
SPARK 2014 Reference Manual
Release 2020

AdaCore and Altran UK Ltd

Apr 30, 2020

Copyright (C) 2013-2019, AdaCore and Altran UK Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with
no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled ’GNU Free Documentation License’.

CONTENTS

1 Introduction 13
1.1 Structure of Introduction . 14
1.2 How to Read and Interpret this Manual . 14
1.3 Method of Description . 14
1.4 Formal Analysis . 15

1.4.1 Further Details on Formal Verification . 15
1.5 Executable Contracts and Mathematical Numbers . 16

1.5.1 The Advantages of Executable Contracts . 16
1.5.2 Mathematical Numbers and Arithmetic . 17
1.5.3 Libraries for Specification and Proof . 17

1.6 Dynamic Semantics of SPARK 2014 Programs . 17
1.7 Main Program . 18
1.8 SPARK 2014 Strategic Requirements . 18
1.9 Explaining the Strategic Requirements . 19

1.9.1 Principal Language Restrictions . 20
1.9.2 Combining Formal Verification and Testing . 20

Demarcating the Boundary between Formally Verified and Tested Code 20
Checks to be Performed at the Boundary . 21
Conditions that Apply to the Tested Code . 21

1.9.3 Adding Code for Specification and Verification . 22
1.9.4 Synthesis of SPARK 2014 Aspects . 23
1.9.5 In and Out of SPARK 2014 . 24
1.9.6 External State . 25

2 Lexical Elements 27
2.1 Character Set . 27
2.2 Lexical Elements, Separators, and Delimiters . 27
2.3 Identifiers . 27
2.4 Numeric Literals . 27
2.5 Character Literals . 27
2.6 String Literals . 27
2.7 Comments . 27
2.8 Pragmas . 28
2.9 Reserved Words . 28

3 Declarations and Types 29
3.1 Declarations . 29
3.2 Types and Subtypes . 29

3.2.1 Type Declarations . 29
3.2.2 Subtype Declarations . 30

5

3.2.3 Classification of Operations . 30
3.2.4 Subtype Predicates . 30

3.3 Objects and Named Numbers . 31
3.3.1 Object Declarations . 31
3.3.2 Number Declarations . 31

3.4 Derived Types and Classes . 31
3.5 Scalar Types . 32
3.6 Array Types . 32
3.7 Discriminants . 32
3.8 Record Types . 32
3.9 Tagged Types and Type Extensions . 33

3.9.1 Type Extensions . 33
3.9.2 Dispatching Operations of Tagged Types . 33
3.9.3 Abstract Types and Subprograms . 33
3.9.4 Interface Types . 33

3.10 Access Types . 33
3.11 Declarative Parts . 40

4 Names and Expressions 41
4.1 Names . 41

4.1.1 Indexed Components . 41
4.1.2 Slices . 41
4.1.3 Selected Components . 41
4.1.4 Attributes . 41
4.1.5 User-Defined References . 42
4.1.6 User-Defined Indexing . 42

4.2 Literals . 42
4.3 Aggregates . 42
4.4 Expressions . 42

4.4.1 Update Expressions . 43
Record Update Expressions . 44
Array Update Expressions . 44
Multi-dimensional Array Update Expressions . 45

4.5 Operators and Expression Evaluation . 47
4.6 Type Conversions . 47
4.7 Qualified Expressions . 47
4.8 Allocators . 48
4.9 Static Expressions and Static Subtypes . 48

5 Statements 49
5.1 Simple and Compound Statements - Sequences of Statements . 49
5.2 Assignment Statements . 49
5.3 If Statements . 49
5.4 Case Statements . 49
5.5 Loop Statements . 50

5.5.1 User-Defined Iterator Types . 50
5.5.2 Generalized Loop Iteration . 50
5.5.3 Loop Invariants, Variants and Entry Values . 51

Attribute Loop_Entry . 53
5.6 Block Statements . 55
5.7 Exit Statements . 55
5.8 Goto Statements . 55
5.9 Proof Pragmas . 56

6 Subprograms 59
6.1 Subprogram Declarations . 59

6.1.1 Preconditions and Postconditions . 60
6.1.2 Subprogram Contracts . 61
6.1.3 Contract Cases . 62
6.1.4 Global Aspects . 64
6.1.5 Depends Aspects . 67
6.1.6 Class-Wide Global and Depends Aspects . 71
6.1.7 Extensions_Visible Aspects . 72

6.2 Formal Parameter Modes . 73
6.3 Subprogram Bodies . 74

6.3.1 Conformance Rules . 74
6.3.2 Inline Expansion of Subprograms . 74

6.4 Subprogram Calls . 74
6.4.1 Parameter Associations . 74
6.4.2 Anti-Aliasing . 75

6.5 Return Statements . 77
6.5.1 Nonreturning Procedures . 77

6.6 Overloading of Operators . 77
6.7 Null Procedures . 78
6.8 Expression Functions . 78
6.9 Ghost Entities . 78
6.10 Relaxed Initialization . 81

7 Packages 85
7.1 Package Specifications and Declarations . 85

7.1.1 Abstraction of State . 85
7.1.2 External State . 86
7.1.3 External State - Variables and Types . 88
7.1.4 Abstract_State Aspects . 93
7.1.5 Initializes Aspects . 96
7.1.6 Initial_Condition Aspects . 98

7.2 Package Bodies . 99
7.2.1 State Refinement . 99
7.2.2 Refined_State Aspects . 100
7.2.3 Initialization Issues . 101
7.2.4 Refined_Global Aspects . 102
7.2.5 Refined_Depends Aspects . 105
7.2.6 Abstract_State, Package Hierarchy and Part_Of . 109
7.2.7 Refined Postcondition Aspects . 115
7.2.8 Refined External States . 120

7.3 Private Types and Private Extensions . 128
7.3.1 Private Operations . 128
7.3.2 Type Invariants . 128
7.3.3 Default_Initial_Condition Aspects . 130

7.4 Deferred Constants . 130
7.5 Limited Types . 130
7.6 Assignment and Finalization . 131
7.7 Elaboration Issues . 131

7.7.1 Use of Initial_Condition and Initializes Aspects . 136

8 Visibility Rules 139
8.1 Declarative Region . 139
8.2 Scope of Declarations . 139

8.3 Visibility . 139
8.3.1 Overriding Indicators . 139

8.4 Use Clauses . 139
8.5 Renaming Declarations . 139

8.5.1 Object Renaming Declarations . 139
8.5.2 Exception Renaming Declarations . 140
8.5.3 Package Renaming Declarations . 140
8.5.4 Subprogram Renaming Declarations . 140
8.5.5 Generic Renaming Declarations . 140

8.6 The Context of Overload Resolution . 140

9 Tasks and Synchronization 141

10 Program Structure and Compilation Issues 145
10.1 Separate Compilation . 145

10.1.1 Compilation Units - Library Units . 145
10.1.2 Context Clauses - With Clauses . 145

Abstract Views . 145
10.1.3 Subunits of Compilation Units . 146
10.1.4 The Compilation Process . 146
10.1.5 Pragmas and Program Units . 146
10.1.6 Environment-Level Visibility Rules . 146

10.2 Program Execution . 146
10.2.1 Elaboration Control . 146

11 Exceptions 147
11.1 Exception Declarations . 147
11.2 Exception Handlers . 147
11.3 Raise Statements . 147
11.4 Exception Handling . 147

11.4.1 The Package Exceptions . 147
11.4.2 Pragmas Assert and Assertion_Policy . 147

12 Generic Units 149
12.1 Generic Instantiation . 149

13 Representation Issues 151
13.1 Operational and Representation Aspects . 151
13.2 Packed Types . 151
13.3 Operational and Representation Attributes . 152
13.4 Enumeration Representation Clauses . 152
13.5 Record Layout . 152
13.6 Change of Representation . 152
13.7 The Package System . 152
13.8 Machine Code Insertions . 152
13.9 Unchecked Type Conversions . 152

13.9.1 Data Validity . 153
13.10 Unchecked Access Value Creation . 153
13.11 Storage Management . 153
13.12 Pragma Restrictions and Pragma Profile . 153
13.13 Streams . 154
13.14 Freezing Rules . 154

14 Predefined Language Environment (Annex A) 155
14.1 The Package Standard (A.1) . 155

14.2 The Package Ada (A.2) . 155
14.3 Character Handling (A.3) . 155

14.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters (A.3.1) 155
14.3.2 The Package Characters.Handling (A.3.2) . 156
14.3.3 The Package Characters.Latin_1 (A.3.3) . 156
14.3.4 The Package Characters.Conversions (A.3.4) . 156
14.3.5 The Package Wide_Characters.Handling (A.3.5) . 156
14.3.6 The Package Wide_Wide_Characters.Handling (A.3.6) . 156

