
A brief introduction to

Ada 2012
by John Barnes

Chapter 5 - Iterators, Pools, etc.

Courtesy of

Rationale for Ada 2012: 5 Iterators, Pools, etc.
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

2 Template for Ada User Journal

Abstract
This paper describes various improvements in a number of general areas in Ada 2012.

There are some minor but perhaps surprising changes concerning matters such as the placement of
pragmas and labels.

There are important new features regarding indexing and accessing largely introduced to simplify
iterating over containers.

There are also a number of additional Restrictions identifiers many related to the introduction of
aspect specifications.

The functionality of access types and storage management is made more flexible by the introduction
of subpools.

Finally, a number of minor additions and corrections are made to a range of topics such as
generics.

Keywords: rationale, Ada 2012.

1 Overview of changes
The areas mentioned in this paper are not specifically mentioned in the WG9 guidance document [1]
other than under the request to remedy shortcomings and improve the functionality of access types
and dynamic storage management.

The following Ada Issues cover the relevant changes and are described in detail in this paper.

  6 Nominal subtypes for all names

 71 Class-wide operations for formal subprograms

 95 Address of intrinsic subprograms

100 Placement of pragmas

111 Subpools, allocators & control of finalization

119 Package Calendar, Daylight Saving Time and UTC_Offset

123 Composability of equality

139 Syntactic sugar for access, containers & iterators

148 Accessibility of anonymous access stand-alone objects

149 Access type conversion and membership

152 Restriction No_Anonymous_Allocators

163 Pragmas in place of null

173 Testing of tags representing abstract types

179 Labels at end of a sequence of statements

189 Restriction No_Standard_Allocators_After_Elaboration

190 Global storage pool control

193 Alignment of allocators

212 Accessors and iterators for Ada.Containers

241 Aspect-related restrictions

 3

242 No_Implementation_Units restriction

246 Restrictions No_Implementation_Identifiers and Profile No_Implementation_Extensions

252 Questions on subpools

253 Accessibility of allocators for anonymous access of an object

255 User-defined iterators and quantified expressions

272 Pragma and attribute restrictions

292 Terminology: indexable type is confusing

These changes can be grouped as follows.

First there are some minor changes to elementary matters such as the placement of pragmas, labels
and null statements (100, 163, 179).

An important addition is the introduction of more user-friendly mechanisms for iterating over
structures such as arrays and containers (139, 212, 255, 292).

Further flexibility for storage management is provided by the introduction of subpools of storage
pools (111, 190, 252). A number of issues concerning anonymous access types and allocators are
also resolved (148, 149, 193, 253).

A number of new Restrictions identifiers have been added. They include No_Coextensions,
No_Standard_Allocators_After_Elaboration, No_Anonymous_Allocators, No_Implementation_Units,
and No_Implementation_Identifiers. A blanket new profile covering a number of restrictions,
No_Implementation_Extensions, is also added (152, 189, 241, 242, 246, 272).

Finally, there are a number of minor unrelated improvements. Four are actually classed as binding
interpretations and so apply to Ada 2005 as well; they concern nominal subtypes (6), address of intrinsic
subprograms (95), time in the package Calendar (119), and class wide operations on formal generic
subprograms (71). The other miscellaneous issues concern the composability of equality (123), and tags of
abstract types (173).

2 Position of pragmas and labels
It is surprising that basic stuff such as where one can place a pragma should be the subject of
discussion thirty years after Ada became an ANSI standard.

However, there is a real problem in this area which one could imagine might have led to headlines in
the Wall Street Journal and Financial Times such as

Collapse of NY Stock Market because of Safety Fears in Avionic Applications after
Discovery that Ada is Illegal

Indeed, it seems that the package Ada in Ada 2005 might be illegal. This surprising conclusion was
triggered by the consideration of

task type TT is
 pragma Priority(12);
end TT;

The rules in Ada 83, Ada 95 and Ada 2005 concerning the position of pragmas say

Pragmas are only allowed at the following places in a program:

▪ After a semicolon delimiter, but not within a formal part or discriminant part.

▪ At any place where the syntax rules allow a construct defined by a syntactic category whose
name ends with "declaration", "statement", "clause", or "alternative"; or one of the syntactic

4 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

categories variant or exception_handler; but not in place of such a construct. Also at any place
where a compilation_unit would be allowed.

Now the syntax for task_definition in Ada 2005 is

 task_definition ::=
 {task_item}
 [private
 {task_item}]
 end [task_identifier]

There are at least two problems. The key one here is that the list of categories in the rule does not
include "item". The other concerns the words "not in place of". It seems that the intent was that if at
least one instance of the construct is required (as in a sequence of statements) then the pragma
cannot be given in place of a single statement. So it looks as if the task type TT is not legal.

It has probably been permitted because task_item itself splits down into aspect_clause or
entry_declaration and they seem to be allowed. But if none is present then we cannot tell which
category is permitted!

Note rather scarily that the package Ada is given as

package Ada is
 pragma Pure(Ada);
end Ada;

and the same problem applies.

The entities in a package specification are of the category basic_declarative_item and again although
it splits down into things ending _clause or _declaration we don't know which.

The fear concerning package Ada made one member of the ARG concerned that the sky might be
falling in. Of course, we don't ever have to submit a package Ada in our file (on punched cards,
paper tape or whatever media we are using). The package Ada is just in the mind of the compiler so
that it behaves as if she were declared. The same applies to Standard. They are sort of synthesized
and not actually declared.

Anyway, the upshot is that in Ada 2012, the description of the placement of pragmas is corrected by
adding "item" to the list and clarifying the meaning of not in place of.

A further discussion considered sequences of statements. In a structure such as an if statement the
syntax is

 if_statement ::=
 if condition then
 sequence_of_statements
 ...

where

 sequence_of_statements ::= statement {statement}

The important point is that a sequence_of_statements must have at least one statement. Moreover,
the rules for placing pragmas in Ada 2005 do not allow a pragma in place of a construct so we
cannot write

if B then
 pragma Assert(...); -- illegal in Ada 2005
else ...

 5

but have to include at least one statement (such as a null statement) by writing perhaps

if B then
 pragma Assert(...); null;
else ...

or

if B then
 null; pragma Assert(...);
else ...

On reflection this seemed irritating so the rules for the placement of pragmas are further amended to
include another bullet

▪ In place of a statement in a sequence_of_statements

A useful note on a language definition principle is added to the AARM which is that if all pragmas
are treated as unrecognized then a program should remain legal.

Incidentally, there are other places in the language where at least one item is required such as in a
component list. Again if we don't want any components we have to write a null component as in

type Nothing is
 record
 null;
 end record;

One might have thought that we could similarly now allow one to write

type T is
 record
 pragma Page;
 end record;

Indeed, it might have been thought that we could simply say that in general a pragma can be given
"in place of" an entity. But this doesn't work in some cases. For example, an asynchronous select
statement can take the form of a series of statements in its triggering alternative thus

select
 S1(...);
 S2(...);
 S3(...);
then abort
 ...
end select;

Now the call of S1 is the triggering statement and has a different status to S2 and S3. It would be
very confusing to be able to replace the call of S1 by a pragma. So such generalization was
dismissed as leading to trouble.

The final topic in this vein concerns the position of labels. This was triggered by the consideration of
the problem of quitting one iteration of a loop if it proves unsuccessful and then trying the next
iteration. As described in the Introduction this can be done by writing

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code

6 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

<<End_Of_Loop> null; -- try another iteration
end loop;

Of course, maybe we should avoid the goto and write

for I in Some_Range loop
 ...
 if OK then
 ... -- lots of other code
 end if;
 -- try another iteration
end loop;

At first sight the latter structure looks nicer. However, if the "lots of other code" encounters several
situations which mean that the iteration has to be abandoned then we quickly get a deeply nested
structure which is not easy to understand and becomes heavily indented.

