

Engineering the Tokeneer Enclave Protection
Software

Janet Barnes, Rod Chapman: Altran

Randy Johnson, James Widmaier: National Security Agency

David Cooper: River River Limited

Bill Everett: SPRE Inc.

Publication notes

Published in ISSSE ’06, the proceedings of the 1st IEEE International Symposium on Secure

Software Engineering, March 2006.

Copyright © 2006 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists or to reuse any copyrighted

component of this work in other works must be obtained from IEEE.

Engineering the Tokeneer Enclave Protection Software

Janet Barnes, Rod Chapman,

Praxis High Integrity Systems

20 Manvers Street,

Bath, BA1 1PX, UK

janet.barnes@praxis-his.com

rod.chapman@praxis-his.com

Randy Johnson,

James Widmaier,

National Security Agency

drjohns@orion.ncsc.mil

David Cooper,

River River Limited, UK.

david.cooper@riverriver.co.uk

Bill Everett,

SPRE Inc,

436 Oppenheimer Drive,

Los Alamos, NM 87544, USA

wwe@spre-inc.com

Abstract

The Tokeneer ID Station (TIS) project, carried out by

Praxis High Integrity Systems in conjunction with SPRE

Inc. under the direction of NSA, has shown that it is

possible to produce high quality, low defect systems

conforming to the Common Criteria requirements for

Evaluation Assurance Level 5 (EAL5). We state the

seven guiding principles we used to achieve this, and

relate each one to examples from the TIS development.

The systems development industry in general has viewed

conformance with the Common Criteria higher levels as

too difficult, too expensive, and generally not

economical. The experience of Praxis High Integrity

Systems, however, is that the levels of EAL5 and beyond

(including EAL7) are achievable in a cost-effective

manner. This TIS project was commissioned as a

demonstration vehicle, to show exactly how the

development approach adopted by Praxis matches up to

EAL5, and to measure its actual productivity and defect

rates under controlled conditions.

1. Introduction

The need for high assurance software, which is

correct, complete, reliable, and available goes without

saying in the security domain. However, developing high

assurance software applications with adequate verification

mechanisms has been not only difficult to achieve but the

state-of-the-art techniques (often incorporating formal

methods) have not been viewed as cost-effective until

recently [1]. The semi-formal approach used by Praxis

High Integrity Systems using the SPARK [2,3] toolset has

successfully moved formal methods tools into the

commercial domain where both assurance and cost

requirements have been adequately addressed. The cost is

now lower than traditional manual object-oriented

methods per line of code [4,5] with a measured

operational reliability of .9999 (see section 8.1 of this

paper and [14]). The complexity of the process has also

been managed so that industry can reach capability with

cost-effective investments in training and off the shelf

tools.

2. Achieving low-defect software

Low-defect software can be achieved by applying a

number of techniques, working together. There is no

magic bullet technique that solves all the problems—but a

coordinated application of a range of techniques does

work. We have used some specific techniques (such as

SPARK) in this demonstration project, but we have also

applied more general guiding principles of development

to guide us in appropriate development steps and

notations:

Write right. Write in a way that captures the information

you want, without confusion, ambiguity, or verbosity.

Know what sort of information you want to write, and use

notations that support you, not hinder you. Use a

programming language with unambiguous static and

dynamic semantics.

Step, don’t leap. The step between each development

phase should be semantically small. Large steps increase

the likelihood of error, and make checking for errors

harder.

Say something once, why say it again? Each phase of

development, and each design specification or document,

should have a clearly defined purpose, and express

information or involve decisions that have not been

expressed or made before. Repetition of the same

mailto:janet.barnes@praxis-his.com
mailto:rod.chapman@praxis-his.com
mailto:drjohns@orion.ncsc.mil
mailto:david.cooper@riverriver.co.uk
mailto:wwe@spre-inc.com

information in multiple places leads to unnecessary work

and can hide the actual design decisions made.

