
A brief introduction to

Ada 2012
by John Barnes

Chapter 4 - Tasking and Real-Time

Courtesy of

Rationale for Ada 2012: 4 Tasking and Real-Time
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

2 Template for Ada User Journal

Abstract
This paper describes various improvements in the tasking and real-time areas for Ada 2012.

The most important is perhaps the recognition of the need to provide control over task allocation on
multiprocessor architectures.

There are also various improvements to the scheduling mechanisms and control of budgets with
regard to interrupts.

An interesting addition to the core language is the ability to specify restrictions on how a procedure
of a synchronized interface is to be implemented.

Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] identifies real-time systems as an important application area for
Ada. In particular it says that attention should be paid to

 improving the capabilities of Ada on multicore and multiprocessor architectures.

Ada 2012 does indeed address the issues of multiprocessors as well as other real-time
improvements.

The following Ada Issues cover the relevant changes and are described in detail in this paper:

 30 Requeue on synchronized interfaces

117 Memory barriers and Volatile objects

166 Yield for non-preemptive dispatching

167 Affinities for programs on multiprocessor platforms

168 Extended suspension objects

169 Group budgets for multiprocessors

170 Monitoring time spent in interrupt handlers

171 Pragma CPU and Ravenscar profile

174 Implement task barriers in Ada

215 Pragma Implemented should be an aspect

278 Set_CPU called during a protected action

These changes can be grouped as follows.

First there are a number of improvements and additions to the scheduling mechanisms (166, 168,
174). These are in the Real-Time Systems annex (D).

A number of additions recognise the importance of the widespread introduction of multiprocessors
and provide mechanisms for associating tasks with particular CPUs or groups of CPUs known as
dispatching domains (167, 171, 278). There is an associated change to group budgets which were
introduced in Ada 2005 (169). These changes also concern Annex D.

Other changes concerning budgets relate to the time spent in interrupt handlers (170). In some
systems it may be possible to account for time spent in individual interrupts whereas in others it
might only be possible to account for time spent in interrupts as a whole. Again these changes
concern Annex D.

The definition of Volatile is updated to take account of multiprocessors (117).

 3

Finally, there are changes to the core language regarding synchronized interfaces and requeue (30,
215).

2 Scheduling
Ada 83 was remarkably silent about the scheduling of tasks. It muttered about tasks being
implemented on multiprocessors or using interleaved execution on a single processor. But it said
nothing about how such interleaving might be achieved. It also indicated that a single Ada task
might be implemented using several actual processors if the effect would be the same.

Ada 83 introduced the pragma Priority and stated

 if two task with different priorities are both eligible for execution ... then it cannot be the case
that the task with the lower priority is executing while the task with the higher priority is not.

The Rationale for Ada 83 says that this rule requires preemptive scheduling. But it says nothing
about what happens if several tasks have the same priority. It does however have a dire warning

 Priorities are provided as a tool for indicating relevant degrees of urgency and on no account
should their manipulation be used as a technique for attempting to obtain mutual exclusion.

So, apart from the existence of priorities, implementations were free to use whatever scheduling
algorithms they liked such as Round Robin time slicing or simply running until blocked.

There was also a bit of a mystery about the delay statement. On the one hand Ada 83 says

 suspends execution of the task for at least the duration specified.

The words "at least" caused much confusion. The intent was simply a reminder that a task might not
get the processor back at the end of the interval because another task might have become eligible for
execution meanwhile. It did not mean that the implementation could willy-nilly delay execution for
a longer time.

Another mystery surrounded the meaning of

delay 0.0;

Ada 83 did state that delay with a negative value is equivalent to a delay statement with a zero
value. But it did not say what a delay with a zero value meant. The Rationale remained mute on the
topic as well.

However, a general convention seemed to arise that delay 0.0; indicated that the task was willing to
relinquish the processor and so force a scheduling point.

Ada 95 brought some clarity to the situation in the new Real-Time Systems annex by introducing the
pragma Task_Dispatching_Policy and the standard argument of FIFO_Within_Priorities. But the core
language did not clarify the effect of a delay of zero. It does say that a delay causes a task to be
blocked but if the expiration time has already passed, the task is not blocked. So clearly a negative
delay does not block. However, it still has the note that a negative delay is equivalent to delay zero
so we could deduce that delay zero does not block and so cannot force scheduling.

