
A brief introduction to

Ada 2012
by John Barnes

Chapter 3 - Structure and Visibility

Courtesy of

Rationale for Ada 2012: 3 Structure and visibility
John Barnes
John Barnes Informatics, 11 Albert Road, Caversham, Reading RG4 7AN, UK; Tel: +44 118 947
4125; email: jgpb@jbinfo.demon.co.uk

2 Template for Ada User Journal

Abstract
This paper describes various improvements in the areas of structure and visibility for Ada 2012.

Perhaps the most amazing change is that functions may now have parameters of all modes. In
earlier versions of Ada, functions could only have parameters of mode in and so could not change
variables explicitly passed as parameters; however, they could silently manipulate global variables
in any way whatsoever. In order to ameliorate any risks of foolishness with this new freedom, there
are new rules regarding order dependence.

There are also important improvements to incomplete types which make them much more useful;
these include completion by a private type, their use as parameters and a new form of generic
parameter.

Other improvements include a new form of use clause and changes to extended return statements.

Keywords: rationale, Ada 2012.

1 Overview of changes
The WG9 guidance document [1] does not specifically identify problems in this area other than
through a general exhortation to remedy shortcomings.

The following Ada Issues cover the relevant changes and are described in detail in this paper:

 15 Constant return objects

 19 Primitive subprograms are frozen with a tagged type

 32 Extended return statements for class-wide functions

 53 Aliased views of unaliased objects

142 Explicitly aliased parameters

143 In out parameters for functions

144 Detecting dangerous order dependencies

150 Use all type clause

151 Incomplete types as parameters and result

162 Incomplete types completed by partial views

213 Formal incomplete types

214 Default discriminants for limited tagged types

235 Accessibility of explicitly aliased parameters

277 Aliased views of extended return objects

296 Freezing of subprograms with incomplete parameters

These changes can be grouped as follows.

First there is the exciting business of allowing parameters of all modes for functions (143) and the
associated rules to prevent certain order dependences (144). Another change concerning parameters
is permitting explicitly aliased parameters (142, 235).

There are then a number of improvements in the area of incomplete types (151, 162) including the
ability to permit them as formal generic parameters (213, 296). There are also related changes to the
freezing rules (19).

There is also a minor change regarding discriminants (214).

 3

The existing two forms of use clause (use package clause and use type clause) are augmented by a
third form: the use all type clause (150).

Finally, there are a number of changes (corrections really) to extended return statements which were
introduced in Ada 2005 (15, 32, 277). An associated change is the introduction of the idea of an
immutably limited type (53).

2 Subprogram parameters
The main topic here is the fact that functions (but not operators) in Ada 2012 can have parameters of
any mode.

This is a topic left over from Ada 2005. The epilogue to the Rationale for Ada 2005 [2] discusses a
number of topics that were abandoned and in the case of function modes says:

"Clearly, Ada functions are indeed curious. But strangely this AI (that is AI95-323) was abandoned
quite early in the revision process on the grounds that it was 'too late'. (Perhaps too late in this
context meant 25 years too late.)" It was not possible to agree on a way forward and so effort was
devoted to other topics.

But mists clear with time. The big concern was that allowing parameters of all modes might open
the door to dangerous programming practices but a solution to that was found in the introduction of
stricter rules preventing many order dependences.

It is instructive to quickly go through the various historical documents.

A probably little known document is one written in 1976 by David Fisher of the Institute for
Defense Analyses [3] which provided the foundation for the requirements for the development of a
new language. It doesn't seem to distinguish between procedures and functions; it does mention the
need for parameters which are constant and those which effectively rename a variable. Moreover, it
does say (item C1 on page 81): Side effects which are dependent on the evaluation order among the
arguments of an expression will be evaluated left-to-right. This does not actually require left-to-right
evaluation but the behaviour must be as if it were. I have always thought it tragic that this was not
observed.

This document was followed by a series known as Strawman, Woodenman, Tinman, Ironman [4]
and finishing with Steelman [5].

The requirement on left-to-right evaluation remained in Tinman and was even stronger in Ironman
but was somewhat weakened in Steelman to allow instrumentation and ends with a warning about
being erroneous.