14.4 String Handling (A.4) . 156
14.4.1 The Package Strings (A.4.1) . 156
14.4.2 The Package Strings.Maps (A.4.2) . 156
14.4.3 Fixed-Length String Handling (A.4.3) . 157
14.4.4 Bounded-Length String Handling (A.4.4) . 157
14.4.5 Unbounded-Length String Handling (A.4.5) . 157
14.4.6 String-Handling Sets and Mappings (A.4.6) . 158
14.4.7 Wide_String Handling (A.4.7) . 158
14.4.8 Wide_Wide_String Handling (A.4.8) . 158
14.4.9 String Hashing (A.4.9) . 158
14.4.10 String Comparison (A.4.10) . 158
14.4.11 String Encoding (A.4.11) . 158

14.5 The Numerics Packages (A.5) . 158
14.5.1 Elementary Functions (A.5.1) . 159
14.5.2 Random Number Generation (A.5.2) . 159

14.6 Input-Output (A.6) . 159
14.7 External Files and File Objects (A.7) . 159
14.8 Sequential and Direct Files (A.8) . 159

14.8.1 The Generic Package Sequential_IO (A.8.1) . 159
14.8.2 File Management (A.8.2) . 159
14.8.3 Sequential Input-Output Operations (A.8.3) . 159
14.8.4 The Generic Package Direct_IO (A.8.4) . 160
14.8.5 Direct Input-Output Operations (A.8.5) . 160

14.9 The Generic Package Storage_IO (A.9) . 160
14.10 Text Input-Output (A.10) . 160

14.10.1 The Package Text_IO (A.10.1) . 160
14.10.2 Text File Management (A.10.2) . 160
14.10.3 Default Input, Output and Error Files (A.10.3) . 160
14.10.4 Specification of Line and Page Lengths (A.10.4) . 160
14.10.5 Operations on Columns, Lines and Pages (A.10.5) . 160
14.10.6 Get and Put Procedures (A.10.6) . 161
14.10.7 Input-Output of Characters and Strings (A.10.7) . 161
14.10.8 Input-Output for Integer Types (A.10.8) . 161
14.10.9 Input-Output for Real Types (A.10.9) . 161
14.10.10Input-Output for Enumeration Types (A.10.10) . 161
14.10.11Input-Output for Bounded Strings (A.10.11) . 161
14.10.12Input-Output of Unbounded Strings (A.10.12) . 161

14.11 Wide Text Input-Output and Wide Wide Text Input-Output (A.11) 161
14.12 Stream Input-Output (A.12) . 161
14.13 Exceptions in Input-Output (A.13) . 162
14.14 File Sharing (A.14) . 162
14.15 The Package Command_Line (A.15) . 162
14.16 The Package Directories (A.16) . 162
14.17 The Package Environment_Variables (A.17) . 162
14.18 Containers (A.18) . 162
14.19 The Package Locales (A.19) . 162

14.20 Interface to Other Languages (Annex B) . 163
14.21 Systems Programming (Annex C) . 163

14.21.1 Pragma Discard_Names (C.5) . 163
14.21.2 Shared Variable Control (C.6) . 163

14.22 Real-Time Systems (Annex D) . 163
14.23 Distributed Systems (Annex E) . 163
14.24 Information Systems (Annex F) . 164
14.25 Numerics (Annex G) . 164
14.26 High Integrity Systems (Annex H) . 164

15 Language-Defined Aspects and Attributes (Annex K) 165
15.1 Language-Defined Aspects . 165
15.2 Language-Defined Attributes . 167
15.3 GNAT Implementation-Defined Attributes . 170

16 Language-Defined Pragmas (Annex L) 171
16.1 Ada Language-Defined Pragmas . 171
16.2 SPARK 2014 Language-Defined Pragmas . 172
16.3 GNAT Implementation-Defined Pragmas . 173

17 Glossary 175

A SPARK 2005 to SPARK 2014 Mapping Specification 177
A.1 SPARK 2005 Features and SPARK 2014 Alternatives . 177
A.2 Subprogram patterns . 178

A.2.1 Global and Derives . 178
A.2.2 Pre/Post/Return contracts . 179
A.2.3 Attributes of unconstrained out parameter in precondition 182
A.2.4 Data Abstraction, Refinement and Initialization . 183

A.3 Package patterns . 185
A.3.1 Abstract Data Types (ADTs) . 185

Visible type . 185
Private type . 186
Private type with pre/post contracts . 186
Private/Public child visibility . 189

A.3.2 Abstract State Machines (ASMs) . 192
Visible, concrete state . 192
Private, concrete state . 196
Private, abstract state, refining onto concrete states in body 197
Initial condition . 204
Private, abstract state, refining onto state of private child . 205
Private, abstract state, refining onto concrete state of embedded package 209
Private, abstract state, refining onto mixture of the above . 211

A.3.3 External Variables . 211
Basic Input and Output Device Drivers . 212
Input driver using ‘Tail in a contract . 215
Output driver using ‘Append in a contract . 216
Refinement of external state - voting input switch . 218
Complex I/O Device . 221
Increasing values in input stream . 224

A.3.4 Package Inheritance . 227
Contracts with remote state . 227
Package nested inside package . 229
Package nested inside subprogram . 229
Circular dependence and elaboration order . 232

A.4 Bodies and Proof . 234
A.4.1 Assert, Assume, Check contracts . 234

Assert (in loop) contract . 234
Assert (no loop) contract . 236
Assume contract . 236
Check contract . 237

A.4.2 Assert used to control path explosion . 238
A.5 Other Contracts and Annotations . 238

A.5.1 Always_Valid assertion . 238
A.5.2 Rule declaration annotation . 238
A.5.3 Proof types and proof functions . 238
A.5.4 Using an External Prover . 243
A.5.5 Quoting an Own Variable in a Contract . 245
A.5.6 Main_Program annotation . 250

A.6 Update Expressions . 251
A.7 Value of Variable on Entry to a Loop . 253

B GNU Free Documentation License 257
B.1 PREAMBLE . 257
B.2 APPLICABILITY AND DEFINITIONS . 257
B.3 VERBATIM COPYING . 258
B.4 COPYING IN QUANTITY . 259
B.5 MODIFICATIONS . 259
B.6 COMBINING DOCUMENTS . 260
B.7 COLLECTIONS OF DOCUMENTS . 261
B.8 AGGREGATION WITH INDEPENDENT WORKS . 261
B.9 TRANSLATION . 261
B.10 TERMINATION . 261
B.11 FUTURE REVISIONS OF THIS LICENSE . 262
B.12 RELICENSING . 262
B.13 ADDENDUM: How to use this License for your documents . 262

CHAPTER

ONE

INTRODUCTION

SPARK 2014 is a programming language and a set of verification tools designed to meet the needs of high-assurance
software development. SPARK 2014 is based on Ada 2012, both subsetting the language to remove features that defy
verification and also extending the system of contracts by defining new Ada aspects to support modular, constructive,
formal verification.

The new aspects support the analysis of incomplete programs, abstraction and refinement and facilitate deep static
analysis to be performed including information-flow analysis and formal verification of an implementation against a
specification.

Meaningful static analysis is possible on complete programs without the SPARK 2014 specific aspects and pragmas
(for programs which are otherwise within the SPARK 2014 subset), in fact the formal verification of an implementation
against a specification of a complete program is possible using only the Ada 2012 contracts. Without the SPARK 2014
specific aspects, however, analysis has to be performed on a completed program and cannot be applied constructively
during its development.

SPARK 2014 is a much larger and more flexible language than its predecessor SPARK 2005. The language can
be configured to suit a number of application domains and standards, from server-class high-assurance systems to
embedded, hard real-time, critical systems.

A major feature of SPARK 2014 is the support for a mixture of proof and other verification methods such as testing,
which facilitates the use of unit proof in place of unit testing; an approach now formalized in DO-178C and the DO-333
formal methods supplement. Certain units may be formally proven and other units validated through testing.

Ada 2012 introduced executable contracts such as Pre and Post conditions and new types of expression, in particular
conditional expressions and quantifiers. SPARK 2014 uses these contracts and expressions and extends them with new
aspects and pragmas.

The new aspects defined for SPARK 2014 all have equivalent pragmas which allows a SPARK 2014 program to be
compiled by and executed by any Ada implementation; for instance an Ada 95 compiler provided that the use of Ada
2005 and Ada 2012 specific features is avoided. The SPARK 2014 attributes Update and Loop_Entry can be used only
if the Ada implementation supports them.

The direct use of the new aspects requires an Ada 2012 compiler which supports them in a way consistent with the
definition given here in the SPARK 2014 reference manual. The GNAT implementation is one such compiler.

As with the Ada 2012 contracts, the new SPARK 2014 aspects and pragmas have executable semantics and may be
executed at run time. An expression in an Ada contract or SPARK 2014 aspect or pragma is called an assertion
expression and it is the ability to execute such expressions which facilitates the mix of proof and testing.

The run-time checking of assertion expressions may be suppressed by using the Ada pragma Assertion_Policy but the
static analysis and proof tools always use the assertion expressions whatever the assertion policy.