Much consideration was given to the introduction of a continue statement but it was felt that this
would obscure the existence of the transfer of control. Although the goto may be deprecated as
obscure, the corresponding obvious label in its aggressive double angle brackets is a strong clue to
the existence of the transfer of control.

In the end it was decided that the only sensible improvement was to remove the need for the null
statement at the end of the loop.

This is achieved by changing the syntax for a sequence of statements to

 sequence_of_statements ::= statement {statement} {label}

and adding a rule to the effect that if one or more labels end a sequence of statements then an
implicit null statement is inserted after the labels. So the loop example can now be written as

for I in Some_Range loop
 ...
 if not OK then goto End_Of_Loop; end if;
 ... -- lots of other code
<<End_Of_Loop> -- try another iteration
end loop;

More generally we can write

if B then
 S1; S2; <<My_Label>>
end if;

as well as giving the null explicitly thus

if B then
 S1; S2; <<My_Label>> null;
end if;

but we still cannot write

if B then
 <<My_Label>> -- illegal
end if;

since a sequence of statements must still include at least one statement. Of course, we could never
jump to such a label anyway since control cannot be transferred into a structure.

 7

3 Iteration
Iteration and subprogram calls are in some sense the twin cornerstones of programming. We are all
familiar with the ubiquitous nature of statements such as

for I in A'Range loop
 A(I) := 0;
end loop;

which in one form or another exist in all (normal) programming languages.

The detail of giving the precise description of the iteration and the indexing is really a violation of
abstraction by revealing unnecessary detail. All we want to say is "assign zero to each element of the
set A".

However, although it's not too much of a hassle with arrays, the introduction of containers revealed
that detailed iteration could be very heavy-handed. Thus, as mentioned in the Introduction, suppose
we are dealing with a list, perhaps a list of the type Twin declared as

type Twin is
 record
 P, Q: Integer;
 end record;

To manipulate every element of the list in Ada 2005, we have to write something like

C := The_List.First; -- C declared as of type Cursor
loop
 exit when C = No_Element;
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 C := Next(C);
end loop;

This reveals the gory details of the iterative process whereas all we want to say is "add X to the
component Q for all members of the list whose component P is prime".

There is another way in Ada 2005 and that is to use the procedure Iterate. In that case the details of
what we are doing have to be placed in a distinct subprogram called perhaps Do_It. Thus we can
write

declare
 procedure Do_It(C: in Cursor) is
 begin
 E := Element(C); -- E is of type Twin
 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;
 end Do_It;
begin
 The_List.Iterate(Do_It'Access);
end;

This avoids the fine detail of calling First and Next but uses what some consider to be a heavy
infrastructure.

8 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

However, in Ada 2012 we can simply say

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Not only is this just five lines of text rather than nine or eleven, the key point is that the possibility
of making various errors of detail is completely removed.

The mechanisms by which this magic abstraction is achieved are somewhat laborious and it is
anticipated that users will take a cookbook approach (show us how to do it, but please don't explain
why – after all, this is the approach taken with boiling an egg, we can do it without deep knowledge
of the theory of coagulation of protein material).

We will start by looking at the process using arrays. Rather than

for I in A'Range loop
 if A(I) /= 0 then
 A(I) := A(I) + 1;
 end if;
end loop;

we can write

for E of A loop
 if E /= 0 then
 E := E + 1;
 end if;
end loop;

In the case of a two-dimensional array, instead of

for I in AA'Range(1) loop
 for J in AA'Range(2) loop
 A(I, J) := 0.0;
 end loop;
end loop;

we can write

for EE of AA loop
 EE := 0.0;
end loop;

In Ada 2005 (and indeed in Ada 95 and Ada 83), the syntax for a loop is given by

 loop_statement ::= [loop_statement_identifier :]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_identifier] ;

 iteration_scheme ::= while condition
 | for loop_parameter_specification

 loop_parameter_specification ::= defining_identifier in
 [reverse] discrete_subtype_definition

 9

This is all quite familiar. In Ada 2012, the syntax for loop_statement remains the same but
iteration_scheme is extended to give

 iteration_scheme ::= while condition
 | for loop_parameter_specification
 | for iterator_specification

Thus the new form iterator_specification is introduced which is

 iterator_specification ::=
 defining_identifier in [reverse] iterator_name
 | defining_identifier [: subtype_indication] of [reverse] iterable_name

The first production defines a generalized iterator whereas the second defines an array component
iterator or a container element iterator. For the moment we will just consider the second production
which has of rather than in. The iterable_name can refer to an array or a container. Suppose it is an
array such as A or AA in the examples above.

We note that we can optionally give the subtype of the loop parameter. Suppose that the type A is
given as

type A is array (index) of Integer;

then the subtype of the loop parameter (E in the example) if not given will just be that of the
component which in this case is simply Integer. If we do give the subtype of the loop parameter then
it must cover that of the component. This could be useful with tagged types.

Note carefully that the loop parameter does not have the type of the index of the array as in the
traditional loop but has the type of the component of the array. So on each iteration it denotes a
component of the array. It iterates over all the components of the array as expected. If reverse is not
specified then the components are traversed in ascending index order whereas if reverse is specified
then the order is descending. In the case of a multidimensional array then the index of the last
dimension varies fastest matching the behaviour of AA in the expanded traditional version as shown
(and which incidentally is the order used in streaming). However, if the array has convention Fortran
then it is the index of the first dimension that varies fastest both in the case of the loop and in
streaming.

There are other obvious rules. If the array A or AA is constant then the loop parameter E or EE is
also constant. So it all works much as expected. But do note carefully the use of the reserved word
of (rather than is) which distinguishes this kind of iteration from the traditional form using an index.

As another array example suppose we have the following

type Artwin is array (1 .. N) of Twin;

The_Array: Artwin;

which is similar to the list example above. In the traditional way we might write

for K in Artwin'Range loop
 if Is_Prime(The_Array(K).P) then
 The_Array(K).Q := The_Array(K).Q + X;
 end if;
end loop;

Using the new notation this can be simplified to

for E: Twin of The_Array loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;

10 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

 end if;
end loop;

where we have added the subtype Twin to clarify the situation. Similarly, in the simple list example
we could write

for E: Twin of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

Note the beautiful similarity between these two examples. The only lexical difference is that
The_Array is replaced by The_List showing that arrays and containers can be treated equivalently.

We now have to consider how the above can be considered as behaving like the original text which
involves C of type Cursor, and subprograms First, No_Element, Element, Replace_Element and
Next.

This magic is performed by several new features. One is a generic package whose specification is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is
 pragma Pure(Iterator_Interfaces);

 type Forward_Iterator is limited interface;
 function First(Object: Forward_Iterator) return Cursor is abstract;
 function Next(Object: Forward_Iterator: Position: Cursor) return Cursor is abstract;

 type Reversible_Iterator is limited interface and Forward_Iterator;
 function Last(Object: Reversible_Iterator) return Cursor is abstract;
 function Previous(Object: Reversible_Iterator;
 Position: Cursor) return Cursor is abstract;

end Ada.Iterator_Interfaces;

Thi s gene r i c package i s u sed by the va r ious con ta ine r packages such a s
Ada.Containers.Doubly_Linked_Lists. Its actual parameters corresponding to the formal parameters
Cursor and Has_Element come from the container which includes an instantiation of
Ada.Iterator_Interfaces. The instantiation then exports the various required types and functions.
Thus in outline the relevant part of the list container now looks like

with Ada.Iterator_Interfaces;
generic
 type Element_Type is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Doubly_Linked_Lists is
 ...
 type List is tagged private ...
 ...
 type Cursor is private;
 ...
 function Has_Element(Position: Cursor) return Boolean;
 package List_Iterator_Interfaces is
 new Ada.Iterator_Interfaces(Cursor, Has_Element);

 11

 ...
 ...
end Ada.Containers.Doubly_Linked_Lists;

The entities exported from the generic package Ada.Iterator_Interfaces are the two interfaces
Forward_Iterator and Reversible_Iterator. The interface Forward_Iterator has functions First and
Next whereas the Reversible_Iterator (which is itself descended from Forward_Iterator) has
functions First and Next inherited from Forward_Iterator plus additional functions Last and Previous.

