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Abstract 

The Tokeneer ID Station (TIS) project, carried out by 

Praxis High Integrity Systems in conjunction with SPRE 

Inc. under the direction of NSA, has shown that it is 

possible to produce high quality, low defect systems 

conforming to the Common Criteria requirements for 

Evaluation Assurance Level 5 (EAL5). We state the 

seven guiding principles we used to achieve this, and 

relate each one to examples from the TIS development. 

The systems development industry in general has viewed 

conformance with the Common Criteria higher levels as 

too difficult, too expensive, and generally not 

economical. The experience of Praxis High Integrity 

Systems, however, is that the levels of EAL5 and beyond 

(including EAL7) are achievable in a cost-effective 

manner. This TIS project was commissioned as a 

demonstration vehicle, to show exactly how the 

development approach adopted by Praxis matches up to 

EAL5, and to measure its actual productivity and defect 

rates under controlled conditions. 

 

 

1. Introduction 

 
The need for high assurance software, which is 

correct, complete, reliable, and available goes without 

saying in the security domain. However, developing high 

assurance software applications with adequate verification 

mechanisms has been not only difficult to achieve but the 

state-of-the-art techniques (often incorporating formal 

methods) have not been viewed as cost-effective until 

recently [1]. The semi-formal approach used by Praxis 

High Integrity Systems using the SPARK [2,3] toolset has 

successfully moved formal methods tools into the 

commercial domain where both assurance and cost 

requirements have been adequately addressed. The cost is 

now lower than traditional manual object-oriented 

methods per line of code [4,5] with a measured 

operational reliability of .9999 (see section 8.1 of this 

paper and [14]). The complexity of the process has also 

been managed so that industry can reach capability with 

cost-effective investments in training and off the shelf 

tools. 

 

2. Achieving low-defect software 

 
Low-defect software can be achieved by applying a 

number of techniques, working together. There is no 

magic bullet technique that solves all the problems—but a 

coordinated application of a range of techniques does 

work. We have used some specific techniques (such as 

SPARK) in this demonstration project, but we have also 

applied more general guiding principles of development 

to guide us in appropriate development steps and 

notations: 

Write right. Write in a way that captures the information 

you want, without confusion, ambiguity, or verbosity. 

Know what sort of information you want to write, and use 

notations that support you, not hinder you. Use a 

programming language with unambiguous static and 

dynamic semantics. 

Step, don’t leap. The step between each development 

phase should be semantically small. Large steps increase 

the likelihood of error, and make checking for errors 

harder. 

Say something once, why say it again? Each phase of 

development, and each design specification or document, 

should have a clearly defined purpose, and express 

information or involve decisions that have not been 

expressed or made before. Repetition of the same 
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information in multiple places leads to unnecessary work 

and can hide the actual design decisions made. 

Check here before going there. Each design step should 

be verified as soon as possible. Make your reviewing 

effective—review against something, usually a prior 

design representation. So review code against the module 

specification, the functional specification against the 

requirements specification, etc. And ensure that validation 

is easy—write simple code that directly reflects the 

specification. 

Argue your corner. Document the justifications for why 

design decisions were made, why they are appropriate, 

and how you ensured that they were carried out correctly. 

Justifications will help future analysis, but most 

importantly being forced to document why you do 

something at the time will help uncover errors at the time. 

Screws: use a screwdriver, not a hammer. Use the most 

appropriate verification technique for the properties you 

are checking. This may be formal review, informal peer 

review, tool-supported proof, static analysis, etc. 

Brains ’R’ Us. Think about everything you do. Carry out 

careful requirements discussions with your customers, 

intelligently searching for conflict, write well-structured 

and clear functional specifications, carefully document 

well thought-out changes. 

 

3. The Project’s Vital Statistics[6] 
 

The system was written in SPARK, a high-integrity 

subset of Ada with added annotation to allow for design 

by contract, static analysis and program proof. The core 

functionality (the true focus of this demonstration project) 

was written in pure SPARK, and the support software to 

interface this to simulated peripherals was written in full 

Ada. 