Check here before going there. Each design step should

be verified as soon as possible. Make your reviewing

effective—review against something, usually a prior

design representation. So review code against the module

specification, the functional specification against the

requirements specification, etc. And ensure that validation

is easy—write simple code that directly reflects the

specification.

Argue your corner. Document the justifications for why

design decisions were made, why they are appropriate,

and how you ensured that they were carried out correctly.

Justifications will help future analysis, but most

importantly being forced to document why you do

something at the time will help uncover errors at the time.

Screws: use a screwdriver, not a hammer. Use the most

appropriate verification technique for the properties you

are checking. This may be formal review, informal peer

review, tool-supported proof, static analysis, etc.

Brains ’R’ Us. Think about everything you do. Carry out

careful requirements discussions with your customers,

intelligently searching for conflict, write well-structured

and clear functional specifications, carefully document

well thought-out changes.

3. The Project’s Vital Statistics[6]

The system was written in SPARK, a high-integrity

subset of Ada with added annotation to allow for design

by contract, static analysis and program proof. The core

functionality (the true focus of this demonstration project)

was written in pure SPARK, and the support software to

interface this to simulated peripherals was written in full

Ada.

Tables 1 and 2 show vital statistics for the project’s

size, productivity and effort. The total effort was 260

person-days, with an elapsed time of 1 year using a team

of three, all working part-time on the project.

The number of defects in the system found during

independent system reliability testing and since delivery is

zero
1
.

1
 The independent testers, SPRE Inc., logged two in-scope failures as a

result of their testing: both were aspects missing from the user manual,

and hence do not reflect errors in the TIS Core (the part of the system

developed to our high-integrity process, and the prime subject of study).

See “Independent assessment”, below, for the limits to testing.

 Size/source lines Productivity

(LOC/day)

 Ada SPARK

annotations and

comments

During

coding

Overall

TIS Core 9,939 16,564 203 38

Support

Software

3,697 2,240 182 88

Project Phase Effort

%

Effort

Person-days

Project management 11 28.6

Requirements 10 26.0

System specification 12 31.2

Design core functions 15 39.0

TIS Core code and proof 29 75.4

System test2 4 10.4

Support software and

integration

16 41.6

Acceptance 3 7.8

Total 100 260.0

4. The Project

The overall Tokeneer system was originally developed

by the NSA as a research vehicle for investigating various

aspects of biometrics as applied to access control. The

system’s overall context is shown in Figure 1. It consists

of a secure enclave, physical access to which must be

controlled. Within the secure enclave are a number of

workstations. Users of the workstations have security

tokens (e.g. smartcards) in order to gain entry to the

enclave, and to gain access to the workstations. Users

present their security tokens to a reader outside the

enclave, which uses information on the token to carry out

biometric tests (e.g. fingerprint reading) of the User. If the

User passes these tests, the door to the enclave is opened

and the User is allowed entry. The User also uses their

security token to gain access to the workstations—at entry

time the Tokeneer system adds authorisation information

to the security token describing exactly the sort of access

allowed for this visit to the enclave, such as times of

working, security clearance, and roles that can be taken

on.

2
 The proportion of time spent on system testing was extremely low,

even compared to other Praxis Correctness by Construction projects. A

more representative figure would include the testing contribution from

SPRE (the independent testers) including the production of the test

environment. A more normal proportion from other Praxis projects is

25%.

Display

simulator

Display

Interface

Biometric

Subsystem

Fingerprint

Reader

simulator

Portal

simulator

Portal

Latch

Interface

TIS Core

Functions

TIS

Crypto

Library

Alarm

simulatorAlarm

Interface
Certificate

Library

Token

Reader

Interface

Token

Reader

simulator

KEY:
Simulated

Device

Software

subsystem

TIS Core

developed

to EAL5
User interaction

Admin

Interface
Guard/

Administrator

interaction

Protected

Enclave

The Tokeneer ID Station (TIS) project re-developed

one component of the Tokeneer system. To facilitate the

development, TIS device simulators implemented by the

independent reliability testing consultants (SPRE, Inc.)

were used in place of actual TIS devices. Communication

between the simulators and the kernel was via TCP/IP

sockets, allowing for a very flexible development and test

environment. Kernel development proceeded in the UK

while the device simulators were developed in

Albuquerque, NM with the kernel and device simulators

communicating over the internet. The core, security-

critical functionality was developed according to Praxis’s

Correctness by Construction approach. The remaining,

support software, was developed to good software

engineering standards, but not the full Correctness by

Construction approach.