Note carefully that a Forward_Iterator can only go forward but a Reversible_Iterator can go both
forward and backward. Hence it is reversible and not Reverse_Iterator.

The container packages also contain some new functions which return objects of the type
Reversible_Iterator'Class or Forward_Iterator'Class. In the case of the list container they are

function Iterate(Container: in List) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;
function Iterate(Container: in List; Start: in Cursor) return
 List_Iterator_Interfaces.Reversible_Iterator'Class;

These are new functions and are not to be confused with the existing procedures Iterate and
Reverse_Iterate which enable a subprogram to be applied to every element of the list but are
somewhat cumbersome to use as shown earlier. The function Iterate with only one parameter is used
for iterating over the whole list whereas that with two parameters iterates starting with the cursor
value equal to Start.

Now suppose that the list container is instantiated with the type Twin followed by the declaration of
a list

package Twin_Lists is
 new Ada.Containers.Doubly_Linked_Lists(Element_Type => Twin);

The_List: Twin_Lists.List;

So we have now declared The_List which is a list of elements of the type Twin. Suppose we want to
do something to every element of the list. As we have seen we might write

for E: Twin of The_List loop
 ... -- do something to E
end loop;

However, it might be wise at this point to introduce the other from of iterator_specification which is

 defining_identifier in [reverse] iterator_name

This defines a generalized iterator and uses the traditional in rather than of used in the new array
component and container element iterators. Using this generalized form we can write

for C in The_List.Iterate loop
 ... -- do something via cursor C
end loop;

In the body of the loop we manipulate the elements using cursors in a familiar way. The reader
might wonder why there are these two styles, one using is and the other using of. The answer is that
the generalized iterator is more flexible; for example it does not need to iterate over the whole
structure. If we write

for C in The_List.Iterate(S) loop

12 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

then the loop starts with the cursor value equal to S; this is using the version of the function Iterate
with two parameters. On the other hand, the array component and container element iterators are
more succinct where applicable and are the only from of these new iterators that can be used with
arrays.

The generalized iterators for the list container use reversible iterators because the functions Iterate
return a value of the type Reversible_Iterator'Class. The equivalent code generated uses the
functions First and Next exported from List_Iterator_Interfaces created by the instantiation of
Ada.Iterator_Interfaces with the actual parameters The_List.Cursor and The_List.Has_Element. The
code then behaves much as if it were (see paragraph 13/3 of subclause 5.5.2 of the RM)

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...
C := F.First;
loop
 exit when not The_List.Has_Element(C);
 E := The_List.Element(C);
 ... -- do something to E
 C := F.Next(C);
end loop;

Of course, the user does not need to know all this in order to use the construction. Note that the
functions First and Next used here (which operate on the class Forward_Iterator and are inherited by
the class Reversible_Iterator) are not to be confused with the existing functions First and Next which
act on the List and Cursor respectively. The existing functions are retained for compatibility and for
use in complex situations.

It should also be noted that the initialization of F is legal since the result returned by Iterate is a
value of Reversible_Iterator'Class and this is a subclass of Forward_Iterator'Class.

If we had written

for C in reverse The_List.Iterate loop
 ... -- do something via cursor C
end loop;

then the notional code would have been similar but have used the functions Last and Previous rather
than First and Next.

Another point is that the function call F.First will deliver the very first cursor value if we had written
The_List.Iterate but the value S if we had written The_List.Iterate(S). Remember that we are dealing
with interfaces so there is nothing weird here; the two functions Iterate return different types in the
class and these have different functions First so the notional generated code calls different functions.

If we use the form

for E: Twin of The_List loop
 ... -- do something to E
end loop;

then the generated code is essentially the same. However, since we have not explicitly mentioned an
iterator, a default one has to be used. This is given by one of several new aspects of the type List
which actually now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,

 13

 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The aspect we need at the moment is the one called Default_Iterator which as we see has the value
Iterate (this is the one without the extra parameter). So the iterator F is initialized with this default
value and once more we get

C: The_List.Cursor;
E: Twin;
F: Forward_Iterator'Class := The_List.Iterate;
...

The use of the other aspects will be explained in a moment.

Lists, vectors and ordered maps and sets can be iterated in both directions. They all have procedures
Reverse_Iterate as well as Iterate and the two new functions Iterate return a value of
Reversible_Iterator'Class.

However, it might be recalled that the notion of iterating in either direction makes no sense in the
case of hashed maps and hashed sets. Consequently, there is no procedure Reverse_Iterate for
hashed maps and hashed sets and there is only one new function Iterate which (in the case of hashed
maps) is

function Iterate(Container: in Map) return
 Map_Iterator_Interfaces.Forward_Iterator'Class;

and we note that this function returns a value of Forward_Iterator'Class rather than
Reversible_Iterator'Class in the case of lists, vectors, ordered maps, and ordered sets.

Naturally, we cannot put reverse in an iterator over hashed maps and hashed sets nor can we give a
starting value. So the following are both illegal

for C in The_Hash_Map.Iterate(S) loop -- illegal

for E of reverse The_Hash_Map loop -- illegal

The above should have given the reader a fair understanding of the mechanisms involved in setting
up the loops using the new iterator forms. We now turn to considering the bodies of the loops, that is
the code marked "do something via cursor C " or "do something to E ".

In the Ada 2005 example we wrote

 if Is_Prime(E.P) then
 Replace_Element(The_List, C, (E.P, E.Q + X));
 end if;

It is somewhat tedious having to write Replace_Element when using a container whereas in the case
of an array we might directly write

if Is_Prime(A(I).P) then
 A(I).Q := A(I).Q + X;
end if;

The trouble is that Replace_Element copies the whole new element whereas in the array example
we just update the one component. This doesn't matter too much in a case where the components are
small such as Twin but if they were giant records it would clearly be a problem. To overcome this
Ada 2005 includes a procedure Update_Element thus

14 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

procedure Update_Element(Container: in out List;
 Position: in Cursor;
 Process: not null access procedure (Element: in out Element_Type));

To use this we have to write a procedure Do_It say thus

procedure Do_It(E: in out Twin) is
begin
 E.Q := E.Q + X;
end Do_It;

and then

 if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
 end if;

This works fine because E is passed by reference and no giant copying occurs. However, the
downside is that the distinct procedure Do_It has to be written so that the overall text is something
like

declare
 procedure Do_It(E: in out Twin) is
 begin
 E.Q := E.Q + X;
 end Do_It;
begin
 if Is_Prime(E.P) then
 Update_Element(The_List, C, Do_It'Access);
 end if;
end;

which is a bit tedious.

But of course, the text in the body of Do_It is precisely what we want to say. Using the historic
concepts of left and right hand values, the problem is that The_List(C).Element cannot be used as a
left hand value by writing for example

The_List(C).Element.Q := ...

The problem is overcome in Ada 2012 using a little more magic by the introduction of generalized
reference types and various aspects. In particular we find that the containers now include a type
Reference_Type and a function Reference which in the case of the list containers are

type Reference_Type(Element: not null access Element_Type) is private
 with Implicit_Dereference => Element;

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type;

Note the aspect Implicit_Dereference applied to the type Reference_Type with discriminant
Element.

There is also a type Constant_Reference_Type and a function Constant_Reference for use when the
context demands read-only access.

The alert reader will note the inclusion of aliased for the parameter Container of the function
Reference. As discussed in the paper on Structure and Visibility, this ensures that the parameter is

 15

passed by reference (it always is for tagged types anyway); it also permits us to apply 'Access to the
parameter Container within the function and to return that access value.

It might be helpful to say a few words about the possible implementation of Reference and
Reference_Type although these need not really concern the user.