A special feature of SPARK 2014 is that numbers in assertion expressions may have extended or “infinite” arith-
metic to make it simpler to write specifications as they can be written without having to consider the possibility of
overflow within the specification. The numbers may therefore behave mathematically (see Executable Contracts and
Mathematical Numbers).

13

1.1 Structure of Introduction

This introduction contains the following sections:

• Section How to Read and Interpret this Manual describes how to read and interpret this document.

• Section Method of Description describes the conventions used in presenting the definition of SPARK 2014.

• Section Formal Analysis gives a brief overview of the formal analysis to which SPARK 2014 programs are
amenable.

• Section Executable Contracts and Mathematical Numbers gives a brief overview of the use of executable con-
tracts.

• Section Dynamic Semantics of SPARK 2014 Programs gives details on the dynamic semantics of SPARK 2014.

• Section SPARK 2014 Strategic Requirements defines the overall goals to be met by the SPARK 2014 language
and toolset.

• Section Explaining the Strategic Requirements provides expanded detail on the main strategic requirements.

1.2 How to Read and Interpret this Manual

This RM (reference manual) is not a tutorial guide to SPARK 2014. It is intended as a reference guide for users
and implementors of the language. In this context, “implementors” includes those producing both compilers and
verification tools.

This manual is written in the style and language of the Ada 2012 RM, so knowledge of Ada 2012 is assumed. Chapters
2 through 13 mirror the structure of the Ada 2012 RM. Chapters 14 onward cover all the annexes of the Ada 2012
RM. Moreover, this manual should be interpreted as an extension of the Ada 2012 RM (that is, SPARK 2014 is fully
defined by this document taken together with the Ada 2012 RM).

The SPARK 2014 RM uses and introduces technical terms in its descriptions, those that are less well known or
introduced are summarized in a Glossary following the sections covering the Ada annexes.

SPARK 2014 introduces a number of aspects. The language rules are written as if all the SPARK 2014 specific aspects
are present but minimum requirements are placed on a tool which analyzes SPARK 2014 to be able to synthesize (from
the source code) some of these aspects if they are not present. A tool may synthesize more aspects than the minimum
required (see Synthesis of SPARK 2014 Aspects). An equivalent pragma is available for each of the new aspects but
these are not covered explicitly in the language rules either. The pragmas used by SPARK 2014 are documented in
Language-Defined Pragmas (Annex L).

Readers interested in how SPARK 2005 constructs and idioms map into SPARK 2014 should consult the appendix
SPARK 2005 to SPARK 2014 Mapping Specification.

1.3 Method of Description

In expressing the aspects, pragmas, attributes and rules of SPARK 2014, the following chapters of this document
follow the notational conventions of the Ada 2012 RM (section 1.1.4).

The following sections are given for each new language feature introduced for SPARK 2014, following the Ada 2012
RM (other than Verification Rules, which is specific to SPARK 2014):

1. Syntax: this section gives the format of any SPARK 2014 specific syntax.

2. Legality Rules: these are rules that are enforced at compile time. A construct is legal if it obeys all of the
Legality Rules.

3. Static Semantics: a definition of the compile-time effect of each construct.

4. Dynamic Semantics: a definition of the run-time effect of each construct.

5. Verification Rules: these rules define checks to be performed on the language feature that relate to static analysis
rather than simple legality rules.

6. Name Resolution Rules: There are very few SPARK 2014 specific name resolution rules. Where they exist they
are placed under this heading.

A section might not be present if there are no rules specific to SPARK 2014 associated with the language feature.

When presenting rules, additional text may be provided in square brackets []. This text is redundant in terms of
defining the rules themselves and simply provides explanatory detail.

In addition, examples of the use of the new features are given along with the language definition detail.

1.4 Formal Analysis

SPARK 2014 will be amenable to a range of formal analyses, including but not limited to the following static analysis
techniques:

• Data-flow analysis, which considers the initialization of variables and the data dependencies of subprograms
(which parameters and variables get read or written).

• Information-flow analysis, which also considers the coupling between the inputs and outputs of a subprogram
(which input values of parameters and variables influence which output values). The term flow analysis is used
to mean data-flow analysis and information-flow analysis taken together.

• Formal verification of robustness properties. In Ada terminology, this refers to the proof that certain prede-
fined checks, such as the ones which could raise Constraint_Error, will never fail at run time and hence the
corresponding exceptions will not be raised.

• Formal verification of functional properties, based on contracts expressed as preconditions, postconditions, type
invariants and so on. The term formal verification is used to mean formal verification of robustness properties
and formal verification of functional properties taken together.

Data and information-flow analysis is not valid and might not be possible if the legality rules of Ada 2012 and those
presented in this document are not met. Similarly, a formal verification might not be possible if the legality rules are
not met and may be unsound if data-flow errors are present.

1.4.1 Further Details on Formal Verification

Many Ada constructs have dynamic semantics which include a requirement that some error condition must or may1 be
checked, and some exception must or may1 be raised, if the error is detected (see Ada 2012 RM 1.1.5(5-8)). For exam-
ple, evaluating the name of an array component includes a check that each index value belongs to the corresponding
index range of the array (see Ada 2012 RM 4.1.1(7)).

For every such run-time check a corresponding obligation to prove that the error condition cannot be true is introduced.
In particular, this rule applies to the run-time checks associated with any assertion (see Ada 2012 RM (11.4.2)); the
one exception to this rule is pragma Assume (see Proof Pragmas).

In addition, the generation of verification conditions is unaffected by the suppression of checks (e.g., via pragma
Suppress) or the disabling of assertions (e.g., via pragma Assertion_Policy). In other words, suppressing
or disabling a check does not prevent generation of its associated verification conditions. Similarly, the verification

1 In the case of some bounded errors, performing a check (and raising an exception if the check fails) is permitted but not required.

conditions generated to ensure the absence of numeric overflow for operations of a floating point type T are unaffected
by the value of T’Machine_Overflows.

All such generated verification conditions must be discharged before the formal program verification phase may be
considered to be complete.

A SPARK 2014 implementation has the option of treating any construct which would otherwise generate an unsat-
isfiable verification condition as illegal, even if the construct will never be executed. For example, a SPARK 2014
implementation might reject the declaration

X : Positive := 0;

in almost any context. [Roughly speaking, if it can be determined statically that a runtime check associated with
some construct will inevitably fail whenever the construct is elaborated, then the implementation is allowed (but not
required) to reject the construct just as if the construct violated a legality rule.] For purposes of this rule, the Ada
rule that Program_Error is raised if a function “completes normally without executing a return statement” is treated as
a check associated with the end of the function body’s sequence_of_statements. [This treatment gives SPARK 2014
implementations the option of imposing simpler (but more conservative) rules to ensure that the end of a function is
not reachable. Strictly speaking, this rule gives SPARK 2014 implementations the option of rejecting many things
that should not be rejected (e.g., “pragma Assert (False);” in an unreachable arm of a case statement); reasonable
implementations will not misuse this freedom.]

Formal verification of a program may depend on properties of either the machine on which it is to be executed or
on properties of the tools used to compile and build it. For example, a program might depend on the bounds of the
type Standard.Long_Integer or on the implementation-dependent bounds chosen for the unconstrained base subtype
associated with a declaration like “type T is range 1 .. 10;”. In such cases it must be possible to provide the needed
information as explicit inputs to the formal verification process. The means by which this is accomplished is not
specified as part of the SPARK 2014 language definition.

1.5 Executable Contracts and Mathematical Numbers

Contracts, in the form of assertion expressions, are executable in Ada and SPARK 2014 and have the same semantics
in both. The new aspects and pragmas introduced by SPARK 2014 where they are assertion expressions are also
executable. Executable contracts have a number of advantages but also a few drawbacks that SPARK 2014 to a large
extent mitigates.

The Ada pragma Assertion_Policy controls whether contracts and assertion expressions in general are executed and
checked at run-time. Assertion expressions are always significant in static analysis and proof and, indeed, form the
basis of the specification against which the implementation is verified.

In summary, Ada 2012 in itself enables contract-based, dynamic verification of complex properties of a program.
SPARK 2014 enables contract-based static deductive verification of a large subset of Ada 2012.

1.5.1 The Advantages of Executable Contracts

The possibility of making assertions and contracts executable benefits the programmer in a number of ways:

• it gives the programmer a gentle introduction to the use of contracts, and encourages the development of asser-
tions and code in parallel. This is natural when both are expressed in the same programming language;

• executable assertions can be enabled and checked at run time, and this gives valuable information to the user.
When an assertion fails, it means that the code failed to obey desired properties (i.e., the code is erroneous),
or that the intent of the code has been incorrectly expressed (i.e., the assertion is erroneous) and experience
shows that both situations arise equally often. In any case, the understanding of the code and properties of the

programmer are improved. This also means that users get immediate benefits from writing additional assertions
and contracts, which greatly encourages the adoption of contract-based programming;

• contracts can be written and dynamically verified even when the contracts or the program are too complex for
automatic proof. This includes programs that explicitly manipulate pointers, for example.

