in a small 
space. The package Data has an access type Int_Ref and an object of that type 
called Ref1. The procedure P declares a local variable K and a local access 
variable Ref2 also of the type Int_Ref and attempts to assign an access to K to 
the variable Ref2. This is forbidden. The problem is not with the assignment to 
Ref2 − both Ref2 and K will cease to exist when we return from a call of the 
procedure P. The danger is that we might assign the value in Ref2 to a global 
variable, as we do here with Ref1, which would then contain a reference to K 
that would be usable after K had ceased to exist. 

The basic rule is that the lifetime of the accessed object (such as K) must be at 
least as long as the lifetime of the specified access type (in this case Int_Ref). 
Here it is not and so the attempt to obtain a pointer to K is illegal.  

The rules are phrased in terms of accessibility levels (how deeply nested the 
declaration of something is) and are mostly static, that is to say checked by the 
compiler; they incur no cost at run time. But the rules concerning parameters of 
subprograms that are of anonymous access types are dynamic (that is, require 
runtime checks). This gives more programming flexibility than would otherwise 
be possible. 

In this short introduction to Ada it is not feasible to go into further details. 
Suffice it to say that the accessibility rules of Ada prevent dangling references to 
declared objects, which can be a source of many subtle and hard-to-diagnose 
errors in lax languages. 

References to subprograms 

Ada permits references to procedures and functions to be manipulated in a 
similar way to references to objects. Both strong typing and accessibility rules 
apply. For example, using a feature introduced in Ada 2005, we can write 

A_Func: access function (X: Float) return Float; 
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and A_Func is then an object that can only refer to functions that take a 
parameter of the type Float and return a value of type Float (such as the 
predefined function Sqrt). 

So we can write 

A_Func := Sqrt'Access;    

and then 

X: Float := A_Func(4.0);   -- indirect call 

and this will call Sqrt with argument 4.0 and hopefully produce 2.0. 
Ada thoroughly checks that the parameters and result always match properly 

and so we cannot call a function indirectly that has the wrong number or types 
of parameters. The parameter list and result type constitute what is technically 
called the profile of the function. 

Thus consider the predefined function Arctan (the inverse tangent). It takes 
two parameters 

function Arctan(Y: Float; X: Float) return Float; 

and returns the angle θ (in radians) such that tan θ = Y/X. If we attempt to write 

A_Func := Arctan'Access;  -- illegal 
Z := A_Func(A);    -- indirect call prevented 

then the compiler rejects the code because the profile of Arctan does not match 
that of A_Func. This is just as well because otherwise the function Arctan would 
read two items from the runtime stack whereas the indirect call via A_Func 
placed only one parameter on the stack. This would result in the computation 
becoming meaningless. 

Corresponding checks in Ada occur also across compilation unit boundaries 
(compilation units are units that can be compiled separately, as explained in the 
chapter on Safe Architecture). Equivalent mismatches are not prevented in C 
and this is a common cause of serious errors. 

More complex situations arise because a subprogram can have another 
subprogram as a parameter. Thus we might have a function whose purpose is to 
solve an equation Fn(x) = 0 where the function Fn is itself passed as a 
parameter. Thus 

function Solve(Trial: Float; Accuracy: Float;  
                          Fn: access function (X: Float) return Float) 
         return Float; 
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The parameter Trial is the initial guess, the parameter Accuracy is the accuracy 
required and the third parameter Fn identifies the equation to be solved.  

As an example suppose we invest 1000 dollars today and 500 dollars in a 
year’s time: what would the interest rate have to be for the final value two years 
from now to be exactly 2000 dollars? If the interest rate is x% then the Net Final 
Value (Nfv) will be given by 

 Nfv(x) = 1000 × (1 + x/100)2 + 500 × (1 + x/100) 
We can answer the question by declaring the following function, which returns 
0.0 when X is such that the net final value is precisely 2000.0. 

function Nfv_2000 (X: Float) return Float is 
   Factor: constant Float := 1.0 + X/100.0; 
begin  
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0; 
end Nfv_2000; 

We can then write: 

Answer: Float :=  
        Solve (Trial => 5.0, Accuracy => 0.01, Fn => Nfv_2000'Access); 

We are guessing that the answer might be around 5%, we want the answer with 
2 decimal figures of accuracy and of course Nfv'Access identifies the problem. 
The reader is invited to estimate the interest rate – the answer is at the end of 
this chapter. (Note that terms such as Net Final Value and Net Present Worth are 
standard terms used by financial professionals.) 

The point of this discussion is to emphasize that Ada checks the matching of 
the parameters of the function parameter as well. Indeed, the nesting of profiles 
can continue to any degree and Ada matches all levels thoroughly. Many 
languages give up after one level. 

Note that the parameter Fn was actually of an anonymous type. Access to 
subprogram types can be named or anonymous just like access to object types. 
They can also have a null exclusion. Thus (using features introduced in Ada 
2005) we should really have written 

A_Func: not null access function (X: Float) return Float := Sqrt'Access; 

The advantage of using a null exclusion is that we are guaranteed that the value 
of A_Func is not null when the function is called indirectly. 

If it seems that having to initialize it, perhaps arbitrarily, to Sqrt'Access is 
distasteful then we could always declare 
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function Default(X: Float) return Float is 
begin 
   Put("Value not set");  return 0.0; 
end Default; 
... 
A_Func: not null access function (X: Float) return Float := Default'Access; 

Similarly we should really add not null to the profile in Solve thus 

function Solve(Trial: Float; Accuracy: Float;  
       Fn: not null access function (X: Float) return Float) return Float; 

This ensures that the actual function corresponding to Fn cannot be null. 

Nested subprograms as parameters 

We mentioned that accessibility rules also apply to access-to-subprogram 
values. Suppose we had declared Solve so that the parameter Fn was of a named 
type and that it and Solve are in some package 

package Algorithms is 
   type A_Function is not null access function (X: Float) return Float; 

   function Solve(Trial: Float; Accuracy: Float; Fn: A_Function)  
                                                                                              return Float; 
   ... 
end Algorithms; 

Suppose we now decide to express the interest example with the target value 
passed as a parameter. We might try 

with Algorithms;  use Algorithms; 
function Compute_Interest(Target: Float) return Float is 

   function Nfv_T (X: Float) return Float is 
      Factor: constant Float := 1.0 + X/100.0; 
   begin  
      return 1000.0 * Factor**2 + 500.0 * Factor – Target; 
   end Nfv_T; 

begin 
   return Solve(Trial => 5.0, Accuracy => 0.01, Fn => Nfv_T'Access); 
                                                                                                      -- illegal 
end Compute_Interest; 
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However, Nfv_T'Access is not allowed as the Fn parameter because it violates 
the accessibility rules. The trouble is that the function Nfv_T is at an inner level 
with respect to the type A_Function. (It has to be in order to get hold of the 
parameter Target.) If Nfv_T'Access had been allowed then we could have 
assigned this value to a global variable of the type A_Function so that when 
Compute_Interest had returned we would have still had a reference to Nfv_T 
even after it had ceased to be accessible. For example 

Dodgy_Fn: A_Function := Default'Access;  -- a global variable 

function Compute_Interest(Target: Float) return Float is 

   function Nfv_T(X: Float) return Float is 
      ... 
   end Nfv_T; 

begin 
   Dodgy_Fn := Nfv_T'Access; -- illegal 
   ... 
end Compute_Interest; 

and now suppose that after a call of Compute_Interest we execute: 

Answer := Dodgy_Fn(99.9); -- would have unpredictable results 

The call of Dodgy_Fn would attempt to call Nfv_T but that is no longer possible 
since it is local to Compute_Interest and would attempt to access the parameter 
Target which no longer exists. The consequences would be unpredictable (a 
meaningless result, or perhaps an exception would be raised) if Ada did not 
prevent it. Note that using an anonymous type for the parameter as in the 
previous section allows passing the nested function as a parameter, but the 
accessibility checks prevent the assignment to Dogdy_Fn. A runtime check 
would detect that Nfv_T is more deeply nested than the target access type 
A_Function, and a Program_Error exception would be raised. So the solution is 
just to change the package Algorithms thus 

package Algorithms is 
   function Solve(Trial: Float; Accuracy: Float; 
                         Fn: not null access function (X: Float) return Float) 
                                                                                              return Float; 
end Algorithms; 

and the original function Compute_Interest is now exactly as before (except that 
the comment -- illegal needs to be removed). 

Those of a mischievous mind might suggest that the problem lies with 
nesting Nfv_T inside Compute_Interest. It would indeed be possible to declare 
Nfv_T at the outermost level so that no accessibility problem arises, but then the 
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value Target would have to be passed globally through some package – in the 
style of Fortran Common blocks. We cannot add it as an additional parameter to 
Nfv_T because the parameters of Nfv_T must match those of Fn. But passing 
data globally in this way is in fact bad practice. It violates principles of 
information hiding and abstraction and does not work at all in a multitasking 
program. Note that the practice of nesting a function within another, where the 
inner function uses non-local variables (such as Target) is often called a 
“downward closure”. 

Downward closures, that is to say passing a pointer to a nested subprogram as 
a runtime parameter, are used in several parts of the Ada predefined library, for 
applications such as iterating over a data structure. 

The nesting of subprograms is a natural requirement for these applications 
because of the need to pass non-local information. This is harder to do in flat 
languages such as C, C++ and Java. Although type extensions can be used in 
some languages to model subprogram nesting, this mechanism is less clear and 
can be a problem for program maintenance. 

Finally, some applications need to combine (invoke) algorithms in a nested 
manner. Thus we might have other useful stuff in the package Algorithms  

package Algorithms is 

   function Solve(Trial: Float; Accuracy: Float; 
                        Fn: not null access function (X: Float) return Float) 
                                                                                              return Float; 
   function Integrate (Lo, Hi: Float; Accuracy: Float; 
                        Fn: not null access function (X: Float) return Float) 
                                                                                              return Float; 
   type Vector is array (Positive range <>) of Float; 

   procedure Minimize(V: in out Vector; Accuracy: Float; 
 Fn: not null access function (V: Vector) return Float); 

end Algorithms; 

The function Integrate is similar to Solve. It computes the definite integral of the 
function parameter, between the given limits. The procedure Minimize is a little 
different. It finds those values of the elements of the array V which make the 
value of the function parameter a minimum. We might have a situation where a 
cost function is to be minimized and is itself the result of doing an integration 
and that the values of V are used in the integration (this might seem rather 
unlikely but the author spent the first few years of his programming life doing 
just this sort of thing in the chemical industry). 

The structure could be 
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with Algorithms;  use Algorithms; 
procedure Do_It is 

   function Cost(V: Vector) return Float is 

      function F(X: Float) return Float is 
         Result: Float; 
      begin 
         ...  -- compute Result using V as well as X 
         return Result; 
      end F; 

   begin 
      return Integrate(0.0, 1.0, 0.01, F'Access); 
   end Cost; 

   A: Vector(1 .. 10); 
begin 

   ...  -- perhaps read in or set trial values for the vector A 

   Minimize(A, 0.01, Cost'Access); 

   ...   -- output final values of the vector A. 
end Do_It; 

This all works like a dream in Ada 2005 (and of course also in Ada 2012) – just 
as it did in Algol 60. In other programming languages this is either difficult or 
requires the use of unsafe constructs with potentially dangling references. 

Further examples of the use of access to subprogram types will be found in 
the chapter on Safe Communication.  

Finally, the interest rate that turns the investment of 1000 dollars and 500 
dollars into 2000 dollars in two years is about 18.6%. Nice rate if you can get it. 



 

4   Safe Architecture 

When speaking of buildings, a good architecture is one whose design gives the 
required strength in a natural and unobtrusive manner and thereby provides a 
safe environment for the people within. An elegant example is the Pantheon in 
Rome whose spherical shape has enormous strength and provides an uncluttered 
space. Many ancient cathedrals are not so successful, and need buttresses tacked 
on the outside to prop up the walls. In 1624, Sir Henry Wooton summed the 
matter up in his book, The Elements of Architecture, by saying “Well building 
hath three conditions – commoditie, firmenes & delight”. In modern terms, it 
should work, be strong and be beautiful as well. 

A good architecture in a program should similarly provide unobtrusive safety 
for the detailed workings of the inner parts within a clean framework. It should 
permit interaction where appropriate and prevent unrelated activities from 
accidentally interfering with each other. And a good language should enable the 
writing of aesthetically pleasing programs with a good architecture. 

There is perhaps an analogy with the architecture of office spaces. An 
arrangement where everyone has an individual office can inhibit communication 
and the flow of ideas. On the other hand, an open plan office often causes 
problems because noise and other distractions interfere with productivity. 

The structure of an Ada program is based primarily around the concept of a 
package, which groups related entities together and provides a natural 
framework for hiding implementation details from its clients. 

Package specifications and bodies 

Early languages such as Fortran had a flat structure with everything essentially 
at the same level. As a consequence all data (other than that local to a 
subroutine) is visible everywhere. This can be considered as rather like an open 
plan office. The same flat structure appears in C, although C does provide a 
degree of encapsulation by allowing programmer control over the external 
visibility of functions and file-scope variables. 

Other languages such as Algol and Pascal have a simple block structure, 
rather like nested Russian dolls. This is a bit better but really is no more than 
having an open plan office subdivided into more such offices. There are still big 
problems of communication. 

Consider the simple problem of a stack of numbers. The desired protocol is 
that an item can be added to the stack by calling a procedure Push and that the 
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top item can be removed from the stack by calling a function Pop – and perhaps 
also a procedure Clear to set the stack to an empty state. We do not want any 
other means of manipulating the stack since we want this protocol to be 
independent of the way we implement it. 

Now consider the following implementation of a stack written in Pascal. The 
stack is represented by an array of reals and there are three operations, Push and 
Pop to add items and remove items respectively, and Clear to set it empty. We 
also declare a constant max and give it a suitable value such as 100. This avoids 
writing 100 in several places, which would be bad if we changed our minds later 
on about the required size of the stack. 

const  max = 100; 

var  top : 0 .. max; 
 a : array[1..max] of real; 

procedure Clear; 
begin 
 top := 0 
end; 

procedure Push(x : real); 
begin 
 top := top + 1; 
 a[top] := x 
end; 

function Pop : real; 
begin 
 top := top – 1; 
 Pop:= a[top + 1] 
end 

The main trouble with this is that max, top and a have to be declared outside 
Push, Pop and Clear so that they can all be accessed. And from any part of the 
program from which we can call Push, Pop and Clear we can also change a and 
top directly and so bypass the protocol and create an inconsistent stack. 

This is a source of danger. If we want to monitor how many times the stack is 
changed then adding monitoring statements to count the calls of Push, Pop and 
Clear to do this is not adequate. Similarly, if we are reviewing a large program 
and are looking for all places where the stack is changed then we have to track 
all references to top and a as well as the calls of Push, Pop and Clear. 

This problem applies to C as well as to Fortran and Pascal. These languages 
to some extent overcome the problem by adding some form of separate 
compilation facility. Those entities which are to be visible to other separately 
compiled units can then be marked by special statements such as extern or by 
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using a header file. However, type checking in these languages is weaker across 
compilation units than within a single file. 

The technique in Ada is to use a package to encapsulate and hide the data 
shared by Push, Pop and Clear so that only those subprograms can access it. A 
package comes in two parts – its specification which describes its interface to 
other units, and its body which describes how it is implemented. We can 
paraphrase this by saying that the specification says what it does and the body 
says how it does it. The specification would simply be 

package Stack is 
   procedure Clear; 
   procedure Push(X: Float); 
   function Pop return Float; 
end Stack; 

This just describes the interface to the outside world. So outside the package all 
that is available are the three subprograms. The specification gives just enough 
information for the external client to write calls to the subprograms and for the 
compiler to compile the calls. The body could then be written as 

package body Stack is 

   Max: constant := 100; 
   Top: Integer range 0 .. Max := 0; 
   A: array (1 .. Max) of Float; 

   procedure Clear is 
   begin 
      Top := 0; 
   end Clear; 

   procedure Push(X: Float) is 
   begin 
      Top := Top + 1; 
      A(Top) := X; 
   end Push; 

   function Pop return Float is 
   begin 
      Top := Top – 1; 
      return A(Top + 1); 
   end Pop; 

end Stack; 

The body gives the full details of the subprograms and also declares the hidden 
objects Max, Top and A. Note the initial value of zero for Top. 
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In order to make use of the entities declared in a package, the client code 
must mention the package by means of a with clause thus 

with Stack; 
procedure Some_Client is 
   F: Float; 
begin 
   Stack.Clear; 
   Stack.Push(37.4); 
   … 
   F := Stack.Pop; 
... 
   Stack.Top := 5;  -- illegal! 
end Some_Client; 

So now we know that the required protocol is enforced. The client cannot 
accidentally or purposely interfere with the inner workings of the stack. Note in 
particular that the direct assignment to Stack.Top is prevented since Top is not 
visible to the client (it is not mentioned in the specification of the stack). 

Observe carefully that there are three entities to consider: the specification of 
the package, its body, and of course the client. 

There are important rules concerning their compilation. The client cannot be 
compiled without the specification being available and the body also cannot be 
compiled without the specification being available. But there are no similar 
constraints relating to the client and the body. If we decide to change the details 
of the implementation and this does not require the specification to be changed 
then the client does not have to be recompiled. 

Packages and subprograms at the top level (that is, not nested inside other 
packages or subprograms) can always be and usually are compiled separately. 
They are often known as library units and said to be at the library level. 

Note that the package Stack is mentioned each time an entity in it is used. 
This ensures that the client code is very clear as to what it is doing. Sometimes 
repeating the package name is tedious and so we can add a use clause thus 

with Stack;  use Stack; 
procedure Client is 
begin 
   Clear; 
   Push(37.4); 
   ... 
end Client; 

Of course if there were two packages Stack1 and Stack2, both declaring a 
procedure called Clear, and we try to “with” and “use” both of them then the 
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code would be ambiguous and the compiler would reject it. In such a case the 
solution is to supply the desired package name explicitly, for example 
Stack2.Clear. 

In conclusion, the specification defines a contract between the client and the 
package. The body promises to implement the specification and the client 
promises to use the package as described by the specification. Finally the 
compiler ensures that both sides stick to the contract. We will come back to 
these thoughts later in this chapter and also in the last chapter when we look into 
Ada 2012’s contract-based programming and the ideas behind the SPARK 
toolset, respectively. 

The careful reader will note that we have been ignoring issues of stack 
overflow (calling Push when Top=Max) and underflow (calling Pop when 
Top=0). Indeed, if either of these unpleasantries arise then a range check on Top 
will fail, raising Constraint_Error. It would be nice if the specifications for Push 
and Pop in the Stack package specification could explicitly include the 
preconditions that they are assuming, with corresponding checking enforced. 
Then the programmer intending to make use of the package would know what is 
expected of the actual parameter that is passed. Such a facility has been added in 
Ada 2012; it is part of the contract-based programming support that will be 
discussed below. 

A vital point about Ada is that the strong type matching is enforced across 
compilation unit boundaries. Exactly the same checking applies, whether the 
program is just one compilation unit or consists of several units distributed 
across various files. 

Private types 

Another feature of a package is that part of the specification can be hidden from 
the client. This is done using a so-called private part. The above package Stack 
only implements a single stack. It might be more useful to declare a package 
that enabled us to declare many stacks – to do this we need to introduce the 
concept of a stack type. 

We might write 
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package Stacks is     -- visible part 
   type Stack is private;     -- private type 
   procedure Clear(S: out Stack); 
   procedure Push(S: in out Stack; X: in Float); 
   procedure Pop(S: in out Stack; X: out Float); 

private       -- private part 
   Max: constant := 100; 
   type Vector is array (1 .. Max) of Float; 
   type Stack is       -- full type 
      record 
         A: Vector; 
         Top: Integer range 0 .. Max := 0; 
      end record; 
end Stacks; 

This is a straightforward generalization of the single-stack version, but we note 
that Ada 2012 offers a choice of declaring Pop as either a function returning a 
Float result, or a procedure taking a Float as an out parameter. Pop is permitted 
as a function since Ada 2012 allows functions to have out or in out parameters; 
relaxing a restriction that has been present since the original Ada design. 
Nonetheless, although the declaration of Pop as a function is permitted, we have 
followed the more traditional Ada approach and expressed Pop as a procedure. 
This style is consistent with the invocation of Push, and also makes it clearer 
that there is a side effect.  

The package body would then be 

package body Stacks is 

   procedure Clear(S: out Stack) is 
   begin 
      S.Top := 0; 
   end Clear; 

   procedure Push(S: in out Stack; X: in Float) is 
   begin 
      S.Top := S.Top + 1; 
      S.A(Top) := X; 
   end Push; 

   -- procedure Pop similarly 

end Stacks; 

The user can now declare lots of stacks and act on them individually thus 
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with Stacks; use Stacks; 
procedure Main is 
   This_One: Stack; 
   That_One: Stack; 
begin 
   Clear(This_One);  Clear(That_One); 
   Push(This_One, 37.4); 
   ... 
end Main; 

The detailed information about the type Stack is given in the private part of the 
package and, although visible to the human reader, is not directly accessible to 
the code written by the client. So the specification is logically split into two 
parts, the visible part (everything before the keyword private) and the private 
part.  

If the private part alone is changed then the text of the client will not need 
changing but the client code will need recompiling because the object code 
might change even though the source code does not. 