But help is at hand in the Real-Time Systems annex where it clearly states that even if a delay does
not result in blocking, nevertheless the task goes to the end of the ready queue for its active priority.
But that is only for the standard policy of FIFO_Within_Priorities. If a malevolent vendor introduces
a curious policy called perhaps Dodgy_Scheduling then it need not follow this rule.

Ada 2005 added further policies namely

 Non_Preemptive_FIFO_Within_Priorities

 Round_Robin_Within_Priorities

4 Rat ionale for Ada 2012: 4 Tasking and Real-Time

 EDF_Across_Priorities

In the case of Non_Preemptive_FIFO_Within_Priorities a non-blocking delay also sends the task to
the end of the ready queue for its active priority. However, a non-blocking delay has absolutely no
effect in the case of Round_Robin_Within_Priorities and EDF_Across_Priorities.

The introduction of non-preemptive dispatching revealed a shortcoming that is cured in Ada 2012.
The problem is that in such a system there is a need to be able to indicate that a task is willing to be
preempted by a task of a higher priority but not by one of the same priority. So somehow we need to
say Yield_To_Higher.

Moreover, some felt that it was time to get rid of this strange habit of writing delay 0.0; to indicate a
scheduling point. Those restricted to the Ravenscar profile, had been forced to write something
really gruesome such as

delay until Ada.Real_Time.Time_First;

Accordingly, the procedure Yield is added to the package Ada.Dispatching so that it becomes

package Ada.Dispatching is
 pragma Preelaborate(Dispatching);
 procedure Yield;
 Dispatching_Policy_Error: exception;
end Ada.Dispatching;

Calling Yield is exactly equivalent to delay 0.0; and similarly causes a bounded error if called from
within a protected operation.

There is also a new child package thus

package Ada.Dispatching.Non_Preemptive is
 pragma Preelaborate(Non_Preemptive);
 procedure Yield_To_Higher;
 procedure Yield_To_Same_Or_Higher renames Yield;
end Ada.Dispatching.Non_Preemptive;

Calling Yield_To_Higher provides the additional facility required for non-preemptive scheduling.
Note that, unlike Yield, it can be called from within a protected operation and does not cause a
bounded error.

The pedantic programmer can call the precisely named Yield_To_Same_Or_Higher which simply
renames Yield in the parent package.

Incidentally, note that since Yield has a side effect, Ada.Dispatching has been downgraded to
preelaborable whereas it was pure in Ada 2005.

We now turn to consider an interaction between suspension objects introduced in Ada 95 and EDF
scheduling introduced in Ada 2005.

Remember that suspension objects are manipulated by the following package

package Ada.Synchronous_Task_Control is
 type Suspension_Object is limited private;
 procedure Set_True(S: in out Suspension_Object);
 procedure Set_False(S: in out Suspension_Object);
 function Current_State(S: Suspension_Object) return Boolean;
 procedure Suspend_Until_True(S: in out Suspension_Object);
private

 5

 ...
end Ada.Synchronous_Task_Control;

The state of a suspension object can be set by calls of Set_True and Set_False. The key feature is
that the procedure Suspend_Until_True enables a task to be suspended until the suspension object is
set true by some other task. Thus this provides a neat mechanism for signalling between tasks.

Earliest Deadline First (EDF) scheduling is manipulated by the following child package of
Ada.Dispatching introduced in Ada 2005 (with use clauses added to save space)

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package Ada.Dispatching.EDF is
 subtype Deadline is Ada.Real_Time.Time;
 Default_Deadline: constant Deadline := Time_Last;

 procedure Set_Deadline(D: in Deadline; TT: in Task_Id := Current_Task);
 procedure Delay_Until_And_Set_Deadline(Delay_Until_Time: in Time;
 Deadline_Offset: in Time_Span);
 function Get_Deadline(T: Task_Id := Current_Task) return Deadline;
end Ada.Dispatching.EDF;

The procedure Delay_Until_And_Set_Deadline is the key feature. It enables a task to be blocked
until the time given by the parameter Delay_Until_Time and sets the deadline so that it is
Deadline_Offset after that.

But what is missing in Ada 2005 is the ability for a sporadic task triggered by a suspension object to
have its deadline set in a similar manner. This is remedied in Ada 2012 by the addition of the
following child package

with Ada.Real_Time;
package Ada.Synchronous_Task_Control.EDF is
 procedure Suspend_Until_True_And_Set_Deadline(S: in out Suspension_Object;
 TS: in Ada.Real_Time.Span);
end Ada.Synchronous_Task_Control.EDF;

This enables a task to be blocked until the suspension object S is set true; it then becomes ready with
a deadline of Ada.Real_Time.Clock + TS.