Further requirements are introduced in Ironman which requires both functions and procedures as we
know them. Moreover, Ironman has a requirement about assignment to variables non-local to a
function; they must be encapsulated in a region that has no calls on the function; this same
requirement notes that it implies that functions can only have input parameters. This requirement
does not seem to have carried forward to Steelman.

However, Ironman also introduces a requirement on restrictions to prevent aliasing. One is that the
same actual parameter of a procedure cannot correspond to more than one input-output parameter.
This requirement does survive into Steelman. But, it only seems to apply to procedures and not to
functions and Steelman appears not to have noticed that the implied requirement that functions can
only have input parameters has vanished.

It interesting to then see what was proposed in the sequence of languages leading to Ada 83, namely,
Preliminary Green [6], Green [7], Preliminary Ada [8], and Ada [9]. Note that Preliminary Green
was based on Ironman whereas Green was based on Steelman.

4 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

In Preliminary Green we find procedures and functions. Procedures can have parameters of three
modes, in, out and access (don't get excited, access meant in out). Functions can only have
parameters of mode in. Moreover,

 side effects to variables accessible at the function call are not allowed. In particular, variables
that are global to the function body may not be updated in the function body. The rationale for
Preliminary Green makes it quite clear that functions can have no side effects whatsoever.

In Green we find the three modes in, out, and in out. But the big difference is that as well as
procedures and functions as in preliminary Green, there are now value returning procedures such as

procedure Random return Real range –1.0 .. 1.0;

The intent is that functions are still free of all side effects whereas value returning procedures have
more flexibility. However, value returning procedures can only have parameters of mode in and

 assignments to global variables are permitted within value returning procedures. Calls of such
procedures are only valid at points of the program where the corresponding variables are not
within the scope of their declaration. The order of evaluation of these calls is strictly that given
in the text of the program. Calls to value returning procedures are only allowed in assignment
statements, initializations and procedure calls.

The rationale for Green notes that if you want to instrument a function then use a pragma. It also
notes that functions

 with arbitrary side effects would undermine the advantage of the functional approach to
software. In addition it would complicate the semantics of all language structures where
expressions involving such calls may occur. Hence this form of function is not provided.

And now we come to Ada herself. There are manuals dated July 1979 (preliminary Ada), July 1980
(draft mil-std), July 1982 (proposed ANSI standard), and January 1983 (the ANSI standard usually
known as Ada 83).

In Preliminary Ada, we have procedures, functions and value returning procedures exactly as in
Green. Indeed, it seems that the only difference between Green and Preliminary Ada is that the name
Green has been converted to Ada.

But the 1980 Ada manual omits value returning procedures and any mention of any restrictions on
what you can do in a function. And by 1982 we find that we are warned that parameters can be
evaluated in any order and so on.

The Rationale for Ada 83 [10] didn't finally emerge until 1986 and discusses briefly the reason for
the change which is basically that benevolent side effects are important. It concludes by quoting
from a paper regarding Algol 60 [11]

 The plain fact of the matter is (1) that side-effects are sometimes necessary, and (2)
programmers who are irresponsible enough to introduce side-effects unnecessarily will soon
lose the confidence of their colleagues and rightly so.

However, an interesting remark in the Rationale for Ada 83 in the light of the change in Ada 2012 is

 The only limitation imposed in Ada on functions is that the mode of all parameters must be in:
it would not be logical to allow in out and out parameters for functions in a language that
excludes nested assignments within an expression.

Hmm. That doesn't really seem to follow. Allowing assignments in expressions as in C is obnoxious
and one of the sources of errors in C programs. It is not so much that permitting side-effects in
expressions via functions is unwise but more that treating the result of an assignment as a value

 5

nested within an expression is confusing. Such nested constructions are naturally still excluded from
Ada 2012 and so it is very unlikely that the change will be regretted.

Now we must turn to the question of order dependences. Primarily, to enable optimization, Ada does
not define the order of evaluation of a number of constructions. These include

▪ the parameters in a subprogram or entry call,

▪ the operands of a binary operator,

▪ the destination and value in an assignment,

▪ the components in an aggregate,

▪ the index expressions in a multidimensional name,

▪ the expressions in a range,

▪ the barriers in a protected object,

▪ the guards in a select statement,

▪ the elaboration of library units.