Any necessary recompilation is ensured by the compilation system and can 
be performed automatically if desired. Note carefully that this is required by the 
Ada language and is not simply a property of a particular implementation. It is 
never left to the user to decide when recompilation is necessary and so there is 
no risk of attempting to link together a set of inconsistent units – a big hazard in 
languages that do not specify precisely the interaction between compiling, 
binding and linking. 

Finally, note the modes in, out and in out on the parameters. These refer to 
the flow of information and are explained in Chapter 6 on Safe Object 
Construction. 

Generic contract model 

Templates are an important feature of languages such as C++ (and more 
recently Java and C#). These correspond to generics in Ada and in fact C++ 
based its templates partly on Ada generics. Ada generics are type-safe because 
of the so-called contract model. 

We can extend the stack example to enable us to declare stacks of any type 
and any size (we can do the latter in other ways as well). Consider 
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generic 
   Max: Integer;    -- formal generic parameters 
   type Item is private; 
package Generic_Stacks is 
   type Stack is private;   
   procedure Clear(S: out Stack); 
   procedure Push(S: in out Stack; X: in Item); 
   procedure Pop(S: in out Stack; X: out Item); 

private       -- private part 
   type Vector is array (1 .. Max) of Item; 
   type Stack is  
      record 
         A: Vector; 
         Top: Integer range 0 .. Max := 0; 
      end record; 
end Generic_Stacks; 

with an appropriate body obtained simply by replacing Float by Item.  
The generic package is just a template and in order to be used in a program it 

has to be instantiated with appropriate actual parameters corresponding to the 
two generic formal parameters Max and Item. The result of instantiating a 
generic package is the declaration of an actual package. For example if we want 
stacks of integers with maximum size 50, we write 

package Integer_Stacks is 
   new Generic_Stacks(Max => 50, Item => Integer); 

This declares a package called Integer_Stacks which we can then use in the 
normal way. The essence of the contract model is that if we provide parameters 
that correctly match the generic specification then the package obtained from 
the instantiation will compile and execute correctly. 

Other languages do not have this desirable property. In C++, for instance, 
some mismatches are caught by the linker rather than the compiler and others 
are even left until execution and throw an exception. 

There are extensive forms of generic parameters in Ada. The generic formal 
parameter 

type Item is private; 

permits the actual type to be almost any type at all. The generic formal 
parameter 

type Item is (<>); 
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permits the actual type to be any integer type (such as Integer or Long_Integer) 
or any enumeration type (such as Signal). Within the generic we can then use all 
the properties common to all integer and enumeration types with the certainty 
that the actual type will indeed provide these properties. 

The generic contract model is very important. It enables the development of 
flexible but safe general-purpose libraries. An important goal is that the Ada 
user should not ever need to pore over the code of the generic body in order to 
puzzle out what went wrong.  

Child units 

The overall architecture of an Ada system can have a hierarchical (tree-like) 
structure of units, which provides both flexible information hiding and ease of 
modification. Child units can be public or private. Given a package called 
Parent we can declare a public child thus 

package Parent.Child is ... 

and a private child thus 

private package Parent.Slave ... 

Both have bodies and can have private parts as usual. The key difference is that 
a public child essentially extends the specification of the parent (and is thus 
visible to clients) whereas a private child extends the private part and body of 
the parent (and thus is not visible to clients). The structure permits 
grandchildren etc to any depth. 

There are various rules concerning visibility. A child unit does not need an 
explicit “with” clause for its parent (visibility is automatic). However, the parent 
body can have a “with” clause for a child if it needs to use the functionality 
defined in the child. But since the specification of the parent must be available 
before the children are compiled (since the children share the name of the 
parent), the parent specification cannot have a normal “with” clause for a child. 
More of this later. 

Another rule is that the visible part of a private child has visibility of the 
private part of its parent (just as the body of the parent does). This extra 
visibility does not compromise the parent’s encapsulation, since the only units 
that can “with” a private child are ones that would in any event have visibility 
into the parent’s private part. But for a public child only its private part and its 
body (and not its visible part) have such visibility of the parent. This restriction 
prevents breaking the parent unit’s encapsulation. 
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A special form of with clause (the private with clause introduced in Ada 
2005) is permitted on a package specification; it only allows the private part to 
have visibility of the unit concerned. This is useful, for example, where the 
private part of a public child needs information provided by a private child. 
Thus we might have an application package App and two children 
App.User_View and App.Secret_Details thus 

private package App.Secret_Details is 
   type Inner is ... 
   ...  -- various operations on Inner etc 
end App.Secret_Details; 

private with App.Secret_Details; 
package App.User_View is 

   type Outer is private; 
   ... -- various operations on Outer visible to the user 

 -- type Inner is not visible here 
private 
 -- type Inner is visible here 

   type Outer is  
      record 
         X: App.Secret_Details.Inner; 
         ... 
      end record; 
   ... 
end App.User_View; 

A normal “with” clause for Secret_Details is not permitted on User_View 
because this would allow the client to see information in the package 
Secret_Details via the visible part of User_View. Ada carefully blocks all 
attempts to bypass the strict visibility control. 

Unit testing 

One of the problems that confronts the testing of code is to ensure that the 
testing does not upset the software being tested. There is an echo here of 
Quantum Mechanics whereby when we make an observation of a particle such 
as an electron, the very observation itself disturbs the state of the particle. 

One problem with good software design is that we strive to hide detailed 
information in order to produce good abstractions – by the use of private types 
for example. But then when we test the system we often want to observe the 
detailed behavior of this hidden material.  

 46 



  Safe architecture 

To take a trivial example we might want to know the value of Top for a 
particular stack declared using the package Stacks (the one where Stack is a 
private type). We have not provided a means of doing this. We could add a 
function Size to the package Stacks but this would disturb the package and 
require its recompilation and that of all the client code. And possibly we might 
introduce errors into the package we were testing or (worse) might make errors 
when we later removed the testing code. 

Child units provide a convenient way of overcoming this difficulty. We can 
write 

package Stacks.Monitor is 
   function Size(S: Stack) return Integer; 
end Stacks.Monitor; 

package body Stacks.Monitor is 
   function Size(S: Stack) return Integer is 
   begin 
      return S.Top; 
   end Size; 
end Stacks.Monitor; 

This works because the body of a child has visibility of the private part of its 
parent. So we can now call the function Size at will for test purposes and when 
we are satisfied that the software is correct we can delete the child package. The 
parent package Stacks did not have to be disturbed at all. 

Mutually dependent types 

Many languages have the equivalent of private types especially in connection 
with object-oriented programming. Basically, the intrinsic operations (methods) 
belonging to a type are those declared in a package (or a class) along with the 
type. Thus the intrinsic operations of the type Stack are Clear, Push and Pop. 
The same structure in C++ would be written as 

class Stack { 
...  /*  details of stack structure  */ 
public: 
   void Clear(); 
   void Push(float); 
   float Pop(); 
}; 

The C++ approach is convenient in that it only has one level of naming Stack 
whereas in Ada we have both package name and type name, thus Stacks.Stack. 
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However, in practice the Ada style is not a burden especially if we apply “use” 
clauses. (Moreover, Ada users have the option of using a different style by 
giving the type some neutral name such as Object or Data so that they can then 
write Stacks.Object or Stacks.Data.) 

On the other hand if we have two types that wish to share private 
information, it is very easy to write this in Ada. We can write 

package Twins is 
   type Dum is private; 
   type Dee is private; 
   ... 
private 
   ...  -- shared private part 
end Twins; 

and the private part defines both Dum and Dee and so they have mutual access 
to anything in the private part. 

This is not so easy in other languages and involves constructs such as the 
controversial “friend” mechanism in C++. In Ada there is no possibility of 
getting it wrong or of breaking privacy in unexpected ways, and the mechanism 
is symmetric. 

Other examples exhibit mutual recursion. Suppose we wish to study patterns 
of points and lines where each point has three lines through it and each line has 
three points on it. (This is not an arbitrary example. Two of the most 
fundamental theorems of projective geometry, those of the geometers Pappus of 
Alexandria and Girard Desargues concern such structures.) We use access types. 
A simple approach is a single package 

package Points_and_Lines is 
   type Point is private; 
   type Line is private; 
   ... 
private 
   type Point is  
      record 
         L, M, N: access Line; 
      end record; 
   type Line is 
      record 
         P, Q, R: access Point; 
      end record; 
end Points_and_Lines; 
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If we decided that each type deserved its own package then we could still define 
their mutually recursive structure using a limited with clause, a mechanism 
introduced in Ada 2005. (Two packages cannot have normal “with” clauses 
referring to each other because that creates a circularity that makes their 
initialization impossible.) We can write 

limited with Lines; 
package Points is 
   type Point is private; 
   ... 
private 
   type Point is 
      record 
         L, N, N: access Lines.Line; 
      end record; 
end Points; 

and similarly for the package Lines. A limited with clause gives a so-called 
incomplete view of the types in the package concerned, which means roughly 
that they can only be used to form access types.  

Contract-based programming 

The Stacks example shown earlier in the chapter is not completely satisfactory. 
Although it nicely illustrates encapsulation through a private type, nothing in the 
package specification reflects the type’s essential stackhood. We have chosen 
suggestive names for the various operations – Push, Pop, and Clear – but an 
inattentive or malicious developer could implement Push to remove an element 
or Pop to do an insertion. It would be useful, especially in the interest of 
reliability, safety and security, to have a mechanism that captures the author’s 
intent concerning the semantics of the type and subprograms declared in the 
package specification. 

Such a facility has been introduced in Ada 2012. Known as contract-based 
programming and analogous to the Design by Contract™ approach in Eiffel, it 
permits the programmer to specify subprogram preconditions, subprogram 
postconditions, and private type invariants. These take the form of Boolean 
expressions that can be checked at run time under the control of a pragma, and 
that are associated with the relevant entity (a subprogram for a precondition or a 
postcondition, and a private type for an invariant) via a new piece of syntax 
referred to as an aspect specification. In brief: 

• A precondition is checked at the point of call, and reflects the 
obligations of the caller;  
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• A postcondition is checked at any point of normal return, and 
reflects the obligations of the called subprogram; and  

• An invariant is equivalent to a postcondition of each subprogram 
that is visible outside the package and thus is checked on return 
from each such subprogram. An invariant reflects the guaranteed 
“global” state of the program after any of these subprograms 
returns. 

Below is a version of the package Stacks that illustrates all three concepts. In 
order to have a non-trivial type invariant we have added the requirement that 
duplicate elements are not allowed.  

package Stacks is 

   type Stack is private 
      with 
         Type_Invariant => Is_Unduplicated(Stack); 

   function Is_Empty(S: Stack) return Boolean; 
   function Is_Full(S: Stack) return Boolean; 
   function Is_Unduplicated(S: Stack) return Boolean; 

   function Contains(S : Stack; X : Float) return Boolean; 
   -- Note: Contains(S, X) implies not Is_Empty(S) 

   procedure Push(S: in out Stack; X: in Float) 
      with 
         Pre => not Contains(S, X) and not Is_Full(S), 
         Post => Contains(S, X); 

   procedure Pop(S: in out Stack; X : out Float) 
      with 
         Pre => not Is_Empty(S), 
         Post => not Contains(S, X) and not Is_Full(S); 

   procedure Clear(S : in out Stack) 
      with 
         Post => Is_Empty(S); 

private 
   ... 
end Stacks; 

The notation should be self-explanatory. The absence of a precondition (as in 
the case of the procedure Clear) is equivalent to a True precondition. 

Contracts (that is, preconditions, postconditions, and invariants) have several 
uses. At a minimum, they specify the programmer’s intent unambiguously and 
can serve as formal documentation. But they can also be used to generate run-
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time checks to ensure that the associated Boolean conditions are true. The 
Assertion_Policy pragma controls whether checks are generated. The general 
form is 

pragma Assertion_Policy(policy_identifier); 

If policy_identifier is Check then checks are generated; if policy_identifier is 
Ignore, then assertions are ignored at run time. (The default, in the absence of 
the pragma, is implementation defined.)  

A third application of contracts is to aid in the use of formal proofs of 
program properties, for example to show that the code of a subprogram is 
consistent with its pre- and postconditions. This approach is illustrated by the 
SPARK language as will be discussed in a later chapter. 

Ada 2012 includes a variety of features in connection with contract-based 
programming that were not illustrated in this simple example. The language 
allows quantification expressions (“for all” and “for some”) and permits certain 
function bodies in package specifications since often the specific logic of a pre- 
or postcondition is in effect part of the package’s interface. Ada 2012 also 
supplies the attribute 'Old allowing the original value of a formal parameter to 
be referenced in the postcondition, and the attribute 'Result analogously 
allowing the function result to be referenced in the postcondition  The interested 
reader can refer to the Ada 2012 reference manual or rationale (see 
bibliography) for further information on such details. 

Note that there is considerable flexibility in how specific the contracts should 
be. In our example, the only requirement on Push (its postcondition) is that the 
element needs to be inserted in the stack. However, the last-in–first-out 
semantics of stacks has a more demanding requirement: the element needs to be 
inserted such that it will be removed the next time Pop is called. Likewise, as 
specified above, Pop only has the obligation to remove some element. More 
precisely, it should remove the element that was most recently Pushed. These 
more specific contracts can be expressed using Ada 2012 features; this is left as 
an exercise for the interested reader. 

 





 

5   Safe Object-Oriented Programming 

Object-Oriented Programming (OOP) first appeared in the late 1960s in Simula, 
spread to the research and academic community with languages such as 
Smalltalk, and then in the late 1980s and early 1990s took hold in the 
mainstream with C++ and later Java. Its supreme merit is said to be its 
flexibility. But flexibility is somewhat like freedom discussed in the 
Introduction – the wrong kind of flexibility can be an opportunity that permits 
dangerous errors to intrude. 

The key idea of OOP is that the objects dominate the programming, and 
subprograms (methods) that manipulate objects are properties of objects. The 
other, older, view sometimes called Function-Oriented (or structured) 
programming, is that programming is primarily about functional decomposition 
and that it is the subprograms that dominate program organization, and that 
objects are merely passive things being manipulated by them. 

Both views have their place and fanatical devotion to just a strict object view 
is often inappropriate. 

Ada strikes an excellent balance – we can refer to it as “methodology 
agnostic” as compared with, say, Java, which is “pure” OO – and enables either 
approach to be taken according to the needs of the application. Indeed, Ada has 
incorporated the idea of objects right from its inception in 1980 through the 
concept of packages which encapsulate types and the operations upon them, and 
tasks that encapsulate independent activities. Ada 95 introduced the main 
features that one associates with OOP: inheritance, polymorphism, and dynamic 
binding, together with the notion of a “class” as a collection of types related 
through inheritance. 

Object-Orientation versus Function-Orientation 

We will look at two examples which can be used to illustrate various points. 
They are chosen for their familiarity which avoids the need to explain particular 
application areas. The examples concern geometrical objects (of which there are 
lots of kinds) and people (of which there are only two kinds, male and female). 

Consider the geometrical objects first. For simplicity we will consider just 
flat objects in a plane. Every object has a position. In Ada we can declare a root 
object which has properties common to all objects thus 
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type Object is tagged  
   record 
      X_Coord: Float; 
      Y_Coord: Float; 
   end record; 

The word tagged distinguishes this type from a plain record type (such as Date 
in Chapter 3) and indicates that it can be extended. Moreover, objects of this 
type carry a tag with them at execution time and this tag identifies the type of 
the object. We are going to declare various specific object types such as Circle, 
Triangle, Square and so on in a moment and these will all have distinct values 
for the tag. The components X_Coord and Y_Coord are of course the 
coordinates of the centre of the object. 

We can declare various properties of geometrical objects such as area and 
moment of inertia about the centre. Every object has such properties but they 
vary according to shape. These properties can be defined by functions and they 
are declared in the same package as the corresponding type. We can start with 

package Geometry is 
   type Object is abstract tagged 
     record 
         X_Coord, Y_Coord: Float; 
      end record; 

   function Area(Obj: Object) return Float is abstract; 
   function Moment(Obj: Object) return Float is abstract; 
end Geometry; 

We have declared the type and the operations as abstract. We don’t actually 
want any objects of type Object and making it abstract prevents us from 
inadvertently creating any. We want real objects such as a Circle, which have 
properties such as Area. If we did want to discuss a plain point without any area 
then we should declare a specific type Point for this. The functions Area and 
Moment have been declared as abstract also. This ensures that when we declare 
a genuine type such as Circle then we are forced to declare concrete functions 
Area and Moment with appropriate code. 

We can now declare the type Circle. It is best to use a child package for this 
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package Geometry.Circles is 
   type Circle is new Object with 
      record 
         Radius: Float; 
      end record; 

   function Area(C: Circle) return Float; 
   function Moment(C: Circle) return Float; 
end Geometry.Circles; 

with Ada.Numerics;  use Ada.Numerics;  -- to give access to π 
package body Geometry.Circles is 
   function Area(C: Circle) return Float is 
   begin 
      return π * C.Radius**2;   -- uses Greek letter π 
   end Area; 

   function Moment(C: Circle) return Float is 
   begin 
      return 0.5 * C.Area * C.Radius**2; 
   end Moment; 
end Geometry.Circles; 

The key feature here is the use of type derivation in the declaration of Circle. By 
declaring Circle as new Object we will implicitly inherit the visible operations 
on Object from package Geometry, unless we override them. Since these 
operations are abstract and Circle is not abstract, we are actually forced to 
override them and thus we declare Area and Moment explicitly. The type 
derivation includes an extension part (the Radius component), and this is added 
to the components present in Object (X_Coord and Y_Coord). 

Note that the code defining the Area and Moment functions is in the package 
body. We recall from the chapter on Safe Architecture that this means that the 
code can be changed and recompiled as necessary without forcing recompilation 
of the description of the type itself and consequently all those programs that use 
it. 

We could then declare other types such as Square (which has an extra 
component giving the length of the side), Triangle (three components giving the 
three sides) and so on without disturbing the existing abstract type Object and 
the type Circle in any way. 

The various types form an inheritance hierarchy rooted at Object and this set 
of types (a class in Ada terminology) is denoted by Object'Class. Ada carefully 
distinguishes between a specific type such as Circle and a class of types such as 
Object'Class. This distinction avoids confusion that can occur in other 
languages. If we subsequently define other types as extensions of the type Circle 
then we can usefully talk about the class Circle'Class. 
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The function Moment declared above illustrates the use of the prefixed 
notation. We can write either of 

C.Area   -- prefixed notation 
Area(C)   -- functional notation 

The prefixed notation was introduced in Ada 2005 and emphasizes the object 
model, indicating that we consider the object C to be the predominant entity 
rather than the function Area. 

Suppose now that we have declared various objects, perhaps 

A_Circle: Circle := (1.0, 2.0, Radius => 4.5); 
My_Square: Square := (0.0, 0.0, Side => 3.7); 
The_Triangle: Triangle := (1.0, 0.5, A => 3.0, B => 4.0, C => 5.0); 

By way of illustration, we have used named notation for components other than 
the x and y coordinates which are common to all the types. 

We might have a procedure to output the properties of a general object. We 
might write 

procedure Print(Obj: Object'Class) is -- Obj is polymorphic 
begin 
   Put("Area is ");  Put(Obj.Area);  -- dispatching call of Area 
   ...      -- and so on 
end Print; 

and then 

Print(A_Circle); 
Print(My_Square); 

The formal parameter Obj is polymorphic, meaning that it can reference objects 
of different types (from any type in the hierarchy rooted at Object) at different 
times, in particular at different calls of Print. 

The procedure Print can take any item in the class Object'Class. Within the 
procedure, the call to Area is dynamically bound and calls the function Area 
appropriate to the specific type of the parameter Obj. This always works safely 
since the language rules are such that every possible object in the class 
Object'Class is of a specific type derived ultimately from Object and will have a 
function Area. Note that the type Object itself was abstract and so no 
geometrical object of that type can be created – accordingly it does not matter 
that the function Area for the type Object is abstract and has no code – it could 
never be called anyway. 

In a similar way we might have types concerning persons. Consider 
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package People is 
   type Person is abstract tagged 
      record  
         Birthday: Date; 
         Height: Inches; 
         Weight: Pounds; 
      end record; 

   type Man is new Person with 
      record 
         Bearded: Boolean;  -- whether he has a beard 
      end record; 

   type Woman is new Person with 
      record 
         Births: Integer;  -- how many children she has borne 
      end record; 

   ... -- various operations 
end People; 

Since there is no possibility of any additional types of persons we could 
alternatively describe them by using a variant record, which is more in the line 
of function-oriented programming. Thus 

type Gender is (Male, Female); 

type Person (Sex: Gender) is  
   record 
      Birthday: Date; 
      Height: Inches; 
      Weight: Pounds; 
      case Sex is 
         when Male => 
            Bearded: Boolean; 
         when Female => 
            Births: Integer; 
      end case; 
   end record; 

and we might then declare various operations on this version of the type Person. 
Each operation would have to have a case statement to take account of the two 
sexes. 

This might be considered rather old fashioned and inelegant. However, it has 
its own considerable advantages. 
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If we need to add another operation in the Object-Oriented formulation then 
the whole structure will need to be recompiled – each type will need to be 
revisited in order to implement the new operation. If we need to add another 
type (such as a Pentagon) then the existing structure can be left unchanged. 