Tables 1 and 2 show vital statistics for the project’s 

size, productivity and effort. The total effort was 260 

person-days, with an elapsed time of 1 year using a team 

of three, all working part-time on the project. 

The number of defects in the system found during 

independent system reliability testing and since delivery is 

zero
1
. 

                                                 
1
 The independent testers, SPRE Inc., logged two in-scope failures as a 

result of their testing: both were aspects missing from the user manual, 

and hence do not reflect errors in the TIS Core (the part of the system 

developed to our high-integrity process, and the prime subject of study). 

See “Independent assessment”, below, for the limits to testing. 

 Size/source lines Productivity 

(LOC/day) 

 Ada SPARK 

annotations and 

comments 

During 

coding 

Overall 

TIS Core 9,939 16,564 203 38 

Support 

Software 

3,697 2,240 182 88 

 

Project Phase Effort 

% 

Effort 

Person-days 

Project management 11 28.6 

Requirements 10 26.0 

System specification 12 31.2 

Design core functions 15 39.0 

TIS Core code and proof 29 75.4 

System test2 4 10.4 

Support software and 

integration 

16 41.6 

Acceptance 3 7.8 

Total 100 260.0 

 

4. The Project 
 

The overall Tokeneer system was originally developed 

by the NSA as a research vehicle for investigating various 

aspects of biometrics as applied to access control. The 

system’s overall context is shown in Figure 1. It consists 

of a secure enclave, physical access to which must be 

controlled. Within the secure enclave are a number of 

workstations. Users of the workstations have security 

tokens (e.g. smartcards) in order to gain entry to the 

enclave, and to gain access to the workstations. Users 

present their security tokens to a reader outside the 

enclave, which uses information on the token to carry out 

biometric tests (e.g. fingerprint reading) of the User. If the 

User passes these tests, the door to the enclave is opened 

and the User is allowed entry. The User also uses their 

security token to gain access to the workstations—at entry 

time the Tokeneer system adds authorisation information 

to the security token describing exactly the sort of access 

allowed for this visit to the enclave, such as times of 

working, security clearance, and roles that can be taken 

on. 

                                                 
2
 The proportion of time spent on system testing was extremely low, 

even compared to other Praxis Correctness by Construction projects. A 

more representative figure would include the testing contribution from 

SPRE (the independent testers) including the production of the test 

environment. A more normal proportion from other Praxis projects is 

25%. 
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The Tokeneer ID Station (TIS) project re-developed 

one component of the Tokeneer system. To facilitate the 

development, TIS device simulators implemented by the 

independent reliability testing consultants (SPRE, Inc.) 

were used in place of actual TIS devices. Communication 

between the simulators and the kernel was via TCP/IP 

sockets, allowing for a very flexible development and test 

environment. Kernel development proceeded in the UK 

while the device simulators were developed in 

Albuquerque, NM with the kernel and device simulators 

communicating over the internet. The core, security-

critical functionality was developed according to Praxis’s 

Correctness by Construction approach. The remaining, 

support software, was developed to good software 

engineering standards, but not the full Correctness by 

Construction approach. 

 

5. TIS Kernel Protection Profile 
 

SPRE, Inc. extended the security-related requirements 

of the existing Tokeneer by first segregating security 

requirements into a TIS kernel. In essence, the kernel 

would operate as a controller, managing the devices 

associated with the TIS. 

This approach allowed security assessments and 

certifications to focus on the kernel. The TIS Kernel 

Protection Profile (PP) emphasised Operations, 

Administration, Maintenance and Provisioning 

capabilities (OAM&P). Since the TIS Kernel would be 

used in high risk environments, the evaluation assurance 

level (EAL) was set at 5. The PP is based on Version 2.1 

of the Common Criteria [7]. The Common Criteria 

Toolkit was used in developing the PP. 

6. The Development Approach 
 

The development approach adopted on this 

demonstration project was based on the Praxis 

Correctness by Construction approach. In outline it 

follows a conventional sequence, shown in Figure 2, but 

in its details it is quite radical. 