The other new feature concerning scheduling in Ada 2012 is the addition of a package
Ada.Synchronous_Barriers. This enables many tasks to be blocked and to be released together.

The rationale for needing this facility is explained in the AI concerned. As general purpose
computing is moving to parallel architectures and eventually to massively parallel machines, there is
a need to efficiently schedule many tasks using barrier primitives. The POSIX OS interface provides
a barrier primitive where N tasks wait on a barrier and are released simultaneously when all are
ready to execute.

There are many situations where the release of N tasks is required to execute an algorithm in
parallel. Often the calculation is relatively small for each task on each iteration but the number of
tasks is relatively high. As an example consider the solution of partial differential equations where
one task is allocated to each node of a grid; there might easily be several thousand nodes. Such an
example is outlined in [2]. The cost of linearly scheduling and releasing them could remove almost
all gains made through parallelization in the first place.

The new package is

6 Rat ionale for Ada 2012: 4 Tasking and Real-Time

package Ada.Synchronous_Barriers is
 pragma Preelaborate(Synchronous_Barriers);

 subtype Barrier_Limit is range 1 .. implementation-defined;
 type Synchronous_Barrier(Release_Threshold: Barrier_Limit) is limited private;
 procedure Wait_For_Release(The_Barrier: in out Synchronous_Barrier;
 Notified: out Boolean);
private
 ...
end Ada.Synchronous_Barriers;

The type Synchronous_Barrier has a discriminant whose value indicates the number of tasks to be
waited for. When an object of the type is declared its internal counter is set to zero. Thus we might
write

SB: Synchronous_Barrier(Release_Threshold => 100);

When a task calls the procedure Wait_For_Release thus

Wait_For_Release(SB, My_Flag);

then the task is blocked and the internal counter in SB is incremented. If the counter is then equal to
the release threshold for that object (100 in this example), then all the tasks are released. Just one
task will have the parameter Notified set to true (the mechanism for selecting the chosen task is not
defined). This specially chosen task is then expected to do some work on behalf of all the others.
Typically all the tasks will be of the same task type so the code of that type might have

Wait_For_Release(SB, My_Flag);
if My_Flag then -- Gosh, I am the chosen one
 ... -- do stuff
end if;

Once all the tasks are released, the counter in SB is reset to zero so that the synchronous barrier can
be used again.

Care is needed regarding finalization, aborting tasks and other awkward activities. For example, if a
synchronous barrier is finalized, then any tasks blocked on it are released and Program_Error is
raised at the point of the call of Wait_For_Release.

Many embedded real-time programs, such as those conforming to the Ravenscar profile, run forever.
However, there are soft multitasking programs which are hosted on systems such as Windows or
Linux and these require closing down in an orderly manner. There are also programs that have mode
changes in which the set of tasks involved can be changed dramatically. In such situations it is
important that synchronous barriers are finalized neatly.

3 Multiprocessors
In recent years the cost of processors has fallen dramatically and for many applications it is now
more sensible to use several individual processors rather than one high performance processor.

Moreover, society has got accustomed to the concept that computers keep on getting faster. This
makes them applicable to more and more high volume but low quality applications. But this cannot
go on. The finite value of the velocity of light means that increase in processor speed can only be
achieved by using devices of ever smaller size. But here we run into problems concerning the
nonzero size of Planck's constant. When devices get very small, quantum effects cause problems
with reliability.

No doubt, in due course, genuine quantum processors will emerge based perhaps on attributes such
as spin. But meanwhile, the current approach is to use multiprocessors to gain extra speed.

 7

One special feature of Ada 2012 aimed at helping to use multiprocessors is the concept of
synchronous barriers which were described above. We now turn to facilities for generally mapping
tasks onto numbers of processors.

The key feature is a new child package of System thus

package System.Multiprocessors is
 pragma Preelaborate(Multiprocessors);

 type CPU_Range is range 0 .. implementation-defined;
 Not_A_Specific_CPU: constant CPU_Range := 0;
 subtype CPU is CPU_Range range 1 .. CPU_Range'Last;

 function Number_Of_CPUs return CPU;
end System.Multiprocessors;

Note that this is a child of System rather than a child of Ada. This is because System is generally
used for hardware related features.