5. TIS Kernel Protection Profile

SPRE, Inc. extended the security-related requirements

of the existing Tokeneer by first segregating security

requirements into a TIS kernel. In essence, the kernel

would operate as a controller, managing the devices

associated with the TIS.

This approach allowed security assessments and

certifications to focus on the kernel. The TIS Kernel

Protection Profile (PP) emphasised Operations,

Administration, Maintenance and Provisioning

capabilities (OAM&P). Since the TIS Kernel would be

used in high risk environments, the evaluation assurance

level (EAL) was set at 5. The PP is based on Version 2.1

of the Common Criteria [7]. The Common Criteria

Toolkit was used in developing the PP.

6. The Development Approach

The development approach adopted on this

demonstration project was based on the Praxis

Correctness by Construction approach. In outline it

follows a conventional sequence, shown in Figure 2, but

in its details it is quite radical.

Each step is discussed below, with emphasis on how

Correctness by Construction achieves its low defect rate

through the application of the seven principles.

6.1. Requirements analysis

The most expensive mistakes to fix are those that occur

near the beginning of the development. But they are also

easy mistakes to make. Correctness by Construction

tackles these issues through a whole requirements

engineering approach called REVEAL
®
, developed by

Praxis to ensure that the right tools get used at the right

time, and the key information and decisions are

documented clearly and unambiguously (use a

screwdriver; Write right). An example is the identification

of the system boundary. This was carried out on the first

day of the project, and enabled us to make a clear

separation between work being done on the core

functionality (and hence would be developed to EAL5

criteria), work being done on supporting software (such as

the simulators), and work outside the scope of the project.

This also clarified the dependencies we had on aspects of

the environment, such as certificates (supplied by the

®REVEAL is a UK registered trademark of Praxis High Integrity

Systems Limited.

Certificate Authority) and the behaviour of the door/latch.

48% of requirements failures are due to

misunderstandings or changes in the environment, not the

system, and our requirements engineering techniques

reflect the importance of this fact [8].

System

Requirements

Specification

Security Target

Protection Profile

SPARK

Implementation

INFORMED

Design

Formal Design

Formal

Specification

System Test

Specification

Prior System

Documentation

Security

Properties

Development

Product

Key

External Input

(1)

Requirements

Analysis

(2)

Security

Analysis

(3)

Specification

(4)

Design

(5)

Implementation

(6)

System Test

6.2. Security analysis

As this was a development of a security critical system,

and had development constraints imposed by the Common

Criteria, we developed a Security Target and a Security

Policy Model, derived from the Protection Profile. These

are orthogonal to the normal development of functional

specifications, design and code, because they seek to

identify only the key properties that must be upheld to

ensure security, rather than the functionality needed to

make it useful, user-friendly, etc. (Say something once;

Write right). This ensures that we really do understand

what the properties are, and also gives us the opportunity

to demonstrate rigorously that the system specification

does actually possess the properties required of it (Check

here before going there). Security policy modelling

focuses the mind on understanding the true requirements,

and can be used early in the system development as a

vehicle for gaining agreement on the system requirements.

Proof that the functional specification has the security

properties stated also acts as a form of validation of the

specification.

6.3. Specification

Most development processes agree that specifications

and designs should be developed before coding starts.

Why? We expect you will agree with the following

reasons:

1 If you haven’t documented what you expect the

system to do, the coders will have to decide this for

themselves. But the coders are not the customer, and

hence may make decisions the customer disagrees

with, resulting in a system that does not do what the

customer wants.

2 If the coder has nothing to work from, then neither has

the tester (how do I know what the correct behaviour

is supposed to be?) nor the reviewer (I can see what

the code does do, but I don’t know what it is supposed

to do).