The expressions involved in the above constructions can include function calls. Indeed, as AI-144
states "Arguably, Ada has selected the worst possible solution to evaluation order dependences (by
not specifying an order of evaluation), it does not detect them in any way, and then says that if you
depend upon one (even if by accident), your code will fail at some point in the future when your
compiler changes. Something should be done about this."

It is far too late to do anything about specifying the order of evaluation so the approach taken is to
prevent as much aliasing as possible since aliasing is an important cause of order of evaluation
problems. Ada 2012 introduces rules for determining when two names are "known to denote the
same object".

Thus they denote the same object if

▪ both names statically denote the same stand-alone object or parameter; or

▪ both names are selected components, their prefixes are known to denote the same object, and
their selector names denote the same component.

and so on with similar rules for dereferences, indexed components and slices. There is also a rule
about renaming so that if we have

C: Character renames S(5);

then C and S(5) are known to denote the same object. The index naturally has to be static.

A further step is to define when two names "are known to refer to the same object". This covers
some cases of overlapping. Thus given a record R of type T with a component C, we say that R and
R.C are known to refer to the same object. Similarly with an array A we say that A and A(K) are
known to refer to the same object (K does not need to be static in this example).

Given these definitions we can now state the two basic restrictions.

The first concerns parameters of elementary types:

▪ For each name N that is passed as a parameter of mode in out or out to a call of a subprogram
S, there is no other name among the other parameters of mode in out or out to that call of S
that is known to denote the same object.

Roughly speaking this comes down to saying two or more parameters of mode out or in out of an
elementary type cannot denote the same object. This applies to both functions and procedures.

6 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

This excludes the example given in the Introduction which was

procedure Do_It(Double, Triple: in out Integer) is
begin
 Double := Double * 2;
 Triple := Triple * 3;
end Do_It;

with

Var: Integer := 2;
...
Do_It(Var, Var); -- illegal in Ada 2012

The key problem is that parameters of elementary types are always passed by copy and the order in
which the parameters are copied back is not specified. Thus Var might end up with either the value
of Double or the value of Triple.

The other restriction concerns constructions which have several constituents that can be evaluated in
any order and can contain function calls. Basically it says:

▪ If a name N is passed as a parameter with mode out or in out to a function call that occurs in
one of the constituents, then no other constituent can involve a name that is known to refer to
the same object.

Constructions cover many situations such as aggregates, assignments, ranges and so on as listed
earlier.

This rule excludes the other example in the Introduction, namely, the aggregate

(Var, F(Var)) -- illegal in Ada 2012

where F has an in out parameter.

The rule also excludes the assignment

Var := F(Var); -- illegal

if the parameter of F has mode in out. Remember that the destination of an assignment can be
evaluated before or after the expression. So if Var were an array element such as A(I) then the
behaviour could vary according to the order. To encourage good practice, it is also forbidden even
when Var is a stand-alone object.

Similarly, the procedure call

Proc(Var, F(Var)); -- illegal

is illegal if the parameter of F has mode in out. Examples of overlapping are also forbidden such as

ProcA(A, F(A(K)); -- illegal

ProcR(R, F(R.C)); -- illegal

assuming still that F has an in out parameter and that ProcA and ProcR have appropriate profiles
because, as explained above, A and A(K) are known to refer to the same object as are R and R.C.

On the other hand

Proc(A(J), F(A(K)); -- OK

is permitted provided that J and K are different objects because this is only a problem if J and K
happen to have the same value.

 7

For more details the reader is referred to the AI. The intent is to detect situations that are clearly
troublesome. Other situations that might be troublesome (such as if J and K happen to have the same
value) are allowed, since to prevent them would make many programs illegal that are not actually
dubious. This would cause incompatibilities and upset many users whose programs are perfectly
correct.

The other change in Ada 2012 concerning parameters is that they may be explicitly marked aliased
thus

procedure P(X: aliased in out T; ...);

As a consequence within P we can write X'Access. Recall that tagged types were always considered
implicitly aliased anyway and always passed by reference. If the type T is a by-copy type such as
Integer, then adding aliased causes it to be passed by reference. (So by-copy types are not always
passed by copy!)