Each step is discussed below, with emphasis on how 

Correctness by Construction achieves its low defect rate 

through the application of the seven principles. 

 

6.1. Requirements analysis 
 

The most expensive mistakes to fix are those that occur 

near the beginning of the development. But they are also 

easy mistakes to make. Correctness by Construction 

tackles these issues through a whole requirements 

engineering approach called REVEAL
®
, developed by 

Praxis to ensure that the right tools get used at the right 

time, and the key information and decisions are 

documented clearly and unambiguously (use a 

screwdriver; Write right). An example is the identification 

of the system boundary. This was carried out on the first 

day of the project, and enabled us to make a clear 

separation between work being done on the core 

functionality (and hence would be developed to EAL5 

criteria), work being done on supporting software (such as 

the simulators), and work outside the scope of the project. 

This also clarified the dependencies we had on aspects of 

the environment, such as certificates (supplied by the 

                                                 
®REVEAL is a UK registered trademark of Praxis High Integrity 

Systems Limited. 



 

 

Certificate Authority) and the behaviour of the door/latch.  

48% of requirements failures are due to 

misunderstandings or changes in the environment, not the 

system, and our requirements engineering techniques 

reflect the importance of this fact [8]. 
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6.2. Security analysis 
 

As this was a development of a security critical system, 

and had development constraints imposed by the Common 

Criteria, we developed a Security Target and a Security 

Policy Model, derived from the Protection Profile. These 

are orthogonal to the normal development of functional 

specifications, design and code, because they seek to 

identify only the key properties that must be upheld to 

ensure security, rather than the functionality needed to 

make it useful, user-friendly, etc. (Say something once; 

Write right). This ensures that we really do understand 

what the properties are, and also gives us the opportunity 

to demonstrate rigorously that the system specification 

does actually possess the properties required of it (Check 

here before going there). Security policy modelling 

focuses the mind on understanding the true requirements, 

and can be used early in the system development as a 

vehicle for gaining agreement on the system requirements. 

Proof that the functional specification has the security 

properties stated also acts as a form of validation of the 

specification. 

6.3. Specification 
 

Most development processes agree that specifications 

and designs should be developed before coding starts. 

Why? We expect you will agree with the following 

reasons: 

1 If you haven’t documented what you expect the 

system to do, the coders will have to decide this for 

themselves. But the coders are not the customer, and 

hence may make decisions the customer disagrees 

with, resulting in a system that does not do what the 

customer wants. 

2 If the coder has nothing to work from, then neither has 

the tester (how do I know what the correct behaviour 

is supposed to be?) nor the reviewer (I can see what 

the code does do, but I don’t know what it is supposed 

to do). 

3 Coders are human, and cannot reliably make large 

design steps in their heads; they need to make 

incremental decisions, and have these decisions 

argued and reviewed. 



 

 

For these reasons our Correctness by Construction 

development approach uses functional specifications, 

design documentation, and test specifications, that capture 

the necessary information. 

We write a rigorous, functional specification using the 

specification language called Z (Zed) [9,10,11],.  

Rigorous notations are the only approach that truly allows 

the system functionality to be written abstractly and 

unambiguously. (use a screwdriver; Write right). The TIS 

functional specification, written in Z with accompanying 

English text, consists of approximately 100 pages. Having 

completed it, the behaviour of TIS is completely clear, 

and any disagreements about what TIS does or what TIS 

depends on in the environment can be discussed 

objectively in terms of the functional specification. It is 

like having the system already coded near the beginning 

of the project (Argue your corner). 

By using a notation that allows us to write abstractly, 

but still unambiguously, we are able to describe the what 

without the how. And it frees the developer’s brain power. 

Most of the tough decisions about behaviour, interface 

dependencies, security trade-offs, etc. can be discussed 

and resolved at the level of the functional specification, 

without having to struggle in the morass of code (Brains 

’R’ Us; Step, don’t leap). 