3 Coders are human, and cannot reliably make large

design steps in their heads; they need to make

incremental decisions, and have these decisions

argued and reviewed.

For these reasons our Correctness by Construction

development approach uses functional specifications,

design documentation, and test specifications, that capture

the necessary information.

We write a rigorous, functional specification using the

specification language called Z (Zed) [9,10,11],.

Rigorous notations are the only approach that truly allows

the system functionality to be written abstractly and

unambiguously. (use a screwdriver; Write right). The TIS

functional specification, written in Z with accompanying

English text, consists of approximately 100 pages. Having

completed it, the behaviour of TIS is completely clear,

and any disagreements about what TIS does or what TIS

depends on in the environment can be discussed

objectively in terms of the functional specification. It is

like having the system already coded near the beginning

of the project (Argue your corner).

By using a notation that allows us to write abstractly,

but still unambiguously, we are able to describe the what

without the how. And it frees the developer’s brain power.

Most of the tough decisions about behaviour, interface

dependencies, security trade-offs, etc. can be discussed

and resolved at the level of the functional specification,

without having to struggle in the morass of code (Brains

’R’ Us; Step, don’t leap).

6.4. Design

In moving from the functional specification to the

code we used two further documents as part of this

development. (In general, we use more or fewer

depending upon the size of the system and the complexity

of the design decisions to be made.) We wrote:

 a refinement of the functional specification (again

written in Z) (Write right); and

 a guide to the SPARK packages to be developed, their

dependencies and their data storage requirements

(using notations from INFORMED[12], the design

method that supports SPARK) (use a screwdriver;

Step, don’t leap).

These documents had clear purposes (rather than just

being “another step” in designing from requirements to

code) (Say something once):

 The refinement documents certain difficult

implementation decisions that were made in passing

from the functional specification to the code. The key

ones were

 prioritization: choosing which actions would

take priority over other actions (where the

functional specification left the choice non-

deterministic).

 auditing: defining in detail the structure and

content of audit elements, and designing a

practical implementation of audit storage to

match the abstract behaviour in the functional

specification.

 certificate structure: moving from abstract

certificates to realistic, raw streams of bits.

 the documentation from the INFORMED design

analysis ensures that the design (as presented in the

refinement) makes sense in terms of implementation

modules (SPARK packages), and makes visible the

flow of information (and hence the degree of

coupling) between modules. Linking the design

statement with the implementation modules ensures

that verification from the design to the code will be

straightforward and tool supported. It also captures the

precise nature of the abstractions made in linking to

the real world from the software system.

6.5. Implementation

The system is coded in SPARK [2,3], an annotated

subset of Ada designed for high-integrity system

development, which, unlike most other programming

languages, has clear, unambiguous semantics. We use

SPARK because it prevents a large number of common

mistakes from being made, such as the use of un-

initialized variables, buffer overflows, and incorrect

information flow [13]. Static checks by the SPARK

toolset can be carried out before code is ready to be run

(and design intention can be analysed even before the

code is written), involving data and information flow

analysis and program proof (Check here before going

there; Step, don’t leap).

Good coding practice can significantly reduce the

introduction of bugs. The INFORMED design process, a

design method specifically developed to encourage

designs that benefit from SPARK’s strengths, will have

produced a design with good modularity properties, and

the use of SPARK annotations and data/information flow

analysis will ensure that these good properties are

preserved in the implementation.

6.6. System test

Using SPARK and its static analysis tools eliminates

most of the common coding errors that would be picked

up by extensive module testing. We develop our code and

integrate it into the system producing incremental builds

of the total system. In this project, each build of the

system was complete, in that it runs without test

harnesses, but with progressively more functionality at

each build. This tests the most problematic aspects of

coding (integration problems) throughout the

development, and removes the need for an expensive

integration phase (Brains ’R’ Us; use a screwdriver).