The important part of the type Reference_Type is its access discriminant. The private part might
contain housekeeping stuff but we can ignore that. So in essence it is simply a record with just one
component being the access discriminant

type Reference_Type(E: not null access Element_Type) is null record;

and the body of the function might be

function Reference(Container: aliased in out List;
 Position: in Cursor) return Reference_Type is
begin
 return (E => Container.Element(Position)'Access);
end Reference;

The rules regarding parameters with aliased (which we gloss over) ensure that no accessibility
problems should arise. Note also that it is important that the discriminant of Reference_Type is an
access discriminant since the lifetime of the discriminant is then just that of the return object.

Various aspects are given with the type List which as shown earlier now is

type List is tagged private
 with Constant_Indexing => Constant_Reference,
 Variable_Indexing => Reference,
 Default_Iterator => Iterate,
 Iterator_Element => Element_Type;

The important aspect here is Variable_Indexing. If this aspect is supplied then in essence the type can
be used in a left hand context by invoking the function given as the value of the aspect. In the case
of The_List this is the function Reference which returns a value of type Reference_Type. Moreover,
this reference type has a discriminant which is of type access Element_Type and the aspect
Implicit_Dereference with value Element and so gives direct access to the value of type Element.

We can now by stages transform the raw text. So using the cursor form we can start with

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).Element.all.P) then
 The_List.Reference(C).Element.all.Q :=
 The_List.Reference(C).Element.all.Q + X;
 end if;
end loop;

This is the full blooded version even down to using all.

Omitting the all and using the dereferencing with the aspect Implicit_Dereference we can omit the
mention of the discriminant Element to give

for C in The_List.Iterator loop
 if Is_Prime(The_List.Reference(C).P) then
 The_List.Reference(C).Q := The_List.Reference(C).Q + X;
 end if;
end loop;

16 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

Remember that Reference is a function with two parameters. It might be clearer to write this
without prefix notation which gives

for C in Iterator(The_List) loop
 if Is_Prime(Reference(The_List, C).P) then
 Reference(The_List, C).Q := Reference(The_List, C).Q + X;
 end if;
end loop;

Now because the aspect Variable_Indexing for the type List has value Reference, the explicit calls of
Reference can be omitted to give

for C in The_List.Iterator loop
 if Is_Prime(The_List(C).P) then
 The_List(C).Q := The_List(C).Q + X;
 end if;
end loop;

It should now be clear that the cursor C is simply acting as an index into The_List. We can compare
this text with

for C in The_Array'Range loop
 if Is_Prime(The_Array(C).P) then
 The_Array(C).Q := The_Array(C).Q + X;
 end if;
end loop;

which shows that 'Range is analogous to .Iterator.

Finally, to convert to the element form using E we just replace The_List(C) by E to give

for E of The_List loop
 if Is_Prime(E.P) then
 E.Q := E.Q + X;
 end if;
end loop;

The reader might like to consider the transformations in the reverse direction to see how the final
succinct form transforms to the expanded form using the various aspects. This is indeed what the
compiler has to do.

This underlying technique which transforms the sequence of statements of the container element
iterator can be used quite generally. For example, we might not want to iterate over the whole
container but just manipulate a particular element given by a cursor C. Rather than calling
Update_Element with another subprogram Do_Something, we can write

The_List.Reference(C).Q := ...

or simply

The_List(C).Q := ...

Moreover, although the various aspects were introduced into Ada 2012 primarily to simplify the use
of containers they can be used quite generally.

The reader may feel that these new features violate the general ideas of a language with simple
building blocks. However, it should be remembered that even the traditional form of loop such as

 17

for Index in T range L to U loop
 ... -- statements
end loop;

is really simply a shorthand for

declare
 Index: T;
begin
 if L <= U then
 Index := L;
 loop
 ... -- statements
 exit when Index = U;
 Index := T'Succ(Index);
 end loop;
 end if;
end;

Without such shorthand, programming would be very tedious and very prone to errors. The features
described in this section are simply a further step to make programming safer and simpler.

Further examples of the use of these new features with containers will be given in a later paper
dedicated to containers.

The mechanisms discussed above rely on a number of new aspects, a summary of which follows and
might be found useful. It is largely based on extracts from the RM.

Dereferencing

The following aspect may be specified for a discriminated type T.

Implicit_Dereference  This aspect is specified by a name that denotes an access discriminant of the
type T.

A type with a specified Implicit_Dereference aspect is a reference type. The Implicit_Dereference
aspect is inherited by descendants of type T if not overridden.

A generalized_reference denotes the object or subprogram designated by the discriminant of the
reference object.

Indexing

The following aspects may be specified for a tagged type T.

Constant_Indexing  This aspect is specified by a name that denotes one or more functions declared
immediately within the same declaration list in which T is declared. All such functions shall have at
least two parameters, the first of which is of type T or T'Class, or is an access-to-constant parameter
with designated type T or T'Class.

Variable_Indexing  This aspect is specified by a name that denotes one or more functions declared
immediately within the same declaration list in which T is declared. All such functions shall have at
least two parameters, the first of which is of type T or T'Class, or is an access parameter with
designated type T or T'Class. All such functions shall have a return type that is a reference type,
whose reference discriminant is of an access-to-variable type.

These aspects are inherited by descendants of T (including T'Class). The aspects shall not be
overridden, but the functions they denote may be.

18 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

An indexable container type is a tagged type with at least one of the aspects Constant_Indexing or
Variable_Indexing specified.

An important difference between Constant_Indexing and Variable_Indexing is that the functions for
variable indexing must return a reference type so that it can be used in left hand contexts such as the
destination of an assignment. Note that, in both cases, the name can denote several overloaded
functions; this is useful, for example, with maps to allow indexing both with cursors and with keys.

Both Constant_Indexing and Variable_Indexing can be provided since the constant one might be
more efficient whereas the variable one is necessary in left hand contexts. But we are not obliged to
give both, just Variable_Indexing might be enough for some applications.

Iterating

An iterator type is a type descended from the Forward_Iterator interface.

The following aspects may be specified for an indexable container type T.

Default_Iterator   This aspect is specified by a name that denotes exactly one function declared
immediately within the same declaration list in which T is declared, whose first parameter is of type
T or T'Class or an access parameter whose designated type is type T or T'Class, whose other
parameters, if any, have default expressions, and whose result type is an iterator type. This function
is the default iterator function for T.

Iterator_Element   This aspect is specified by a name that denotes a subtype. This is the default
element subtype for T.

These aspects are inherited by descendants of type T (including T'Class).

An iterable container type is an indexable container type with specified Default_Iterator and
Iterator_Element aspects.

The Constant_Indexing and Variable_Indexing aspects (if any) of an iterable container type T shall
denote exactly one function with the following properties:

▪ the result type of the function is covered by the default element type of T or is a reference type
with an access discriminant designating a type covered by the default element type of T;

▪ the type of the second parameter of the function covers the default cursor type for T;

▪ if there are more than two parameters, the additional parameters all have default expressions.

These functions (if any) are the default indexing functions for T.

The reader might care to check that the aspects used in the examples above match these definitions
and are used correctly. Note for example that the Default_Iterator and Iterator_Element aspects are
only needed if we use the of form of iteration (and both are needed in that case, giving one without
the other would be foolish).

This section has largely been about the use of iterators with loop statements. However, there is one
other use of them and that is with quantified expressions which are also new to Ada 2012.
Quantified expressions were discussed in some detail in the paper on Expressions so all we need
here is to consider a few examples which should clarify the use of iterators.

Instead of

B := (for all K in A'Range => A(K) = 0);

which assigns true to B if every component of the array A has value 0, we can instead write

B := (for all E of A => E = 0);

Similarly, instead of

 19

B := (for some K in A'Range => A(K) = 0);

which assigns true to B if some component of the array A has value 0, we can instead write

B := (for some E of A => E = 0);

In the case of a multidimensional array, instead of

B := (for all I in AA'Range(1) => (for all J in AA'Range(2) => AA(I, J) = 0));

we can write

B := (for all E of AA => E = 0);

which iterates over all elements of the array AA however many dimensions it has.