The possibility of permitting explicitly aliased function results such as

function F(...) return aliased T; -- illegal Ada 2012

was considered but this led to difficulties and so was not pursued.

The syntax for parameter specification is modified thus

 parameter_specification ::=
 defining_identifier_list: [aliased] mode [null exclusion] subtype_mark
 [:= default_expression]
 | defining_identifier_list: access_definition [:= default_expression]

showing that aliased comes first as it does in all contexts where it is permitted.

The rules for mode conformance are modified as expected. Two profiles are only mode conformant
if both or neither are explicitly marked as aliased. Although adding aliased for a tagged type
parameter makes little difference since tagged types are implicitly aliased, if this is done for a
subprogram declaration then it must be done for the corresponding body as well.

There are (of course) rules regarding accessibility; these are much as expected although a special
case arises in function return statements. As usual, if the foolish programmer does something silly,
the compiler will draw attention to the error.

Explicitly aliased parameters were largely introduced to overcome problems in the container library.
Examples will be given in the paper addressing containers.

3 Incomplete types
Incomplete types in Ada 83 were very incomplete. They were mostly used for the traditional linked
list such as

type Cell; -- incomplete
type Cell_Ptr is access Cell;

type Cell is -- the completion
 record
 Next: Cell_Ptr;
 Element: Pointer;
 end record;

The incomplete type could only be used in the declaration of an access type. Moreover, the
incomplete declaration and its completion had to be in the same list of declarations. However, if the

8 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

incomplete declaration is in a private part then the completion can be deferred to the body; this is the
so-called Taft Amendment added to Ada 83 at the last minute.

Ada 95 introduced tagged types and generalized access types and so made the language much more
flexible but made no changes to incomplete types as such. However, it soon became clear that the
restrictive nature of incomplete types was a burden regarding mutually dependent types and was a
key issue in the requirements for Ada 2005.

The big step forward in Ada 2005 was the introduction of the limited with clause. This enables a
package to have an incomplete view of a type in another package and solves many problems of
mutually recursive types.

However, the overall rule remained that an incomplete type could only be completed by a full type
declaration and, moreover, a parameter could not (generally) be of an incomplete type. This latter
restriction encouraged the use of access parameters.

As mentioned in the Introduction, the first rule prevented the following

type T1;
type T2 (X: access T1) is private;
type T1 (X: access T2) is private; -- illegal in Ada 2005

since the completion of T1 could not be by a private type.

This is changed in Ada 2012 so that an incomplete type can be completed by any type (other than
another incomplete type). Note especially that an incomplete type can be completed by a private
extension as well as by a private type.

The other major problem in Ada 2005 was that with mutually dependent types in different packages
we could not use incomplete types as parameters because it was not known whether they were by-
copy or by-reference. Of course, if they were tagged then we did know they were by reference but
that was a severe restriction.

The need to know whether parameters are by reference or by copy was really a red herring. The
model used for parameter passing in versions of Ada up to and including Ada 2005 was basically
that at the point of the declaration of a subprogram we need to have all the information required to
call the subprogram. Thus we needed to know how to pass parameters and so whether they were by
reference or by copy.

But this is quite unnecessary; we don't need to know the mechanisms involved until a point where
the subprogram is actually called or the body itself is encountered since it is only at those points that
the parameter mechanism is really required. It is only at those points that the compiler has to grind
out the code for the call or for the body.

So the rules in Ada 2012 are changed to use this "when we need to know" model. This is discussed
in AI-19 which is actually a binding interpretation and thus retrospectively applies to Ada 2005 as
well. This is formally expressed by the difference between freezing a subprogram and freezing its
profile. This was motivated by a problem with tagged types whose details need not concern us.

As a highly benevolent consequence, we are allowed to use incomplete types as both parameters and
function results provided that they are fully defined at the point of call and at the point where the
body is defined.

But another consequence of this approach is that we cannot defer the completion of an incomplete
type declared in a private part to the corresponding body. In other words, parameters of an
incomplete type are allowed provided the Taft Amendment is not used for completing the type.