In the case of the Function-Oriented formulation, the situation is completely 
reversed (basically we simply interchange the words type and operation). 

If we need to add another type in the Function-Oriented formulation then the 
whole structure will need to be recompiled – each operation will need to be 
revisited to implement the new type (by adding another branch to its case 
statement). If we need to add another operation then the existing structure can 
be left unchanged. 

The Object-Oriented approach has often been lauded as so much safer than 
Function-Oriented programming because there are no case statements to 
maintain. This certainly is true but sometimes the maintenance is harder if new 
operations are added because they have to be added individually for every type. 

Ada offers both approaches and both approaches are safe in Ada. 

Overriding indicators 

One of the dangers of Object-Oriented programming occurs with overriding 
inherited operations. When we add a new type to a class we can add new 
versions of all the appropriate operations. If we do not add a new operation then 
that of the parent is inherited. 

The danger is that we might attempt to add a new version but spell it 
incorrectly 

function Aera(C: Circle) return Float; 

or get a parameter or result wrong 

function Area(C: Circle) return Integer; 

In both cases the existing function Area is not overridden but a totally new 
operation added. And then when a class-wide operation dispatches to Area it 
will call the inherited version rather than the one that failed to override it. Such 
bugs can be very difficult to find – the program compiles quietly and seems to 
run but just produces curious answers.  

(Actually, Ada has already provided a safeguard here because we declared 
Area for Object as abstract and this is a further defensive measure. But if we had 
a second generation or had not had the wisdom to make Area abstract then we 
would be in trouble.) 
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In order to guard against such mistakes we can take advantage of syntax 
introduced in Ada 2005 and write for example 

overriding 
function Area(C: Circle) return Float; 

Then if we make an error we will not get a new operation but instead the 
program will fail to compile. On the other hand, if we did truly want to add a 
new operation then we could assert that also by 

not overriding 
function Aera(C: Circle) return Float; 

Such overriding indicators are always optional, largely for compatibility with 
earlier versions of Ada.  

Admittedly the not overriding syntax is somewhat heavy, especially since 
this will be the common case. The ideal rule would be to require specifying the 
overriding keyword for all overriding declarations, and only for overriding 
declarations; that is, to use the overriding keyword but not the not overriding 
form. That rule would catch both kinds of errors: 

• Misspellings and other accidental non-overridings, since a non-
overriding declaration would have the overriding keyword; and  

• Accidental overriding (for example when a subprogram with the 
same profile is added to a parent type), since an overriding 
declaration would not have an overriding keyword. 

Compatibility with Ada 95 prevented these semantics from being adopted in 
Ada 2005, but their effect can be obtained in AdaCore’s GNAT compiler 
through the following switches: 

• -gnatyO, which warns about overriding declarations that are not 
marked with the overriding keyword, and 

• -gnatwe, which treats warnings as errors. 
Languages such as C++ and Java provide less assistance in this area and 
consequently subtle errors can remain undetected for some time.  

Dispatchless programming 

In safety-critical programming, the dynamic selection of code is sometimes 
forbidden. Safety is enhanced if we can prove that the flow of control follows a 
strict pattern with, for example, no dead code. Traditionally this means that we 
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have to use a more function-oriented approach, with visible if statements and 
case statements to select the appropriate flow path. 

Although dynamic dispatching is at the heart of much of the power of Object-
Oriented programming, other object-oriented features (chiefly code reuse 
through inheritance) are valuable. Thus we might value the ability to extend 
types and thereby share much coding but declare specific named operations 
where no dynamic behavior is required. We might also wish to use the prefixed 
notation which has a number of advantages. 

Ada has a facility known as pragma Restrictions which enables a programmer 
to ensure that specific features of Ada are not used in a particular program. In 
this case we write 

pragma Restrictions(No_Dispatch); 

and this ensures (through compile-time checks) that no use is made of the 
construction X'Class which in turn means that no dispatching calls are possible. 

Note that this exactly matches the requirements of SPARK which, as we 
mentioned in the Introduction, is often used for critical software. SPARK permits 
type extension but does not permit class-wide types and operations. 

If we do specify the restriction No_Dispatch then the implementation is able 
to reduce the code overheads typically associated with OOP. There is of course 
no need to generate a dispatch table for each type. (A dispatch table is a look-up 
table that contains the addresses of the various specific operations for the type.) 
Moreover, there is also no need to store a tag in every record structure.  

There are other less obvious benefits as well. In full OOP some of the 
predefined operations such as equality are dispatching and so the code 
overheads associated with them are also avoided. The net result is that the use of 
the pragma minimizes the need for the justification of deactivated code (code 
that is present in the executable and that can be traced back to specific 
requirements, but which will never be executed) for DO-178B or DO-178C 
certification. 

Interfaces and multiple inheritance 

Some have looked upon multiple inheritance as a Holy Grail – an objective 
against which languages should be judged. This is not the place to digress on the 
history of various techniques that have been used. Rather we will summarize the 
key problems. 

Suppose that we were able to inherit arbitrarily from two parent types. Recall 
that fabulous book Flatland written by Edwin Abbott (the second edition was 
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published in 1884). It is a satire on class structure (in the sociological, not the 
programming sense) and concerns a world in which people are flat geometrical 
objects. The working classes are triangles, the middle classes are other 
polygons. The aristocracy are circles. Curiously, all females are two-sided and 
thus simply a line segment. 

So using the two classes Objects and Persons introduced above, we could 
conceive of representing the inhabitants of Flatland by a type derived from both 
such as 

type Flatlander is new Geometry.Object and People.Person; -- illegal 

The question now arises as to what are the properties inherited from the two 
parent types? We might expect a Flatlander to have components X_Coord and 
Y_Coord inherited from Object and also a Birthday inherited from Person, 
although Height and Weight might be dubious for a two-dimensional person. 
And certainly we would expect an operation such as Area to be inherited 
because clearly a Flatlander has an area and indeed a moment of inertia. 

But we see potential problems in the general case. Suppose both parent types 
have an operation with the same identifier. This would typically arise with 
operations of a rather general nature such as Print, Make, Copy and so on. 
Which one is inherited? Suppose both parents have components with the same 
identifier. Which one do we get? These problems particularly arise if both 
parents themselves have a common ancestor. 

Some languages have provided multiple inheritance and devised somewhat 
lengthy rules to overcome these difficulties (C++ and Eiffel for example). 
Possibilities include using renaming, mentioning the parent name for ambiguous 
entities, and giving precedence to the first parent type in the list. Sometimes the 
solutions have the flavor of unification for its own sake – one person’s 
unification is often another person’s confusion. The rules in C++ give plenty of 
opportunities for the programmer to make mistakes. 

The difficulties are basically twofold: inheriting components and inheriting 
the implementation of the operations from more than one parent. But there is 
generally no problem with inheriting the specification (that is, the interface) of 
the operations. This solution was adopted by Java and has proved successful and 
is also the approach used by Ada. 

So the Ada rule, introduced in Ada 2005, is that we can inherit from more 
than one type thus 

type T is new A and B and C with  
   record 
      ...  -- additional components 
   end record; 
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but only the first type in the list (A) can have components and concrete 
operations. The other types must be what are known as interfaces – the reuse of 
the Java term was intentional – which are essentially abstract types without 
components and all of whose operations are abstract or null procedures. (The 
first type could be an interface as well.) 

We can reformulate the type Object as an interface as follows 

package Geometry is 
   type Object is interface; 

   procedure Move(Obj: in out Object;  
       New_X, New_Y: in Float) is abstract; 
   function X_Coord(Obj: Object) return Float is abstract; 
   function Y_Coord(Obj: Object) return Float is abstract; 
   function Area(Obj: Object) return Float is abstract; 
   function Moment(Obj: Object) return Float is abstract; 
end Geometry; 

Observe that the components have been deleted and replaced by further 
operations. The procedure Move enables an object to be moved – that is it sets 
both the x and y coordinates and the functions X_Coord and Y_Coord return its 
current position.  

Note that the prefixed notation means that we can still access the coordinates 
by for example A_Circle.X_Coord and The_Triangle.Y_Coord just as when they 
were visible components. 

So now when we declare a concrete type Circle we have to provide 
implementations of all these operations. Perhaps 

package Geometry.Circles is 
   type Circle is new Object with private;  -- partial view 

   procedure Move(C: in out Circle; New_X, New_Y: in Float); 
   function X_Coord(C: Circle) return Float; 
   function Y_Coord(C: Circle) return Float; 
   function Area(C: Circle) return Float; 
   function Moment(C: Circle) return Float; 

   function Radius(C: Circle) return Float; 
   function Make_Circle(X, Y, R: Float) return Circle; 

 62 



 Safe object-oriented programming 

private 
   type Circle is new Object with   -- full view 
      record 
         X_Coord, Y_Coord: Float; 
         Radius: Float; 
      end record; 
end Geometry.Circles; 

package body Geometry.Circles is 
   procedure Move(C: in out Circle; New_X, New_Y: in Float) is 
   begin 
      C.X_Coord := New_X; 
      C.Y_Coord := New_Y; 
   end Move; 

   function X_Coord(C: Circle) return Float is 
   begin 
      return C.X_Coord; 
   end X_Coord; 

   -- and similarly Y_Coord and Area and Moment as before 
   -- also functions Radius and Make_Circle 
end Geometry.Circles; 

We have made the type Circle private so that all the components are hidden. 
Nevertheless the partial view reveals that it is derived from the type Object and 
so must have all the properties of the type Object. Note how we also add 
functions to create a circle and to access the radius component. 

So the essence of programming with interfaces is that we have to implement 
the properties promised. It is not so much multiple inheritance of existing 
properties but multiple inheritance of contracts to be satisfied. In short, Ada 
allows multiple interface inheritance but single implementation inheritance. 

Returning now to Flatland, we can declare  

package Flatland is 
   type Flatlander is abstract new Person and Object with private; 

   procedure Move(F: in out Flatlander; New_X, New_Y: in Float); 
   function X_Coord(F: Flatlander) return Float; 
   function Y_Coord(F: Flatlander) return Float; 
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private 
   type Flatlander is abstract new Person and Object with 
      record 
         X_Coord, Y_Coord: Float := 0.0;  -- at origin by default 
         ... -- any new components we wish 
      end record; 
end Flatland; 

and the type Flatlander will inherit the components Birthday etc of the type 
Person, any operations of the type Person (we didn’t show any above) and the 
abstract operations of the type Object. However, it is convenient to declare the 
coordinates as components since we need to do that eventually and we can then 
override the inherited abstract operations Move, X_Coord and Y_Coord with 
concrete ones. Note also that we have given the coordinates the default value of 
zero so that any flatlander is by default at the origin.  

The package body is  
package body Flatland is 
   procedure Move(F: in out Flatlander; New_X, New_Y: Float) is 
   begin 
      F.X_Coord := New_X; 
      F.Y_Coord := New_Y; 
   end Move; 

   function X_Coord(F: Flatlander) return Float is 
   begin 
      return F.X_Coord; 
   end X_Coord; 

   -- and similarly Y_Coord  
end Flatland; 

Making Flatlander abstract means that we do not have to implement all the 
operations such as Area just yet. And finally we could declare a type Square 
suitable for Flatland (when originally written the book was published 
anonymously and the author designated as A Square) as follows 

package Flatland.Squares is 
   type Square is new Flatlander with  
      record 
         Side: Float; 
      end record; 

   function Area(S: Square) return Float; 
   function Moment(S: Square) return Float; 
end Flatland.Squares; 
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package body Flatland.Squares is 

   function Area(S: Square) is 
   begin 
      return S.Side**2; 
   end Area; 

   function Moment(S: Square) is 
   begin 
      return S.Area * S.Side**2 / 6.0; 
   end Moment; 

end Flatland.Squares. 

and all the operations are thereby implemented. By way of illustration we have 
made the extra component Side of the type Square directly visible but we could 
have used a private type. So we can now declare Dr Abbott as 

A_Square: Square := (Flatlander with Side => 3.00); 

and he will have all the properties of a square and a person. Note the extension 
aggregate which takes the default values for the private components and gives 
the additional visible component explicitly.  

There are other important properties of interfaces that can only be touched 
upon in this overview. An interface can have a null procedure as an operation. A 
null procedure behaves as if it has a null body – that is, it can be called but does 
nothing. If two ancestors have the same operation then a null procedure 
overrides an abstract operation with the same parameters and results. If two 
ancestors have the same abstract operation with equivalent parameters and 
results then these merge into a single operation to be implemented. If the 
parameters and results are different then this results in overloading and both 
operations have to be implemented. In summary the rules are designed to 
minimize surprises and maximize the benefits of multiple inheritance. 

Substitutability 

This section treats a specialized topic that may be of interest to the advanced 
reader. 

Inheritance can be regarded from two perspectives. As a language feature, it 
means the ability to derive from a parent type (superclass) and inherit state 
(components) and operations, with the ability to add new components, to 
override inherited operations, and to add new operations. But from a data 
modelling or type theoretic perspective, inheritance means a specialization 
(“is a”) relationship between a subclass and its superclass: if class S is a 
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subclass of T, then any instance of S is also an instance of T. This property is 
the basis of polymorphism; in Ada terms, for any tagged type T, a variable of 
type T'Class can refer to an object of type T or of any type derived directly or 
indirectly from T. This means that any operation that works for T should also 
work (either inherited or overridden) when applied to an instance of any of T’s 
subclasses.  

A more formal way of stating this last requirement is known as the Liskov 
Substitution Principle (LSP) [4] where it is expressed in type theoretic terms:  

Let q(x) be a property provable about objects x of type T. Then q(y) should 
be true for objects of type S where S is a subtype of T 

(Here “subtype” means “subclass”.) 
Designing a class hierarchy to adhere to LSP is good practice. If LSP is 

violated then it is possible for an inappropriate operation to be applied to a 
subclass instance through dynamic binding, resulting in a run-time error. This 
can occur if inheritance is used as the relationship between two classes when a 
less strongly coupled relationship should have been used instead. 

Although LSP may seem intuitively obvious, its interaction with contract-
based programming is not. Recall that, with contract-based programming, you 
can augment the specification of a subprogram with a precondition, a 
postcondition, or both. The question then arises: if you override an operation, 
does LSP place any requirements on the pre- and postconditions for the 
overriding version? The answer is “yes”: the precondition cannot be 
strengthened (for example you cannot form a precondition for the subclass’s 
version by “and”ing a condition onto the superclass’s precondition), and 
symmetrically the postcondition cannot be weakened. 

At first glance this may seem opposite to what you would expect. A subclass 
generally constrains the value set of its superclass, so it would seem to make 
sense to impose a stronger precondition on the subclass’s version of an 
operation. Upon closer inspection, however, this would violate LSP. From the 
caller’s perspective, invoking an operation X.Op(…) for a polymorphic variable 
X of type T means ensuring that Op’s precondition for type T is met. The author 
of this code has no way of knowing all the subclasses of T. If X happens to refer 
to an object of type T1, and the precondition of Op for T1 is stronger than that 
for T, then invoking X.Op(…) will fail with a precondition check error. 
Analogous reasoning shows that an operation’s postcondition should not be 
weakened by a subclass. The caller will expect the invocation to satisfy the 
superclass operation’s postcondition; if this is not fulfilled by the subclass, then 
again the program will fail. 

DO-178C’s Object-Oriented Technology and Related Techniques supplement 
(DO-332) [5] has addressed this issue. It does not mandate compliance with LSP 
but instead supplies guidance on the verification of “Local Type Consistency”. 
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“Type consistency” means adherence to LSP: subclass operations are not 
allowed to strengthen preconditions or weaken postconditions. “Local” means 
that the analysis need only consider contexts that actually occur in the program. 
For example if an operation’s precondition is strengthened by a mischievous 
operation that is never invoked – wherever there is a dynamically bound call, it 
can be demonstrated that the target object cannot be from the subclass that 
violates LSP – then the violation does no harm. 

DO-332 offers three possible approaches to demonstrating Local Type 
Consistency; one based on formal methods and the other two on requirements-
based testing: 

• Formally verify substitutability. 
• Ensure that each type passes all the tests of all its parent types 

which it can replace. 
• For each dispatch point, test every method that can be invoked 

(pessimistic testing) 
The first approach offers direct verification of LSP. Ada 2012’s explicit support 
for preconditions and postconditions helps make programs amenable to analysis 
by automated formal methods-based tools. This approach is recommended when 
appropriate formal methods can be used, as for example with the SPARK Pro 
toolset, since they provide the highest level of confidence that the Type 
Consistency objective is met.  

The second approach is well adapted to verification based on unit testing. In 
such a context, each operation in a class has a corresponding set of tests to 
verify that the operation’s requirements have been met. An overriding operation 
usually has extended requirements compared to the one it overrides, so it will be 
associated with an extended set of tests. Each class can be tested separately by 
calling the tests of its methods. In order to verify substitutability of a given 
tagged type by testing, the idea is to run all the tests for all parent types with 
objects of the given tagged type. If all the parent tests pass, this provides a high 
degree of confidence that objects of the new tagged type can properly substitute 
for parent type objects. Aunit, the unit testing tool included in GNAT Pro, offers 
the necessary support for automating such verification activities and provide 
specific examples showing the detection of LSP violations. 

The third approach may be the simplest verification method when 
dispatching calls are rare and the class hierarchy is shallow and/or narrow. In 
the context of GNAT Pro, the GNATstack tool can locate all the dispatching 
points of the application and identify the potential destination subprograms for 
each.  

Further discussion of this issue may be found in the High-Integrity Object-
Oriented Programming in Ada report [6] produced by AdaCore. 





 

6   Safe Object Construction 

This chapter covers a number of aspects of the control of objects. By objects 
here we mean both small objects in the sense of simple constants and variables 
of an elementary type such as Integer and big objects in the sense of Object-
Oriented Programming. 

Ada provides good control and flexibility in this area. This control is in many 
cases optional but the good programmer will use the features wherever possible 
and the good manager will insist upon them being used wherever possible. 

Variables and constants 

As we have seen we can declare a variable or a constant by writing 

Top: Integer;    -- a variable 
Max: constant Integer := 100;  -- a constant 

respectively. Top is a variable and we can assign new values to it whereas Max 
is a constant and its value cannot be changed. Note that when we declare a 
constant we have to give it a value since we cannot assign to it afterwards. A 
variable can optionally be given an initial value as well. 

The advantage of using a constant is that it cannot be changed accidentally. It 
is not only a useful safeguard but it helps any person later reading the program 
and informs them of its status. An important point is that the value of a constant 
does not have to be static – that is, computed at compile time. An example was 
in the program for interest rates where we declared a constant called Factor 

function Nfv_2000(X: Float) return Float is 
   Factor: constant Float := 1.0 + X/100.0; 
begin  
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0; 
end Nfv_2000; 

Each call of the function Nfv_2000 has a different value for X and so a different 
value for Factor. But Factor is constant throughout each individual call. 
Although this is a trivial example and it is clear that Factor is not changed 
during execution of an individual call nevertheless we should get into the habit 
of writing constant whenever possible. 

Parameters of subprograms are another example of variables and constants.  
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Parameters may have three modes: in, in out, and out. If no mode is shown 
then it is taken to be in by default. In versions of the language up to and 
including Ada 2005, the only parameter mode permitted for functions was in. 
This restriction was motivated by methodological considerations, in order to 
discourage programmers from writing functions with side effects. However, in 
practice the restriction did not really work. It was still possible to achieve side 
effects in functions, for example, by the use of access parameters or by 
assigning to a non-local variable. Moreover, if a side effect were needed, the 
programmer did not have the ability to use the technique that most clearly 
showed the intent, that is through a formal parameter of the relevant mode. As a 
result of these considerations, Ada 2012 has finally done the right thing and 
functions may take parameters of mode in out or out as well as in.  

A parameter of mode in is a constant whose value is given by the actual 
parameter. Thus the parameter X of Nfv_2000 has mode in and so is a constant – 
this means that we cannot assign to it and so are assured that its value will not 
change. The actual parameter can be any expression of the type concerned. 

Parameters of modes in out and out are variables. The actual parameter must 
also be a variable. The difference concerns their initial value. A parameter of 
mode in out is a variable whose initial value is given by that of the actual 
parameter whereas a parameter of mode out has no initial value (unless the type 
has a default value such as null in the case of an access type). 

Examples of all three modes occur in the procedures Push and Pop in the 
chapter on Safe Architecture 

procedure Push(S: in out Stack; X: in Float); 
procedure Pop(S: in out Stack; X: out Float); 

The rules regarding actual parameters ensure that constancy is never violated. 
Thus we could not pass a constant such as Factor to Pop since the relevant 
parameter of Pop has mode out and this would enable Pop to change Factor. 

The distinction between variables and constants also applies to access types 
and objects. Thus if we have  

type Int_Ptr is access all Integer; 
K: aliased Integer; 
KP: Int_Ptr := K'Access; 
CKP: constant Int_Ptr := K'Access; 

then the value of KP can be changed but the value of CKP cannot. This means 
that CKP will always refer to K. However, although we cannot make CKP refer 
to any other object we can use CKP to change the value in K by 

CKP.all := 47;   -- change value of K to 47 
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On the other hand we might have 

type Const_Int_Ptr is access constant Integer; 
J: aliased Integer; 
JP: Const_Int_Ptr := J'Access; 
CJP: constant Const_Int_Ptr := J'Access; 

where the access type itself has constant. This means that we cannot change the 
value of the object J referred to indirectly whether we use JP or CJP. Note that 
JP can refer to different objects from time to time but CJP cannot. Of course, 
the value of the object J can always be changed by a direct assignment to J. 