We can also use these forms with the list example. Suppose we are interested in checking whether
some element of the list has a prime component P. We can write

B := (for some E of The_List => Is_Prime(E.P));

or perhaps

B := (for some C in The_List.Iterator => Is_Prime(The_List(C).P));

which uses the explicit iterator form.

4 Access types and storage pools
A significant change in Ada 2005 was the introduction of anonymous access types. It is believed that
the motivation was to remove the feeling that Ada 95 was unnecessarily pedantic in requiring the
introduction of lots of named access types whereas in languages such as C one can just place a star
on the identifier of the type being referenced in order to introduce a pointer type.

However, anonymous access types raised more complex accessibility check problems which did not
arise with named access types. Most of these problems were resolved in the definition of Ada 2005
but one remained concerning stand-alone objects of anonymous access types. Interestingly, such
stand-alone objects were added to Ada 2005 late in the development process; perhaps hastily as it
turned out.

In Ada 2005, local stand-alone objects take the accessibility level of the master in which they are
declared.

Consider an attempt to use a local stand-alone object in an algorithm to reverse a list. We assume
that the list comprises nodes of the following type

type Node is
 record
 ...
 Next: access Node;
 end record;

and we write

function Reverse(List: access Node) return access Node is
 Result: access Node := null;
 This_Node: access Node := List;
 Next_Node: access Node := null;
begin
 while This_Node /= null loop
 Next_Node := This_Node.Next;
 This_Node.Next := Result; -- access failure in 2005

20 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

 Result := This_Node;
 This_Node := Next_Node;
 end loop;
 return Result; --access failure in 2005
end Reverse;

This uses the obvious algorithm of working down the list and rebuilding it. However, in Ada 2005
there are two accessibility failures associated with the variable Result. The assignment to
This_Node.Next fails because Result might be referring to something local and we cannot assign
that to a node of the list since the list itself lies outside the scope of Reverse_List. Similarly,
attempting to return the value in Result fails.

The problem with returning a result can sometimes be solved by using an extended return statement
as illustrated in [2]. But this is not a general remedy. The problem is solved in Ada 2012 by treating
stand-alone access objects rather like access parameters so that they carry the accessibility of the last
value assigned to them as part of their value.

Another reason for introducing anonymous access types in Ada 2005 was to reduce the need for
explicit type conversions (note that anonymous access types naturally have no name to use in an
explicit conversion). However, it turns out that in practice it is convenient to use anonymous access
types in some contexts (such as the component Next of type Node) but in other contexts we might
find it logical to use a named access type such as

type List is access Node;

In Ada 2005, explicit conversions are often required from anonymous access types to named access
types and this has been considered to be irritating. Accordingly, the rule has been changed in Ada
2012 to say that an explicit conversion is only required if the conversion could fail.

This relaxation covers both accessibility checks and tag checks. For example we might have

type Class_Acc is access T'Class; -- named type
type Rec is
 record
 Comp: access T'Class; -- anon type
 end record;

R: Rec;

and then some code somewhere

Z: Class_Acc;
...
Z := R.Comp; -- OK in Ada 2012

The conversion from the anonymous type of Comp to the named type Class_Acc of Z on the
assignment to Z cannot fail and so does not require an explicit conversion whereas it did in Ada
2005. Incidentally, the example uses a component Comp rather than a stand-alone object to avoid
confusion arising from the special properties of stand-alone objects just discussed.

With regard to tag checks, if it is statically known that the designated type of the anonymous access
type is covered by the designated type of the named access type then there is no need for a tag check
and so an explicit conversion is not required.

It will be recalled that there is a fictitious type known as universal_access (much as
universal_integer, root_Integer and so on). For example, the literal null is of this universal type.
Moreover, there is a function "=" used to compare universal_access values. Permitting implicit

 21

conversions requires the introduction of a preference rule for the equality operator of the universal
type. Suppose we have

type A is access Integer;
R, S: access Integer;
...
if R = S then

Now since we can do an implicit conversion from the anonymous access type of R and S to the type
A, there is confusion as to whether the comparison uses the equality operator of the type
universal_access or that of the type A. Accordingly, there is a preference rule that states that in the
case of ambiguity there is a preference for equality of the type universal_access. Similar preference
rules already apply to root_integer and root_real.

A related topic concerns membership tests which were described in the paper on Expressions.

If we want to ensure that a conversion from perhaps Integer to Index will work and not raise
Constraint_Error we can write

subtype Index is Integer range 1 .. 20;
I: Index;
K: Integer;
...
if K in Index then
 I := Index(K); -- bound to work
else
 ... -- remedial action
end if;

This is much neater than attempting the conversion and then handling Constraint_Error.

However, in Ada 2005, there is no similar facility for testing to see whether an access type
conversion would fail. So membership tests in Ada 2012 are extended to permit such a test. So if we
have

type A is access T1;
X: A;
...
type Rec is
 record
 Comp: access T2;
 end record;

R: Rec;
Y: access T2;

we can write

if R.Comp in A then
 X := A(R.Comp) -- conversion bound to work
else ...

The membership test will return true if the type T1 covers T2 and the accessibility rules are satisfied
so that the conversion is bound to work. Note that the converted expression (R.Comp in this case)
can be an access parameter or a stand-alone access object such as Y.

We now turn to consider various features concerning allocation and storage pools.

22 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

It will be recalled that if we write our own storage pools then we have to declare a pool type derived
from the type Root_Storage_Pool in the package System.Storage_Pools. So we might write

package My_Pools is
 type Pond(Size: Storage_Count) is new Root_Storage_Pool with private;
 ...

where the discriminant gives the size of the pool. We then have to provide procedures Allocate and
Deallocate for our own pool type Pond corresponding to those for Root_Storage_Pool. The
procedures Allocate and Deallocate both have four parameters. For example, the procedure Allocate
is

procedure Allocate(Pool: in out Root_Storage_Pool;
 Storage_Address: out Address;
 Size_In_Storage_Elements;
 Alignment: in Storage_Count) is abstract;

When we declare our own Allocate we do not have to use the same names for the formal parameters.
So we might more simply write

procedure Allocate(Pool: in out Pond;
 Addr: out Address;
 SISE: in Storage_Count;
 Align: in Storage_Count);

As well as Allocate and Deallocate we also have to write a function Storage_Size and procedures
Initialize and Finalize. However, the key procedures are Allocate and Deallocate which give the
algorithms for determining how the storage in the pool is manipulated.

Two parameters of Allocate give the size and alignment of the space to be allocated. However, it is
possible that the particular algorithm devised might need to know the worst case values in
determining an appropriate strategy. The attribute Max_Size_In_Storage_Elements gives the worst
case for the storage size in Ada 2005 but there is no corresponding attribute for the worst case
alignment.

This is overcome in Ada 2012 by the provision of the attribute Max_Alignment_For_Allocation.
There are various reasons for possibly requiring a different alignment to that expected. For example,
the raw objects might simply be byte aligned but the algorithm might decide to append dope or
monitoring information which is integer aligned.

The collector of Ada curiosities might remember that Max_Size_In_Storage_Elements is the
attribute with most characters in Ada 2005 (28 of which 4 are underlines). Curiously,
Max_Alignment_For_Allocation also has 28 characters of which only 3 are underlines.

There are problems with anonymous access types and allocation. Consider

package P is
 procedure Proc(X: access Integer);
end P;

with P;
procedure Try_This is
begin
 P.Proc(new Integer'(10));
end Try_This;

The procedure Proc has an access parameter X and the call of Proc in Try_This does an allocation
with the literal 10. Where does it go? Which pool? Can we do Unchecked_Deallocation? There are

 23

special rules for allocators of anonymous access types which aim to answer such questions. The pool
is "created at the point of the allocator" and so on.

But various problems arise. An important one is that it is not possible to do unchecked deallocation
because the access type has no name; this is particularly serious with library level anonymous access
types. An example of such a type might be that of the component Next if the record type Node
discussed earlier had been declared at library level.