The other exciting change regarding incomplete types is that in Ada 2012 they are allowed as
generic parameters. In Ada 2005 the syntax is

 9

 formal_type_declaration ::=
 type defining_identifier [discriminant_part] is formal_type_definition ;

whereas in Ada 2012 we have

 formal_type_declaration ::=
 formal_complete_type_declaration
 | formal_incomplete_type_declaration

 formal_complete_type_declaration ::=
 type defining_identifier [discriminant_part] is formal_type_definition ;

 formal_incomplete_type_declaration ::=
 type defining_identifier [discriminant_part] [is tagged] ;

So the new kind of formal generic parameter has exactly the same form as the declaration of an
incomplete type. It can be simply type T; or can require that the actual be tagged by writing type T
is tagged; – and in both cases a discriminant can be given.

A formal incomplete type can then be matched by any appropriate incomplete type. If the formal
specifies tagged, then so must the actual. If the formal does not specify tagged then the actual
might or might not be tagged. Of course, a formal incomplete type can also be matched by an
appropriate complete type. And also, in all cases, any discriminants must match as well.

An example of the use of a formal incomplete type occurs in the package Ada.Iterator_Interfaces
whose generic formal part is

generic
 type Cursor;
 with function Has_Element(Position: Cursor) return Boolean;
package Ada.Iterator_Interfaces is ...

The formal type Cursor is incomplete and can be matched by an actual incomplete type. The details
of this package will be described in a later paper.

Another example is provided by a signature package as mentioned in the Introduction. We can write

generic
 type Element;
 type Set;
 with function Empty return Set is <>;
 with function Unit(E: Element) return Set is <>;
 with function Union(S, T: Set) return Set is <>;
 with function Intersection(S, T: Set) return Set is <>;
 ...
package Set_Signature is end;

Such a signature generic can be instantiated with an actual set type and then the instance can be
passed into other generics that have a formal package such as

generic
 type VN is private;
 type VN_Set is private;
 with package Sets is
 new Set_Signature(Element => VN, Set => VN_Set, others => <>);
 ...
package Analyse is ...

10 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

This allows the construction of a generic that needs a Set abstraction such as a flow analysis
package. Remember that the purpose of a signature is to group several entities together and to check
that various relationships hold between the entities. In this case the relationships are that the types
Set and Element do have the various operations Empty, Unit and so on.

The set generic could be included in a set container package thus

generic
 type Element is private;
package My_Sets is
 type Set is tagged private;

 function Empty return Set;
 function Unit(E: Element) return Set;
 function Union(S, T: Set) return Set;
 function Intersection(S, T: Set) return Set;
 ...
 package My_Set is new Set_Signature(Element, Set);
private
 ...
end My_Sets;

The key point is that normally an instantiation freezes a type passed as a generic parameter. But in
the case of a formal incomplete untagged type, this does not happen. Hence the actual in the
instantiation of Set_Signature in the generic package My_Sets can be a private type such as Set.

This echoes back to the earlier discussion of changing the freezing rules. We cannot call a
subprogram with untagged incomplete parameters (whether formal or not) because we do not know
whether they are to be passed by copy or by reference. But we can call a subprogram with tagged
incomplete parameters because we do know that they are passed by reference (and this has to remain
true for compatibility with Ada 2005). So just in case the actual subprogram in the tagged case is
called within the generic, the instantiation freezes the profile. But in the untagged case, we know
that the subprogram cannot be called and so there is no need to freeze the profile.

This means that the type Set should not be given as tagged incomplete in the package Set_Signature
since we could not then use the signature in the package My_Sets.

If a subprogram has both tagged and untagged formal incomplete parameters then the untagged
incomplete parameters win and the subprogram cannot be called.

(If this is all too confusing, do not worry, the compiler will moan at you if you make a mistake.)

Another rule regarding incomplete formal types is that the controlling type of a formal abstract
subprogram cannot be incomplete.

4 Discriminants
There is one minor change in this area which was mentioned in the Introduction.

In Ada 2005, a discriminant can only have a default if it is not tagged. But in Ada 2012, a default is
also permitted in the case of a limited tagged type.

Ada typically uses defaults as a convenience so that in many cases standard information can be
omitted. Thus it is convenient that the procedure New_Line has a default of 1 since it would be
boring to have to write New_Line(1); all the time.