Executable contracts can be less expressive than pure mathematical ones, or more difficult to write in some situations
but SPARK 2014 has features to largely mitigate these issues as described in the following subsections.

1.5.2 Mathematical Numbers and Arithmetic

In Ada numeric overflow may occur when evaluating an assertion expression this adds to the complexity of writing
contracts and specifications using them, for instance, the expression

Post => X = (Y + Z) / 100

might raise a run-time exception if Y is an integer and Y + Z > Integer’Last even if the entire expression is less then
Integer’Last.

SPARK 2014 mandates that there is an operational mode where such expressions (at least for Integer types) are treated
as mathematical and the above expression shall not overflow and will not raise an exception. In this mode the assertion
expressions may still be executable and use extended or infinite precision numbers. This mode might be acceptable if
assertion expressions are not to be executed in the delivered code or if the overhead of executing contracts is not an
issue.

If the mode is not chosen, then SPARK 2014 requires checks that have to be proven to demonstrate that an overflow
cannot occur. In the above example the checks would not be provable and the postcondition would have to be rewritten
something like:

Post => X = Integer ((Long_Integer (Y) + Long_Integer (Z)) / 100)

The way in which this operational mode is selected is tool dependent and shall be described in the user manual
accompanying the tool.

1.5.3 Libraries for Specification and Proof

It is intended that SPARK 2014 will have available libraries (as packages) of common paradigms such as sets that
might be difficult to express in executable contracts but the underlying model of the library packages will have a
more expressive specification along with axioms that will make automatic proof of (executable) contracts using these
libraries practical.

1.6 Dynamic Semantics of SPARK 2014 Programs

Every valid SPARK 2014 program is also a valid Ada 2012 program, although for a general Ada 2012 compiler,
SPARK 2014 specific aspects may have to be replaced by their equivalent pragmas. The SPARK 2014 dynamic
semantics are the same as Ada 2012 with the exception of some new aspects, pragmas and attributes which have
dynamic semantics and the mathematical arithmetic in assertion expressions. Additionally, the new dynamic semantics
only affect assertion expressions so if assertion expressions are ignored then the dynamic semantics of an Ada 2012
program are the same as a SPARK 2014 program.

SPARK 2014 programs that have failed their static analysis checks can still be valid Ada 2012 programs. An incorrect
SPARK 2014 program with, say, flow analysis anomalies or undischarged verification conditions can still be executed
as long as the Ada compiler in question finds nothing objectionable. What one gives up in this case is the formal

analysis of the program, such as proof of absence of run-time errors or the static checks performed by flow analysis
such as the proof that all variables are initialized before use.

SPARK 2014 may make use of certain aspects, attributes and pragmas which are not defined in the Ada 2012 reference
manual. Ada 2012 explicitly permits implementations to provide implementation-defined aspects, attributes and prag-
mas. If a SPARK 2014 program uses one of these aspects (e.g., Global), or attributes (e.g., Update) then it can only
be compiled and executed by an implementation which supports the construct in a way consistent with the definition
given here in the SPARK 2014 reference manual.

If the equivalent pragmas are used instead of the implementation-defined aspects and if the use of implementation-
defined attributes is avoided, then a SPARK 2014 program may be compiled and executed by any Ada implementation
(whether or not it recognizes the SPARK 2014 pragmas). Ada specifies that unrecognized pragmas are ignored: an Ada
compiler that ignores the pragma is correctly implementing the dynamic semantics of SPARK 2014 and the SPARK
2014 tools will still be able to undertake all their static checks and proofs. If an Ada compiler defines a pragma with
the same name as a SPARK 2014 specific pragma but has different semantics, then the compilation or execution of the
program may fail.

1.7 Main Program

There is no aspect or pragma in SPARK 2014 indicating that a subprogram is a main program. Instead it is expected
that any implementation of SPARK 2014 will have its own mechanism to allow the tools to identify the main program
(albeit not within the language itself).

1.8 SPARK 2014 Strategic Requirements

The following requirements give the principal goals to be met by SPARK 2014. Some are expanded in subsequent
sections within this chapter.

• The SPARK 2014 language subset shall embody the largest subset of Ada 2012 to which it is currently practical
to apply automatic formal verification, in line with the goals below. However, future advances in verification
research and computing power may allow for expansion of the language and the forms of verification available.
See section Principal Language Restrictions for further details.

• The use of Ada 2012 preconditions, postconditions and other assertions dictates that SPARK 2014 shall have
executable semantics for assertion expressions. Such expressions may be executed, proven or both. To avoid
having to consider potential numeric overflows when defining an assertion expression SPARK 2014 mandates a
mode whereby extended or infinite integer arithmetic is supported for assertion expressions. The way in which
this mode is selected is tool dependent and shall be described in the user guide for the tool. If this mode is not
active, verification conditions to demonstrate the absence of overflow in assertion expressions will be present.

• SPARK 2014 shall provide for mixing of verification evidence generated by formal analysis [for code written in
the SPARK 2014 subset] and evidence generated by testing or other traditional means [for code written outside
of the core SPARK 2014 language, including legacy Ada code, or code written in the SPARK 2014 subset for
which verification evidence could not be generated]. See section Combining Formal Verification and Testing for
further details. Note, however, that a core goal of is to provide a language expressive enough for the whole of
a program to be written in SPARK 2014, making it potentially entirely provable largely using automatic proof
tools.

• SPARK 2014 shall support constructive, modular development which allows contracts to be specified on the
declaration of program units and allows analysis and verification to be performed based on these contracts as
early as possible in the development lifecycle, even before the units are implemented. As units are implemented
the implementation is verified against its specification given in its contract. The contracts are specified using
SPARK 2014 specific aspects.

• A SPARK 2014 analysis tool is required to synthesize at least some of the SPARK 2014 specific aspects, used
to specify the contract of a program unit, if a contract is not explicitly specified, for instance the Global Aspects
and the Depends Aspects from the implementation of the unit if it exists. The minimum requirements are given
in Synthesis of SPARK 2014 Aspects but a particular tool may provide more precise synthesis and the synthesis
of more aspects. The synthesized aspect is used in the analysis of the unit if the aspect is not explicitly specified.
The synthesis of SPARK 2014 specific aspects facilitates different development strategies and the analysis of
pre-existing code (see section Synthesis of SPARK 2014 Aspects).

• Although a goal of SPARK 2014 is to provide a language that supports as many Ada 2012 features as practical,
there is another goal which is to support good programming practice guidelines and coding standards applicable
to certain domains or standards. This goal is met either by standard Ada Restrictions and Profile pragmas, or
via existing tools (e.g., pragma Restriction_Warnings in GNAT, or the coding standard checker gnatcheck).

• SPARK 2014 shall allow the mixing of code written in the SPARK 2014 subset with code written in full Ada
2012. See section In and Out of SPARK 2014 for further details.

• Many systems are not written in a single programming language. SPARK 2014 shall support the development,
analysis and verification of programs which are only partly in SPARK 2014, with other parts in another language,
for instance, C. SPARK 2014 specific aspects manually specified at unit level will form the boundary interface
between the SPARK 2014 and other parts of the program.

• SPARK 2014 shall support entities which do not affect the functionality of a program but may be used in the
test and verification of a program. See section Adding Code for Specification and Verification.

• SPARK 2014 shall provide counterparts of all language features and analysis modes provided in SPARK
83/95/2005, unless it has been identified that customers do not find them useful.

• Enhanced support for specifying and verifying properties of secure systems shall be provided (over what is
available in SPARK 2005). [The features to provide this enhanced support are not yet fully defined and will not
be implemented until after release 1 of the SPARK 2014 tools.]

• SPARK 2014 shall support the analysis of external communication channels, which are typically implemented
using volatile variables. See section External State for further details.

• The language shall offer an unambiguous semantics. In Ada terminology, this means that all erroneous and
unspecified behaviour shall be eliminated either by direct exclusion or by adding rules which indirectly guarantee
that some implementation-dependent choice, other than the fundamental data types and constants, cannot effect
the externally-visible behaviour of the program. For example, Ada does not specify the order in which actual
parameters are evaluated as part of a subprogram call. As a result of the SPARK rules which prevent the
evaluation of an expression from having side effects, two implementations might choose different parameter
evaluation orders for a given call but this difference won’t have any observable effect. [This means undefined,
implementation-defined and partially-specified features may be outside of SPARK 2014 by definition, though
their use could be allowed and a warning or error generated for the user. See section In and Out of SPARK 2014
for further details.] Where the possibility of ambiguity still exists it is noted, namely the reading of an invalid
value from an external source and the use of Unchecked_Conversion, otherwise There are no known ambiguities
in the language presented in this document.