 

6.4. Design 
 

In moving from the functional specification to the 

code we used two further documents as part of this 

development. (In general, we use more or fewer 

depending upon the size of the system and the complexity 

of the design decisions to be made.) We wrote: 

 a refinement of the functional specification (again 

written in Z) (Write right); and 

 a guide to the SPARK packages to be developed, their 

dependencies and their data storage requirements 

(using notations from INFORMED[12], the design 

method that supports SPARK) (use a screwdriver; 

Step, don’t leap). 

These documents had clear purposes (rather than just 

being “another step” in designing from requirements to 

code) (Say something once): 

 The refinement documents certain difficult 

implementation decisions that were made in passing 

from the functional specification to the code. The key 

ones were 

 prioritization: choosing which actions would 

take priority over other actions (where the 

functional specification left the choice non-

deterministic). 

 auditing: defining in detail the structure and 

content of audit elements, and designing a 

practical implementation of audit storage to 

match the abstract behaviour in the functional 

specification. 

 certificate structure: moving from abstract 

certificates to realistic, raw streams of bits. 

 the documentation from the INFORMED design 

analysis ensures that the design (as presented in the 

refinement) makes sense in terms of implementation 

modules (SPARK packages), and makes visible the 

flow of information (and hence the degree of 

coupling) between modules. Linking the design 

statement with the implementation modules ensures 

that verification from the design to the code will be 

straightforward and tool supported. It also captures the 

precise nature of the abstractions made in linking to 

the real world from the software system. 

 

6.5. Implementation 
 

The system is coded in SPARK [2,3], an annotated 

subset of Ada designed for high-integrity system 

development, which, unlike most other programming 

languages, has clear, unambiguous semantics. We use 

SPARK because it prevents a large number of common 

mistakes from being made, such as the use of un-

initialized variables, buffer overflows, and incorrect 

information flow [13]. Static checks by the SPARK 

toolset can be carried out before code is ready to be run 

(and design intention can be analysed even before the 

code is written), involving data and information flow 

analysis and program proof (Check here before going 

there; Step, don’t leap). 

Good coding practice can significantly reduce the 

introduction of bugs. The INFORMED design process, a 

design method specifically developed to encourage 

designs that benefit from SPARK’s strengths, will have 

produced a design with good modularity properties, and 

the use of SPARK annotations and data/information flow 

analysis will ensure that these good properties are 

preserved in the implementation. 

 

6.6. System test 
 

Using SPARK and its static analysis tools eliminates 

most of the common coding errors that would be picked 

up by extensive module testing. We develop our code and 

integrate it into the system producing incremental builds 

of the total system. In this project, each build of the 

system was complete, in that it runs without test 

harnesses, but with progressively more functionality at 

each build. This tests the most problematic aspects of 

coding (integration problems) throughout the 

development, and removes the need for an expensive 

integration phase (Brains ’R’ Us; use a screwdriver). 



 

 

We test against the refinement of the functional 

specification. Specification based testing is very much 

more effective when the specification is rigorous because 

the specification covers all system behaviour, sufficiently 

clearly that all possible behaviours, correct and error 

behaviours, are defined.  In addition to specification 

based testing, we also use automated test tools to measure 

code coverage, and supplement our tests to achieve 100% 

statement and branch coverage (Check here before going 

there). 

6.7. Assurance 
 

Each step carried out in the development process, and 

each decision made, has the potential for error. We are 

only human, after all. But by having a clear purpose for 

each document, and appropriate notations, it is possible to 

check the correctness of decisions by analysing the 

documents. The figure below shows the analysis 

performed on the various products of the development 

process (Check here before going there; use a 

screwdriver; Argue your corner). 
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7. The View from the Customer 
 

Any serious development methodology starts with 

getting the system requirements right. The approach 

followed here is no exception. What will be new to many 

customers is the crucial early jump from the terminology 

of the problem domain and the English language to 

concepts expressed in Z, a rigorous notation based on 

mathematical logic and set theory. The developer is 

primarily responsible for capturing the specifications in Z, 

but only the customer, or a trusted and capable 

representative, can check that this vital step has been 

achieved correctly. In principle, a single person with full 

knowledge of the problem domain and a fluent reading 

knowledge of Z could do this review. We relied on the 

next best thing, a partnership of a few people with domain 

knowledge and one person fluent in Z. This approach 

worked well.  We even had one productive review session 

by phone with the Z expertise in Maryland and the 

domain knowledge two time zones and thousands of miles 

away in Albuquerque, New Mexico. 