We test against the refinement of the functional

specification. Specification based testing is very much

more effective when the specification is rigorous because

the specification covers all system behaviour, sufficiently

clearly that all possible behaviours, correct and error

behaviours, are defined. In addition to specification

based testing, we also use automated test tools to measure

code coverage, and supplement our tests to achieve 100%

statement and branch coverage (Check here before going

there).

6.7. Assurance

Each step carried out in the development process, and

each decision made, has the potential for error. We are

only human, after all. But by having a clear purpose for

each document, and appropriate notations, it is possible to

check the correctness of decisions by analysing the

documents. The figure below shows the analysis

performed on the various products of the development

process (Check here before going there; use a

screwdriver; Argue your corner).

SPARK

Implementation

INFORMED

Design

Formal Design

Formal

Specification

Security

Properties

Proof of Security

Properties

(Z)

Proof of Formal

Specification

(Z)

Refinement Proof

of Formal Design

(Z)

Proof of Security

Properties

(SPARK Proof)

Proof of

Functional

Properties

(SPARK Proof)

Static Analysis

Assurance

Activity

Key
System Test

System Test

Specification

7. The View from the Customer

Any serious development methodology starts with

getting the system requirements right. The approach

followed here is no exception. What will be new to many

customers is the crucial early jump from the terminology

of the problem domain and the English language to

concepts expressed in Z, a rigorous notation based on

mathematical logic and set theory. The developer is

primarily responsible for capturing the specifications in Z,

but only the customer, or a trusted and capable

representative, can check that this vital step has been

achieved correctly. In principle, a single person with full

knowledge of the problem domain and a fluent reading

knowledge of Z could do this review. We relied on the

next best thing, a partnership of a few people with domain

knowledge and one person fluent in Z. This approach

worked well. We even had one productive review session

by phone with the Z expertise in Maryland and the

domain knowledge two time zones and thousands of miles

away in Albuquerque, New Mexico.

Experience on this project and others has shown that,

with good instruction, an adequate reading knowledge of

Z can be acquired in a few days. Much depends upon the

quality of the accompanying English text. The

explanatory English from Praxis on this project was

excellent. Even so, it is always good for the customer to

plan for quick access to someone fluent in Z to help

translate any difficult idioms, which may appear in

documents presented for review. The ability to write

professional quality Z takes more than a few days to learn,

but customers would not expect to have to do that.

Because of the relatively small size of this project, we

had only one level of design document between the

specification in Z and the annotated code in SPARK.

Reviewing this design document against the specification

was straightforward. Not only were both documents

written in Z with English explanatory text, but the

organization was very similar. Diagrams of system states

and transitions were also supplied to help the reader. It

was not difficult to accomplish a design review using one

person whose background included Z, general system

design principles, and the scope and function of this

system.

There was no need for a detailed customer review of

the SPARK. It was evident that the organization of the

implementation was, once again, very similar to that of

the design and even a very rudimentary reading

knowledge of SPARK was enough to see that the

translation was quite direct.

Because this was a methodology assessment exercise

with a limited budget, we did not do all of the detailed

evaluation that the Common Criteria would call for at the

highest assurance levels. To do their job properly,

evaluators would clearly need a good reading knowledge

of Z with access to someone fluent in Z for help with the

tricky bits. A good course of a few days duration and

some additional practice could give them this level of Z

expertise. They would also need a reading knowledge of

SPARK and enough familiarity with the SPARK tools to

do at least some spot-checking of proofs. This exercise

provides no estimate of the effort required to gain the

needed expertise.

8. Independent Assessment

As well as producing the TIS Kernel Protection

Profile and implementing the TIS Device Simulators,

SPRE carried out independent certification of the

reliability of the TIS Core.