• SPARK 2014 shall support provision of “formal analysis” as defined by DO-333, which states “an analysis
method can only be regarded as formal analysis if its determination of a property is sound. Sound analysis
means that the method never asserts a property to be true when it is not true.” A language with unambiguous
semantics is required to achieve this and additionally any other language feature that for which sound analysis
is difficult or impractical will be eliminated or its use constrained to meet this goal. See section Principal
Language Restrictions for further details.

1.9 Explaining the Strategic Requirements

The following sections provide expanded detail on the main strategic requirements.

1.9.1 Principal Language Restrictions

To facilitate formal analyses and verification, SPARK 2014 enforces a number of global restrictions to Ada 2012.
While these are covered in more detail in the remaining chapters of this document, the most notable restrictions are:

• Restrictions on the use of access types and values, similar in some ways to the ownership model of the program-
ming language Rust.

• All expressions (including function calls) are free of side-effects.

• Aliasing of names is not permitted in general but the renaming of entities is permitted as there is a static rela-
tionship between the two names. In analysis all names introduced by a renaming declaration are replaced by
the name of the renamed entity. This replacement is applied recursively when there are multiple renames of an
entity.

• Backward goto statements are not permitted.

• The use of controlled types is not currently permitted.

• Tasks and protected objects are permitted only if the Ravenscar profile (or the Extended Ravenscar profile) is
specified.

• Raising and handling of exceptions is not currently permitted (exceptions can be included in a program but proof
must be used to show that they cannot be raised).

1.9.2 Combining Formal Verification and Testing

There are common reasons for combining formal verification on some part of a codebase and testing on the rest of the
codebase:

1. Formal verification is only applicable to a part of the codebase. For example, it might not be possible to apply
the necessary formal verification to Ada code that is not in SPARK 2014.

2. Formal verification only gives strong enough results on a part of the codebase. This might be because the desired
properties cannot be expressed formally, or because proof of these desired properties cannot be sufficiently
automated.

3. Formal verification might be only cost-effective on a part of the codebase. (And it may be more cost-effective
than testing on this part of the codebase.)

Since the combination of formal verification and testing cannot guarantee the same level of assurance as when formal
verification alone is used, the goal when combining formal verification and testing is to reach a level of confidence at
least as good as the level reached by testing alone.

Mixing of formal verification and testing requires consideration of at least the following three issues.

Demarcating the Boundary between Formally Verified and Tested Code

Contracts on subprograms provide a natural boundary for this combination. If a subprogram is proved to respect its
contract, it should be possible to call it from a tested subprogram. Conversely, formal verification of a subprogram
(including absence of run-time errors and contract checking) depends on called subprograms respecting their own
contracts, whether these are verified by formal verification or testing.

In cases where the code to be tested is not SPARK 2014, then additional information may be provided in the code –
possibly at the boundary – to indicate this (see section In and Out of SPARK 2014 for further details).

Checks to be Performed at the Boundary

When a tested subprogram T calls a proved subprogram P, then the precondition of P must hold. Assurance that this is
true is generated by executing the assertion that P’s precondition holds during the testing of T.

Similarly, when a proved subprogram P calls a tested subprogram T, formal verification will have shown that the
precondition of T holds. Hence, testing of T must show that the postcondition of T holds by executing the correspond-
ing assertion. This is a necessary but not necessarily sufficient condition. Dynamically, there is no check that the
subprogram has not updated entities not included in the postcondition.

In general, formal verification works by imposing requirements on the callers of proved code, and these requirements
should be shown to hold even when formal verification and testing are combined. Any tool set that proposes a com-
bination of formal verification and testing for SPARK 2014 should provide a detailed process for doing so, including
any necessary additional testing of proof assumptions.

Conditions that Apply to the Tested Code

The unit of test and formal verification is a subprogram (the sequence of statements of a package body is regarded as
a subprogram). There are several sources of conditions that apply to a tested subprogram:

• The need to validate a partial proof of a subprogram that calls a subprogram that is not itself proven but is only
tested.

• The need to validate the assumptions on which a proof of a subprogram is based when a tested subprogram calls
it.

• A tested subprogram may be flow analyzed if it is in SPARK 2014 even if it is not formally proven.

• A tested subprogram may have properties that are formally proven.

Flow analysis of a non-proven subprogram

If a subprogram is in SPARK 2014 but is too complex or difficult to prove formally then it still may be flow analyzed
which is a fast and efficient process. Flow analysis in the absence of proof has a number of significant benefits as the
subprogram implementation is

• checked that it is in SPARK 2014;

• checked that there are no uses of uninitialized variables;

• checked that there are no ineffective statements; and

• checked against its specified Global and Depends aspects if they exist or alternatively facilitating their synthesis.
This is important because this automatically checks one of the conditions on tested subprograms which are called
from proven code (see Conditions on a tested subprogram which is called from a partially proven subprogram).

Proving properties of a tested subprogram

A tested subprogram which is in SPARK may have properties, such as the absence of run-time exceptions proven even
though the full functionality of the subprogram is tested rather than proven. The extent to which proof is performed is
controlled using pragma Assume (see Proof Pragmas).

To perform proof of absence of run-time exceptions but not the postcondition of a subprogram a pragma Assume
stating the postcondition is placed immediately prior to each exit point from the subprogram (each return statement or
the end of the body). Parts of the postcondition may be proved using a similar scheme.

If the proof of absence of one or more run-time exceptions is not proven automatically or takes too long to prove then
pragma Assume may be used to suppress the proof of a particular check.

Pragma Assume informs the proof system that the assumed expression is always True and so the prover does not
attempt to prove it. In general pragma Assume should be used with caution but it acts as a pragma Assert when the
subprogram code is run. Therefore, in a subprogram that is tested it acts as an extra test.

Conditions on a tested subprogram which is called from a partially proven subprogram

When a subprogram which is to be partially proven calls a tested (but not proven subprogram) then the following
conditions must be met by the called subprogram:

• if it is in SPARK 2014 then it should be flow analyzed to demonstrate that the implementation satisfies the
Global aspect and Depends aspects pf the subprogram if they are given, otherwise conservative approximations
will be synthesized from the implementation of the subprogram;

• if it is not in SPARK 2014 then at least a Global aspect shall be specified for the subprogram. The Global aspect
must truthfully represent the global variables and state abstractions known to the SPARK 2014 program (not
just the calling subprogram) and specify whether each of the global items are an Input, an Output or is In_Out.
The onus is on the user to show that the Global (and Depends) aspect is correct as the SPARK 2014 tools do not
check this because the subprogram is not in SPARK 2014;

• it shall not update any variable or state abstraction known to the SPARK 2014 program, directly or indirectly,
apart from through an actual parameter of the subprogram or a global item listed in its Global aspect. Updating
a variable or state abstraction through an object of an access type or through a subprogram call is an indirect
update. Here again, if the subprogram is not in SPARK 2014 and cannot be flow analyzed, the onus is on the
user to show this condition is met; and

• if it has a postcondition sufficient testing to demonstrate to a high-level of confidence that the postcondition is
always True must be performed.

A tool set may provide further tools to demonstrate that the Global aspects are satisfied by a non-SPARK 2014 sub-
program and possibly partially check the post condition.

Conditions on a tested subprogram which is calls a proven subprogram

A tested (but not proven) subprogram which calls a proven subprogram must satisfy the following conditions:

• if it is in SPARK 2014 then flow analysis of the tested subprogram should be performed. This demonstrates that
all variables and state abstractions which are inputs to the called subprogram are initialized and that the outputs
of the called subprogram are used;

• if it is not in SPARK 2014 the user must ensure that all variables and state abstractions that are inputs to the
called subprogram are initialized prior to calling the subprogram. This is the responsibility of the user as the
SPARK 2014 tools cannot check this as the subprogram is not in SPARK 2014; and

• if it is in SPARK 2014 it may be possible to prove that the precondition of the called subprogram is always
satisfied even if no other proof is undertaken, otherwise sufficient testing must be performed by the user to
demonstrate to a high-level of confidence that the precondition of the subprogram will always be True when the
subprogram is called. The proof of the called subprogram relies on its precondition evaluating to True.

1.9.3 Adding Code for Specification and Verification

Often extra entities, such as types, variables and functions may be required only for test and verification purposes.
Such entities are termed ghost entities and their use is restricted so that they do not affect the functionality of the
program. Complete removal of ghost entities has no functional impact on the program.

SPARK 2014 supports ghost subprograms, types, objects, and packages. Ghost subprograms may be executable or
non-executable. Non-executable ghost subprograms have no implementation and can be used for the purposes of
formal verification only. Such functions may have their specification defined within an external proof tool to facilitate
formal verification. This specification is outside of the SPARK 2014 language and toolset and therefore cannot be
checked by the tools. An incorrect definition of function may lead to an unsound proof which is of no use. Ideally any
definition will be checked for soundness by the external proof tools.