Experience on this project and others has shown that, 

with good instruction, an adequate reading knowledge of 

Z can be acquired in a few days. Much depends upon the 

quality of the accompanying English text. The 

explanatory English from Praxis on this project was 



 

 

excellent. Even so, it is always good for the customer to 

plan for quick access to someone fluent in Z to help 

translate any difficult idioms, which may appear in 

documents presented for review. The ability to write 

professional quality Z takes more than a few days to learn, 

but customers would not expect to have to do that. 

Because of the relatively small size of this project, we 

had only one level of design document between the 

specification in Z and the annotated code in SPARK.  

Reviewing this design document against the specification 

was straightforward. Not only were both documents 

written in Z with English explanatory text, but the 

organization was very similar. Diagrams of system states 

and transitions were also supplied to help the reader. It 

was not difficult to accomplish a design review using one 

person whose background included Z, general system 

design principles, and the scope and function of this 

system. 

There was no need for a detailed customer review of 

the SPARK. It was evident that the organization of the 

implementation was, once again, very similar to that of 

the design and even a very rudimentary reading 

knowledge of SPARK was enough to see that the 

translation was quite direct. 

Because this was a methodology assessment exercise 

with a limited budget, we did not do all of the detailed 

evaluation that the Common Criteria would call for at the 

highest assurance levels. To do their job properly, 

evaluators would clearly need a good reading knowledge 

of Z with access to someone fluent in Z for help with the 

tricky bits.  A good course of a few days duration and 

some additional practice could give them this level of Z 

expertise. They would also need a reading knowledge of 

SPARK and enough familiarity with the SPARK tools to 

do at least some spot-checking of proofs. This exercise 

provides no estimate of the effort required to gain the 

needed expertise. 

 

8. Independent Assessment 
 

As well as producing the TIS Kernel Protection 

Profile and implementing the TIS Device Simulators, 

SPRE carried out independent certification of the 

reliability of the TIS Core. 

 

8.1 Reliability Certification of the Core 
 

SPRE adapted the Reliability Requirements for the 

overall Tokeneer to the specifics of the TIS Core. These 

identified three failure severity categories (critical, major, 

minor), provided descriptions of types of failure for each 

category and spelled out specific failure rate objectives 

for each category. The reliability requirements also 

specified the operating conditions under which the 

objectives were to be met. Eight Operational Modes were 

identified, and Operational Profiles specifying the 

operations that occur and their frequency of occurrence
 

were given for each mode: 

1 Normal Day 

2 Installation/Upgrade 

3 Configuration Changes 

4 Uninstall/Zeroization 

5 Backup/Restore 

6 Power Outage/Recovery 

7 Audit File Review 

8 “Outlier” Scenarios 

 

The “outlier” scenarios are those situations that occur 

very infrequently but in which failures could be critical, 

e.g., allowing admittance to the enclave during the 

transition from “daylight” to “standard” time.  Software 

Reliability Engineered Testing [14] methods and 

Reliability Demonstration Charts were used to certify that 

the system objectives were met. 

Within an automated testing environment, a test 

schedule was setup to simulate one year’s worth of 

activity, executing test cases with frequencies specified by 

the operational profile. We were able to achieve a high 

degree of automation in executing test cases which 

allowed us to simulate a year of TIS activity in a couple of 

weeks of test activity. A failure taxonomy was establish to 

categorize whether failures were associated with 

hardware, software or the test-environment. Application 

software failures were further categorized as to whether 

they were “in scope” or “out of scope” for the 

expectations of this demonstration. A review board 

reviewed reported failures to ensure they were correctly 

categorized. Figure 4 is a Reliability Demonstration Chart 

analysing failure incident data, choosing an operational 

reliability target against all in-scope errors of .9999. 