Processors are given a unique positive integer value from the subtype CPU. This is a subtype of
CPU_Range which also includes zero; zero is reserved to mean not allocated or unknown and for
clarity is the value of the constant Not_A_Specific_CPU.

The total number of CPUs is determined by calling the function Number_Of_CPUs. This is a
function rather than a constant because there could be several partitions with a different number of
CPUs on each partition. And moreover, the compiler might not know the number of CPUs anyway.

Since this is not a Remote Types package, it is not intended to be used across partitions. It follows
that a CPU cannot be used by more than one partition. The allocation of CPU numbers to partitions
is not defined; each partition could have a set starting at 1, but they might be numbered in some
other way.

Tasks can be allocated to processors by an aspect specification. If we write

task My_Task
 with CPU => 10;

then My_Task will be executed by processor number 10. In the case of a task type then all tasks of
that type will be executed by the given processor. The expression giving the processor for a task can
be dynamic.

Moreover, in the case of a task type, the CPU can be given by a discriminant. So we can have

task type Slave(N: CPU_Range)
 with CPU => N;

and then we can declare

Tom: Slave(1);
Dick: Slave(2);
Harry: Slave(3);

and Tom, Dick and Harry are then assigned CPUs 1, 2 and 3 respectively. We could also have

Fred: Slave(0);

and Fred could then be executed by any CPU since 0 is Not_A_Specific_CPU.

The aspect can also be set by a corresponding pragma CPU. (This is an example of a pragma born
obsolescent as explained in the paper on Contracts and Aspects.) The aspect CPU can also be given
to the main subprogram in which case the expression must be static.

8 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Further facilities are provided by the child package System.Multiprocessors.Dispatching_Domains
as shown below. Again we have added use clauses to save space and also have often abbreviated
Dispatching_Domain to D_D.

with Ada.Real_Time; with Ada.Task_Identification;
use Ada.Real_Time; use Ada.Task_Identification;
package System.Multiprocessors.Dispatching_Domains is
 pragma Preelaborate(Dispatching_Domains);

 Dispatching_Domain_Error: exception;

 type Dispatching_Domain(<>) is limited private;
 System_Dispatching_Domain: constant D_D;

 function Create(First, Last: CPU) return D_D;
 function Get_First_CPU(Domain: D_D) return CPU;
 function Get_Last_CPU(Domain: D_D) return CPU;
 function Get_Dispatching_Domain(T: Task_Id := Current_Task) return D_D;

 procedure Assign_Task(Domain: in out Dispatching_Domain;
 CPU: in CPU_Range := Not_A_Specific_CPU;
 T: in Task_Id := Current_Task);

 procedure Set_CPU(CPU: in CPU_Range; T: in Task_Id := Current_Task);

 function Get_CPU(T: in Task_Id := Current_Task) return CPU_Range;

 procedure Delay_Until_And_Set_CPU(Delay_Until_Time: in Time;
 CPU: in CPU_Range);
private
 ...
end System.Multiprocessors.Dispatching_Domains;

The idea is that processors are grouped together into dispatching domains. A task may then be
allocated to a domain and it will be executed on one of the processors of that domain.

Domains are of the type Dispatching_Domain. This has unknown discriminants and consequently
uninitialized objects of the type cannot be declared. But such an object can be initialized by the
function Create. So to declare My_Domain covering processors from 10 to 20 inclusive we can write

My_Domain: Dispatching_Domain := Create(10, 20);

All CPUs are initially in the System_Dispatching_Domain. A CPU can only be in one domain. If we
attempt to do something silly such as create overlapping domains by for example also writing

My_Domain_2: Dispatching_Domain := Create(20, 30);

then Dispatching_Domain_Error is raised because in this case, CPU number 20 has been assigned to
both My_Domain and My_Domain_2.

The environment task is always executed on a CPU in the System_Dispatching_Domain. Clearly we
cannot move all the CPUs from the System_Dispatching_Domain other wise the environment task
would be left high and dry. Again an attempt to do so would raise Dispatching_Domain_Error.

A very important rule is that Create cannot be called once the main subprogram is called. Moreover,
there is no operation to remove a CPU from a domain once the domain has been created. So the
general approach is to create all domains during library package elaboration. This then sets a fixed
arrangement for the program as a whole and we can then call the main subprogram.

Each partition has its own scheduler and so its own set of CPUs, dispatching domains and so on.