If the postcondition of a function, F, can be specified in SPARK 2014 as F’Result = E, then the postcondition may be
recast as the expression of an expression_function_declaration as shown below:

function F (V : T) return T1 is (E);

The default postcondition of an expression function is F’Result = E making E both the implementation and the ex-
pression defining the postcondition of the function. This is useful, particularly for ghost functions, as the expression
which acts as the postcondition might not give the most efficient implementation but if the function is a ghost function
this might not matter.

1.9.4 Synthesis of SPARK 2014 Aspects

SPARK 2014 supports a constructive analysis style where all program units require contracts specified by SPARK
2014 specific aspects to be provided on their declarations. Under this constructive analysis style, these contracts have
to be designed and added at an early stage to assist modular analysis and verification, and then maintained by the
user as a program evolves. When the body of a unit is implemented (or modified) it is checked that it conforms to
its contract. However, it is mandated that a SPARK 2014 analysis tool shall be able to synthesize a conservative
approximation of at least a minimum of SPARK 2014 specific aspects from the source code of a unit.

Synthesis of SPARK 2014 aspects is fundamental to the analysis of pre-existing code where no SPARK 2014 specific
aspects are provided.

A SPARK 2014 analysis tool is required to be capable of synthesizing at least a basic, conservative Global Aspects,
Depends Aspects, Refined_Global Aspects, Refined_Depends Aspects, Abstract_State Aspects, Refined_State Aspects,
Initializes Aspects and Default_Initial_Condition Aspects from either the implementation code or from other SPARK
2014 aspects as follows:

• if subprogram has no Depends aspect but has a Global aspect, an approximation of the Depends aspect is
obtained by constructing a dependency_relation by assuming that each output is dependent on every
input, where outputs are all of the parameters of mode out and in-out, plus all the global_items that have
a mode_selector of Output or In_Out, and inputs are all the parameters of mode in and in-out, plus all the
global_items that have a mode_selector of Input or In_Out. This is a conservative approximation;

• if a subprogram has a Depends aspect but no Global aspect then the Global aspect is determined by taking
each input of the dependency_relation which is not also an output and adding this to the Global
aspect with a mode_selector of Input. Each output of the dependency_relation which is not also
an input is added to the Global aspect with a mode_selector of Output. Finally, any other input and
output of the dependency_relation which has not been added to the Global aspect is added with a
mode_selector of In_Out;

• if neither a Global or Depends aspect is present, then first the globals of a subprogram are determined from
an analysis of the entire program code. This is achieved in some tool dependent way. The globals of each
subprogram determined from this analysis is used to synthesize the Global aspects and then from these the
Depends aspects are synthesized as described above;

• if an Abstract_State is specified on a package and a Refined_State aspect is specified in its body, then Re-
fined_Global and Refined_Depends aspects shall be synthesized in the same way as described above. From the
Refined_Global, Refined_Depends and Refined_State aspects the abstract Global and Depends shall be synthe-
sized if they are not present.

• if no abstract state aspect is specified on a package but it contains hidden state, then each variable that makes up
the hidden state has a Abstract_State synthesized to represent it. At least a crude approximation of a single state
abstraction for every variable shall be provided. A Refined_State aspect shall be synthesized which shows the
constituents of each state.

• if no Default_Initial_Condition is specified for a private type declaration, then the synthesized value of this
aspect of the type is determined by whether the full view of the private type defines full default initialization
(see SPARK RM 3.1). If it does, then the synthesized aspect value is a static Boolean_expression having
the value True; if it does not, then the synthesized aspect value is a null literal.

The syntheses described above do not include all of the SPARK 2014 aspects and nor do the syntheses cover all facets
of the aspects. In complex programs where extra or more precise aspects are required they might have to be specified
manually.

An analysis tool may provide the synthesis of more aspects and more precise synthesis of the mandatory ones.

Some use cases where the synthesis of aspects is likely to be required are:

• Code has been developed as SPARK 2014 but not all the aspects are included on all subprograms by the de-
veloper. This is regarded as generative analysis, where the code was written with the intention that it would be
analyzed.

• Code is in maintenance phase, it might or might not have all of the SPARK 2014 specific aspects. If there are
aspects missing they are automatically for analysis purposes when possible. This is also regarded as generative
analysis.

• Legacy code is analyzed which has no or incomplete SPARK 2014 specific aspects This is regarded as retro-
spective analysis, where code is being analyzed that was not originally written with analysis in mind. Legacy
code will typically have a mix of SPARK 2014 and non-SPARK 2014 code (and so there is an interaction with
the detail presented in section In and Out of SPARK 2014). This leads to two additional process steps that might
be necessary:

– An automatic identification of what code is in SPARK 2014 and what is not.

– Manual definition of the boundary between the SPARK 2014 and non-SPARK 2014 code by explicitly
specifying accurate and truthful contracts using SPARK 2014 specific aspects on the declarations of non-
SPARK 2014 program units.

1.9.5 In and Out of SPARK 2014

There are various reasons why it may be necessary to combine SPARK 2014 and non-SPARK 2014 in the same
program, such as (though not limited to):

• Use of language features that are not amenable to formal verification (and hence where formal verification will
be mixed with testing).

• Use of libraries that are not written in SPARK 2014.

• Need to analyze legacy code that was not developed as SPARK 2014.

Hence, it must be possible within the language to indicate what parts are (intended to be) in and what parts are
(intended to be) out, of SPARK 2014.

The default is to assume none of the program text is in SPARK 2014, although this can be overridden. A new aspect
SPARK_Mode is provided, which may be applied to a unit declaration or a unit body, to indicate when a unit declaration
or just its body is in SPARK and should be analyzed. If just the body is not in SPARK 2014 a SPARK 2014 compatible
contract may be supplied on the declaration which facilitates the analysis of units which use the declaration. The tools
cannot check that the the given contract is met by the body as it is not analyzed. The burden falls on the user to ensure
that the contract represents the behavior of the body as seen by the SPARK 2014 parts of the program and – if this is
not the case – the assumptions on which the analysis of the SPARK 2014 code relies may be invalidated.

In general a definition may be in SPARK 2014 but its completion need not be.

A finer grain of mixing SPARK 2014 and Ada code is also possible by justifying certain warnings and errors. Warnings
may be justified at a project, library unit, unit, and individual warning level. Errors may be justifiable at the individual
error level or be unsuppressible errors.

Examples of this are:

• A declaration occurring immediately within a unit might not be in, or might depend on features not in, the
SPARK 2014 subset. The declaration might generate a warning or an error which may be justifiable. This does
not necessarily render the whole of the program unit not in SPARK 2014. If the declaration generates a warning,
or if the error is justified, then the unit is considered to be in SPARK 2014 except for the errant declaration.

• It is the use of the entity declared by the errant declaration, for instance a call of a subprogram or the denoting
of an object in an expression (generally within the statements of a body) that will result in an unsupressible
error. The body of a unit causing the unsuppressible message (or declaration if this is the cause) will need to be
marked as not in SPARK 2014 to prevent its future analysis.

Hence, SPARK 2014 and non-SPARK 2014 code may mix at a fine level of granularity. The following combinations
may be typical:

• Package (or generic package) specification in SPARK 2014. Package body entirely not in SPARK 2014.

• Visible part of package (or generic package) specification in SPARK 2014. Private part and body not in SPARK
2014.

• Package specification in SPARK 2014. Package body almost entirely in SPARK 2014, with a small number of
subprogram bodies not in SPARK 2014.

• Package specification in SPARK 2014, with all bodies imported from another language.

• Package specification contains a mixture of declarations which are in SPARK 2014 and not in SPARK 2014. A
client of the package may be in SPARK 2014 if it only references SPARK 2014 declarations; the presence of
non-SPARK 2014 constructs in a referenced package specification does not by itself mean that a client is not in
SPARK 2014.

Such patterns are intended to allow for mixed-language programming, mixed-verification using different analysis
tools, and mixed-verification between formal verification and more traditional testing. A condition for safely combin-
ing the results of formal verification with other verification results is that formal verification tools explicitly list the
assumptions that were made to produce their results. The proof of a property may depend on the assumption of other
user-specified properties (for example, preconditions and postconditions) or implicit assumptions associated with the
foundation and hypothesis on which the formal verification relies (for example, initialization of inputs and outputs, or
non-aliasing between parameters). When a complete program is formally verified, these assumptions are discharged
by the proof tools, based on the global guarantees provided by the strict adherence to a given language subset. No
such guarantees are available when only part of a program is formally verified. Thus, combining these results with
other verification results depends on the verification of global and local assumptions made during formal verification.

Full details on the SPARK_Mode aspect are given in the SPARK Toolset User’s Guide (Identifying SPARK Code).

1.9.6 External State

A variable or a state abstraction may be specified as external state to indicate that it represents an external communi-
cation channel, for instance, to a device or another subsystem. An external variable may be specified as volatile. A
volatile state need not have the same value between two reads without an intervening update. Similarly an update of
a volatile variable might not have any effect on the internal operation of a program, its only effects are external to the
program. These properties require special treatment of volatile variables during flow analysis and formal verification.