In the case of discriminants however, a default as in

 11

type Polynomial(N: Index := 0) is
 record
 A: Integer_Vector(0 .. N);
 end record;

also indicates that the type is mutable. This means that the value of the discriminant of an object of
the type can be changed by a whole record assignment. However, tagged types in Ada 2005 never
have defaults because we do not want tagged types to be mutable. On the other hand, if a tagged
type is limited then it is immutable anyway. And so it was concluded that there is no harm in
permitting a limited tagged type to have a default discriminant.

This may seem rather academic but the problem arose in designing containers for queues. It was felt
desirable that the protected type Queue should have a discriminant giving its ceiling priority and
that this should have a default for convenience. As illustrated in the Introduction this resulted in a
structure as follows

generic
 with package Queue_Interfaces is new ...
 Default_Ceiling: Any_Priority := Priority'Last;
package AC.Unbounded_Synchronized_Queues is
 ...
 protected type Queue(Ceiling: Any_Priority := Default_Ceiling)
 with Priority => Ceiling
 is new Queue_Interfaces.Queue with ...

Now the problem is that a protected type such as Queue which is derived from an interface is
considered to be tagged because interfaces are tagged. On the other hand a protected type is always
limited and its discriminant provides a convenient way of providing the ceiling priority. So there
was a genuine need for a change to the rule.

Note incidentally that the default is itself provided with the default value of Priority'Last since it is a
generic parameter with its own default.

5 Use clauses
Ada 2012 introduces a further form of use clause. In order to understand the benefit it is perhaps
worth just recalling the background to this topic.

The original use clause in Ada 83 made everything in a package directly visible. Consider the
following package

package P is
 I, J, K: Integer;

 type Colour is (Red, Orange, Yellow, Green, Blue, ...);
 function Mix(This, That: Colour) return Colour;

 type Complex is
 record
 Rl, Im: Float;
 end record;
 function "+"(Left, Right: Complex) return Complex;
 ...
end P;

Now suppose we have a package Q which manipulates entities declared in P. We need a with clause
for P, thus

12 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

with P;
package Q is ...

With just a with clause for P we have to refer to entities in P using the prefix P. So we get
statements and declarations in Q such as

P.I := P.J + P.K;

Mucky: P.Colour := P.Mix(P.Red, P.Green);

W: P.Complex := (1.0, 2.0);
Z: P.Complex := (4.0, 5.0);
D: P.Complex := P."+"(W, Z);

This is generally considered tedious especially if the package name is not P but
A_Very_Long_Name. However, adding a package use clause to Q thus

with P; use P;
package Q ...

enables the P prefix to be omitted and in particular allows infix notation for operators so we can
now simply write

D: Complex := W + Z;

But as is well known, the universal use of such use clauses introduces ambiguity (if the same
identifier is in two different packages and we have a use clause for both), obscurity (you can't find
the wretched declaration of Red) and possibly a maintenance headache (another package is added
which duplicates some identifiers). So there is a school of thought that use clauses are bad for you.

However, although the prefix denoting the package is generally beneficial it is a pain to be forced to
always use the prefix notation for operators. So in Ada 95, the use type clause was added enabling
us to write

with P; use type P.Complex;
package Q is ...

This has the effect that only the primitive operators of the type Complex are directly visible. So we
can now write

D: P.Complex := W + Z;

Note that the type name Complex is not itself directly visible so we still have to write P.Complex in
the declaration of D.

However, some users still grumbled. Why should only those primitive operations that happen to be
denoted by operators be visible? Why indeed? Why cannot Mucky be declared similarly without
using the prefix P for Mix, Red and Green?

It might be worth briefly recalling exactly which operations of a type T are primitive operations of
T. They are basically

▪ predefined operations such as "=" and "+",

▪ subprograms declared in the same package as T and which operate on T,

▪ enumeration literals of T,

▪ for a derived type, inherited or overridden subprograms.

The irritation is solved in Ada 2012 by the use all type clause which makes all primitive operations
visible. (Note another use for the reserved word all.)