Consequently, it was concluded that it is best to use named access types if allocation is to be
performed. We can always convert to an anonymous type if desired after the allocation has been
performed.

In order to avoid encountering such problems a new restriction identifier is introduced. So writing

pragma Restrictions(No_Anonymous_Allocators);

prevents allocators of anonymous access types and so makes the call of the procedure Proc in the
procedure Try_This illegal.

Many long-lived control programs have a start-up phase in which various storage structures are
established and which is then followed by the production phase in which various restrictions may be
imposed. Ada 2012 has a number of features that enable this to be organized and monitored.

One such feature is the new restriction

pragma Restrictions(No_Standard_Allocators_After_Elaboration);

This specifies that an allocator using a standard storage pool shall not occur within a parameterless
library subprogram or within the statements of a task body. In essence this means that all such
allocation must occur during library unit elaboration. Storage_Error is raised if allocation occurs
afterwards.

However, it is expected that systems will permit some use of user-defined storage pools. To enable
the writers of such pools to monitor their use some additional functions are added to the package
Task_Identification so that it now takes the form

package Ada.Task_Identification is
 ...
 type Task_Id is private;
 ...
 function Current_Task return Task_Id;
 function Environment_Task return Task_Id;
 procedure Abort_Task(T: in Task_id);

 function Is_Terminated(T: Task_Id) return Boolean;
 function Is_Callable(T: Task_Id) return Boolean;
 function Activation_Is_Complete(T: Task_Id) return Boolean;
private
 ...
end Ada.Task_Identification;

The new function Environment_Task returns the identification of the environment task. The function
Activation_Is_Complete returns true if the task concerned has finished activation. Moreover, if
Activation_Is_Complete is applied to the environment task then it indicates whether all library items
of the partition have been elaborated.

A major new facility is the introduction of subpools. This is an extensive subject so we give only an
overview. The general idea is that one wants to manage heaps with different lifetimes. It is often the
case that an access type is declared at library level but various groups of objects of the type are

24 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

declared and so could be reclaimed at a more nested level. This is done by splitting a pool into
separately reclaimable subpools. This is far safer and often cheaper than trying to associate lifetimes
with individual objects.

A new child package of System.Storage_Pools is declared thus

package System.Storage_Pools.Subpools is
 pragma Preelaborate(Subpools);

 type Root_Storage_Pool_With_Subpools is abstract new Root_Storage_Pool with private;

 type Root_Subpool is abstract tagged limited private;

 type Subpool_Handle is access all Root_Subpool'Class;
 for Subpool_Handle'Storage_Size use 0;

 function Create_Subpool(Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle is abstract;

 function Pool_Of_Subpool (Subpool: not null Subpool_Handle) return access
 Root_Storage_Pool_With_Subpools'Class;

 procedure Set_Pool_Of_Subpool(Subpool: not null Subpool_Handle;
 To: in out
Root_Storage_Pool_With_Subpools'Class);

 procedure Allocate_From_Subpool(Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count;
 Subpool: in not null Subpool_Handle) is abstract
 with Pre'Class => Pool_Of_Subpool(Subpool) = Pool'Access;

 procedure Deallocate_Subpool(Pool: in out Root_Storage_Pool_With_Subpools;
 Subpool: in out Subpool_Handle) is abstract
 with Pre'Class => Pool_Of_Subpool(Subpool) = Pool'Access;

 function Default_Subpool_For_Pool(Pool: in out Root_Storage_Pool_With_Subpools)
 return not null Subpool_Handle;

 overriding
 procedure Allocate(Pool: in out Root_Storage_Pool_With_Subpools;
 Storage_Address: out Address;
 Size_In_Storage_Elements: in Storage_Count;
 Alignment: in Storage_Count);

 overriding
 procedure Deallocate(...) is null;

 overriding
 function Storage_Size(Pool: Root_Storage_Pool_With_Subpools) return Storage_Count is
 (Storage_Count'Last);

private
 ... -- not specified by the language
end System.Storage_Pools.Subpools;

If we wish to declare a storage pool that can have subpools then rather than declare an object of the
type Root_Storage_Pool in the package System.Storage_Pools we have to declare an object of the
derived type Root_Storage_Pool_With_Subpools declared in the child package.

 25

The type Root_Storage_Pool_With_Subpools inherits operations Allocate, Deallocate and
Storage_Size from the parent type. Remember that Allocate and Deallocate are automatically called
by the compiled code when items are allocated and deallocated. In the case of subpools we don't
need Deallocate to do anything so it is null. The function Storage_Size determines the value of the
attribute Storage_Size and is given by a function expression.

Subpools are separately reclaimable parts of a storage pool and are identified and manipulated by
objects of the type Subpool_Handle (these are access values). We can create a subpool by a call of
Create_Subpool. So we might have (assuming appropriate with and use clauses)

package My_Pools is
 type Pond(Size: Storage_Count) is new Root_Storage_Pool_With_Subpools with private;

 subtype My_Handle is Subpool_Handle;
 ...

and then

My_Pool: Pond(Size => 1000);

Puddle: My_Handle := Create_Subpool(My_Pool);

The implementation of Create_Subpool should call

Set_Pool_Of_Subpool(Puddle, My_Pool);

before returning the handle. This enables various checks to be made.

In order to allocate an object of type T from a subpool, we have to use a new form of allocator. But
first we must ensure that T is associated with the pool itself. So we might write

type T_Ptr is access T;
for T_Ptr'Storage_Pool use My_Pool;

And then to allocate an object from the subpool identified by the handle Puddle we write

X := new (Puddle) T'(...);

where the subpool handle is given in parentheses following new.

Of course we don't have to allocate all such objects from a specified subpool since we can still write

Y := new T'(...);

and the object will be allocated from the parent pool My_Pool. It is actually allocated from a default
subpool in the parent pool and this is determined by writing a suitable body for the function
Default_Subpool_For_Pool and this is called automatically by the allocation mechanism. Note that
in effect the whole of the pool is divided into subpools one of which may be the default subpool. If
we don't provide an overriding body for Default_Subpool_For_Pool then Program_Error is raised.
(Note that this function has a parameter of mode in out for reasons that need not bother us.)

The implementation carries out various checks. For example, it will check that a handle refers to a
subpool of the correct pool by calling the function Pool_Of_Subpool. Both this function and
Set_Pool_Of_Subpool are provided by the Ada implementation and typically do not need to be
overridden by the implementor of a particular type derived from Root_Storage_Pool_
With_Subpools.

In the case of allocation from a subpool, the procedure Allocate_From_Subpool rather than Allocate
is automatically called. Note the precondition to check that all is well.

It will be recalled that for normal storage pools, Deallocate is automatically called from an instance
of Unchecked_Deallocation. In the case of subpools the general idea is that we get rid of the whole

26 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

subpool rather than individual items in it. Accordingly, Deallocate does nothing as mentioned earlier
and there is no Deallocate_From_Subpool. Instead we have to write a suitable implementation of
Deallocate_Subpool. Note again the precondition to check that the subpool belongs to the pool.

Deallocate_Subpool is called automatically as a consequence of calling the following library
procedure

with System.Storage_Pools.Subpools;
use System.Storage_Pools.Subpools;
procedure Ada.Unchecked_Deallocate_Subpool(Subpool: in out Subpool_Handle);

So when we have finished with the subpool Puddle we can write

Unchecked_Dellocate_Subpool(Puddle);

and the handle becomes null. Appropriate finalization also takes place.

In summary, the writer of a subpool implementation typically only has to provide Create_Subpool,
Allocate_From_Subpool and Deallocate_Subpool since the other subprograms are provided by the
Ada implementation of the package System.Storage_Pools.Subpools and can be inherited
unchanged.

An example of an implementation will be found in subclause 13.11.6 of the RM. This shows an
implementation of a Mark/Release pool in a package MR_Pool. Readers are invited to create
variants called perhaps Miss_Pool and Dr_Pool!