SPARK 2014 follows the Ada convention that a read of a volatile variable may have an external effect as well as
reading the value of the variable. SPARK 2014 extends this notion to cover updates of a volatile variable such that an

update of a volatile variable may also have some other observable effect. SPARK 2014 further extends these principles
to apply to state abstractions. (see section External State).

CHAPTER

TWO

LEXICAL ELEMENTS

SPARK 2014 supports the full Ada 2012 language with respect to lexical elements. Users may choose to apply
restrictions to simplify the use of wide character sets and strings.

2.1 Character Set

No extensions or restrictions.

2.2 Lexical Elements, Separators, and Delimiters

No extensions or restrictions.

2.3 Identifiers

No extensions or restrictions.

2.4 Numeric Literals

No extensions or restrictions.

2.5 Character Literals

No extensions or restrictions.

2.6 String Literals

No extensions or restrictions.

2.7 Comments

No extensions or restrictions.

27

2.8 Pragmas

SPARK 2014 introduces a number of new pragmas that facilitate program verification. These are described in the
relevant sections of this document.

2.9 Reserved Words

No extensions or restrictions.

CHAPTER

THREE

DECLARATIONS AND TYPES

No extensions or restrictions.

3.1 Declarations

The view of an entity is in SPARK 2014 if and only if the corresponding declaration is in SPARK 2014. When clear
from the context, we say entity instead of using the more formal term view of an entity. If the initial declaration of an
entity (e.g., a subprogram, a private type, or a deferred constant) requires a completion, it is possible that the initial
declaration might be in SPARK 2014 (and therefore can be referenced in SPARK 2014 code) even if the completion is
not in SPARK 2014. [This distinction between views is much less important in “pure” SPARK 2014 than in the case
where SPARK_Mode is used (as described in the SPARK Toolset User’s Guide) to allow mixing of SPARK 2014 and
non-SPARK 2014 code.]

A type is said to define full default initialization if it is

• a scalar type with a specified Default_Value; or

• an access type; or

• an array-of-scalar type with a specified Default_Component_Value; or

• an array type whose element type defines default initialization; or

• a record type, type extension, or protected type each of whose component_declarations either includes
a default_expression or has a type which defines full default initialization and, in the case of a type
extension, is an extension of a type which defines full default initialization; or

• a task type; or

• a private type whose Default_Initial_Condition aspect is specified to be a Boolean_expression.

[The discriminants of a discriminated type play no role in determining whether the type defines full default initializa-
tion.]

3.2 Types and Subtypes

No extensions or restrictions.

3.2.1 Type Declarations

No extensions or restrictions.

29

3.2.2 Subtype Declarations

A constraint in SPARK 2014 cannot be defined using variable expressions except when it is the range of a
loop_parameter_specification. Dynamic subtypes are permitted but they must be defined using constants
whose values may be derived from expressions containing variables. Note that a formal parameter of a subprogram of
mode in is a constant and may be used in defining a constraint. This restriction gives an explicit constant which can
be referenced in analysis and proof.

An expression with a variable input reads a variable or calls a function which (directly or indirectly) reads a variable.

Legality Rules

1. [A constraint, excluding the range of a loop_parameter_specification, shall not be defined
using an expression with a variable input; see Expressions for the statement of this rule.]

3.2.3 Classification of Operations

No restrictions or extensions.

3.2.4 Subtype Predicates

Static predicates and dynamic predicates are both in SPARK 2014, but subject to some restrictions.

Legality Rules

1. [A Dynamic_Predicate expression shall not have a variable input; see Expressions for the statement of this rule.]

2. If a Dynamic_Predicate applies to the subtype of a composite object, then a verification condition is generated
to ensure that the object satisfies its predicate immediately after any subcomponent or slice of the given object
is either

• the target of an assignment statement or;

• an actual parameter of mode out or in out in a call.

[These verification conditions do not correspond to any run-time check. Roughly speaking, if object X is
of subtype S, then verification conditions are generated as if an implicitly generated

pragma Assert (X in S);

were present immediately after any assignment statement or call which updates a subcomponent (or slice)
of X.]

[No such proof obligations are generated for assignments to subcomponents of the result object of an
aggregate, an extension aggregate, or an update expression (see section Update Expressions). These are
assignment operations but not assignment statements.]

3. A Static_Predicate or Dynamic_Predicate shall not apply to an effectively volatile type.

Verification Rules

4. A Dynamic_Predicate expression shall always terminate.

3.3 Objects and Named Numbers

3.3.1 Object Declarations

The Boolean aspect Constant_After_Elaboration may be specified as part of the declaration of a library-level vari-
able. If the aspect is directly specified, the aspect_definition, if any, shall be a static [Boolean] expression. [As with
most Boolean-valued aspects,] the aspect defaults to False if unspecified and to True if it is specified without an
aspect_definition.

A variable whose Constant_After_Elaboration aspect is True, or any part thereof, is said to be constant after elabo-
ration. [The Constant_After_Elaboration aspect indicates that the variable will not be modified after execution of the
main subprogram begins (see section Tasks and Synchronization).]

A stand-alone constant is a constant with variable inputs if its initialization expression depends on:

• A variable or parameter; or

• Another constant with variable inputs

Otherwise, a stand-alone constant is a constant without variable inputs.

Legality Rules

1. [The borrowed name of the expression of an object declaration defining a borrowing operation shall not have
a variable input, except for a single occurrence of the root object of the expression; see Expressions for the
statement of this rule.]

Verification Rules

2. Constants without variable inputs shall not be denoted in Global, Depends, Initializes or Refined_State aspect
specifications. [Two elaborations of such a constant declaration will always yield equal initialization expression
values.]

Examples

A : constant Integer := 12;
-- No variable inputs

B : constant Integer := F (12, A);
-- No variable inputs if F is a function without global inputs (although
-- it could have global proof inputs)

C : constant Integer := Param + Var;
-- Constant with variable inputs

3.3.2 Number Declarations

No extensions or restrictions.

3.4 Derived Types and Classes

The following rules apply to derived types in SPARK 2014.

Legality Rules

1. A private type that is not visibly tagged but whose full view is tagged cannot be derived.

[The rationale for this rule is that, otherwise, given that visible operations on this type cannot have class-wide precon-
ditions and postconditions, it is impossible to check the verification rules associated to overridding operations on the
derived type.]

3.5 Scalar Types

The Ada RM states that, in the case of a fixed point type declaration, “The base range of the type does not necessarily
include the specified bounds themselves”. A fixed point type for which this inclusion does not hold is not in SPARK
2014.

For example, given

type T is delta 1.0 range -(2.0 ** 31) .. (2.0 ** 31);

it might be the case that (2.0 ** 31) is greater than T’Base’Last. If this is the case, then the type T is not in SPARK
2014.

[This rule applies even in the case where the bounds specified in the real_range_specification of an
ordinary_fixed_point_definition define a null range.]

3.6 Array Types

No extensions or restrictions.

3.7 Discriminants

The following rules apply to discriminants in SPARK 2014.

Legality Rules

1. The type of a discriminant_specification shall be discrete.

2. A discriminant_specification shall not occur as part of a derived type declaration.

3. [The default_expression of a discriminant_specification shall not have a variable input; see
Expressions for the statement of this rule.]

3.8 Record Types

Default initialization expressions must not have variable inputs in SPARK 2014.

Legality Rules

1. [The default_expression of a component_declaration shall not have any variable inputs, nor
shall it contain a name denoting the current instance of the enclosing type; see Expressions for the statement of
this rule.]

[The rule in this section applies to any component_declaration; this includes the case of a
component_declaration which is a protected_element_declaration. In other words, this rule also
applies to components of a protected type.]

3.9 Tagged Types and Type Extensions

Legality Rules

1. No construct shall introduce a semantic dependence on the Ada language defined package Ada.Tags. [See Ada
RM 10.1.1 for the definition of semantic dependence. This rule implies, among other things, that any use of the
Tag attribute is not in SPARK 2014.]

2. The identifier External_Tag shall not be used as an attribute_designator.

3.9.1 Type Extensions

Legality Rules

1. A type extension shall not be declared within a subprogram body, block statement, or generic body which does
not also enclose the declaration of each of its ancestor types.

3.9.2 Dispatching Operations of Tagged Types

No extensions or restrictions.

3.9.3 Abstract Types and Subprograms

No extensions or restrictions.

3.9.4 Interface Types

No extensions or restrictions.

3.10 Access Types

In order to reduce the complexity associated with the specification and verification of a program’s behavior in the
face of pointer-related aliasing, SPARK 2014 supports only “owning” access-to-object types (described below); other
access types (including access-to-subprogram types and access discriminants) are not in SPARK 2014.