 13

So we can write

with P; use all type P.Colour;
package Q is ...

and now within Q we can write

Mucky: P.Colour := Mix(Red, Green);

Thus the enumeration literals such as Red are made directly visible as well as obvious primitive
subprograms such as Mix.

Another impact concerns tagged types and in particular operations on class wide types.

Remember that subprograms with a parameter (or result) of type T'Class are not primitive
operations unless they also have a parameter (or result of type T) as well.

Actually it is usually very convenient that operations on a class wide type are not primitive
operations because it means that they are not inherited and so cannot be overridden. Thus we are
assured that they do apply to all types of the class.

So, suppose we have

package P is
 type T is tagged private;
 procedure Op1(X: in out T);
 procedure Op2(Y: in T; Z: out T);
 function Fop(W: T) return Integer;
 procedure List(TC: in T'Class);
private
 ...
end P;

Then although List is not a primitive operation of T it will certainly look to many users that it
belongs to T in some broad sense. Accordingly, writing use all type P.T; makes not only the
primitive operations such as Op1, Op2 and Fop, visible but it also makes List visible as well.

Note that this is the same as the rule regarding the prefixed form of subprogram calls which can also
be used for both primitive operations and class wide operations. Thus given an object A of type T, as
well as statements A.Op1; and A.Op2(B); and a function call A.Fop we can equally write

A.List; -- prefixed call of class wide procedure

Moreover, suppose we declare a type NT in a package NP thus

package NP is
 type NT is new T with ...
 ...
end NP;

If we have an object AN of type NT then not only can we use prefixed calls for inherited and
overridden operations but we can also use prefixed calls for class wide operations in ancestor
packages such as P. So we can write

AN.List; -- prefixed call of List in ancestor package

Similarly, writing use all type NP.NT; on Q makes the inherited (or overridden) operations Op1,
Op2 and Fop visible and also makes the class wide operation List declared in P visible. We do not
also have to write use all type P.T; on Q as well.

14 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

We conclude by remarking that the maintenance problem of name clashes really only applies to use
package clauses. In the case of use type and use all type clauses, the entities made visible are
overloadable and a clash only occurs if two have the same profile which is very unlikely and almost
inevitably indicates a bug.

6 Extended return statements
The final topic in this paper is the extended return statement. This was introduced in Ada 2005
largely to solve problems with limited types. However, some glitches have come to light and these
are corrected in Ada 2012.

A description of the reasons for and general properties of the extended return statement will be
found in [2].

The syntax for extended return statement in Ada 2005 as found in [12] is

 extended_return_statement ::=
 return defining_identifier: [aliased] return_subtype_indication [:= expression] [do
 handled_sequence_of_statements
 end return] ;

Before going further, it should be mentioned that there was some confusion regarding limited types
and so the term immutably limited was introduced in the course of the maintenance of Ada 2005.
There were various problems. Basically, limitedness is a property of a view of a type. Thus even in
Ada 83 a private type might be limited but the full view found in the private part would not be
limited. Ada 95 introduced explicitly limited types. Ada 2005 introduced coextensions and these
could even include such obviously limited things as task types thus adding a limited part to what
was otherwise a seemingly nonlimited type. It became clear that it was necessary to introduce a term
which meant that a type was really and truly limited and could not subsequently become nonlimited
for example in a private part or in a child unit. So a type is immutably limited if

▪ it is an explicitly limited record type,

▪ it is a task type, protected type or synchronized interface,

▪ it is a non-formal limited private type that is tagged or has an access discriminant with a
default expression,

▪ it is derived from an immutably limited type.

It was then realised that there were problems with extended return statements containing an explicit
aliased. Consequently, it was decided that there was really no need for aliased if there was a rule
that immutably limited return objects were implicitly aliased. So aliased was removed from the
syntax. However, some users had already written aliased and this would have introduced an
irritating incompatibility. So finally it was decided that aliased could be written but only if the type
were immutably limited.

Another small problem concerned constants. Thus we might write

return X: T do
 ... -- compute X
end return;

However, especially in the case of a limited type LT, we might also give the return object an initial
value, thus

return X: LT := (A, B, C) do
 ... -- other stuff
end return;

 15

Now it might be that although the type as a whole is limited one or more of its components might
not be and so could be manipulated in the sequence of statements. But if we want to ensure that this
does not happen, it would be appropriate to indicate that X were constant. But, almost surely by an
oversight, we cannot do that since it is not permitted by the syntax. So the syntax needed changing
to permit the addition of constant.