Further control over the use of storage pools (nothing to do with subpools) is provided by the ability
to define our own default storage pool as mentioned in the Introduction. Thus we can write (and
completing our Happy Family of Pools)

pragma Default_Storage_Pool(Master_Pool);

and then all allocation within the scope of the pragma will be from Master_Pool unless a different
specific pool is given for a type. This could be done by using an attribute definition clause thus

type Cell_Ptr is access Cell;
 for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

A pragma Default_Storage_Pool can be overridden by another one so that for example all allocation
in a package (and its children) is from another pool.

The default pool can be specified as null thus

pragma Default_Storage_Pool(null);

and this prevents any allocation from standard pools.

Allocation normally occurs from the default pool unless a specific pool has been given for a type.
But there are two exceptions, one concerns access parameter allocation and the other concerns
coextensions; in these cases allocation uses a pool that depends upon the context.

Thus in the case of the procedure Proc discussed above, a call such as

P.Proc(new Integer'(10));

might allocate the space in a secret pool created on the fly and that secret pool might be placed on
the stack.

 27

Such allocation can be prevented by two more specific restrictions. They are

pragma Restriction(No_Access_Parameter_Allocators);

and

pragma Restriction(No_Coextensions);

These two pragmas plus using the restriction Default_Storage_Pool with null ensure that all
allocation is from user-defined pools.

5 Restrictions
Restrictions provide a valuable way of increasing security. Ada is a rich language and even richer
with Ada 2012 and although individual features are straightforward, certain combinations can cause
problems.

The new restrictions introduced into Ada 2012 have already been described in this or earlier papers
such as the Introduction. However, for convenience here is a complete list giving the annex where
appropriate.

The new Restrictions identifiers are

No_Access_Parameter_Allocators High-Integrity
No_Anonymous_Allocators High-Integrity
No_Cooextensions High-Integrity
No_Implementation_Aspect_Specifications
No_Implementation_Identifiers
No_Implementation_Units
No_Specification_Of_Aspect
No_Standard_Allocators_After_Elaboration Real-Time
No_Use_Of_Attribute
No_Use_Of_Pragma

Some of the new Restrictions identifiers are in the High-Integrity annex. They are

pragma Restrictions(No_Access_Parameter_Allocators);

pragma Restrictions(No_Anonymous_Allocators);

pragma Restrictions(No_Coextensions);

and these were discussed in the previous section.

In a similar vein there is one new restriction in the Real-Time annex, namely

pragma Restrictions(No_Standard_Allocators_After_Elaboration);

and this was also discussed in the previous section.

A number of restrictions prevent the use of implementation-defined features. They are

pragma Restrictions(No_Implementation_Aspect_Specifications);

pragma Restrictions(No_Implementation_Identifiers);

pragma Restrictions(No_Implementation_Units);

These do not apply to the whole partition but only to the compilation or environment concerned.
This helps us to ensure that implementation dependent areas of a program are identified. They were
discussed in the Introduction and join similar restrictions No_Implementation_Attributes and
No_Implementation_Pragmas introduced in Ada 2005.

28 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

The restrictions on implementation-defined aspect specifications, attributes and pragmas are obvious
but some clarification of what is meant by the restrictions on units and identifiers might be helpful.

It will be recalled that the predefined packages are Ada, System and Interfaces plus various
children. In the so-called standard mode, implementations are not permitted to add their own child
packages of Ada but can add grandchildren. Thus an implementation might add an additional
container package called perhaps Ada.Containers.Slopbucket. If a program were to use this
grandchild then clearly it would be unlikely to be portable to other implementations. Accordingly,
giving the restriction No_Implementation_Units prevents such potential difficulties. Similarly, this
restriction prevents the use of implementation-defined child units of System and Interfaces.

The restriction No_Implementation_Identifiers is more subtle. It will be recalled that several
predefined packages are permitted to add implementation-defined identifiers. They are

Standard, System, Ada.Command_Line, Interfaces.C, Interfaces.C.Strings,
Interfaces.C.Pointers, Interfaces.COBOL, and Interfaces.Fortran.

Moreover, the following predefined packages only contain implementation-defined identifiers

Interfaces, System.Machine_Code, Ada.Directories.Information, Ada.Directories.Names,
and the packages Implementation nested in the queue containers.

The restriction No_Implementation_Identifiers prevents the use of any of these.

There is a slight subtlety regarding Long_Integer and Long_Float in Standard. The types Integer and
Float must be provided. Types such as Short_Integer and Long_Long_Float may be provided but are
definitely considered to be implementation-defined and so excluded by the restriction on
implementation identifiers. However, Long_Integer and Long_Float should be provided (if the
hardware is capable) and so are considered to be predefined and not covered by the restriction.
Nevertheless, an implementation on a specialized small machine might not provide them.

Finally, there are restrictions preventing the use of particular facilities

pragma Restrictions(No_Specification_Of_Aspect => X);

pragma Restrictions(No_Use_Of_Attribute => X);

pragma Restrictions(No_Use_Of_Pragma => X);

where X is the name of a specific aspect, attribute or pragma respectively. They are similar to the
restriction No_Dependence introduced in Ada 2005. They apply to a complete partition.

Note that No_Specification_Of_Aspect prevents the specification of an aspect by any means.
Remember that some aspects can be specified by an aspect specification or by a pragma or by an
attribute definition clause. Thus we mentioned above that a storage pool could be given by an
attribute definition clause thus

type Cell_Ptr is access Cell;
 for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

or by using an aspect specification thus

type Cell_Ptr is access Cell
 with Storage_Pool => Cell_Ptr_Pool;

Writing

pragma Restrictions(No_Specification_Of_Aspect => Storage_Pool);

prevents both of these whereas

pragma Restrictions(No_Use_Of_Attribute => Strorage_Pool);

 29

prevents only the first. Naturally, No_Use_Of_Attribute prevents both setting an attribute and using
it whereas No_Specification_Of_Aspect prevents just setting it. Thus we might want to use 'Size but
prevent setting it.

Similarly

pragma Restrictions(No_Specification_Of_Aspect => Pack);

prevents both

type Flags is array (1 .. 8) of Boolean
 with Pack;

and

type Flags is array (1 .. 8) of Boolean;
pragma Pack(Flags);

whereas

pragma Restrictions(No_Use_Of_Pragma => Pack);

prevents only the latter.

In summary, No_Specification_Of_Aspect does not mean No_Aspect_Specification (which does not
exist).

Remember that several restrictions can be given in one pragma, so we might have

pragma Restrictions(No_Use_Of_Pragma => P,
 No_Use_Of_Attribute => A);

As mentioned in the Introduction there is also a new profile No_Implementation_Extensions. This is
specified by

pragma Profile(No_Implementation_Extensions);

and is equivalent to writing

pragma Restrictions(No_Implementation_Aspect_Specifications,
 No_Implementation_Attributes,
 No_Implementation_Identifiers,
 No_Implementation_Pragmas,
 No_Implementation_Units);

thus providing blanket security against writing programs that use language extensions. This profile
is defined in the core language. The only other profile defined in Ada 2012 is Ravenscar which was
introduced in Ada 2005 and is in the Real-Time systems annex. Remember that the pragma Profile is
a configuration pragma.

Finally, those of a recursive nature might note that writing

pragma Restrictions(No_Use_Of_Pragma => Restrictions);

is illegal (this prevents the risk that the compiler might melt down). More curiously, there is not a
restriction No_Implementation_Restrictions. This might be because of similar concern regarding
what would happen with its recursive use.

6 Miscellanea
A number of improvements do not neatly fit into any other section of these papers and so are lumped
together here.

The first four are in fact binding interpretations and thus apply to Ada 2005 as well.

30 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

First, nominal subtypes are defined for enumeration literals and attribute references so that all names
now have a nominal subtype.

This is clearly a matter for the language lawyer rather than the happy programmer. Consider the
following weird example

subtype S is Integer range 1 .. 10;
...
case S'Last is
 when 0 => -- ????

This is clearly nonsense. However, Ada 2005 does not define a nominal subtype for attributes such
as S'Last and so we cannot determine whether 0 is allowed as a discrete choice. The language
definition is tidied up to cover such cases.