 9

Tasks can be assigned to a domain in two ways. One way is to use an aspect

task My_Task
 with Dispatching_Domain => My_Domain;

If we give both the domain and an explicit CPU thus

task My_Task
 with CPU => 10, Dispatching_Domain => My_Domain;

then they must be consistent. That is the CPU given must be in the domain given. If it is not then
task activation fails (hands up all those readers who thought it was going to raise
Dispatching_Domain_Error). If for some reason we write

task My_Task
 with CPU => 0, Dispatching_Domain => My_Domain;

then no harm is done. Remember that there is not a CPU with number zero but zero simply indicates
Not_A_Specific_CPU. In such a case it would be better to write

task My_Task
 with CPU => Not_A_Specific_CPU, Dispatching_Domain => My_Domain;

The other way to assign a task to a domain is by calling the procedure Assign_Task. Thus the above
examples could be written as

Assign_Task(My_Domain, 10, My_Task'Identity);

giving both domain and CPU, and

Assign_Task(My_Domain, T => My_Task'Identity);

which uses the default value Not_A_Specific_CPU for the CPU.

Similarly, we can assign a CPU to a task by

Set_CPU(A_CPU, My_Task'Identity);

Various checks are necessary. If the task has been assigned to a domain there is a check to ensure
that the new CPU value is in that domain. If this check fails then Dispatching_Domain_Error is
raised. Of course, if the new CPU value is zero, that is Not_A_Specific_CPU then it simply means
that the task can then be executed on any CPU in the domain.

To summarize the various possibilities, a task can be assigned a domain and possibly a specific CPU
in that domain. If no specific CPU is given then the scheduling algorithm is free to use any CPU in
the domain for that task.

If a task is not assigned to a specific domain then it will execute in the domain of its activating task.
In the case of a library task the activating task is the environment task and since this executes in the
System_Dispatching_Domain, this will be the domain of the library task.

The domain and any specific CPU assigned to a task can be set at any time by calls of Assign_Task
and Set_CPU. But note carefully that once a task is assigned to a domain other than the system
dispatching domain then it cannot be assigned to a different domain. But the CPU within a domain
can be changed at any time; from one specific value to another specific value or maybe to zero
indicating no specific CPU.

It is also possible to change CPU but for the change to be delayed. Thus we might write

Delay_Until_And_Set_CPU(Delay_Until_Time => Sometime, CPU => A_CPU);

Recall we also have Delay_Until_And_Set_Deadline in Ada.Dispatching.EDF mentioned earlier.

10 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Note that calls of Set_CPU and Assign_Task are defined to be task dispatching points. However, if
the task is within a protected operation then the change is deferred until the next task dispatching
point for the task concerned. If the task is the current task then the effect is immediate unless it is
within a protected operation in which case it is deferred as just mentioned. Finally, if we pointlessly
assign a task to the system dispatching domain when it is already in that domain, then nothing
happens (it is not a dispatching point).

There are various functions for interrogating the situation regarding domains. Given a domain we
can find its range of CPU values by calling the functions Get_First_CPU and Get_Last_CPU. Given
a task we can find its domain and CPU by calling Get_Dispatching_Domain and Get_CPU. If a task
is not assigned a specific CPU then Get_CPU naturally returns Not_A_Specific_CPU.

In order to accommodate interrupt handling the package Ada.Interrupts is slightly modified and now
includes the following function

function Get_CPU(Interrupt: Interrupt_Id) return Systems.Multiprocessors.CPU_Range;

This function returns the CPU on which the handler for the given interrupt is executed. Again the
returned value might be Not_A_Specific_CPU.

The Ravenscar profile is now defined to be permissible with multiprocessors. However, there is a
restriction that tasks may not change CPU. Accordingly the definition of the profile now includes
the following restriction

No_Dependence => System.Multiprocessors.Dispatching_Domains

In order to clarify the use of multiprocessors with group budgets the package
Ada.Execution_Time.Group_Budgets introduced in Ada 2005 is slightly modified. The Ada 2005
version is

with System;
package Ada.Execution_Time.Group_Budgets is

 type Group_Budget is tagged limited private;

 type Group_Budget_Handler is access protected procedure (GB: in out Group_Budget);

 ... -- and so on
private
 ...
end Ada.Execution_Time.Group_Budgets;

However, in Ada 2012 the type Group_Budget has a discriminant giving the CPU thus

type Group_Budget(CPU: System.Multiprocessors.CPU :=
 System.Multiprocessors.CPU'First)
 is tagged limited private;

This means that a group budget only applies to a single processor. If a task in a group is executed on
another processor then the budget is not consumed. Note that the default value for CPU is CPU'First
which is always 1.