Constant and variable views 

Sometimes it is convenient to enable a client to read a variable but not to assign 
to it (that is, write to it). In other words to give the client a constant view of a 
variable. This can be done with a so-called deferred constant and the access 
types just described. 

A deferred constant is one declared in the visible part of a package and for 
which we do not give an initial value. The initial value must then be given in the 
private part. Consider the following 

package P is 
   type Const_Int_Ptr is access constant Integer; 
   The_Ptr: constant Const_Int_Ptr;  -- deferred constant 
private 
   The_Variable: aliased Integer; 
   The_Ptr: constant Const_Int_Ptr := The_Variable'Access; 
   ... 
end P; 

The client can read the value of The_Variable indirectly through the object 
The_Ptr of type Const_Int_Ptr by writing 

K := The_Ptr.all; -- indirect read of The_Variable 

But since the access type Const_Int_Ptr is declared as access constant the 
value of the object referred to by The_Ptr cannot be changed by writing 

The_Ptr.all := K; -- illegal, cannot change The_Variable indirectly 

However, any subprogram declared in the package P can access The_Variable 
directly and so write to it. This technique is particularly useful with tables where 
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the table is computed dynamically but we do not want the client to be able to 
change it. 

Using a feature introduced in Ada 2005 the named access type is not really 
necessary since we can equally write 

package P is 
   The_Ptr: constant access constant Integer;      -- deferred constant 
private 
   The_Variable: aliased Integer; 
   The_Ptr: constant access constant Integer := The_Variable'Access; 
   ... 
end P; 

Note the double use of constant in the declaration of The_Ptr. The first says 
that The_Ptr is itself a constant. The second says that it cannot be used to 
change the value of the object that it refers to. 

Constructor functions 

Languages such as C++, Java and C# have a special syntax for functions that are 
used to construct new data objects, with the type (class) name used as the name 
of the function. Such a mechanism was considered for Ada but was rejected in 
the interest of simplicity. Constructors in other languages have special semantics 
(for example concerning the need to invoke parent type constructors, 
whether/when a default constructor is provided, when the constructor is invoked 
relative to default initialization, etc.) Ada provides several features that can be 
used to model constructors, for example the use of discriminants for 
parameterized initialization, the use of controlled types with a user-provided 
Initialize procedure as will be explained below, or simply the use of an ordinary 
function returning a value of the target type, so there was no need for a special 
language feature.  

Limited types 

The types we have met so far (Integer, Float, Date, Circle and so on) have 
various operations. Some are predefined, such as the equality operation to 
compare two values (with =) and some also have user-defined operations, such 
as Area in the case of the type Circle. The operation of assignment is also 
available for all the types mentioned so far. 

Sometimes assignment is undesirable. There are two main reasons why this 
might be the case 
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▪ the type might represent some resource such as an access right and 
copying could imply a violation of security, 

▪ the type might be implemented as a linked data structure and copying 
would simply copy the head of the structure and not all of it. 

We can prevent assignment by declaring the type as limited. A good illustration 
of the second problem occurs if we implement the stack using a linked list. We 
might have 

package Linked_Stacks is 
   type Stack is limited private; 
   procedure Clear(S: out Stack); 
   procedure Push(S: in out Stack; X: in Float); 
   procedure Pop(S: in out Stack; X: out Float); 

private 
   type Cell is 
      record 
         Next: access Cell; 
         Value: Float; 
      end record; 

   type Stack is access all Cell; 
end Linked_Stacks; 

The body might be 

package body Linked_Stacks is 

   procedure Clear(S: out Stack) is  
   begin 
      S := null; 
   end Clear; 

   procedure Push(S: in out Stack; X: in Float) is 
   begin 
      S := new Cell'(S, X); 
   end Push; 

   procedure Pop(S: in out Stack; X: out Float) is 
   begin 
      X := S.Value; 
      S := Stack(S.Next); 
   end Pop; 

end Linked_Stacks; 

This uses the normal linked list style of implementation. Note that the type 
Stack is declared as limited private so that assignment of a stack as in 
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This_One, That_One: Stack; 
... 
This_One := That_One;  -- illegal, type Stack is limited 

is prohibited. If assignment had been permitted then all that would have 
happened is that This_One would end up pointing to the start of the list defining 
the value of That_One. Calling Pop on This_One would simply move it down 
the chain representing That_One. This sort of problem is known as aliasing – 
we would have two ways of referring to the same entity and that is often very 
unwise. 

In this example there is no problem with declaring a stack, it is automatically 
initialized to be null which represents an empty stack. However, sometimes we 
need to create an object with a specific initial value (necessary if it is a 
constant). We cannot do this by assigning in a general way as in 

type T is limited ... 
... 
X: constant T := Y; -- illegal, cannot copy value in variable Y 

because this involves copying which is forbidden since the type is limited. 
Two techniques are possible. One involves aggregates and the other uses 

functions. We will consider aggregates first. Suppose the type represents some 
sort of key with components giving the date of issue and the internal code 
number such as 

type Key is limited 
   record 
      Issued: Date; 
      Code: Integer; 
   end record; 

The type is limited so that keys cannot be copied. (They are a bit visible but we 
will come to that in a moment.) But we can write 

K: Key := (Today, 27); 

since, in the case of a limited type, this does not copy the value defined by the 
aggregate as a whole but rather the individual components are given the values 
Today and 27. In other words the value for K is built in situ. 

It would be more realistic to make the type private and then of course we 
could not use an aggregate because the components would not be individually 
visible. Instead we can use a constructor function. Consider 
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package Key_Stuff is 
   type Key is limited private; 
   function Make_Key( ... ) return Key; 
   ... 
private 
   type Key is limited 
      record 
         Issued: Date; 
         Code: Integer; 
      end record; 
end Key_Stuff; 

package body Key_Stuff is 

   function Make_Key( ... ) return Key is 
   begin 
      return New_Key: Key do 
         New_Key.Issued := Today; 
         New_Key.Code := ... ; 
      end return; 
   end Make_Key; 
   ... 
end Key_Stuff; 

The external client (for whom the type is private) can now write 

My_Key: Key := Make_Key( ... );  -- no copying involved 

where we assume that the parameters of Make_Key are used to compute the 
internal secret code. 

It is worth carefully examining the function Make_Key. It has an extended 
return statement which starts by declaring the return object New_Key. When the 
result type is limited (as here) the return object is actually built in the final 
destination of the result of the call (such as the object My_Key). This is similar 
to the way in which the components of the aggregate were actually built in situ 
in the earlier example. So again no copying is involved. 

The net outcome is that Ada provides a way of creating initial values for 
objects declared by clients and yet prevents the client from making copies. The 
limited type mechanism gives the provider of resources such as the keys 
considerable control over their use. 
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Controlled types 

Ada provides a further mechanism for the safe management of objects through 
the use of controlled types. This enables us to write special code to be executed 
when  
1)  an object is created and,  
2)  when it ceases to exist and,  
3)  when it is copied if it is of a nonlimited type. 
The mechanism is based on types called Controlled and Limited_Controlled 
declared in a predefined package thus 

package Ada.Finalization is 
   type Controlled is abstract tagged private; 
   procedure Initialize(Object: in out Controlled) is null; 
   procedure Adjust(Object: in out Controlled) is null; 
   procedure Finalize(Object: in out Controlled) is null; 

   type Limited_Controlled is abstract tagged limited private; 
   procedure Initialize(Object: in out Limited_Controlled) is null; 
   procedure Finalize(Object: in out Limited_Controlled) is null; 
private 
   ... 
end Ada.Finalization; 

The is null syntax, introduced in Ada 2005, makes the default behavior clear. 
The central idea (for a nonlimited type) is that the user declares a type which is 
derived from Controlled and then provides overriding declarations of the three 
procedures Initialize, Adjust and Finalize. These procedures are called when an 
object is created, when it is copied, and when it ceases to exist, respectively. 
Note carefully that these calls are inserted automatically by the system and the 
programmer does not have to write explicit calls. The same mechanism applies 
to a limited type which has to be derived from Limited_Controlled but there is no 
procedure Adjust since copying is not permitted. These operations are typically 
used to provide complex initializations, deep copying of linked structures, 
storage reclamation at the end of the lifetime of an object, and other 
housekeeping activities that are specific to the type. 

As an example, suppose we reconsider the stack and decide that we want to 
use the linked mechanism (so there is effectively no upper bound to the capacity 
of the stack) but wish to allow copying one stack to another. We can write 
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package Linked_Stacks is 
   type Stack is private; 
   procedure Clear(S: out Stack); 
   procedure Push(S: in out Stack; X: in Float); 
   procedure Pop(S: in out Stack; X: out Float); 

private 
   type Cell is 
      record 
         Next: access Cell; 
         Value: Float; 
      end record; 

   type Stack is new Controlled with 
      record  
         Header: access Cell; 
      end record; 

   overriding 
   procedure Adjust(S: in out Stack); 
end Linked_Stacks; 

The type Stack is now just private. The full type shows that it is actually a 
tagged type derived from the type Controlled and has a component Header 
which effectively is the stack in the previous formulation. In other words we 
have introduced a wrapper. Note that a client unit cannot see that the type is 
controlled and tagged. Since we want to make assignment work properly we 
have to override the procedure Adjust. Note also that we have supplied the 
overriding indicator so that the compiler can double check that Adjust does 
indeed have the correct parameters.  

The package body might be 

package body Linked_Stacks is 

   procedure Clear(S: out Stack) is 
   begin 
      S := (Controlled with Header => null); 
   end Clear; 

   procedure Push(S: in out Stack; X: in Float) is 
   begin 
      S.Header := new Cell'(S.Header, X); 
   end Push; 
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   procedure Pop(S: in out Stack; X: out Float) is 
   begin 
      X := S.Header.Value; 
      S.Header := S.Header.Next; 
   end Pop; 

   function Clone(L: access Cell) return access Cell is 
   begin 
      if L = null then 
         return null; 
      else 
         return new Cell'(Clone(L.Next), L.Value); 
      end if; 
   end Clone; 

   procedure Adjust(S: in out Stack) is 
   begin 
      S.Header := Clone(S.Header); 
   end Adjust; 

end Linked_Stacks; 

Assignment will now work properly. Suppose we write 

This_One, That_One: Stack; 
... 
This_One := That_One;  -- calls Adjust automatically  

The raw assignment of That_One to This_One copies just the record containing 
the component Header. The procedure Adjust is then called automatically with 
This_One as parameter. Adjust calls the recursive function Clone which actually 
makes the copy. This process is often called a deep copy. The result is that 
This_One and That_One now contain the same elements but are otherwise 
disjoint structures. 

Another notable point is that the procedure Clear sets the parameter S to a 
record whose header component is null; the structure is known as an extension 
aggregate. The first part of the extension aggregate just gives the name of the 
parent type (or the value of an object of that type) and the part after with gives 
the values of the additional components, if any. The procedures Pop and Push 
are straightforward. 

The reader might wonder about reclamation of unused storage when Pop 
removes an item and also when Clear sets a stack to empty. This will be 
discussed in the next chapter when we consider memory management in 
general.  

Note that Initialize and Finalize are not overridden and thus inherit the null 
procedure of the type Controlled. So nothing special happens when a stack is 
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declared – this is correct since we just get a record whose Header is null by 
default and nothing else is required. Also nothing happens when an object of 
type Stack ceases to exist on exit from a procedure and so on – this again raises 
the issue of the reclamation of storage and will be addressed in the next chapter. 

 
 





 

7   Safe Memory Management 

The memory of the computer provides a vital part of the framework in which 
the program resides. The integrity of the memory contents is necessary for the 
health of the program. There is perhaps an analogy with human memory. If the 
memory is unreliable then the proper functioning of the person is seriously 
impaired.  

There are two main problems with managing computer memory. One is that 
information can be lost by being improperly overwritten by other information. 
The other is that the memory itself can become filled and irrecoverable, so that 
no new information can be stored. This is the problem of memory leaks. 

Memory leak is an insidious fault since it often does not show up for a long 
time. There was an example of a chemical control program that seemed to run 
flawlessly for several years. It was restarted every three months because of some 
external constraints (a crane had to be moved which necessitated stopping the 
plant). But the schedule for the crane changed and the program was then 
allowed to run for longer – it crashed after four months. There was a memory 
leak which slowly gnawed away at the free storage. 

Buffer overflow 

Buffer overflow is almost a generic term used to denote the violation of the 
security of information. Buffer overflow enables information to be overwritten 
or read mistakenly or maliciously.  

This is a common fault with C and C++ programs and is typically caused by 
the absence of checks in those languages regarding writing or reading outside 
the bounds of an array. We illustrated this problem in the chapter on Safe 
Typing when discussing the example of throwing a pair of dice. 

This problem cannot normally arise in Ada because there are checks that an 
array index does not lie outside the range of allowed values. These checks can 
be suppressed if we are absolutely sure that the program is perfect, but this is 
perhaps an unwise thing to do unless the program has been proved to be correct 
by analysis tools such as the SPARK Examiner mentioned in Chapter 11. 

Although the absence of index checks is the ultimate cause of buffer 
overflow problems in C, it is exacerbated by other language features such as the 
choice of indicating the end of a string with a zero byte. This means that 
programmers have to test for this value (directly or indirectly) in many string 
manipulation routines. It is easy to make mistakes in performing such tests and 
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in any event the zero value might be accidentally overwritten itself. These 
secondary problems are often the key to loopholes which enable viruses to enter 
a system. 

Another common way in which data can be accidentally destroyed is through 
the use of incorrect pointers. Pointers in C are treated as addresses and 
arithmetic can be performed on them. It is therefore easy for a pointer to have a 
miscomputed value and so to point to the wrong thing. Writing through the 
pointer then destroys some other data.  

In the chapter on Safe Pointers we saw that Ada guards against this by 
applying strong typing to all pointers, and through the accessibility rules which 
ensure that declared objects do not vanish while being referenced by other 
objects. 

Therefore, basic features of Ada guard against the accidental loss of data 
through overwriting memory. The remainder of this chapter addresses the issue 
of losing memory itself. 

Heap control 

Programming languages are typically implemented using three sorts of data 
storage 
▪ global data that exists throughout the life of the program and can thus be 

allocated permanently (and often statically), 
▪ data stored on a stack which grows and contracts as the flow of control 

passes through various subprograms, 
▪ data allocated in a heap and used and discarded in a manner not directly 

tied to the flow of control. 
Fortran global common is the primeval example of global static storage (this 
relates to Fortran as it was in the early days of programming). But global static 
storage exists in all languages. In Ada if we declared 

package Calendar_Data is 
   type Month is (Jan, Feb, Mar, ... , Nov, Dec); 
   Days_In_Month: array (Month) of Integer :=  
      (Jan => 31, Feb => 28, Mar => 31, Apr => 30,  
       May => 31, Jun => 30, Jul => 31, Aug => 31, 
       Sep => 30, Oct => 31, Nov => 30, Dec => 31); 
end; 

then storage for the array Days_In_Month would naturally be declared in fixed 
global storage. 
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The stack is an important storage structure in all modern programming 
languages. Note that we are here talking about the underlying stack used by the 
implementation and not an object of the type Stack used for illustration in an 
earlier chapter. The stack is used for parameter passing in subprogram calls 
(actual parameters, the return address, saved registers, and so on) as well as for 
local variables within a subprogram. In a multitasking program where several 
threads of activity occur in parallel, each task has its own stack. 

Now consider the function Nfv_2000 used in the program for interest rates in 
the chapter on Safe Pointers 

function Nfv_2000 (X: Float) return Float is 
   Factor: constant Float := 1.0 + X/100.0; 
begin  
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0; 
end Nfv; 

The object Factor will typically be stored in the stack. It will come into 
existence when the function is called and will cease to exist when the function 
returns. This is all managed safely and automatically by the call/return 
mechanism. Note that although Factor is marked as a constant nevertheless it is 
not static since each call of the function will provide a different value for it. 
Moreover, the function might be called by two different tasks at the same time 
in a multitasking program and so Factor certainly cannot be stored globally. 

The values of any parameters such as X are also stored on the stack. 
Now consider a more elaborate subprogram which declares a local array 

whose size is not known until the program executes – consider for example a 
function to return an arbitrary array in reverse order. In Ada we might write 

function Rev(A: Vector) return Vector is 
   Result: Vector(A'Range); 
begin 
   for K in A'Range loop 
      Result(K) := A(A'First+A'Last–K); 
   end loop; 
   return Result; 
end Rev; 

where Vector is declared as an unconstrained array type 

type Vector is array (Natural range <>) of Float; 

As explained in the Arrays and constraints section of the chapter on Safe 
Typing, this notation indicates that Vector is an array type but the bounds of 
different objects may be different. When we declare an actual object of the type 
Vector we must supply bounds. So we might have 
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L: Integer := ... ; 
My_Vector, Your_Vector: Vector(1 .. L);  -- L need not be static 
... 
Your_Vector := Rev(My_Vector); 

In most programming languages we would be forced to place an object such as 
the local variable Result on the heap rather than the stack because its size is not 
known until the program executes. This is certainly not necessary because a 
stack is flexible and storage for local variables can always be managed on a last-
in–last-out basis. But the heap is often used for simplicity of implementation. It 
requires a bit of thought to design and manage dynamically sized data 
efficiently, and without care the subroutine calling mechanism can suffer a loss 
of performance.  

Although this is not required by the language standard, production-quality 
implementations of Ada always use the stack for local data – an efficient 
technique is to use both ends of the stack, one end for return links and fixed 
local data and the other end for dynamically sized local data. This enables the 
location of return addresses to be computed more efficiently and yet keeps full 
flexibility. Furthermore, Ada systems usually guard against the stack running 
out of storage and raise the exception Storage_Error if it does (or rather if it is 
about to). 

The above example illustrates a number of nice points about Ada. By contrast 
it is quite tricky to write in C. This is because C has no proper abstraction for 
arrays and so we cannot pass an array as a parameter but only a pointer to an 
array. Moreover, C cannot return an array object as a result. We could of course 
simply declare a function that reverses the argument in situ and leave it to the 
user to make a copy first. But doing the reverse in situ is tricky since we have to 
take care not to destroy the values as we swap them. So perhaps it is best to pass 
pointers to both the original array and the result as distinct parameters. The 
other difficulty is that C does not know how long its arrays are and so we have 
to pass the length of the array as well (or maybe the upper bound). This is yet 
another hazard since it is all too easy to pass a length that does not correspond to 
that of the array. So we might have 

void rev(float *a, float *result, int length); 
{ 
   for (k=0; k<length; k++) 
      result[k] = a[length–k–1]; 
} 
... 
float my_vector[100], your_vector[100]; 
... 
rev(my_vector, your_vector, 100); 
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Although this chapter is meant to be about storage management it is perhaps 
worth pausing to list some of the risks and difficulties in the above C code. 
▪ Arrays in C always have lower bound 0 and so if the application has a 

different natural lower bound such as 1 then confusion can arise. Ada 
allows any lower bound. 

▪ The length of the array has to be passed separately, there is a risk of 
getting the length wrong and confusing the length with the upper bound. 
In Ada the attributes of the array are passed as part of the array itself. 

▪ The address of the result array has to be passed separately. There is the 
danger of confusing the two arrays which cannot happen in Ada because 
the assignment clarifies which is which. 

▪ The loop has to be written out explicitly whereas the Ada notation ties it 
to the range of the array automatically. 

However, we have strayed from the topic. The key point is that if we did declare 
a local array in C++ whose size was not static as in 

void f(int n, ... ); 
{   float a[] = new float [n]; 
... 
} 

then the array a will be placed in the heap and not on the stack. In C we would 
have to use malloc which does explicitly reveal the use of the heap. 

The general danger of using the heap is that storage might be deallocated 
when it is still in use or left allocated when it is not needed. Because Ada allows 
dynamically sized objects on the stack, the heap is basically only used when 
allocators are invoked as mentioned in the chapter on Safe Pointers. This results 
in better performance and less chance of memory leaks. 

Storage pools 

We now turn to the use of the heap in Ada. The proper term is storage pool. If 
we do an allocation such as in the procedure Push discussed in the chapter on 
Safe Object Construction thus 

   procedure Push(S: in out Stack; X: in Float) is 
   begin 
      S := new Cell'(S, X); 
   end Push; 
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then the space for the new Cell will be taken from a storage pool. There is 
always a standard storage pool but we can declare and manage our own storage 
pools as well. 

LISP was the first language to take storage management out of the hands of 
the programmer, and to incorporate a garbage collector in order to reclaim 
storage. This approach is used in a number of other languages including Python 
and Java. The presence of a garbage collector simplifies programming 
substantially, but has its own problems. For example, the garbage collector may 
interrupt the execution of the program at unpredictable times, which presents a 
significant technical challenge in a real-time environment. A programmer of a 
real-time system must retain fine control over memory and deallocation and 
must be able to guarantee predictability of execution time, which can be 
compromised by a garbage collector. Indeed, one of the reasons that the original 
Ada 83 design did not include full support for OOP was that the language 
designer, Jean Ichbiah, who was one of the early implementers of the Object-
Oriented language Simula, felt that OOP required a garbage collector for 
effective storage reclamation, and that this was completely inappropriate for a 
language intended for high-integrity real-time applications. As was eventually 
demonstrated by C++ and Ada 95, a language can effectively support OOP 
without a garbage collector as long as it is sufficiently powerful so that the 
application programmer can express the necessary storage management control. 