The chart was created using the following parameters: 

 

Discrimination ratio = 2: the value against which the 

failure intensity is compared. In 

this case, we are comparing 

against a failure intensity twice 

as stringent as the objective. 

Supplier risk = 10%: the likelihood that we 

erroneously reject the product 

against its reliability objective. 

Consumer risk = 10%: the likelihood that we 

erroneously accept the product 

against its reliability objective. 
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Figure 4. Reliability Demonstration Chart (Minor 

Failures) Severity 3 (minor) failures are plotted against 

the time at which they are observed. There were no 

severity 1 (critical) or severity 2 (major) failures. 

 

Failures are plotted against the time at which they 

were observed. Testing continues until the line falls within 

the Accept or Reject Regions. At that point, we can say at 

a specified level of confidence that the system has met or 

not met its reliability objectives. The chart shows that we 

can accept that the reliability objectives for the TIS kernel 

have been met at a 90% confidence level (i.e., there is 

only an 10% supplier or consumer risk). Although we 

observed additional failures, these were deemed out of 

scope for the development project being investigated. 

Of course, we can never be sure that the TIS Core 

contains zero defects—that would require exhaustive 

testing, which is completely impractical. The independent 

reliability testing shows that, for the operational scenarios 

defined, the reliability exceeded .9999 (and we have a 

90% statistical confidence that this conclusion is true). 

 

9. Exceeding EAL5 
 

The task we were set by the NSA was to develop a 

system in conformance with the requirements laid out in 

the Common Criteria for EAL5 [7] (within the scope of 

the system agreed). In fact, we exceeded the EAL5 

requirements in a number of areas, because our 

Correctness by Construction approach has shown that it is 

actually more cost-effective to use some of the more 

rigorous techniques. 

We met the EAL5 criteria in the main body of the core 

development work, covering configuration control, fault 

management, testing. We exceeded EAL5, coming up to 

EAL6 or EAL7 levels, in the development areas covering 

the specifications, design, implementation and 

demonstration of correspondence between 

representations. Some aspects were out of scope, such as 

delivery and operational support. 

10. Conclusions 
 

The TIS development project has demonstrated that 

the Praxis Correctness by Construction development 

process is capable to producing a high quality, low defect 

system in a cost effective manner following a process that 

conforms to the Common Criteria EAL5 requirements. 

The TIS system’s key statistics are: 

 lines of code: 9939 

 total effort (days): 260 

 productivity (lines of code per day, overall): 38 

 defects found post delivery per 1000 lines of code: 

zero 

 

The development approach applied on this project, 

and described in this report, is Praxis High Integrity 

System’s standard high-integrity development process, 

and has been applied successfully to a number of 

commercial and government projects by Praxis. It is not 

new or under development—it is a proven approach using 

proven technology. It has been shown to work on 

information processing systems, interactive systems, and 

real-time systems [15,16,17]. Our experience in working 

with other system developers is that our development 

approach can be applied successfully by other companies, 

but the learning curve for many organizations is steep. 

Good training, a continuing mentor and coaching 

programme, and commitment to improvement are 

necessary to ensure that take-up of the approach is 

successful. 

This case study has shown that software-based security 

products can be built that are reliable, verifiable, and cost 

effective against Common Criteria guidelines. The bar has 

been raised for both procurers and suppliers of such 

systems. Two questions remain: is the process scalable to 

very large systems and can it be followed by anyone other 

than the professionals at Praxis? We cannot do a research 

exercise to answer the first question: large real-world 

system development requires a large real-world budget. 

We researchers never have such a budget. Evidence of 

scalability must be found in Praxis’s reports of their 

experience [3,15,16,17]. 

On the other hand, we can carry out an exercise to see 

how well people unfamiliar with the methods and 

technologies involved can successfully use this approach. 

In fact, we have already done such an experiment with 

student interns as a test population. But that’s another 

story for another time. 
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