4 Interrupt timers and budgets
It will be recalled that Ada 2005 introduced three packages for monitoring the CPU time used by
tasks. They are a root package Ada.Execution_Time plus two child packages thus

Ada.Execution_Time   –   this is the root package and enables the monitoring of execution time of
individual tasks.

 11

Ada.Execution_Time.Timers   –   this provides facilities for defining and enabling timers and for
establishing a handler which is called by the run time system when the execution time of the
task reaches a given value.

Ada.Execution_Time.Group_Budgets   –   this enables several tasks to share a budget and provides
means whereby action can be taken when the budget expires.

The execution time of a task, or CPU time, is the time spent by the system executing the task and
services on its behalf. CPU times are represented by the private type CPU_Time declared in the root
package Ada.Execution_Time.

However, it was left implementation defined in Ada 2005 as to how the time spent in interrupts was
to be accounted. The Ada 2005 RM says

 It is implementation defined which task, if any, is charged the execution time that is consumed
by interrupt handlers and run-time services on behalf of the system.

As noted in the AI, a common and simple implementation will charge the time consumed by the
interrupt handlers to the task executing when the interrupt is generated. This is done under the
assumption that the effect of interrupt handlers on the execution time clocks is negligible since the
interrupt handlers are usually very short pieces of code. However, in real-time systems that
undertake an intensive use of interrupts, this assumption may not be realistic. For example, Ada
2005 introduced timed events that can execute handlers in interrupt context. The facility is
convenient and has low overheads, and therefore programmers are tempted to put more code into
these handlers.

It is thus considered important to be able to measure time spent in interrupts and so facilities to do
this are added in Ada 2012.

The root package is extended by the addition of two Boolean constants, Interrupt_Clocks_Supported
and Separate_Interrupt_Clocks_Supported, and also a function Clocks_For_Interrupts so in outline
it becomes

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Real_Time; use Ada.Real_Time;
package Ada.Execution_Time is

 type CPU_Time is private;

 ...

 function Clock(T: Task_Id := Current_Task) return CPU_Time;

 ...

 Interrupt_Clocks_Supported: constant Boolean := implementation-defined;
 Separate_Interrupt_Clocks_Supported: constant Boolean := implementation-defined;

 function Clocks_For_Interrupts return CPU_Time;

private
 ... -- not specified by the language
end Ada.Execution_Time;

The constant Interrupt_Clocks_Supported indicates whether the time spent in interrupts is accounted
for separately from the tasks and then Separate_Interrupt_Clocks_Supported indicates whether the
time is accounted for each interrupt individually.

The new function Clocks_For_Interrupts returns the CPU_Time used over all interrupts. It is
initialized to zero.

12 Rat ionale for Ada 2012: 4 Tasking and Real-Time

Time accounted for in interrupts is not also accounted for in individual tasks. In other words there is
never any double accounting.

Calling the function Clocks_For_Interrupts if Interrupt_Clocks_Supported is false raises
Program_Error. Note that the existing function Clock has a parameter giving the task concerned
whereas Clocks_For_Interrupts does not since it covers all interrupts.

A new child package of Ada.Execution_Time is provided for monitoring the time spent in individual
interrupts. Note that this package always exists even if the Boolean constant
Separate_Interrupt_Clocks_Supported is false. Its specification is

package Ada.Execution_Time.Interrupts is
 function Clock(Interrupt: Ada.Interrupts.Interrupt_Id) return CPU_Time;
 function Supported(Interrupt: Ada.Interrupts.Interrupt_Id) return Boolean;
end Ada.Execution_Time.Interrupts;

The function Supported indicates whether the time for a particular interrupt is being monitored. If it
is then Clock returns the accumulated CPU_Time spent in that interrupt handler (otherwise it returns
zero). However, if the overall constant Separate_Interrupt_Clocks_Supported is false then calling
this function Clock for any particular interrupt raises Program_Error.

The package Ada.Execution_Time.Timers is exactly the same in Ada 2012. However, as mentioned
earlier, the package Ada.Execution_Time.Group_Budgets is now defined to work on a single
processor and the type Group_Budget is modified to include a discriminant giving the CPU
concerned.