Ada provides the user with a choice of mechanisms. Storage control can be 
done  
▪ by hand. That is by programming the release of storage on an individual 

basis. 
▪ by using storage pools. Individual items can be deleted from a specific 

pool and the whole pool can be discarded when no longer required. 
▪ by a garbage collector. This might not be available in all 

implementations. 
In order to return a lump of storage that is no longer used we call an 
instantiation of a predefined generic procedure named Unchecked_Deallocation. 
In order to do this we have to use a named access type so we will suppose that 
the type Cell is declared by  

type Cell; 
type Cell_Ptr is access all Cell; 

type Cell is 
   record 
      Next: Cell_Ptr; 
      Value: Float; 
   end record; 
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Note that we have an intrinsic circularity here which is broken by first giving an 
incomplete declaration of the type Cell. We now write 

procedure Free is new Unchecked_Deallocation(Cell, Cell_Ptr); 

In order to deallocate storage we simply call the procedure Free with an access 
value referring to the storage concerned. Thus the procedure Pop should now be 
written as 

procedure Pop(S: in out Stack; X: out Float) is 
   Old_S: Stack := S; 
begin 
   X := S.Value; 
   S := S.Next; 
   Free(Old_S); 
end Pop; 

Note that we are here using the version of the type Stack that is limited private 
and not the version that is controlled.  

It might seem that the use of Free runs the risk of a dangling reference since 
in general there might be another access value pointing to the deallocated 
storage. But in this example the user’s view of the type is limited and so the user 
cannot have made a copy of the structure. Moreover, the user cannot see the 
details of the type Stack and in particular cannot see the types Cell and Cell_Ptr 
at all and therefore cannot call Free. Thus once we have assured ourselves that 
Pop is correct then no trouble is possible. Finally, the instantiation of 
Unchecked_Deallocation provides a cross-check by requiring the use of named 
access types and thus checks that the parameters match. 

We must also change Clear as well. The easy way is to write 

procedure Clear(S: in out Stack) is 
   Junk: Float; 
begin 
   while S /= null loop 
      Pop(S, Junk); 
   end loop; 
end Clear; 

Although this technique ensures that storage is deallocated properly whenever 
Pop and Clear are called, there is still the risk that the user might declare a stack 
and leave its scope when it is not empty. Thus 
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procedure Do_Something ... 
   A_Stack: Stack; 
begin 
   ...   -- play with A_Stack 
   ...   -- is it empty as we leave? 
end Do_Something; 

If A_Stack were not null when Do_Something returns then the storage would be 
lost. We cannot leave the onus on the user to take care not to lose storage so we 
should make the stack a controlled type as illustrated at the end of the chapter on 
Safe Object Construction. We can then declare our own procedure Finalize 
perhaps simply as 

overriding 
procedure Finalize(S: in out Stack) is 
begin 
   Clear(S); 
end Finalize; 

Note the use of the overriding indicator just to ensure that we have not 
misspelled Finalize or mistyped its formal parameters. 

Ada also permits users to declare their own storage pools. This is 
straightforward but would take too much space to explain in detail here. But the 
general idea is that there is a predefined type Root_Storage_Pool (which itself is 
a limited controlled type) and we can declare our own storage pool type by 
deriving from it thus  

type My_Pool_Type(Size: Storage_Count) is  
  new Root_Storage_Pool with private; 
overriding 
procedure Allocate( ... ); 
overriding 
procedure Deallocate( ... ); 
-- also overriding Initialize( ... ) and Finalize( ... ); 

The procedure Allocate is automatically called when a new object is allocated by 
an allocator and Deallocate is automatically called when an object is discarded 
by calling an instance of Unchecked_Deallocation such as Free. The user then 
writes appropriate code to manage the pool as desired. Since a pool type is also 
controlled the procedures Initialize and Finalize are automatically called when 
the whole pool is declared and finally goes out of scope. 

In order to create a pool we then declare a pool object in the usual way. And 
finally we can link a particular access type to use the pool. 
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Cell_Ptr_Pool: My_Pool_Type(1000);  -- pool size is 1000 
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool; 

An important advantage of declaring our own pools is that the risk of 
fragmentation can be minimized by ensuring a constant “block size” for each 
allocated object (e.g., by keeping different types in different pools and avoiding 
allocating objects of unconstrained types). Moreover, we can write our own 
storage allocation mechanisms and even do some storage compaction if we so 
wish. A further point is that if the access type concerned is declared locally then 
the pool can be local as well and will automatically be discarded so that there 
can be no possibility of storage being lost. 

Storage pool control has been enhanced in Ada 2012 with the introduction of 
subpools. This topic is beyond the scope of this chapter, but we will simply 
point out that a subpool is a separately reclaimable part of a storage pool.  

Finally, there is a safeguard against misuse of Unchecked_Deallocation and 
that is that since it is a predefined library unit, any unit we write that calls it will 
have  

with Unchecked_Deallocation; 

written boldly at the start of the text. This will then be clearly visible to anyone 
reviewing the program and especially to our Manager. 

Restrictions 

There is a general mechanism for ensuring that we do not use certain features of 
the language, and that is the pragma Restrictions. Thus if we write 

pragma Restrictions(No_Dependence => Unchecked_Deallocation); 

then we are asserting that the program does not use Unchecked_Deallocation at 
all – the compiler will reject the program if this is not true. 

There are over fifty such restrictions which can be used to give assurance 
about various aspects of the program. Many are rather specialized and relate to 
multitasking programs. Others which concern storage generally and are thus 
relevant to this chapter are 

pragma Restrictions(No_Allocators); 
pragma Restrictions(No_Implicit_Heap_Allocations); 

The first completely prevents the use of the allocator new as in new Cell'( ... ) 
and thus all explicit use of the heap. Just occasionally some implementations 
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might use the heap temporarily for objects in certain awkward circumstances. 
This is rare and can be prevented by the second pragma. 

 
 



 

8   Safe Startup 

We can carefully write a program so that it behaves properly when running, but 
it is all to no avail if it will not start properly. 

The motor car that will not start is no good even if when going it behaves like 
a Rolls-Royce. 

In the case of a computer program, the key things are to ensure that data is 
initialized properly and this often means to ensure that its various components 
are initialized in the correct order. 

Elaboration 

A program typically consists of a number of library packages P, Q, R and so on, 
plus a main subprogram M. The general idea is that when the program is started 
the various packages are elaborated, after which the main subprogram is called. 
The elaboration of a package consists of the creation of the various entities 
declared at the top level in the package – but not entities declared within 
subprograms in the package because these are only created when the 
subprograms are called. 

Thus consider again the package Stack in the chapter on Safe Architecture. In 
outline it was 

package Stack is 
   procedure Clear; 
   procedure Push(X: Float); 
   function Pop return Float; 
end Stack; 

package body Stack is 

   Max: constant := 100; 
   Top: Integer range 0 .. Max := 0; 
   A: array (1 .. Max) of Float; 

   ... -- procedures Clear and Push and function Pop 

end Stack; 

The elaboration of the specification of the package does nothing in this case 
because there are no objects declared in it. The elaboration of the body of the 
package notionally causes the space for the integer Top and the array A to be 
reserved. In this particular case the size of the array is known before the 
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program executes because it is given by the constant Max which happens to 
have a static value and so the storage can be effectively reserved even before the 
program is loaded. 

But Max need not have had a static value – it might have been given the result 
of some function call thus 

   Max: constant := Some_Function; 
   Top: Integer range 0 .. Max := 0; 
   A: array (1 .. Max) of Float; 

and then the space required for A would be computed as part of the elaboration 
of the package body. If we had been careless and declared Max as a variable and 
forgotten to give it an initial value thus 

   Max: Integer; 
   Top: Integer range 0 .. Max := 0; 
   A: array (1 .. Max) of Float; 

then the size of the array would be given by the value that Max happened to 
have. If Max were negative then the attempt to declare the array would raise 
Constraint_Error and if Max were too large than it might raise Storage_Error. 
(Note that most compilers will issue a warning in such a situation, since 
straightforward data flow analysis reveals the reference to an uninitialized 
variable.) 

It should also be noted that we gave an initial value of zero to the variable 
Top so that the user did not have to call the procedure Clear before calling Push 
or Pop.  

Alternatively we can give the package body an explicit initialization part so 
that it becomes 

package body Stack is 

   Max: constant := 100; 
   Top: Integer range 0 .. Max; 
   A: array (1 .. Max) of Float; 

   ... -- procedures Clear and Push and function Pop 

begin    -- initialization part 
   Top := 0; 
end Stack; 

The initialization part can contain any statements at all. It is executed as part of 
the elaboration of the package body and so before any of the subprograms in the 
package can be called by code outside the package. 

 92 



  Safe startup 

Readers might feel that it is surely always best to give all variables an initial 
value anyway “just in case”. In the example given here the value zero is indeed 
a sensible initial value and corresponds to a call of Clear. In some situations 
there is no obvious initial value and giving a value “just in case” is not always 
wise because it can actually obscure real errors. We will come back to this 
briefly when we discuss SPARK in the final chapter. 

In the case of numeric variables, the consequences of using a value that has 
not been set are not necessarily disastrous. But the consequence of using an 
access value or some other implicit address which has not been set could be. In 
the case of access types in Ada these either have a default value of null or must 
be initialized as we have seen.  

A related kind of potential error concerns “access before elaboration”. This 
means attempting to use something before it has been properly elaborated. 
Consider 

package P is 
   function F return Integer; 
   X: Integer := F;  -- raises Program_Error 
end; 

where the body of F is of course in the body of the package P. We cannot 
successfully call F to give an initial value to X before the body has been 
elaborated, since the body of F may reference X or variables declared after X 
that themselves have not yet been initialized. So Ada requires the exception 
Program_Error to be raised. The same sort of error in C could have 
unpredictable effects. 

Elaboration pragmas 

Within a single compilation unit the rule is that declarations are elaborated in 
the order in which they appear in the text. 

In the case of a program linked from several different units, a unit is always 
elaborated after all those on which it depends. Thus a body is elaborated after 
the corresponding specification, the specification of a child is elaborated after 
the specification of its parent, and any unit is elaborated after the specifications 
of all those mentioned in a (nonlimited) with clause. 

However, this only partially dictates the order and is sometimes not enough 
to ensure the correct behavior of the program. We can extend the example above 
as follows 
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package P is 
   function F return Integer; 
end P; 

package body P is 
   N: Integer := some_initial_value; 
   function F return Integer is 
   begin 
      return N; 
   end F;  
end P; 

with P; 
package Q is 
   X: Integer := P.F; 
end; 

It is important that the body of P is elaborated before the specification of Q is 
elaborated because otherwise the call of F would return some unknown value 
for N. Elaborating the body of P ensures that N is correctly initialized to 
some_initial_value. But this initial value could itself invoke functions from other 
packages, and those functions might be referring to data that are initialized in 
the bodies of the packages containing the functions. So, we need to ensure not 
only that the body of P is elaborated before the specification of Q, but also that 
the bodies of all units on which P depends are likewise elaborated before the 
specification of Q is elaborated. But the above rules, with elaboration order 
simply constrained by the dependence relation between units, do not ensure this 
and Program_Error might be raised at runtime. 

We can force the required order of elaboration by inserting a pragma in the 
context clause for Q thus 

with P; 
pragma Elaborate_All(P); 
package Q is 
   X: Integer := P.F; 
end; 

Note that the All in Elaborate_All indicates the transitive nature of the pragma. 
Its effect is that at runtime the elaboration code for package P (and all the 
packages on which it depends) will be executed before the elaboration code for 
Q. 

There is also a pragma Elaborate_Body which can be given with a 
specification and indicates that its body must be elaborated immediately after 
the specification. In many cases this pragma will be sufficient to prevent 
elaboration order problems. 
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At this point the reader might be wondering if the elaboration order problems 
could be solved by a simple language rule, for example to behave as if pragma 
Elaborate_Body were applied everywhere. Unfortunately, this does not work, 
since it would make illegal the common case of mutually recursive packages 
(that is, where the body of package P1 withs package P2, and the body of 
package P2 withs P1). 

Elaboration order issues can be troublesome, especially in large systems, and 
sometimes these problems are better avoided than solved. One approach is to 
eliminate all initialization code in package bodies, and instead to have the main 
program call explicit procedures to set up the data structures that the program 
will be manipulating. 

Dynamic loading 

A related topic concerns dynamic loading. Some languages are designed to 
create a single coherent program that is fully linked and loaded before being 
run. Ada, C and Pascal are like that. The operating system may swap lumps of 
the program in and out of memory using paging algorithms but that is an 
implementation detail. 

Other languages are designed to be much more dynamic and enable new code 
to be compiled, loaded and executed while the program is running. COBOL, 
Java, and C# are like that. 

An approach used with programs written in languages such as C is to use 
dynamic linked libraries (DLLs) whereby an indirect call is used to invoke the 
new code. But this is not safe since there is no checking that the parameters of 
the new code match those of the old calling sequence. 

One approach that can be used with Ada is to use the dispatching mechanism 
as the hook to dynamic loading. The point about dispatching is that it enables 
existing compiled code containing a class (such as Geometry.Object'Class) to 
call operations (such as Area) of further types (such as Pentagon, Hexagon and 
so on) without the central code having to be recompiled. This was briefly 
mentioned in the chapter on Safe Object-Oriented Programming. Moreover, the 
mechanism is completely type safe. 

A good example of how dynamic loading can be added within this 
framework is given in [7]. 

 





 

9   Safe Communication 

A program that doesn’t communicate with the outside world in some way is 
useless although very safe. Such a program might almost be in solitary 
confinement. A prisoner in solitary confinement is safe in the sense that he 
cannot hurt other people but he is equally of no use to society either. 

So for a program to be useful it must communicate. And if the program is 
written in a safe way so that it does not have internal dangers, it is largely futile 
if its communication with the world is unsafe. So safety in communication is 
important since it is here that the program truly has a useful effect. 

It is perhaps worth recalling from the introduction that we characterized the 
difference between safety-critical and security-critical systems as that the former 
is where the program must not harm the world whereas the latter is where the 
world must not harm the program. So communication is the ultimate lynchpin of 
both safety and security. 

Representation of data 

An important aspect of communication concerns the mapping between the 
abstract software and the actual hardware. Most languages leave this sort of 
thing to individual implementations. But Ada gives the user quite specific 
control over many aspects of data representation. 

For example we might decide that we want data in a record to be laid out in a 
particular manner – perhaps to match that of an existing file structure. Suppose 
the record is the type Key in the chapter on Safe Object Construction 

type Key is limited 
   record 
      Issued: Date; 
      Code: Integer; 
   end record; 

where the type Date is  

type Date is 
   record 
      Day: Integer range 1 .. 31; 
      Month: Integer range 1 .. 12; 
      Year: Integer; 
   end record; 
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We will assume that we are using a 32-bit machine with four bytes to a word. 
The day and month easily fit into one byte each because of their explicit range 
constraints, and the year needs at most 16 bits (we will ignore “Year 32768” 
problems) so the whole date can be neatly packed into a single word. We can 
express this by  

for Date use 
   record 
      Day at 0 range 0 .. 7; 
      Month at 1 range 0 .. 7; 
      Year at 2 range 0 .. 15; 
   end record; 

In the case of the type Key, the required structure is simply two words and 
almost inevitably the implementation will use the representation we require. But 
we can ensure this by writing a record representation clause 

for Key use 
   record 
      Issued at 0 range 0 .. 31; 
      Code at 4 range 0 .. 31; 
   end record; 

As another example consider the type Signal of the chapter on Safe Typing. It 
was 

type Signal is (Danger, Caution, Clear); 

Unless we say otherwise, the compiler will encode this type using 0 for Danger, 
1 for Caution and 2 for Clear. But in a real application the value of the signal 
might enter the program encoded as 1 for Danger, 2 for Caution and 4 for Clear. 
We can instruct the program to use this encoding by writing an enumeration 
representation clause 

for Signal use (Danger => 1, Caution => 2, Clear => 4); 

Note that the for keyword has nothing to do with the for statement; the keyword 
was chosen in the interest of program readability. 

Furthermore, suppose we would like to ensure that each object of type Signal 
is stored in one byte; this is especially relevant for components of arrays and 
records. We can achieve this effect by supplying a representation attribute as 
follows: 

for Signal'Size use 8; 

Size can be specified equivalently in Ada 2012 by supplying an aspect 
specification with the associated declaration 
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type Signal is (Danger, Caution, Clear) 
   with Size => 8; 

Continuing this example, suppose we have a variable 

The_Signal : Signal; 

which we want to ensure is autonomously loaded into the program at the 
hexadecimal address 0ACE. We can arrange this with an address clause 

for The_Signal'Address 
use System.Storage_Elements.To_Address(16#0ACE#); 

The value specified after use must be of type System.Address, which is 
typically a private type. Thus the To_Address function from the predefined 
package System.Storage_Elements is invoked to convert the integer value to 
type Address. 

Equivalently, in Ada 2012 we can write the associated declaration with an 
Address aspect specification thus 

The_Signal : Signal 
   with Address => System.Storage_Elements.To_Address(16#0ACE#); 

Validity of data 

An important part of all programming is to ensure that data received from the 
outside world is valid. In most case we can simply program various checks 
using normal programming techniques. But sometimes this is awkward.  

The type Signal is a case in point. We have instructed the compiler to hold 
the value as an enumeration type with a certain representation. If by some 
misfortune a value turns up which does not have a recognized pattern (perhaps 
two bits are set because of a transient in the external device) then we cannot 
express a test of that in the normal way because that would take us outside the 
domain of definition of the type Signal. Instead we can write 

if not The_Signal'Valid then ... 

The Valid attribute may be applied to any scalar object; it returns a Boolean 
result that is True if the object contains a value that is consistent with its subtype 
and is False otherwise. 

Another approach is to use Unchecked_Conversion. We can read the value 
in, perhaps as a byte, check it and then if it is acceptable, convert it to the type 
Signal. First we need the type Byte and the conversion routine  
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type Byte is range 0 .. 255; 
for Byte'Size use 8; 
-- or in Ada 2012:  
--   type Byte is range 0..255 
--      with Size => 8; 

function Byte_To_Signal is new Unchecked_Conversion(Byte, Signal); 

and then 

Raw_Signal: Byte; 
for Raw_Signal'Address use To_Address(16#0ACE#); 
-- or in Ada 2012:  
--   Raw_Signal: Byte  
--     with Address => To_Address(16#0ACE#); 
The_Signal: Signal; 

case Raw_Signal is 
   when 1 | 2 | 4  => 
          -- raw value OK, convert it 
      The_Signal := Byte_To_Signal(Raw_Signal); 
      ...    -- process valid value 
   when others => 
      ...    -- raw value invalid 
      ...    -- take corrective action 
end case; 

The idea of course is that since the type Byte is simply an integer type we can do 
normal arithmetic on the value in order to check it. The corrective action might 
include logging the particular invalid value and so on. 

The reader should note a flaw in the above if the value truly is loaded 
autonomously. Between checking and the conversion, a new value might arrive. 
So it should be copied into a local variable before being tested and processed. 

Communication with other languages 

Many modern large systems are written in a mixture of languages each 
appropriate to the part of the system concerned. The safety-critical control 
routines and security-critical input routines might be written in Ada (perhaps in 
SPARK), the GUI interface might be written in C++, some complex 
mathematical analysis might be written in Fortran, some device drivers might be 
in C and so on. 
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Many languages have some facilities for interworking with other languages 
(C++ with C for example) but these are often loosely defined. Ada is perhaps 
unique in providing well-defined mechanisms within the language standard for 
interfacing to programs in other languages in general. Ada provides specific 
facilities for communication with programs and data in C, C++, Fortran and 
COBOL. In particular, Ada recognizes the representation of types in these other 
languages such as the arrangement of matrices in Fortran and strings in C so that 
communication retains type safety. 

In a mixed language situation it is thus a good idea to use Ada as the central 
language so that communication with other languages has the benefit of the type 
checking provided by the Ada conversion routines. 

The general means of communication uses pragmas. Thus suppose we have a 
C routine called next_int and we wish to call it from our Ada program as the 
function Next_Int. We simply write 

function Next_Int return Interfaces.C.int; 
pragma Import(C, Next_Int); 

The pragma indicates that the calling convention is C and also tells the compiler 
that there is no Ada body for this function. The pragma can supply a different 
external name and link name if necessary. The predefined package Interfaces.C 
contains declarations for types that may be used in an Ada program to match the 
various primitive types in C. By using the types in this package the Ada 
programmer does not have to know how the various Ada types correspond to the 
C types. 

Similarly, if we wish the external C program to call the Ada procedure Action 
that takes two C ints then we can make the name of the Ada procedure available 
externally by writing 

procedure Action(X, Y: in Interfaces.C.int); 
pragma Export(C, Action); 

Access-to-subprogram types are important for communication with other 
languages especially when programming interactive systems. For example, 
suppose we want the procedure Action to be called by the GUI when the mouse 
is clicked. Suppose that there is a C function set_click that takes the address of 
the routine to be called when the mouse is clicked. We can express this in Ada 
as follows 

type Response is access procedure (X, Y: in Interfaces.C.int); 
pragma Convention(C, Response); 

procedure Set_Click(P: in Response); 
pragma Import(C, Set_Click); 
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procedure Action(X, Y: in Interfaces.C.int); 
pragma Convention(C, Action); 
... 
Set_Click(Action'Access); 

In this case we have not made the name of the procedure Action visible to the C 
program because it is called indirectly but we do have to ensure that it uses the 
C calling convention. 