8.1 Reliability Certification of the Core

SPRE adapted the Reliability Requirements for the

overall Tokeneer to the specifics of the TIS Core. These

identified three failure severity categories (critical, major,

minor), provided descriptions of types of failure for each

category and spelled out specific failure rate objectives

for each category. The reliability requirements also

specified the operating conditions under which the

objectives were to be met. Eight Operational Modes were

identified, and Operational Profiles specifying the

operations that occur and their frequency of occurrence

were given for each mode:

1 Normal Day

2 Installation/Upgrade

3 Configuration Changes

4 Uninstall/Zeroization

5 Backup/Restore

6 Power Outage/Recovery

7 Audit File Review

8 “Outlier” Scenarios

The “outlier” scenarios are those situations that occur

very infrequently but in which failures could be critical,

e.g., allowing admittance to the enclave during the

transition from “daylight” to “standard” time. Software

Reliability Engineered Testing [14] methods and

Reliability Demonstration Charts were used to certify that

the system objectives were met.

Within an automated testing environment, a test

schedule was setup to simulate one year’s worth of

activity, executing test cases with frequencies specified by

the operational profile. We were able to achieve a high

degree of automation in executing test cases which

allowed us to simulate a year of TIS activity in a couple of

weeks of test activity. A failure taxonomy was establish to

categorize whether failures were associated with

hardware, software or the test-environment. Application

software failures were further categorized as to whether

they were “in scope” or “out of scope” for the

expectations of this demonstration. A review board

reviewed reported failures to ensure they were correctly

categorized. Figure 4 is a Reliability Demonstration Chart

analysing failure incident data, choosing an operational

reliability target against all in-scope errors of .9999.

The chart was created using the following parameters:

Discrimination ratio = 2: the value against which the

failure intensity is compared. In

this case, we are comparing

against a failure intensity twice

as stringent as the objective.

Supplier risk = 10%: the likelihood that we

erroneously reject the product

against its reliability objective.

Consumer risk = 10%: the likelihood that we

erroneously accept the product

against its reliability objective.

0 81 2 3 4 5 6 7

0

8

1

2

3

4

5

6

7

10

9

C
u

m
u

la
ti

v
e

 f
a

il
u

re
s

Normalised cumulative

processing time

REJECT

Region

ACCEPT

Region

CONTINUE

Region

Figure 4. Reliability Demonstration Chart (Minor

Failures) Severity 3 (minor) failures are plotted against

the time at which they are observed. There were no

severity 1 (critical) or severity 2 (major) failures.

Failures are plotted against the time at which they

were observed. Testing continues until the line falls within

the Accept or Reject Regions. At that point, we can say at

a specified level of confidence that the system has met or

not met its reliability objectives. The chart shows that we

can accept that the reliability objectives for the TIS kernel

have been met at a 90% confidence level (i.e., there is

only an 10% supplier or consumer risk). Although we

observed additional failures, these were deemed out of

scope for the development project being investigated.

Of course, we can never be sure that the TIS Core

contains zero defects—that would require exhaustive

testing, which is completely impractical. The independent

reliability testing shows that, for the operational scenarios

defined, the reliability exceeded .9999 (and we have a

90% statistical confidence that this conclusion is true).

9. Exceeding EAL5

The task we were set by the NSA was to develop a

system in conformance with the requirements laid out in

the Common Criteria for EAL5 [7] (within the scope of

the system agreed). In fact, we exceeded the EAL5

requirements in a number of areas, because our

Correctness by Construction approach has shown that it is

actually more cost-effective to use some of the more

rigorous techniques.

We met the EAL5 criteria in the main body of the core

development work, covering configuration control, fault

management, testing. We exceeded EAL5, coming up to

EAL6 or EAL7 levels, in the development areas covering

the specifications, design, implementation and

demonstration of correspondence between

representations. Some aspects were out of scope, such as

delivery and operational support.

10. Conclusions

The TIS development project has demonstrated that

the Praxis Correctness by Construction development

process is capable to producing a high quality, low defect

system in a cost effective manner following a process that

conforms to the Common Criteria EAL5 requirements.