To aid the description the syntax in Ada 2012 is actually written as two productions as follows

 extended_return_object_declaration ::=
 defining_identifier: [aliased] [constant] return_subtype_indication [:= expression]

 extended_return_statement ::=
 return extended_return_object_declaration [do
 handled_sequence_of_statements
 end return] ;

The other small change to the extended return statement concerns the subtype give in the profile of
the function and that in the extended return statement itself. The result type of the function can be
constrained or unconstrained but that given in the extended return statement must be constrained.

This can be illustrated by considering array types. (These examples are from [2].) Suppose we have

type UA is array (Integer range <>) of Float;
subtype CA is UA(1 .. 10);

then we can write

function Make(...) return CA is
begin
 ...
 return R: UA(1 .. 10) do -- statically matches
 ...
 end return;
end Make;

This is allowed because the subtypes statically match.

If the subtype in the function profile is unconstrained then the result must be constrained either by
its subtype or by its initial value. For example

function Make(...) return UA is
begin
 ...
 return R: UA(1 .. N) do
 ...
 end return;
end Make;

and here the result R is constrained by its subtype. A similar situation can arise with records with
discriminants. Thus we can have

type Person(Sex: Gender) is ... ;

function F(...) return Person is
begin
 if ... then
 return R: Person(Sex => Male) do
 ...
 end return;

16 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

 else
 return R: Person(Sex => Female) do
 ...
 end return;
 end if;
end F;

which shows that we have the possibility of returning a person of either gender.

However, what is missing from Ada 2005 is that we can have analogous situations with tagged types
in that a function might wish to return a value of some type in a class.

So we would like to write things such as

function F(...) return Object'Class is
begin
 if ... then
 return C: Circle do
 ...
 end return;
 elsif ... then
 return S: Square do
 ...
 end return;
 end if;
end F;

This is not permitted in Ada 2005 which required the types to be the same. This can be overcome by
writing

return C: Object'Class := Circle_Func do
 ...
end return;

where Circle_Func is some local function that returns the required object of type Circle.

This is all rather irksome so the wording is changed in Ada 2012 to say that in this situation the
subtype in the extended return statement need not be the same as that in the profile but simply must
be covered by it. There are also related slight changes to the accessibility rules.

References
[1] ISO/IEC JTC1/SC22/WG9 N412 (2002) Instructions to the Ada Rapporteur Group from SC22/

WG9 for Preparation of the Amendment.

[2] John Barnes (2008) Ada 2005 Rationale, LNCS 5020, Springer-Verlag.

[3] David Fisher (1976) A Common Programming Language for the Department of Defense –
Background and Technical Requirements, Institute for Defense Analyses, Arlington, Virginia.

[4] Defense Advanced Research Projects Agency (1977) Department of Defense Requirements for
High Order Computer Programming Languages – Revised IRONMAN, USDoD.

[5] Defense Advanced Research Projects Agency (1978) Department of Defense Requirements for
High Order Computer Programming Languages – STEELMAN, USDoD.

[6] Jean Ichbiah et al (1978) Preliminary Reference Manual for the Green Programming
Language, Honeywell Inc.

 17

[7] Jean Ichbiah et al (1979) Reference Manual for the Green Programming Language, Honeywell
Inc.

[8] ACM (1979) Preliminary Ada Reference Manual, Sigplan Notices, Vol 14, No 6.

[9] ANSI / Mil–Std 1815A (1983) Ada Reference Manual.

[10] Jean Ichbiah, John Barnes, Robert Firth, Mike Woodger (1986) Rationale for the Design of the
Ada Programming Language, Honeywell & Alsys.

[11] B Higman (1963) What everybody should know about Algol, Computer Journal, vol 6, no 1, pp
50-56.

[12] S. T. Taft et al (eds) (2007) Ada 2005 Reference Manual, LNCS 4348, Springer-Verlag.

© 2012 John Barnes Informatics.

18 Rat ionale for Ada 2012: 3 Structure and vis ib i l i ty