Streams 

A potential difficulty occurs when we transmit values of different types to and 
from the external world. Output is straightforward because we know the type of 
the value being transmitted and can use the appropriate format. But input is a 
problem because typically we do not know what is coming. If a file is uniform 
and all values are of the same type then we simply have to ensure that we have 
connected to the correct file. The real difficulty arises when values of different 
types are involved in the same file. Ada has a number of different filing 
mechanisms, some are for homogeneous files such as files of all integers or text 
files; for heterogeneous files we use a stream file. 

As a very simple example suppose a file is to have a mixture of values of 
types Integer, Float and Signal. All types have special attributes 'Read and 'Write 
for use with streams. On output we simply write 

S: Stream_Access := Stream(The_File); 
... 
Integer'Write(S, An_Integer); 
Float'Write(S, A_Float); 
Signal'Write(S, A_Signal); 

and this results in a mixture of values of different types on The_File. In the 
space available we cannot give the full details but S identifies the stream 
associated with the file. 

On input we simply do the reverse 

Integer'Read(S, An_Integer); 
Float'Read(S, A_Float); 
Signal'Read(S, A_Signal); 

If we do the calls in the wrong order then the exception Data_Error will be 
raised if the bit pattern that is read is not a valid value for the type concerned. 
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If we do not know the order in which things are to be read then we need to 
create a class to cover all the different types involved. In this simple case we 
might declare a root type 

type Root is abstract tagged null record; 

to act as a sort of wrapper and then a series of individual types to encapsulate 
the real data thus 

type S_Integer is new Root with 
   record 
      Value: Integer; 
   end record; 

type S_Float is new Root with 
   record 
      Value: Float; 
   end record; 
... 

and so on. On output we write 

Root'Class'Output(S, (Root with An_Integer)); 
Root'Class'Output(S, (Root with A_Float)); 
Root'Class'Output(S, (Root with A_Signal)); 

Note that the same procedure is used for all the calls. It first outputs the value of 
the tag of the specific type and then calls (by dispatching) the appropriate Write 
attribute. 

For input we might write 

Next_Item: Root'Class := Root'Class'Input(S); 
... 
Process(Next_Item); 

The procedure Root'Class'Input reads the tag from the stream and then 
dispatches to the Read attribute to read the item and finally assigns it as the 
initial value of the object Next_Item. We can then call some other procedure 
such as Process by dispatching to do whatever we want. We might assign the 
value to a particular variable according to its type.  

To do this we first declare the abstract procedure for the root type thus 

procedure Process(X: in Root) is abstract; 

and then specific procedures such as 
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overriding 
procedure Process(X: S_Integer) is 
begin 
   An_Integer := X.Value;  -- extract value from wrapper 
end Process; 

The procedure Process could of course do anything we like with the value 
concerned. 

This has been a somewhat artificial example. Its purpose has been to illustrate 
that Ada can process items of various types in a way that preserves the security 
of the type model. 

Object factories 

We have just seen how the predefined stream mechanism enables us to 
manipulate values whose types are not known until they are input in some way. 
The underlying mechanism of reading a tag and then creating an object of the 
appropriate type is also available to the user in Ada 2005. 

Suppose we are manipulating the geometrical objects discussed in the chapter 
on Safe Object-Oriented Programming. These are of various types such as 
Circle, Square, Triangle and so on and are all derived from the root type 
Geometry.Object. We might wish to read values of these objects from a 
keyboard. For a circle we would expect the values of its two coordinates 
followed by the radius. For a triangle we would expect the two coordinates plus 
the values of the three sides and so on. We could declare functions Get_Object 
to read these values such as 

function Get_Object return Circle is 
begin 
   return C: Circle do 
      Get(C.X_Coord);  Get(C.Y_Coord);  Get(C.Radius); 
   end return; 
end Get_Object; 

The internal calls of Get are calls of predefined procedures to read simple values 
from the keyboard. The user will have to type some code to indicate which type 
of object is being supplied. Perhaps the values for a circle could be preceded 
with the string “Circle”; we will also suppose that we have written a simple 
function Get_String to read and return such a string. 

So now all we have to do is to read the code string, and then call the 
appropriate procedure Get_Object to create an object of the correct type. The 
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key to this is to use a predefined generic function which, given a tag, returns an 
object of the corresponding type. In essence it is 

generic 
   type T(<>) is abstract tagged limited private; 
   with function Constructor return T is abstract; 
function Generic_Dispatching_Constructor(The_Tag: Tag) return T'Class; 

This generic function has two generic parameters, the first identifies the class of 
types concerned (such as Geometry.Object from which the types Circle, Square 
and Triangle are derived) and a dispatching operation to make objects of the 
specific types (such as functions Get_Object). 

We can now instantiate this generic function to give a constructor function 
for geometrical objects 

function Make_Object is  
 new Generic_Dispatching_Constructor(Object, Get_Object); 

A call of Make_Object takes the tag of the specific type concerned, then 
dispatches to the appropriate function Get_Object and finally returns the value 
created. 

We might decide to declare an access variable to refer to the newly created 
object thus 

Object_Ptr: access Object'Class; 

If the tag value is in a variable Object_Tag (of the type Tag which is defined in 
the predefined language package Ada.Tags – the generic constructor function is 
also in this package), then we call Make_Object thus 

Object_Ptr := new Object'(Make_Object(Object_Tag)); 

and now we have made the new object (perhaps a circle) with the values of its 
coordinates and radius which were read from the keyboard. 

We are not quite finished since we have to convert the string "Circle" which 
identifies the type concerned into the tag value used for dispatching. A simple 
way to do this is to write 

for Circle'External_Tag use "Circle"; 
for Triangle'External_Tag use "Triangle"; 

and then we can read and convert the external string into the internal tag value 
by 

Object_Tag: Tag := Internal_Tag(Get_String); 
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There is of course no need to declare the variable Object_Tag since we can 
combine the operations into one single statement thus. 

Object_Ptr := new Object'(Make_Object(Internal_Tag(Get_String)); 

Finally, it should be noted that the above discussion has been slightly simplified. 
The actual constructor has an auxiliary parameter which we have ignored. 

 
 



 

10   Safe Concurrency 

In real life many activities happen in parallel. Human beings do things in 
parallel with considerable ease. Females seem to do this better than males – 
perhaps because they have to rock the baby while cooking the food and keeping 
the tiger out of the cave. The male typically just concentrates on one thing at a 
time such as catching that rabbit for dinner – or trying to find a bigger cave or 
perhaps even inventing a wheel. 

Computers traditionally only do one thing at a time, and the operating system 
makes it look as if several things are going on in parallel. This is not quite so 
true these days, since many computers do truly have multiple processors or 
multiple cores but it still does apply to the vast majority of small computers 
including those used in process control. 

Operating systems and tasks 

Operating systems vary enormously in the amount of parallel activity that they 
permit. Operating systems supporting POSIX provide the programmer with 
multiple threads of control. These various threads of control can flow through 
the program quite independently and so support parallel activities. 

On some hardware there will only be one processor, which will be allocated 
to the different threads according to some scheduling algorithm. One approach 
is simply to give the processor to each thread in turn for a small amount of time; 
more sophisticated approaches (especially for systems with real-time 
requirements) are to use priorities or deadlines to ensure that the processor is 
used effectively. 

Some hardware might have multiple processors in which case several threads 
can truly be active in parallel. Again a scheduler will allocate the processors in a 
hopefully effective way to the active threads of control. 

In a programming language the concurrent activities are generally called 
threads or tasks. Here we will use the latter which is the Ada term. Languages 
take very different approaches to tasking. Some languages have intrinsic 
facilities for tasking built into the language itself. Others provide simple access 
to the underlying primitives of the operating system. Yet others ignore the 
subject completely. 

Ada, Java, C#, and most recently C++ are languages with intrinsic tasking 
facilities. C has no built-in support for tasking, so programmers using C need to 
rely on third-party libraries or make direct calls to operating system services. 
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There are at least three advantages of having tasking within the language 
itself 
▪ Built-in syntactic constructions make it much easier to write correct 

programs because the language can prevent a number of errors from 
being made. It is essentially the old story about abstraction. By hiding 
low-level details certain errors are prevented.  

▪ Portability is difficult if operating system facilities are used directly 
because they vary widely from system to system. 

▪ General operating systems do not provide the range of timing and 
related facilities needed by many real-time applications. 

The operations typically required in a tasking program are 
▪ Tasks must be prevented from violating the integrity of data if several 

tasks need access to the data concurrently. 
▪ Tasks need to communicate with each other in order to transfer data 

between them. 
▪ Tasks need to be controlled in order to meet specific timing 

requirements. 
▪ Tasks need to be scheduled in order to use resources efficiently and to 

meet their overall deadlines.  
This chapter will briefly look at these topics and illustrate how Ada addresses 
them in a reliable manner. This is a design challenge, since programs with 
tasking are much harder to write correctly than ordinary sequential programs. 
But first we introduce the simple idea of an Ada task and the overall program 
structure. 

An Ada program can have many tasks running concurrently. A task is written 
in two parts rather like a package. It has a specification which describes the 
interface it presents to other tasks and a body which contains the code saying 
what it actually does. In simple cases the specification simply names the task so 
we might have 

task A;    -- task specification 

task body A is   -- task body 
begin 
   ...   -- statements saying what the task does 
end A; 

Sometimes it is convenient to have several similar tasks in which case we can 
introduce a task type 
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task type Worker; 

task body Worker is ... 

We can then declare several tasks by declaring objects in the usual way 

Tom, Dick, Harry: Worker; 

This creates three tasks called Tom, Dick and Harry. We can also declare arrays 
of tasks and have task components inside records and so on. Tasks can be 
declared wherever other objects can be declared such as in a package or in a 
subprogram or even within another task. Not surprisingly, task types are limited 
types, since assigning one task to another is not a meaningful operation. 

The main subprogram of a complete program is invoked by the so-called 
environment task and it is this environment task that elaborates library packages, 
as described in the chapter on Safe Startup. An overall program with library 
packages A, B and C and main subprogram Main can therefore be thought of as  

task Environment_Task; 

task body Environment_Task is 
   ...  -- declarations of library packages A, B, C  
   ...  -- and main subprogram Main 
begin 
   ...  -- call of main subprogram Main 
end; 

A task becomes active simply by being declared. It finishes by reaching the end 
of the task body. An important rule is that a local task (that is, a task declared 
within a subprogram, block, or another task) must finish before the enclosing 
unit can itself be left and the enclosing unit will be suspended until the local task 
terminates. This rule prevents dangling references to data that no longer exists. 

Protected objects 

Suppose that the three tasks Tom, Dick and Harry are using a stack as some sort 
of temporary storage device. From time to time one of them pushes an item onto 
the stack and from time to time one of them (perhaps the same one, perhaps a 
different one) pops an item off the stack.  

The three tasks run concurrently – possibly with actual parallelism on 
multiple processors/cores, or else under the control of a task scheduler on a 
single processor where the runtime system allocates the processor according to 
some algorithm. Let’s assume the latter; perhaps each task gets 10 ms in turn 
with a “round robin” task dispatcher. 
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Suppose the stack they are using is as declared in the chapter on Safe 
Architecture. Suppose that Harry is calling Push when his time slot expires and 
control then passes to Tom who calls Pop. To be precise, suppose Harry loses 
the processor just after he has executed the statement to increment Top in 

procedure Push(X: Float) is 
begin 
   Top := Top + 1;  -- Harry loses processor just after this 
   A(Top) := X; 
end Push; 

At this point Top has been incremented but the new value X has not been 
assigned to the component of the array. When Tom calls Pop, he gets the old 
and possibly meaningless value in the array component that was about to be 
overwritten by the new value. When Harry gets the processor back (and 
assuming no other stack activity occurs meanwhile) he will write the value X 
into a component of the array that is a part of the stack that is not in use. In other 
words the value X is lost. 

A worse situation can occur if the processor is switched part way through a 
statement. Thus Harry might lose the processor just after he has picked up Top 
into a register but before he replaces Top with the new value. Suppose Dick now 
comes along and also does a Push thereby adding 1 to the old value of Top. 
When Harry resumes he will replace the value that Dick computed by the same 
value. In other words the two calls of Push add just 1 to Top rather than 2 as 
expected.  

These unwanted behaviors are prevented by using a protected object for the 
stack, one of the major features introduced in Ada 95. We write 

protected Stack is 
   procedure Clear; 
   procedure Push(X: in Float); 
   procedure Pop(X: out Float); 
private 
   Max: constant := 100; 
   Top: Integer range 0 .. Max := 0; 
   A: Float_Array(1 .. Max);  
end Stack; 

protected body Stack is 

   procedure Clear is 
   begin 
      Top := 0; 
   end Clear; 
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   procedure Push(X: in Float) is 
   begin 
      Top := Top + 1; 
      A(Top) := X; 
   end Push; 

   procedure Pop(X: out Float) is 
   begin 
      X := A(Top); 
      Top := Top – 1; 
   end Pop; 

end Stack; 

Note that package has been changed to protected, the data which was in the 
body now appears in the private part of this new construct, and for reasons 
explained below the function Pop has been changed into a procedure Pop. Note 
also that type Float_Array is assumed to be defined elsewhere in the program as 
array (Integer range <>) of Float. 

The three procedures Clear, Push and Pop are called protected operations 
and are invoked in the same way as procedures. Their behavior is that only one 
task can access the operations of the object at a time. If a task such as Tom 
attempts to call the procedure Pop while Harry is executing Push then Tom is 
forced to wait until Harry returns from Push. This is done automatically with no 
effort on the part of the programmer. Inconsistency problems are thus avoided.  

Behind the scenes the protected object has a lock, and a task attempting to 
access an operation of the object has to acquire the lock first. If another task 
already has the lock then the first one has to wait until that other task has 
finished with the protected operation of the object that it was using and so 
relinquishes the lock. (The lock may be implemented through some operating 
system primitive, but the feature has been designed so as to permit alternative 
strategies with lower run-time cost.)  

We can modify this example to show how we might cope with an attempt to 
push an item on the stack when it is full or to pop an item from an empty stack. 
In the package formulation, either of these attempts would raise 
Constraint_Error. In the case of Push this would be because of the attempt to 
assign the value Max+1 to Top; analogous problems would occur with Pop. As it 
is written the same thing would happen here and the lock would be 
automatically relinquished, because the exception terminates the call of the 
protected procedure.  

But we can do much better. We can use barriers as follows 
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protected Stack is 
   procedure Clear; 
   entry Push(X: in Float); 
   entry Pop(X: out Float); 
private 
   Max: constant := 100; 
   Top: Integer range 0 .. Max := 0; 
   A: Float_Array(1 .. Max); 
end Stack; 

protected body Stack is 

   procedure Clear is 
   begin 
      Top := 0; 
   end Clear; 

   entry Push(X: in Float) when Top < Max is 
   begin 
      Top := Top + 1; 
      A(Top) := X; 
   end Push; 

   entry Pop(X: out Float) when Top > 0 is 
   begin 
      X := A(Top); 
      Top := Top – 1; 
   end Pop; 

end Stack; 

The operations Push and Pop are now entries rather than procedures, and they 
have Boolean barrier expressions such as Top < Max. The effect of a barrier is to 
prevent the body of the entry from being executed if the barrier is False. Note 
that this does not prevent the entry from being called. All that happens is that 
the calling task is suspended until the barrier becomes True. So if Harry tries to 
call Push when the stack is full then he has to wait until some other task (Tom 
or Dick) calls Pop and removes the top item. Harry will then automatically 
proceed. The user does not have to program anything special. 

Note that entries, like protected procedures, are also called in the same way 
as normal procedures, thus 

Stack.Push(Z); 

In summary, the protected object mechanism provided by Ada gives a structured 
mechanism for arranging mutually-exclusive access to a shared data object. A 
protected object declares its protected operations (procedures, functions, or 
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entries) in the visible part of its specification, and the protected components in 
its private part. The body of the protected object contains the implementation of 
the protected operations. A protected procedure and a protected entry have 
“read/write” access to the protected components – that is, they can reference 
and/or assign to them – whereas a protected function only has “read” access. 
This restriction enables an optimization whereby multiple tasks may 
simultaneously read a protected object (through protected function calls) but 
only one task at a time is allowed to write to it. (This is sometimes called 
“Concurrent Read, Exclusive Write”.) The prohibition against protected 
functions assigning to protected components required Pop to be expressed as a 
procedure rather than a function in the first protected object version of Stack 
above. 

Note also that, just as we can declare a task type as a template for task 
objects, we can likewise declare a protected type as a template for protected 
objects. And like task types, protected types are limited. 

It is instructive to consider how we might program this example using lower 
level primitives. The historic basic primitives are the operations P (acquire) and 
V (release) acting on objects called semaphores. The effect of P(sem) is to 
acquire the lock associated with sem, if the lock is available, and otherwise to 
suspend the calling task on a queue associated with sem. The effect of V(sem) is 
to release the lock associated with sem and to awaken one of the tasks (if any) 
suspended on the queue of sem. 

The idea is that we put pairs of calls of P and V around the operations for 
which we wish to ensure mutually exclusive access. Thus, using the same Ada 
syntax, Push would become 

   procedure Push(X: in Float) is 
   begin 
      P(Stack_Lock);  -- secure the lock 
      Top := Top + 1; 
      A(Top) := X; 
      V(Stack_Lock);  -- release the lock 
   end Push; 

with similar pairs of calls around the body of Clear and Pop. This is essentially 
a Do-It-Yourself operation or assembly type coding for tasking. The 
opportunities for errors are many 
▪ We might omit one of a P and V pair thus creating an imbalance. 
▪ We might forget them altogether around one group of statements that 

should be protected.  
▪ We might use the wrong semaphore name. 
▪ We might inadvertently bypass a closing V.  

  113 



Safe and Secure Software: An invitation to Ada 2012 

The last problem would arise if, in the model without barriers, Push was called 
when the stack was full. This causes Constraint_Error to be raised. If we omit to 
provide a local exception handler to call V then the system will be permanently 
locked.  

None of these difficulties can arise when using Ada protected objects because 
all this low-level mechanism is done automatically. Although, with care, 
semaphores can be used successfully in simple situations, it is very difficult to 
use them correctly in more complicated situations such as the example with 
barriers. Not only is it difficult to program correctly with semaphores but it is 
extremely difficult to prove that a program is correct. 

Entry barriers are higher level and more reliable than the “condition variable” 
mechanism found in other concurrency approaches such as the wait/notify 
feature of Java. With the latter, the programmer is responsible for explicitly 
invoking wait, notify, or notifyAll on the variables that represent state information 
such as stack full or stack empty. This is error-prone and susceptible to race 
conditions that are prevented by the semantics of the protected objects of Ada. 

The rendezvous 

In addition to accessing shared data with a guarantee of mutually exclusive 
access, the other important communication requirement between tasks is for one 
task to convey information (data) to another. This is done in Ada with a 
mechanism known as a rendezvous. The two tasks that communicate have a 
client–server relationship. The client that requests some service needs to know 
the identity of the server task, but the server task that provides it will accept a 
request from any client.  

Here is the general pattern of a server that only needs to offer one kind of 
service 

task Server is 
   entry Some_Service(Formal: in out Data); 
end; 

task body Server is 
begin 
   ... 
   accept Some_Service(Formal: in out Data) do 
      ...  -- statements providing the service 
   end Some_Service; 
   ... 
end Server; 
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The specification of the server indicates that it has an entry Some_Service. This 
is called by a client task in the same way as calling an entry of a protected 
object. The difference is that the code to be obeyed is given by an accept 
statement and that is only executed when the server task reaches the accept 
statement. Until that happens the calling task is suspended. When the server 
reaches the accept statement, it executes it using any parameters supplied by the 
client. The client remains suspended until the accept statement is finished and 
after any out or in out parameters have been updated. 

The body of a client might look like 
task body Client is 
   Actual: Data; 
begin 
   ... 
   Server.Some_Service(Actual); 
   ... 
end Client; 

Each entry has an associated queue. If a task calls an entry of a server and the 
server is not waiting at an accept statement for that entry, then the caller is 
queued. On the other hand, if the server reaches an accept statement and there 
are no tasks waiting on the associated entry queue, then the server is suspended. 
An accept statement can appear anywhere that a statement is allowed in the task 
body, for example within a branch of a conditional (if) statement, or within a 
loop, and so the mechanism is very flexible. 

The rendezvous is a high level mechanism (like the protected object) and as 
such is relatively easy to use correctly. The corresponding queuing mechanisms 
programmed at a low level are hard to write correctly. 