The TIS system’s key statistics are:

 lines of code: 9939

 total effort (days): 260

 productivity (lines of code per day, overall): 38

 defects found post delivery per 1000 lines of code:

zero

The development approach applied on this project,

and described in this report, is Praxis High Integrity

System’s standard high-integrity development process,

and has been applied successfully to a number of

commercial and government projects by Praxis. It is not

new or under development—it is a proven approach using

proven technology. It has been shown to work on

information processing systems, interactive systems, and

real-time systems [15,16,17]. Our experience in working

with other system developers is that our development

approach can be applied successfully by other companies,

but the learning curve for many organizations is steep.

Good training, a continuing mentor and coaching

programme, and commitment to improvement are

necessary to ensure that take-up of the approach is

successful.

This case study has shown that software-based security

products can be built that are reliable, verifiable, and cost

effective against Common Criteria guidelines. The bar has

been raised for both procurers and suppliers of such

systems. Two questions remain: is the process scalable to

very large systems and can it be followed by anyone other

than the professionals at Praxis? We cannot do a research

exercise to answer the first question: large real-world

system development requires a large real-world budget.

We researchers never have such a budget. Evidence of

scalability must be found in Praxis’s reports of their

experience [3,15,16,17].

On the other hand, we can carry out an exercise to see

how well people unfamiliar with the methods and

technologies involved can successfully use this approach.

In fact, we have already done such an experiment with

student interns as a test population. But that’s another

story for another time.

11. References

[1] National Cyber Security Partnership, Security Across the

Software Development Life Cycle ,

http://www.cyberpartnership.org/init-soft.html

 [2] John Barnes, High Integrity Software: The SPARK

Approach to Safety and Security, Addison Wesley, April 2003.

ISBN 0-321-13616-0.

[3] SPARKAda homepage, http://www.sparkada.com/

[4] Robert Musson, “How the TSP impacts the Top-Line”

CrossTalk Journal, Volume 15, Number 9, September 2002.

http://www.stsc.hill.af.mil/crosstalk/2002/09/

[5] Smidts, Huang, and Widmaier, “Producing Reliable

Software: An Experiment”, Journal of Systems and Software,

August 2002.

[6] Janet Barnes and David Cooper, “EAL5 Demonstrator:

Summary Report”, Praxis High Integrity Systems,

S.P1229.81.1, 17 December 2003.

[7] ISO 15408, Common Criteria for Information Technology

Security Evaluation, August 1999 (Version 2.1).

[8] Hooks and Farry. Customer Centred Products, Amacom,

2000.

[9] J.M. Spivey. The Z Notation: A Reference Manual, 2nd

Edition, Prentice-Hall, 1985.

[10] The Z Notation, http://vl.zuser.org/

[11] Information technology – Z formal specification notation –

Syntax, type system and semantics, ISO/IEC 13568:2002,

International Organization for Standardization, July 2002 .

[12] INFORMED Design Method for SPARK, Praxis High

Integrity Systems, S.P0468.42.4, January 2005

[13] Dorothy E. Denning, Peter J. Denning, “Certification of

Programs for Secure Information Flow”, CACM Vol. 20, No. 7,

July 1977, pp504-513.

[14] Musa, John D and James Widmaier, ”Software-Reliability-

Engineered Testing”, CrossTalk Journal, Volume 9, Number 6,

Software Technology Support Center, June 1996.

http://www.stsc.hill.af.mil/crosstalk/1996/06/

 [15] Anthony Hall and Roderick Chapman, “Correctness by

Construction: Developing a Commercial Secure System”, IEEE

Software, Jan/Feb 2002, pp18-25.

[16] Anthony Hall, “Using Formal Methods to Develop an ATC

Information System”, IEEE Software, March 1996, pp66-76.

[17] Steve King, Jonathan Hammond, Rod Chapman and Andy

Prior, “Is Proof More Cost-Effective Than Testing?”, IEEE

Transactions on Software Engineering, Vol 26 No 8, pp675-

686, August 2000.

http://www.cyberpartnership.org/init-soft.html
http://www.sparkada.com/
http://www.stsc.hill.af.mil/crosstalk/2002/09/
http://vl.zuser.org/
http://www.stsc.hill.af.mil/crosstalk/1996/06/

	Engineering the Tokeneer Enclave Protection Software
	issse2006tok