The second gap in Ada 2005 concerns intrinsic subprograms. Remember that intrinsic subprograms
are functions such as "+" on the type Integer that only exist in the mind of the compiler. Clearly they
have no address. The following is added to the RM:

 The prefix of X'Address shall not statically denote a subprogram that has convention Intrinsic.
X'Address raises Program_Error if X denotes a subprogram that has convention Intrinsic.

The dynamic check is needed because of the possibility of passing an intrinsic operation as a generic
parameter.

The third of these binding gems concerns the package Ada.Calendar. The problem is that
Calendar.Time is not well-defined when a time zone change occurs as for example when Daylight
Saving Time is introduced or removed. Thus operations involving several time values (such as
subtraction) might give the "correct" answer or might be an hour adrift. The conclusion reached was
simply to admit that it is not defined so the wording is slightly changed.

Another problem with the wording in Ada 2005 is that the sign of the difference between local time
and UTC as returned by UTC_Offset is not clearly defined. The sign is clarified so that for example
UTC_Offset is negative in the American continent.

There is another problem with the package Calendar which will need to be addressed at some time
(probably long after the author is dead). Much effort was exerted in Ada 2005 to cope with leap
seconds. These arise because the angular velocity of rotation of the Earth is gradually slowing down.
In earlier epochs when measurements of time were not accurate this did not matter. However, we
now have atomic clocks and the slowdown is significant so that clocks are adjusted by one second as
necessary and these are known as leap seconds.

But leap seconds are under threat. There is a move to suggest that tiny adjustments of one second are
not worth the effort and that we should wait until the time is a whole hour wrong. A simple
adjustment similar to that with which we are familiar with Daylight Saving changes is all that is
needed. In other words we will have a leap hour every now and then. Indeed, if leap seconds occur
about once a year as they have done on average since 1972 then a leap hour will be needed
sometime in the 37th century. This will probably need to be addressed in Ada 3620 or so.

The final binding interpretation concerns class wide types and generics. An annoyance was recently
discovered concerning the use of indefinite container packages such as

generic
 type Index_Type is range <>;
 type Element_Type(<>) is private;
 with function "=" (Left, Right: Element_Type) return Boolean is <>;
package Ada.Containers.Indefinite_Vectors is
 ...

 31

We can instantiate this with an indefinite type such as String by writing perhaps

package String_Vectors is
 new Containers.Indefinite_Vectors(Positive, String);

The third actual parameter can be omitted because the predefined operation "=" on the type String
exists and does what we want.

Class wide types are another example of indefinite types. Thus we might like to create a vector
container whose elements are a mixture of objects of types Circle, Square, Triangle and so on.
Assuming these are all descended from the abstract type Object we want to instantiate with the class
wide type Object'Class.

However, unlike String, class wide types such as Object'Class do not have a predefined equals. This
is annoying since the derived types Circle, Square, and Triangle (being just records) do have a
predefined equals.

So we have to write something like

function Equal(L, R: Object'Class) is
begin
 return L = R;
end Equal;

Note that this will dispatch to the predefined equals of the type of the objects passed as parameters.
They both must be of the same type of course; we cannot compare a Circle to a Triangle (anymore
than we can compare Thee to a Summer's Day).

So we can now instantiate thus

package Object_Vectors is
 new Containers.Indefinite_Vectors(Positive, Object'Class, Equal);

Note irritatingly that we cannot write Equal as just "=" because this causes ambiguities.

This is all a bit annoying and so in Ada 2012, the required "=" is automatically created, we do not
have to declare Equal, and the instantiation can simply be

package Object_Vectors is
 new Containers.Indefinite_Vectors(Positive, Object'Class);

This improvement is also a binding interpretation and so applies to Ada 2005 as well.

A more serious matter is the problem of the composability of equality. In Ada 2005, tagged record
types compose but untagged record types do not. If we define a new type (a record type, array type
or a derived type) then equality is defined in terms of equality for its various components. However,
the behaviour of components which are records is different in Ada 2005 according to whether they
are tagged or not. If a component is tagged then the primitive operation is used (which might have
been redefined), whereas for an untagged type, predefined equality is used even though it might
have been overridden.

Consider

type Tagrec is tagged
 record
 X1: Integer;
 X2: Integer;
 end record;

type Untagrec is
 record

32 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

 Y1: Integer;
 Y2: Integer;
 end record;

type Index is range 0 .. 64;

...

function "=" (L, R: Tagrec) return Boolean is
begin
 return L.X1 = R.X1; -- compare only first component
end;

function "=" (L, R: Untagrec) return Boolean is
begin
 return L.Y1 = R.Y1; -- compare only first component
end;

function "=" (L, R: Index) return Boolean is
begin
 raise Havoc;
 return False;
end;

...

type Mixed is
 record
 T: Tagrec;
 U: Untagrec;
 Z: Index;
 end record;

Here we have a type Mixed whose components are of a tagged record type Tagrec, an untagged
record type Untagrec, and an elementary type Index. Moreover, we have redefined equality for these
types.

In Ada 2005, the equality for the type Mixed uses the redefined equality for the component T but the
predefined equality for U and Z. Thus it compares T.X1, U.Y1 and U.Y2 and does not raise Havoc.

In Ada 83, the predefined equality always emerged for the components of arrays and records. One
reason was to avoid confusion if an inconsistency arose between "=", "<" and "<=". Remember that
many elementary types and certain array types have predefined "<" as well as "=" and to get the
relationship messed up would have been confusing.

However, Ada 95 introduced tagged record types and inheritance of operations became an important
feature. So it seemed natural that if a structure (array or record) had components of a tagged type
and equality for that tagged type had been redefined then it would be natural to expect that equality
for the structure should use the redefined equality. But, fearful of introducing an incompatibility, the
rule for untagged record types was left unchanged so that predefined equality reemerges.

On reflection, this difference between tagged and untagged records was surprising and so has been
changed in Ada 2012 so that all record types behave the same way and use the primitive operation.
This is often called composability of equality so we can say that in Ada 2012, record types always
compose for equality. Remember that this only applies to records; components which are of array
types and elementary types continue to use predefined equality. So in Ada 2012, equality for Mixed
only compares T.X1 and U.Y1 but not U.Y2 and still does not raise Havoc.

 33

Concern for incompatibility and inconsistency has been allayed by a deep analysis of a number of
programs. No nasties were revealed and in the only cases where it made a difference it was clear that
the original behaviour was in fact wrong.

The final miscellaneum (singular of miscellanea?) concerns tags.

The package Ada.Tags defines various functions operating on tags. For example

function Parent_Tag(T: Tag) return Tag;

returns the tag of the parent unless the type has no parent in which case it returns No_Tag.

However, in Ada 2005 there is no easy way to test whether a tag corresponds to an abstract type. The
key property of abstract types is that we cannot have an object of an abstract type. If we wish to
create an object using Generic_Dispatching_Constructor and the tag represents an abstract type then
Tag_Error is raised. However, it would be far better to check whether a tag represents an abstract
type before using Generic_Dispatching_Constructor.

Moreover, if we have a tag and wish to know whether it represents an abstract type, then in Ada
2005 there is no sensible way to find out. We could attempt to create an object and see if it raises
Tag_Error. If it doesn't then we know that it was not abstract but we have also created an object we
maybe didn't want; if it does raise Tag_Error then it might or might not have been abstract since
there are other reasons for the exception being raised. Either way this is madness.

In Ada 2012, we can test the tag using the new function

function Is_Abstract(T: Tag) return Boolean;

which is added near the end of the package Ada.Tags just before the declaration of the exception
Tag_Error.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions to the Ada Rapporteur Group from SC22/

WG9 for Preparation of the Amendment.

[2] John Barnes (2006) Programming in Ada 2005, Addison-Wesley.

© 2012 John Barnes Informatics.

34 Rat ionale for Ada 2012: 5 I terators, Pools, etc.