Here is an example of how the rendezvous can be used to enable a service to 
be provided without the client waiting. The idea is that the client gives the 
server an entry to be called when a job is done. First we declare a mailbox type 
to manipulate objects of some type Item which we assume is already declared 

task type Mailbox is 
   entry Deposit(X: in Item); 
   entry Collect(X: out Item); 
end; 
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task body Mailbox is 
   Local: Item; 
begin 
   accept Deposit(X: in Item) do 
      Local := X; 
   end; 
   accept Collect(X: out Item) do 
      X := Local; 
   end; 
end Mailbox; 

A task of this type acts as a simple mailbox. An item can be deposited and 
collected later. The client passes the identity of a mailbox to the server so that 
the server can deposit the item in the mailbox from which the user can collect it 
later. We need an access type 

type Mailbox_Ref is access Mailbox; 

The tasks Server and Client now take the following form 

task Server is 
   entry Request(Ref: in Mailbox_Ref; X: in Item); 
end; 

task body Server is 
   Reply: Mailbox_Ref; 
   Job: Item; 
begin 
   loop 
      accept Request(Ref: in Mailbox_Ref; X: in Item) do 
         Reply := Ref; 
         Job := X; 
      end; 
      ...   -- work on job 
      Reply.Deposit(Job); 
   end loop; 
end Server; 
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task Client; 

task body Client is 
   My_Box: Mailbox_Ref := new Mailbox;      -- create mailbox task 
   My_Item: Item; 
begin 
   Server.Request(My_Box, My_Item); 
   ...   -- do something whilst waiting 
   My_Box.Collect(My_Item); 
end Client; 

In practice the client might poll the mailbox from time to time to see if the item 
is ready. This is easily done using a conditional entry call which takes the form 

select 
   My_Box.Collect(My_Item); 
   -- item collected successfully 
else 
   -- not ready yet 
end select; 

It is important to realize that the mailbox agent task serves several purposes. It 
decouples the deposit and collect operations so that the server can get on with 
the next job. Moreover, it means that the server need know nothing about the 
client; calling the client directly would require the client to be of a particular 
task type and this would be most impractical. The mailbox agent task enables us 
to factor out the only property required of the client, namely the existence of the 
entry Deposit. 

Restrictions 

The pragma Restrictions which can be used to ensure that we do not use certain 
features of the language in a particular program was mentioned in the chapters 
on Safe Object-Oriented Programming and Safe Memory Management. 

Many of the restrictions relate to tasking (some were introduced in Ada 95, 
and others in Ada 2005 and Ada 2012). The tasking features in Ada are very 
comprehensive and provide a whole range of facilities necessary to meet the 
programming needs of a variety of real-time applications. But some applications 
are quite simple and do not need many of these facilities. Here are some samples 
of the sort of restrictions that can be applied. 

No_Task_Hierarchy 
No_Task_Termination 
Max_Entry_Queue_Length => n 
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The restriction No_Task_Hierarchy prevents tasks from being declared inside 
other tasks or inside subprograms – all tasks are therefore inside library-level 
packages. No_Task_Termination means that all tasks run for ever – this is 
common in many control applications where each task essentially has an endless 
loop doing some repetitive action. And the restriction on entry queues places a 
limit on the number of tasks that can be queued on a single entry at any time. 

The advantage of giving appropriate restrictions are twofold 
▪ It might enable a somewhat simpler runtime system to be used. This 

could be smaller and faster and thus more appropriate for some time- 
and space-critical embedded applications. 

▪ It might enable various properties of the application to be proved 
correct, concerning matters such as determinism, absence of deadlock, 
and ability to meet deadlines. This might be vital for certain safety-
critical applications. 

There are many other tasking restrictions and most of these concern tasking 
facilities that we have not described. 

Ravenscar 

A particularly important group of restrictions is imposed by the Ravenscar 
profile, which was developed in the mid 1990s and standardized as part of Ada 
2005. In order to ensure that a program conforms to this profile we write 

pragma Profile(Ravenscar); 

in the program. Use of any of the excluded features (summarized below) would 
then cause a compile-time error. 

The key purpose of the Ravenscar profile is to restrict the use of tasking 
facilities so that the effect of the program is predictable. (The profile was 
defined by the International Real-Time Ada Workshops which met twice at the 
remote village of Ravenscar on the coast of Yorkshire in North-East England.) 

The profile is simply defined to be equivalent to a number of restrictions plus 
a few other related pragmas concerning matters such as scheduling. The 
restrictions include those mentioned earlier so there are no task hierarchies, all 
tasks run for ever, and entry queues have a limit size of one (that is, there can be 
only one task blocked at a time on a given entry). 

The original version of the Ravenscar profile assumed a uniprocessor 
environment. In Ada 2012 the profile has been specified with semantics that 
apply also to multiprocessors, with the restriction that tasks may not change 
CPU. See below for further discussion of Ada 2012 support for multiprocessors. 
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The combined effect of the restrictions is that it is possible to make 
statements about the ability of a particular program to meet stringent 
requirements for the purposes of certification. 

No other programming language offers the reliability of Ada as constrained 
by the Ravenscar profile. A description of the principles and use of the profile in 
high integrity systems will be found in an ISO/IEC Technical Report [8]. 

Safe shutdown 

In some applications (for example process monitoring and control) the tasks will 
run forever; in other applications the tasks will naturally reach their end points 
and simply terminate. In these situations task termination is not an issue. But 
there are common cases where a task that is potentially in an infinite loop needs 
to be terminated – for example when there is a hardware failure of some sort so 
that the task is no longer needed. The question is how to arrange task 
termination that is both safe and immediate. Unfortunately these goals conflict, 
and the designer needs to consider the tradeoffs. Fortunately, the Ada language 
provides sufficient flexibility so that the designer has an appropriate set of 
features to choose from based on how the tradeoff is decided. But even if 
immediacy is deemed important, the Ada language semantics still ensure that 
critical operations being performed by the terminating task are completed before 
the task is allowed to terminate.  

The key to the approach used in Ada is a concept known as an abort-deferred 
region. Such a region is a section of code that must be executed to completion 
or else there would be the risk of corrupting a shared data structure. Examples of 
abort-deferred regions are the bodies of protected operations and the bodies of 
accept statements. Note that abort deferred does not mean non-preemptible; it is 
still possible for a task in an abort-deferred region to be preempted by a higher-
priority task for example. 

To illustrate these concepts, consider the following version of the server task 
that we saw earlier: 

task Server is 
   entry Some_Service(Formal: in out Data); 
end; 
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task body Server is 
begin 
   loop 
      accept Some_Service(Formal: in out Data) do 
         ...  -- statements updating Data 
      end Some_Service; 
   end loop; 
end Server; 

This task will execute the loop body repeatedly. If at some point there are no 
further calls of Some_Service the task will be suspended – something like being 
put in suspended animation but with no prospect of being awakened. Not a 
pleasant thought and not a pleasant style of programming; the program will 
“hang” instead of terminating gracefully. 

There are several ways to deal with this situation. One is to define a client 
task with the specific responsibility to shut down the server when no other client 
calls are possible. Here is a possible way to express such an “executioner” task: 

task Grim_Reaper; 

task body Grim_Reaper is 
begin 
    
   abort Server; 
end Grim_Reaper; 

The intent behind the abort statement is to cause the target task (here Server) to 
terminate. However, it would be risky if this were a “pull the plug” sort of 
termination where the task is shut down immediately regardless of what it was 
doing. For example, if Server were in the midst of executing its accept 
statement then the parameter might be in an inconsistent state and the calling 
task would end up with a corrupted actual parameter, perhaps a semi-updated 
array. But as noted above, an accept statement is “abort deferred”. If an attempt 
is made to abort a task while it is executing an accept statement, then the 
attempt will be noted by the runtime system (formally the task becomes 
“abnormal”) but the task will not be terminated until it is outside the abort-
deferred region (in this example, when it has completed the accept statement). 
For the reader who is familiar with Gilbert and Sullivan’s The Mikado, we may 
summarize the semantics of aborting a task while it is executing an accept 
statement as the greeting that Pooh-Bah gave to Nanki-Poo offering 
congratulations on his wedding but condolences on his execution that would 
soon follow: “Long life to you — till then”. 

Even if a task is aborted when it is not within an abort-deferred region, the 
effect is not necessarily immediate. In brief, aborting a task changes its state to 
“abnormal” where it is treated rather like an ostracized leper. If some other task 
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unwisely attempts to communicate with the poor wretch (for example, by 
calling any of the aborted task’s entries) then Tasking_Error is raised in the 
unlucky caller. Finally, if/when the aborted task reaches any scheduling point, 
such as an entry call or an accept statement, then it will be put out of its misery 
and terminated. (For implementations that comply with the Real-Time Systems 
Annex the termination requirement is more demanding: basically an abnormal 
task will be terminated as soon as it is outside an abort-deferred region.) 

All of this may sound a bit depressing and somewhat complicated, and indeed 
programming with abort statements makes programs hard to write and harder to 
prove correct. For most purposes, the advice is “don’t do it”. Abort may be 
appropriate in contexts such as mode changes where an entire collection of tasks 
must be terminated, but otherwise it is better to use one of the following 
techniques, where a task itself decides when it is ready to be terminated – that is, 
termination is only allowed at specific points. 

One approach is to reserve a special entry for shutdown requests; accepting 
that entry will lead to the termination of the called task through normal control 
flow. Here is a variation on the server task that illustrates this style: 

task Server is 
   entry Some_Service(Formal: in out Data); 
   entry Shutdown; 
end; 

task body Server is 
   … -- initialization 
begin 
  loop 
      select 
         accept Shutdown; 
         exit; 
     or 
         accept Some_Service(Formal: in out Data) do 
            ...        -- statements updating Data 
         end Some_Service; 
      end select; 
   end loop; 
   … -- cleanup 
end Server; 

This version of the server task illustrates a common form of the select statement 
comprising a set of alternatives each starting with an accept statement for some 
entry. When the select statement is executed, the runtime system checks whether 
a call is pending on any of these entries. If none is pending, the task will be 
suspended until a call on one of these is received (at which point control goes to 
the corresponding branch). If exactly one is pending, then control goes to that 

  121 



Safe and Secure Software: An invitation to Ada 2012 

branch. If more than one is pending, then the effect of which branch is selected 
is based on the entry queuing policy (for implementations compliant with the 
Real-Time Systems Annex, the default policy is priority-based). 

This form of select statement is common for server tasks that offer more than 
one service and where the number of calls or their order is not known in 
advance. In this specific example we can anticipate a particular order – first the 
calls on Some_Service and then a call on Shutdown – but we don’t know the 
number of calls on Shutdown and thus we need to express the logic as an 
infinite loop. 

As in the previous example, the program requires some other task to trigger 
Server’s termination. But now there is no need for the correctness-challenged 
abort statement, the triggering task simply calls the Shutdown entry. 

task Grim_Reaper; 

task body Grim_Reaper is 
begin 
    
   Server.Shutdown; 
end; 

Assuming that Grim_Reaper is programmed correctly – i.e., that it only calls 
Shutdown after all possible calls on Some_Service have been served – then the 
Shutdown entry approach will meet our requirement for safe termination. The 
price is some latency, since the request for termination will not be honored 
immediately.  

Ada provides another approach that does not put the onus on some other task 
to trigger the termination; in this case the idea is that a task will terminate 
automatically (under the control of the runtime system) when it can be 
guaranteed that it is safe to do so. The basic semantics of the guarantee is that a 
task that offers one or more services (expressed as an infinite loop on a select 
statement with one or more accept alternatives) can terminate when it is at the 
select statement and when no further calls on any of the entries are possible. The 
syntax that conveys this intent is a special form of the select statement with a 
terminate alternative 

task Server is 
   entry Some_Service(Formal: in out Data); 
end; 
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task body Server is 
   … -- initialization 
begin 
  loop 
      select 
         terminate; 
     or 
         accept Some_Service(Formal: in out Data) do 
            ...        -- statements updating Data 
         end Some_Service; 
      end select; 
   end loop; 
end Server; 

So when Server reaches (or is suspended at) the select statement the runtime 
system will look around and check if any tasks are still alive that could 
reference Server (and thus call its entry). If there are none, then it is safe for 
Server to be terminated and this will happen automatically. There is no 
opportunity to execute explicit cleanup code in the task, as there was in the 
previous version, but a feature introduced in Ada 2005 allows the programmer 
to define a termination handler that is invoked as part of the termination of a 
task. 

The terminate alternative has the advantage of readability and reliability; 
there is no risk, as with the abort approach or the explicit shutdown entry, to 
make the mistake of either failing to trigger the shutdown or triggering it too 
soon. The disadvantage is distributed overhead, since the runtime system has 
additional work to do even if the feature is not used. 

To summarize, Ada provides various features and supports several styles for 
arranging task termination. The abort statement offers the lowest latency (albeit 
with deferral during abort-deferred regions) but has the problem of arranging a 
task to terminate when the task might not be in a state where termination is 
advised. An explicit shutdown request entry solves this last problem (the task 
will only shut down when it accepts this entry) but increases the latency and 
requires care in programming to ensure that the entry is called at the appropriate 
time (in particular, not called when some other tasks might still need service). 
Finally, the select statement with a terminate alternative is the most reliable, 
placing the complete control over shutdown with the server task itself and not 
with its clients, but introduces extra overhead in the runtime support. 

We also note a feature that Ada has intentionally omitted: the ability to raise 
an exception in a task asynchronously. This sort of feature, for example as 
embodied in the deprecated Thread.stop() method that was available in the 
initial release of Java, is basically a semantic nightmare with the risk of leaving 
shared data objects in an inconsistent state. Exceptions in Ada are always 
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synchronous and do not suffer from such problems. Care must certainly still be 
taken when using exceptions; for example the programmer needs to be aware 
that if an exception is not handled by a task then it is not propagated but rather 
the task will terminate. But the complexities of asynchronous exceptions are 
avoided. 

Timing and scheduling 

No survey of Ada tasking would be complete without a few words about timing 
and scheduling. 

There are statements to enable a program to be synchronized with a clock. 
We can delay a program for a specific amount of time (this is referred to as a 
relative delay) or until a specific time thus 

delay 2*Minutes; 
delay until Next_Time; 

assuming suitable declarations for Minutes and for Next_Time. Small relative 
delays might be useful for interactive use, whereas a delay until a particular time 
can be used to program periodic events. Time itself can be measured either by a 
real-time clock (which is guaranteed to have a certain accuracy) or by the local 
wall clock which might be subjected to changes such as occur because of 
Daylight Savings. In Ada, it is even possible to take account of time zones and 
leap seconds. 

Ada 2005 introduced a number of standard timers whose expiry can be used 
to trigger actions defined by a protected procedure (a handler). There are three 
kinds of timers, one enables the monitoring of the CPU time used by an 
individual task, one concerns the CPU budget for a group of tasks, and the third 
concerns time as measured by the real-time clock. The handler is attached to a 
timing event by a call of a procedure such as Set_Handler. 

This is illustrated by the following amusing example concerning the boiling 
of an egg. We declare a protected object Egg thus 

protected Egg is 
   procedure Boil(For_Time: in Time_Span); 
private 
   procedure Is_Done(Event: in out Timing_Event); 
   Egg_Done: Timing_Event; 
end Egg; 
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protected body Egg is 

   procedure Boil(For_Time: in Time_Span) is 
   begin 
      Put_Egg_In_Water; 
      Set_Handler(Egg_Done, For_Time, Is_Done'Access); 
   end Boil; 

   procedure Is_Done(Event: in out Timing_Event) is 
   begin 
      Ring_The_Pinger; 
   end Is_Done; 

end Egg; 

The consumer can then write 

Egg.Boil(Minutes(4)); 
-- now read newspaper whilst waiting for egg 

and the pinger will ring when the egg is ready. 
The approach to task scheduling used by Ada is captured by the pragma 

Task_Dispatching_Policy(policy). Ada 95 formalized the FIFO_Within_Priorities 
policy and Ada 2005 introduced several others; these are defined in the Real-
Time Systems Annex. A policy can be applied to all tasks in a program or just to 
those in certain priority ranges by the use of pragmas. The policies are 
FIFO_Within_Priorities – Within each priority level to which it applies tasks 

are dealt with on a first-in–first-out basis. Moreover, a task may 
preempt a task of a lower priority. 

Non_Preemptive_FIFO_Within_Priorities – Within each priority level to which it 
applies tasks run to completion or until they are blocked or execute a 
delay statement. A task cannot be preempted by one of higher priority. 
This sort of policy is widely used in high integrity applications. 

Round_Robin_Within_Priorities – Within each priority level to which it applies 
tasks are timesliced with an interval that can be specified. This is a very 
traditional policy widely used since the earliest days of concurrent 
programming. 

EDF_Across_Priorities – This provides Earliest Deadline First dispatching. 
The general idea is that within a range of priority levels, each task has a 
deadline and that with the earliest deadline is processed. This is a new 
policy and has mathematically provable advantages with respect to 
processor utilization. 

Ada also has comprehensive facilities concerning the setting and changing of 
task priorities and the so-called ceiling priorities of protected objects. These 
avoid problems of priority inversion as described in [9]. 
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Ada 2012 has added a number of useful enhancements in the area of timing 
and scheduling. Most are outside the scope of this booklet but we will mention 
one specific area that is now explicitly addressed by the language standard: 
support for multiprocessor and/or multicore platforms. Features include: 

• The package System.Multiprocessors which declares a function that 
returns the number of CPUs. 

• A task aspect specification for assigning a task to a given CPU. 
• The child package System.Multiprocessors.Dispatching_Domains that 

allows defining ranges of CPUs as “dispatching domains” and then 
assigning a task to a specific domain either through a task aspect 
specification or a procedure call. A task assigned to a given domain 
can then be executed on any CPU in the range of that domain. 

• A revised and more flexible definition of pragma Volatile that 
simply ensures that reads and writes occur in the correct order 
rather than imposing a requirement that the target variable be in 
memory. 

 



 

11   Certified Safe with SPARK 

For some applications, especially those that are safety-critical or security-
critical, it is essential that the program be correct, and that correctness be 
established rigorously through some formal procedure. For the most severe 
safety-critical applications the consequence of an error can be loss of life or 
damage to the environment. Similarly, for the most severe security-critical 
applications the consequence of an error may be equally catastrophic such as 
loss of national security, commercial reputation or just plain theft.  

Applications are graded into different levels according to the effect of a 
software failure. For avionics applications the DO-178B [1] and DO-178C [2] 
standards define the following 
level E none: no problem; e.g. entertainment system fails? – could be a benefit! 
level D minor: some inconvenience; e.g. automatic lavatory system fails. 
level C major: some injuries; e.g. bumpy landing, cuts and bruises. 
level B hazardous: some dead; e.g. nasty landing with fire. 
level A catastrophic: aircraft crashes, all dead; e.g. control system fails. 
As an aside, note that although a failure of the entertainment system in general 
is level E, if the failure is such that the pilot is unable to switch it off (perhaps in 
order to announce something unpleasant) then that failure is at level D. 

For the most demanding applications, which require certification by an 
appropriate authority, it is not enough for a program to be correct. The program 
also has to be shown to be correct and that is much more difficult. 

This chapter gives a very brief introduction to SPARK. This is a language 
based on a subset of Ada which was specifically designed for the writing of high 
integrity systems. Although technically just a subset of Ada with additional 
information provided through Ada comments, it is helpful to consider SPARK as 
a language in its own right which, for convenience, uses a standard Ada 
compiler, but which is amenable to a more formal treatment than the full Ada 
language. Analysis of a SPARK program is carried out by a suite of tools of 
which the most important are the Examiner, Simplifier, SPARKBridge, and the 
Proof Obligation Summarizer (POGS). 

We start by considering the important concept of correctness and contracts. 
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Contracts 

What do we mean by correct software? Perhaps a general definition is: software 
that does what the user had in mind. And “had in mind” might literally mean 
just that for a simple one-off program written to do an ad-hoc calculation; for a 
large avionics application, it might mean the text of some written contract 
between the ultimate client and the software developer. 

This idea of a software contract is not new. If we look at the programming 
libraries developed in the early 1960s, particularly in mathematical areas and 
perhaps written in Algol 60 (a language favored for the publication of such 
material in respected journals such as the Communications of the ACM and the 
Computer Journal), we find that the manuals tell us what parameters are 
required, what constraints apply on their range and so on. In essence there is a 
contract between the writer of the subroutine and the user. The user promises to 
hand over suitable parameters and the subroutine promises to produce the 
correct answer. 

The decomposition of a program into various component parts is very 
familiar and the essence of the programming process is to define what these 
parts do and therefore what the interfaces are between them. This enables the 
parts to be developed independently of each other. If we write each part 
correctly (so that it satisfies its side of the contract implied by its interface) and 
if we have defined the interfaces correctly, then we are assured that when we put 
the parts together to create the complete system, it will work correctly. 

Bitter experience shows that life is not quite like that. Two things go wrong: 
on the one hand the interface definitions are not usually complete (there are 
holes in the contracts) and on the other hand, the individual components are not 
correct or are used incorrectly (the contracts are violated). And of course the 
contracts might not say what we meant to say anyway. 

Correctness by construction 

SPARK encourages the development of programs in an orderly manner with the 
aim that the program should be correct by virtue of the techniques used in its 
construction. This “correctness by construction” approach is in marked contrast 
to other approaches that aim to generate as much code as quickly as possible in 
order to have something to demonstrate. 

There is strong evidence from a number of years of use of SPARK in 
application areas such as avionics, banking, and railway signaling that indeed, 
not only is the program more likely to be correct, but the overall cost of 
development is actually less in total after all the testing and integration phases 
are taken into account. 
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We will now look in a little more detail at the two problem areas introduced 
above, first giving complete interface definitions, and secondly ensuring that the 
code correctly implements the interface. 