5 Volatile
This is a curious topic and created much debate. For the collector of statistics the real part of the AI
is less than two pages but the appendix has nearly twenty pages of chatter!

The problem is all about sharing variables and ensuring that things happen in the correct order.
Moreover, we need to avoid the overhead of protected objects particularly on microprocessors where
we might be using low level features such as memory barriers discussed in Section 2 above.

Suppose we have two tasks A and B which access some shared data perhaps in a nice package
Common thus

package Common is
 ...
 Data: Integer;
 pragma Volatile(Data);
 Flag: Boolean;
 pragma Volatile(Flag);
 ...
end Common;

and in task A we write

with Common; use Common;
task A is
 ...
 Data := 42;
 Flag := True;
 ...
end A;

whereas in task B we have

 13

with Common; use Common;
task B is
 Copy: Integer;
begin
 ...
 loop
 exit when Flag; -- spin
 end loop;
 Copy := Data;
 ...
end B;

The idea is that task A assigns some value to Data and then indicates this to task B by setting Flag to
true. Meanwhile, task B loops checking Flag and when it is found to be true, then reads the Data.

Does this work in Ada 2005? Hmm. Nearly. There are three things that need to be ensured. One is
that Flag gets changed in one lump. Another is that the new value of Data assigned by task A truly is
updated when task B reads it. And the third is that the actions happen sequentially. Well, we should
have applied pragma Atomic to Flag to ensure the first but since it is of type Boolean we might get
away with it. And note that Atomic implies Volatile anyway. Also Atomic ensures that the actions are
sequential.

So, with the pragma Volatile changed to Atomic for Flag, it does indeed work in Ada 2005 because
Volatile ensures that read and writes are to memory and so things do happen in the correct order.
However, this is overkill. It is not necessary that all accesses are to memory; all that matters is that
they happen in the correct order so they could be to some intermediate cache. Indeed, there might be
nested caches and as hardware evolves it is becoming more difficult to make general statements
about its structure; hence we can really only make statements about the effect.

The possibility of introducing a new pragma Coherent was debated for some time. However, it was
ultimately concluded that the definition of Volatile should be weakened. In Ada 2005 it says

 For a volatile object all reads and updates of the object as a whole are performed directly to
memory.

In Ada 2012 it says

 All tasks of the program (on all processors) that read or write volatile variables see the same
order of updates to the variables.

Of course, in Ada 2012, we use aspects so the package Common becomes

package Common is
 ...
 Data: Integer
 with Volatile;
 Flag: Boolean
 with Atomic; -- Atomic implies Volatile
 ...
end Common;

where we have given Atomic for Flag. As mentioned above, Atomic implies Volatile so it is not
necessary to give both. However, if we do have to give two aspects, it is much neater that the one
aspect specification does this whereas two distinct pragmas would be necessary.

It is said that this change brings the meaning of volatile into line with that in C. However, it has also
been said that the definition of volatile in C is unclear.

14 Rat ionale for Ada 2012: 4 Tasking and Real-Time

6 Synchronized interfaces and requeue
Ada 2005 introduced interfaces of various kinds: limited, nonlimited, synchronized, task, and
protected. These form a hierarchy and in particular task and protected interfaces are forms of
synchronized interfaces. The essence of this was to integrate the OO and real-time features of Ada.
However, a problem was discovered regarding requeue as described in a paper presented at IRTAW
2007 [3].

Some examples of interfaces will be found in [2] or [4] where various implementations of the
readers and writers paradigm are explained.

The operations of a synchronized interface are denoted by subprograms. Thus we might have

package Pkg is
 type Server is synchronized interface;
 procedure Q(S: in out Server; X: in Item) is abstract;
end Pkg;

We can then implement the interface by a task type or by a protected type. This introduces several
different ways of implementing the operation Q. It can be by an entry, or by a protected procedure or
by a normal procedure. For example using a task type we might have

package TP1 is
 task type TT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);
 end TT1;
end TP1;

or

package TP2 is
 task type TT2 is new Server with
 -- Q implemented by a normal procedure
 end TT2;
 procedure Q(S: in out TT2; X: in Item);
end TP2;

Similarly using a protected type we might have

package PP1 is
 protected type PT1 is new Server with
 -- Q implemented by entry
 entry Q(X: in Item);
 ...
 end PT1;
end PP1;

or

package PP2 is
 protected type PT2 is new Server with
 -- Q implemented by a protected procedure
 procedure Q(X: in Item);
 ...
 end PT2;
end PP2;

 15

or

package PP3 is
 protected type PT3 is new Server with
 -- Q implemented by a normal procedure
 ...
 end PT3;
 procedure Q(X: In out PT3; X: in Item);
end PP3;

So the interface Server could be implemented in many different ways. And as usual we could
dispatch to any of the implementations. We could have

Server_Ptr: access Server'Class := ...
...
Server_Ptr.Q(X => An_Item);

and this will dispatch to the implementation of Q concerned.

So a call of Q could end up as a call of an entry in a task, an entry in a protected object, a protected
procedure in a protected object, or an ordinary procedure.

Two curious situations arise. One concerns timed calls. We could write a timed call such as

select
 Server_Ptr.Q(An_Item);
or
 delay Seconds(10);
end select;

and this will always be acceptable. It will dispatch to the appropriate operation. If it is an entry then
it will be a timed call. But if it is not an entry then no time-out is possible and so by default the call
will always go ahead.

The other curious situation concerns requeue. In this case there is no obvious default action. It is not
possible to requeue a procedure call since there is no queue on which to hang it.

The first proposal to do something about this was simply not to allow requeue at all on interfaces.
And indeed this was the solution adopted in Ada 2005.

However, this is not really acceptable as explained in [3]. The next idea was to raise some exception
if it turned out that the destination was not an entry. But this was considered unsatisfactory.

So it was concluded that if we do a requeue then it must be statically checked that it will dispatch to
an entry so that the requeue is possible. The next proposal was that there should be a pragma
Implemented giving requirements on the operation. Thus we might have

 procedure Q(S: in out Server; X: in Item) is abstract;
 pragma Implemented(Q, By_Entry);

and the compiler would ensure that all implementations of the interface Server did indeed
implement Q by an entry so that requeue would always work. The other possible values for the
pragma were By_Protected_Procedure and By_Any.

The world changed when the notion of an aspect was invented and so after much discussion the final
solution is that we there is now an aspect Synchronization so we write

 procedure Q(S: in out Server; X: in Item) is abstract
 with Synchronization => By_Entry;

16 Rat ionale for Ada 2012: 4 Tasking and Real-Time

and we are now assured that we are permitted to do a requeue on Q for any implementation of
Server. The other possible values for the aspect Synchronization are By_Protected_Procedure and
Optional.

In summary, if the property is By_Entry then the procedure must be implemented by an entry, if the
property is By_Protected_Procedure then the procedure must be implemented by a protected
procedure, and if the property is Optional then it can be implemented by an entry, procedure or
protected procedure. Naturally enough, the aspect cannot be given for a function.

There are a number of rules regarding consistency. The aspect Synchronization can be applied to a
task interface or protected interface as well as to a synchronized interface. However, if it is applied
to a task interface then the aspect cannot be specified as By_Protected_Procedure for obvious
reasons. If a type or interface is created by inheritance from other interfaces then any
Synchronization properties are also inherited and must be consistent. Thus if one is By_Entry then
the others must also be By_Entry or Optional.

A final minor improvement mentioned in the Introduction concerns renaming. Since the days of Ada
83 it has been possible to rename an entry as a procedure thus

procedure Write(X: in Item) renames Buffer.Put;

where Put is an entry in a task Buffer. But in Ada 83 it was not possible to do a timed call using
Write. This was corrected in Ada 2005 which allows a timed call on a renaming. Similarly, when
requeue was introduced in Ada 95, it was not possible to do a requeue using Write. This anomaly is
corrected in Ada 2012. So now both timed calls and requeue are permitted using a renaming of an
entry.

References
[1] ISO/IEC JTC1/SC22/WG9 N498 (2009) Instructions to the Ada Rapporteur Group from SC22/

WG9 for Preparation of Amendment 2 to ISO/IEC 8652.

[2] John Barnes (2006) Programming in Ada 2005, Addison-Wesley.

[3] A. Burns and A. Wellings (2007) Integrating OOP and Tasking – the missing requeue, from
IRTAW 2007, www.ada-auth.org/ai-files/grab_bag/requeue.pdf.

[4] John Barnes (2008) Ada 2005 Rationale, LNCS 5020, Springer-Verlag.

© 2012 John Barnes Informatics

 17