Ideally, the definition of the interfaces between the software components 
should hide all irrelevant detail but expose all relevant detail. Alternatively we 
might say that an interface definition should be both complete and correct.  

As a simple example of an interface definition consider the interface to a 
subprogram. As just mentioned, the interface should describe the full contract 
between the user and the implementer. The details of how the subprogram is 
implemented should not concern us. In order that these two concerns be clearly 
distinguished it is helpful to use a programming language in which they are 
lexically distinct. Some languages present subprograms (functions or methods) 
as one lump, with the interface physically bound to the implementation. This is 
a nuisance: not only does it make checking the interface less straightforward 
since the compiler wants the whole code, but it also encourages the developer to 
hack the code at the same time as writing the interface and this confuses the 
logic of the development process.  

Ada has a structure separating interface (the specification) from the 
implementation (the body). This applies both to individual subprograms and to 
groups of entities encapsulated into packages and this is a key reason why Ada 
forms such a good base for SPARK.  

SPARK requires additional information to be provided and this is done 
through the mechanism of annotations which conveniently take the form of Ada 
comments. A key purpose of these annotations is to increase the amount of 
information about the interface without providing unnecessary information 
about the implementation. In fact SPARK allows the information to be added at 
various levels of detail as appropriate to the needs of the application. 

Consider the information given by the following Ada specification 

procedure Add(X: in Integer); 

Frankly, it tells us very little. It just says that there is a procedure called Add and 
that it takes a single parameter of type Integer whose formal name is X. This is 
enough to enable the compiler to generate code to call the procedure. But it says 
nothing about what the procedure does. It might do anything at all. It certainly 
doesn’t have to add anything nor does it have to use the value of X. It could for 
example subtract two unrelated global variables and print the result to some file. 
But now consider what happens when we add the lowest level of annotation. 
The specification might become 

procedure Add(X: in Integer); 
--# global in out Total; 
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This states that the only global variable that the procedure can access is that 
called Total. Moreover the mode information tells us that the initial value of 
Total must be used (in) and that a new value will be produced (out). The SPARK 
rules also say more about the parameter X. Although in Ada a parameter need 
not be used at all, nevertheless an in parameter must be used in SPARK. 

So now we know rather a lot. We know that a call of Add will produce a new 
value of Total and that it will use the initial value of Total and the value of X. 
We also know that Add cannot affect anything else. It certainly cannot print 
anything or have any other unspecified side effect. 

Of course, the information regarding the interface is not complete since 
nowhere does it require that addition be performed in order to obtain the new 
value of Total. In order to do this we can add optional annotations which 
concern proof and obtain 

procedure Add(X: in Integer); 
--# global in out Total; 
--# post Total = Total~ + X; 

The annotation commencing post is called a postcondition and explicitly says 
that the final value of Total is the result of adding its initial value (distinguished 
by ~) to that of X. So now the specification is complete. 

It is also possible to provide preconditions. Thus we might require X to be 
positive and we could express this by  

--# pre X > 0; 

An important aspect of the annotations is that they are all checked statically by 
the SPARK Examiner and other tools and not when the program executes.  

It is especially important to note that the pre- and postconditions are checked 
before the program executes. If they were only checked when the program 
executes then it would be a bit like bolting the door after the horse has bolted 
(which reveals a nasty pun caused by overloading in English!). We don’t really 
want to be told that the conditions are violated as the program runs. For 
example, we might have a precondition for landing an aircraft 

procedure Touchdown( ... ); 
--# pre Undercarriage_Down; 

It is pretty unhelpful to be told that the undercarriage is not down as the plane 
lands; we really want to be assured that the program has been analyzed to show 
that the situation will not arise. 

This thought leads into the other problem with programming – ensuring that 
the implementation correctly implements the interface contract. This is often 
called debugging. Generally there are four ways in which bugs are found 
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(1) By the compiler. These are usually easy to fix because the compiler tells 
us exactly what is wrong. 

(2) At runtime by a language check. This applies in languages which carry 
out checks that, for example, ensure that we do not write outside an 
array. Typically we obtain an error message saying what rule was 
violated and whereabouts in the program this happened. 

(3) By testing. This means running various examples and poring over the 
(un)expected results and wondering where it all went wrong. 

(4) By the program crashing. This often destroys much of the evidence as 
well so can be very tedious. 

Type 1 should really be extended to mean “before the program is executed”. 
Thus it includes program walkthroughs and similar review techniques and it 
includes the use of analysis tools such as those provided for SPARK. 

Clearly these four ways represent a progression of difficulty. Errors are easier 
to locate and correct if they are detected early. Good programming tools are 
those which move bugs from one category to a lower numbered category. Thus 
good programming languages are those which provide facilities enabling one to 
protect oneself against errors that are hard to find. Ada is a particularly good 
programming language because of its strong typing and runtime checks. For 
example, the correct use of enumeration types makes hard bugs of type 3 into 
easy bugs of type 1 as we saw in the chapter on Safe Typing. 

A major goal of SPARK is to strengthen interface definitions (the contracts) 
and so to move all errors to a low category and ideally to type 1 so that they are 
all found before the program executes. Thus the global annotations do this 
because they prevent us writing a program that accidentally changes the wrong 
global variables. Similarly, detecting the violation of pre- and postconditions 
results in a type 1 error. However, checking that such violations cannot happen 
requires mathematical proof; this is not always totally straightforward but the 
SPARK tools usually automate the whole proof process. 

The kernel language 

Ada is a very comprehensive language and the use of some features makes total 
program analysis difficult. Accordingly, the subset of Ada supported by SPARK 
omits certain features. These mostly concern dynamic behavior. For example, 
there are no access types, no dynamic dispatching, generally no exceptions, all 
storage is static and hence all arrays must have static bounds (but subprogram 
parameters can be dynamic) and there is no recursion. 
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Tasking of course is very dynamic and although SPARK does not support full 
Ada tasking it does support the Ravenscar profile mentioned in the chapter on 
Safe Concurrency. 

Another restriction that helps analysis is that every entity has to have a name. 
And each name should uniquely identify one entity. Hence all types and 
subtypes have to be named and overloading is generally prohibited. However, 
the traditional block structure is supported so that local names are not restricted. 
Moreover, tagged types are permitted, although class wide types are not.  

The idea of state is crucial to analysis and there is a strong distinction 
between procedures whose purpose is to change state and functions whose 
purpose is simply to observe state. This echoes the difference between 
statements and expressions mentioned in the chapter on Safe Syntax. Functions 
in SPARK are not permitted to have any side effects at all. 

The resulting kernel has proved to be sufficiently expressive for the needs of 
critical applications which would not want to use features such as dynamic 
storage. 

Tool support 

There are four main SPARK tools, the Examiner, the Simplifier, SPARKBridge 
and the Proof Obligation Summarizer.  

The Examiner is vital. It has two basic functions 
• It checks conformance of the code to the rules of the kernel language.  
• It checks consistency between the code and the embedded annotations 

by flow analysis.  
The Examiner performs these checks largely by analyzing the interfaces 
between components and ensuring that the details on either side do indeed 
conform to the specifications of the interfaces. The interfaces are of course the 
specifications of packages and subprograms, and the annotations say more about 
these interfaces and thereby improve the quality of the contract between the 
implementation of the component and its users. 

Incidentally, the Examiner is itself written in SPARK and has been applied to 
itself. There is therefore considerable confidence in the correctness of the 
Examiner. 

The core annotations ensure that a program cannot have certain errors related 
to the flow of information. Thus the Examiner detects the use of uninitialized 
variables and the overwriting of values before they are used. This means that 
care should be taken not to give junk initial values to variables “just in case” as 
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mentioned in the chapter on Safe Startup because that would hinder the 
detection of flow errors. 

However, the core annotations do not address the issue of dynamic behavior. 
In order to do this a number of proof annotations can be inserted such as the pre- 
and postconditions we saw earlier which enable dynamic behavior to be 
analysed prior to execution. The general idea is that these annotations enable the 
Examiner to generate conjectures (potential theorems) which then have to be 
proved in order to verify that the program is correct with respect to the 
annotations. These proof annotations address 
• pre- and postconditions of subprograms,  
• assertions such as loop invariants and type assertions,  
• declarations of proof functions and proof types.  
The generated conjectures are known as verification conditions. These can then 
be verified by human reasoning, which is usually tedious and unreliable, or by 
using other tools such as the Simplifier, SPARKBridge, and the Proof Checker. 

Even without proof annotations, the Examiner can generate conjectures 
corresponding to the runtime checks of Ada such as range checks. As we saw in 
the chapter on Safe Typing, these are checks automatically inserted to ensure 
that a variable is not assigned a value outside the range permitted by its 
declaration or that no attempt is made to read or write outside the bounds of an 
array. The proof of these conjectures shows that the checks would not be 
violated and therefore that the program is free of runtime errors that would raise 
exceptions. 

Note that the use of proof is not necessary. SPARK and its tools can be used at 
various levels. For some applications it might be appropriate just to apply the 
core annotations because these alone enable flow analysis to be performed. But 
for other applications it might be cost-effective to use the proof annotations as 
well. Indeed, different levels of analysis can be applied to different parts of a 
complete program.  

There are a number of advantages in using a distinct tool such as the 
Examiner rather than simply a front-end processor which then passes its output 
to a compiler. One general advantage is that it encourages the early use of a 
CbyC (Correctness by Construction) approach. Thus it is possible to write 
pieces of SPARK complete with annotations and to have them processed by the 
Examiner even before they can be compiled. For example, a package 
specification can be examined even though its private part might not yet be 
written; such an incomplete package specification cannot of course be compiled. 

There is a temptation to take an existing piece of Ada code and then to add 
the annotations (often referred to as “Sparking the Ada”). This is to be 
discouraged because it typically leads to extensive annotations indicative of an 
unnecessarily complex structure. Although in principle it might then be possible 
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to rearrange the code to reduce the complexity, it is often the case that such 
good intentions are overridden by the desire to preserve as much as possible of 
the existing code.  

The proper approach is to treat the annotations as part of the design process 
and to use them to assist in arriving at a design which minimizes complexity 
before the effort of detailed coding takes one down an irreversible path.  

Examples 

As a simple example here is a version of the stack with full core annotations 
(but not proof annotations) 

package Stacks is 

   type Stack is private; 

   function Is_Empty(S: Stack) return Boolean; 
   function Is_Full(S: Stack) return Boolean; 

   procedure Clear(S: out Stack); 
   --# derives S from ; 

   procedure Push(S: in out Stack; X: in Float); 
   --# derives S from S, X; 

   procedure Pop(S: in out Stack; X: out Float); 
   --# derives S, X from S; 

private   
   Max: constant := 100; 
   type Top_Range is range 0 .. Max; 
   subtype Index_Range is Top_Range range 1 .. Max; 
   type Vector is array (Index_Range) of Float; 
   type Stack is   
      record 
         A: Vector; 
         Top: Top_Range; 
      end record; 
end Stacks; 

We have added functions Is_Full and Is_Empty which just read the state of the 
stack. They have no annotations at all. 

Derives annotations have been added to the various procedure specifications; 
these are not mandatory but can improve flow analysis. Their purpose is to say 
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which outputs depend upon which inputs – in this simple example they can in 
fact be deduced from the parameter modes. However, redundancy is one key to 
reliability and if they are inconsistent with the modes then that will be detected 
by the Examiner and perhaps thereby reveal an error in the specification. 

The declarations in the private part have been changed to give names to all 
the subtypes involved. 

At this level there are no changes to the package body at all – no annotations 
are required. This emphasizes that SPARK is largely about improving the quality 
of the description of the interfaces. 

A difference from the earlier examples is that we have not given an initial 
value of 0 for Top but require that Clear be called first. When the Examiner 
looks at the client code it will perform flow analysis to ensure that Push and 
Pop are not called until Clear has been called; this analysis will be performed 
without executing the program. If the Examiner cannot deduce this then it will 
report that the program has a potential flow error. On the other hand if it can 
actually deduce that Push or Pop are called before Clear then it will report that 
the program is definitely in error. 

In this brief overview it is not feasible to give serious examples of the proof 
process but the following trivial example will illustrate the ideas. Consider 

procedure Exchange(X, Y: in out Float); 
--# derives X from Y & 
--#              Y from X; 
--# post X = Y~ and Y = X~; 

which shows the specification of a procedure whose purpose is to interchange 
the values of the two parameters. The body might be 

procedure Exchange(X, Y: in out Float) is 
   T: Float; 
begin 
   T := X;  X := Y;  Y := T; 
end Exchange; 

Analysis by the Examiner generates a verification condition which has to be 
shown to the true. In this particular example this is trivial and is done 
automatically by the Simplifier. In more elaborate situations the Simplifier will 
not be able to complete a proof in which case other tools can be used via 
SPARKBridge (which acts as an interface to a range of proof engines such as 
Alt-Ergo).  
A rather different tool is the Proof Checker. This is an interactive program 
which, under human guidance, will hopefully be able to find a valid proof in 
stubborn cases. An interesting tool is Riposte whose main purpose is to find a 
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counter example. It can thus show that no proof is possible simply because the 
program is wrong. Equally, Riposte can sometimes show that a verification 
condition must be true simply because it shows that no counter example exists. 

Finally, a tool known as the Proof Obligation Summarizer keeps track of the 
progress of proofs and is thus a vital management tool. 

Certification 

As earlier chapters have shown, Ada is an excellent language for writing reliable 
software. Ada allows programmers to catch errors early in the development 
process. Even more errors can be detected by using SPARK without having to 
rely on testing – a difficult and error-prone process in itself, yet an indispensable 
part of the software process.  

For the highest level of safety-critical and security-critical applications it is 
not enough for a program to be correct. It also has to be shown to be correct. 
This is usually called certification and is performed according to the methods of 
a relevant certification agency. Examples of such agencies in the US are the 
FAA for safety-critical applications and the NSA for security-critical 
applications. SPARK is of great value in developing programs to be certified as 
safe or secure as appropriate. 

It might be thought that using SPARK adds to development costs. However, a 
study concerning a security system for the NSA [10] showed that using SPARK 
proved cheaper than conventional development methods. This again is perhaps 
surprising because SPARK clearly requires effort for the writing of annotations. 
But again that effort is well spent and reduces time needed for correcting errors.  

Work in progress 

Like Ada itself, SPARK from time to time is upgraded to include new features. 
As this booklet is going to press the main focus is on upgrading SPARK to take 
more account of the new features in Ada 2012. This is a major evolution of the 
language that will apply the new aspect specification mechanism of Ada 2012 to 
SPARK contracts and generally build on the synergy between the dynamic pre- 
and postconditions of Ada 2012 and the corresponding statically provable 
annotations of SPARK. 

 



 

Conclusion  

It is hoped that this booklet will have proved interesting. It has covered a 
number of aspects of writing reliable software and hopefully has shown that 
Ada is a good language and source of inspiration to use for programs that 
matter. We conclude with some background notes on the development of 
languages.  

The balance between hardware and software is interesting. Hardware has 
evolved in an amazing way in the last half century. The hardware of today bears 
no resemblance whatever to the hardware of 1960. By contrast, software has 
progressed but little. Most languages of today are in many ways little different 
to those of 1960. I suspect that the ultimate problem is that we know little about 
software although we probably think we know rather a lot. Moreover, society 
has made huge investments in badly written software and finds it hard to move 
forward at all. But hardware changes so rapidly that it inevitably gets discarded. 
And of course it is very easy for anyone to learn to write a bit of software but 
massive know-how is required to build any hardware. 

Mainstream languages have two main origins, Algol 60 and CPL. These are 
the ancestors of the languages mentioned most in this booklet. Another group of 
languages, Fortran, COBOL and PL/I, live on but seem to be somewhat isolated. 

Algol 60 was perhaps the most important step forward ever made. (There was 
a lesser known precursor called Algol 58 from which the US military language 
Jovial was derived but that is a minor detail.) Algol gave the feeling that writing 
software was more than just coding.  

Algol made two big steps. It recognized that assignment was not equality by 
using := for assignment. It also introduced English words for control purposes 
and thereby eliminated most of the gotos, jumps and labels that made early 
Fortran and autocode programs so hard to understand. This second point is 
worth looking at in some detail. 

Consider first the following two statements in Algol 60 

if X > 0 then 
   Action( ... ); 
Otherstuff( ... ); 

The effect is that if X is indeed greater than zero then the subroutine Action is 
called. Whether Action is called or not we then always go on to call Otherstuff. 
The interesting thing is that the conditional only governs the first statement 
following then. If we need to govern several statements such as call subroutines 
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This and That then we have to combine the two statements into a single 
compound statement thus 

if X > 0 then 
begin 
   This( ... ); 
   That( ... ); 
end; 
Otherstuff( ... ); 

There are two dangers here. One is simply that we might forget to insert begin 
and end. It would still compile of course but That would always get called 
whatever the value of X. But a bigger hazard is the danger of stray semicolons. 
Algol 60 was perhaps the first language to use semicolons to terminate or 
separate statements. Now consider what happens if a programmer inadvertently 
adds a semicolon immediately after then. We get 

if X > 0 then ; 
begin 
   This( ... ); 
   That( ... ); 
end; 
Otherstuff( ... ); 

Unfortunately, in Algol 60 the semicolon is deemed to be separating a null 
statement from the compound statement (a null statement does nothing – it is 
invisible too!) And so the conditional does nothing and the subroutines This and 
That are always called. There were other related problems in Algol 60 
concerning the syntax of loops. 

The designers of Algol 68 recognized this problem and introduced a 
bracketed form thus 

if X > 0 then 
   This( ... ); 
   That( ... ); 
fi; 
Otherstuff( ... ); 

Other similar structures were used for loops with do being matched by od and 
case being matched by esac. This structure completely solves the problem. It is 
now crystal clear that the conditional governs the two statements. Moreover, 
adding a spurious semicolon after then is a syntax error and so is instantly 
detected by the compiler. Of course many thought that the reversed words fi, od 
and esac indicated that the language was bizarre and not to be taken seriously. 
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  Conclusion 

Whatever the reason, the designers of Pascal ignored this sensible approach 
and continued to use the flawed structure of Algol 60. Eventually however they 
did realize their error when it came to Modula 2 but this was long after Ada. 

Ada was probably the first successful language to use the bracketed structure 
but it does sensibly avoid the peculiar backward words. Thus in Ada we write 

if X > 0 then 
   This( ... ); 
   That( ... ); 
end if; 
Otherstuff( ... ); 

Many other languages have taken this safe route including even the macro 
language in the elegant Microsoft Word for DOS and Visual Basic which is the 
corresponding macro language for Word for Windows. 

The other important background language was CPL. It was devised in about 
1962 as the language to be used by two powerful new computers at Cambridge 
and London universities. 

CPL (like Algol 60) used := for assignment and = for equality. Here is a small 
fragment of CPL 

§ let t, s, n = 1, 0, 1 
  let x be real 
  Read[x] 
     t, s, n := tx/n, s + t, n + 1 
     repeat until t << 1 
  Write[s] §|  

An interesting feature of CPL is that it used = rather than := when setting initial 
values on the grounds that no change was involved. CPL had many novel 
features such as parallel assignments and list processing. However, CPL was 
never implemented but remained an academic design.  

CPL used essentially the same structure as Algol 60 for grouping statements. 
Thus we would have written 

if X > 0 then do 
   § This( ... ) 
      That( ... ) §|  
Otherstuff( ... ) 

Note that the items grouped together are surrounded by the strange brackets § 
and §|  (note that the closing bracket was the section sign with the vertical bar 
through it). 
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Although CPL was never implemented, the simple language BCPL (Basic 
CPL) was a simple successor devised at Cambridge. The major difference was 
that whereas CPL was a strongly typed language, BCPL really had no types at 
all and arrays were just treated as arithmetic on addresses. BCPL is the origin of 
the buffer overflow problem which plagues the world today. 

From BCPL came B and then C, C++ and so on. BCPL used := for 
assignment but somewhere along the way someone missed the point and C 
ended up with = for assignment. Having hijacked = for assignment C uses a 
double equals (==) to mean equality and this gives rise to a number of problems 
as we saw in the chapter on Safe Syntax.  

C inherited the same compound statement style from CPL but replaced the 
strange brackets by the braces ‘{’ and ‘}’and thus in C we write  

if (x > 0)  
{ 
   this( ... ); 
   that( ... ); 
}; 
otherstuff( ... ); 

There is little of the original CPL left in C. In fact the only thing really left is the 
brackets. 

And finally, we conclude by noting that the use of the equals sign for 
assignment is an example of the use of puns so hated by the late Christopher 
Strachey. Strachey was one of the designers of CPL. At a NATO lecture many 
years ago he said “The way in which people are taught to program is 
abominable. They are over and over again taught to make puns; to do shifts 
when they mean multiplying; to confuse bit patterns and numbers and generally 
to say one thing when they mean something quite different. I think we will not 
make it possible to have a subject of software engineering until we can have 
some proper professional standards about how to write programs; and this has 
to be done by teaching people right at the beginning how to write programs 
properly. I’m sure that one of the first things to do about this is to say what you 
mean, and not to say something quite different.”  

That about sums it up. We need to learn to say what we mean. Ada enables us 
to say what we mean clearly and that ultimately is its strength. 
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