Restrictions are imposed on the use of “owning” access objects in order to ensure, roughly speaking (and using terms
that have not been defined yet), that at any given point in a program’s execution, there is a unique “owning” reference
to any given allocated object. The “owner” of that allocated object is the object containing that “owning” reference. If
an object’s owner is itself an allocated object then it too has an owner; this chain of ownership will always eventually
lead to a (single) nonallocated object.

Ownership of an allocated object may change over time (e.g., if an allocated object is removed from one list and then
appended onto another) but at any given time the object has only one owner. Similarly, at any given time there is only
one access path (i.e., the name of a “declared” (as opposed to allocated) object followed by a sequence of component
selections, array indexings, and access value dereferences) which yields a given (non-null) access value. At least that’s
the general idea - this paragraph oversimplifies some things (e.g., see “borrowing” and “observing” below - these
operations extend SPARK’s existing “single writer, multiple reader” treatment of concurrency and of aliasing to apply
to allocated objects), but hopefully it provides useful intuition.

This means that data structures which depend on having multiple outstanding references to a given object cannot be
expressed in the usual way. For example, a doubly-linked list (unlike a singly-linked list) typically requires being

able to refer to a list element both from its predecessor element and from its successor element; that would violate the
“single owner” rule. Such data structures can still be expressed in SPARK 2014 (e.g., by storing access values in an
array and then using array indices instead of access values), but such data structures may be harder to reason about.

The single-owner model statically prevents storage leaks because a storage leak requires either an object with no
outstanding pointers to it or an “orphaned” cyclic data structure (i.e., a set of multiple allocated objects each reachable
from any other but with no references to any of those objects from any object outside of the set).

For purposes of flow analysis (e.g., Global and Depends aspect specifications), a read or write of some
part of an allocated object is treated like a read or write of the owner of that allocated object. For
example, an assignment to Some_Standalone_Variable.Some_Component.all is treated like an assignment to
Some_Standalone_Variable.Some_Component. Similarly, there is no explicit mention of anything related to access
types in a Refined_State or Initializes aspect specification; allocated objects are treated like components of their own-
ers and, like components, they are not mentioned in these contexts. This approach has the benefit that the same
SPARK 2014 language rules which prevent unsafe concurrent access to non-allocated variables also provide the same
safeguards for allocated objects.

For purposes of determining global inputs and outputs, both memory allocation and deallocation are considered to
reference an external state abstraction SPARK.Heap.Dynamic_Memory that has property Async_Writers. In partic-
ular, each occurence of an allocator is considered to reference this state abstraction as an input. [In other words,
an allocator can be treated like a call to a volatile function which takes the allocated object as an actual parameter
and references the mentioned state abstraction as an Input global.] Similarly, instances of the predefined generic
Ada.Unchecked_Deallocation procedure behave as if the generic procedure would be annotated with the following
contract:

procedure Ada.Unchecked_Deallocation (X : in out Name) with
Depends => (SPARK.Heap.Dynamic_Memory => SPARK.Heap.Dynamic_Memory,

X => null, null => X);

so each call to an instance of this procedure is also considered to reference the mentioned state abstraction.

The rules which accomplish all of this are described below.

Static Semantics

Only the following (named or anonymous) access types are in SPARK 2014:

• a (named) pool-specific access type,

• the anonymous type of a stand-alone object (including a generic formal in mode object) which is not Part_Of a
protected object,

• the anonymous type of an object renaming declaration, or

• an anonymous type occurring as a parameter type, or as a function result type of a traversal function (defined
below).

[Redundant: For example, named general access types, access discriminants, and access-to-subprogram types are not
in SPARK 2014.]

Such a type is said to be an owning access type when it is an access-to-variable type, and an observing access type
when it is an access-to-constant type.

User-defined storage pools are not in SPARK 2014; more specifically, the package System.Storage_Pools, Stor-
age_Pool aspect specifications, and the Storage_Pool attribute are not in SPARK 2014.

A composite type is also said to be an owning type if it has an access subcomponent [redundant: , regardless of whether
the subcomponent’s type is access-to-constant or access-to-variable].

Privacy is ignored in determining whether a type is an owning or observing type. A generic formal private type is not
an owning type [redundant: , although the corresponding actual parameter in an instance of the generic might be an
owning type]. A tagged type shall not be an owning type. A composite type which is not a by-reference type shall not

be an owning type. [Redundant: The requirement than an owning type must be a by-reference type is imposed in part
in order to avoid problematic scenarios involving a parameter of an owning type passed by value in the case where the
call propagates an exception instead of returning normally. SPARK programs are not supposed to raise exceptions, but
this rule still seems desirable.]

An object of an owning access type is said to be an owning object; an object of an observing access type is said to be
an observing object. An object that is a part of an object of an owning or observing type, or that is part of a dereference
of an access value is said to be a managed object.

In the case of a constant object of an access-to-variable type where the object is not a stand-alone object and not a
formal parameter (e.g., if the object is a subcomponent of an enclosing object or is designated by an access value), a
dereference of the object provides a constant view of the designated object [redundant: , despite the fact that the object
is of an access-to-variable type. This is because a subcomponent of a constant is itself a constant and a dereference of
a subcomponent is treated, for purposes of analysis, like a subcomponent].

A function is said to be a traversal function if the result type of the function is an anonymous access-to-object type,
the function has at least one formal parameter, and the function’s first parameter is of an access type [redundant: ,
either named or anonymous]. The traversal function is said to be an observing traversal function if the result type
of the function is an anonymous access-to-constant type, and a borrowing traversal function if the result type of the
function is an anonymous access-to-variable type. The first parameter of the function is called the traversed parameter.
[Redundant: We will see later that if a traversal function yields a non-null result, then that result is “reachable” from
the traversed parameter in the sense that it could be obtained from the traversed parameter by some sequence of
component selections, array indexing operations, and access value dereferences.]

The root object of a name that denotes an object is defined as follows:

• if the name is a component_selection, an indexed_component, a slice, or a dereference (implicit or explicit) then
it is the root object of the prefix of the name;

• if the name denotes a call on a traversal function, then it is the root object of the name denoting the actual
traversed parameter;

• if the name denotes an object renaming, the root object is the root object of the renamed name;

• if the name is a function_call, and the function called is not a traversal function, the root object is the result
object of the call;

• if the name is a qualified_expression or a type conversion, the root object is the root object of the operand of the
name;

• otherwise, the name statically denotes an object and the root object is the statically denoted object.

Two names are said to be potential aliases when:

• both names statically denote the same entity [redundant: , which might be an object renaming declaration]; or

• both names are selected components, they have the same selector, and their prefixes are potential aliases; or

• both names are indexed components, their prefixes are potential aliases, and if all indexing expressions are static
then each pair of corresponding indexing expressions have the same value; or

• both names are slices, their prefixes are potential aliases, and if both discrete_ranges are static ranges then the
two discrete_ranges overlap; or

• one name is a slice and the other is an indexed component, their prefixes are potential aliases, and if both the
discrete_range and the indexing expression are static then the value of the indexing expression is within the
range; or

• one name is a slice whose prefix is a potential alias of the other name and the other name is neither a slice nor
an indexed component; or

• both names are dereferences and their prefixes are potential aliases; or

• at least one name denotes an object renaming declaration, and the other is a potential alias with the object_name
denoting the renamed entity.

Two names N1 and N2 are said to potentially overlap if

• some prefix of N1 is a potential alias of N2 (or vice versa); or

• N1 is a call on a traversal function and the actual traversed parameter of the call potentially overlaps N2 (or vice
versa).

[Note that for a given name N which denotes an object of an access type, the names N and N.all potentially over-
lap. Access value dereferencing is treated, for purposes of this definition, like record component selection or array
indexing.]

The prefix and the name that are potential aliases are called the potentially aliased parts of the potentially overlapping
names.

A name that denotes a managed object can be in one of the following ownership states: Unrestricted, Observed,
Borrowed, or Moved.

A given name may take on different states at different points in the program. For example, within a block_statement
which declares an observer (observers have not been defined yet), a name might have a state of Observed while
having a state of Unrestricted immediately before and immediately after the block_statement. [Redundant: This is a
compile-time notion; no object-to-state mapping of any sort is maintained at runtime.]

In the Unrestricted state, no additional restrictions are imposed on the use of the name. In particular, if the name
denotes a variable of an access-to-variable type then a dereference of the name provides a variable view.

In the Observed state, the name provides a constant view (even if the named object is a variable). If it denotes an
access object then a dereference of the name provides a constant view [redundant: , even if the object is of an access-
to-variable type].

In the Moved state, the name is unusable for reading (although the name itself can be assigned to).

In the Borrowed state, the name is unusable for writing, observing and borrowing (see below).

A name that denotes a managed object has an initial ownership state of Unrestricted unless otherwise specified. Certain
constructs (described below) are said to observe, borrow, or move the value of a managed object; these may change
the ownership state (to Observed, Borrowed, or Moved respectively) of a name within a certain portion of the program
text (described below). In the first two cases (i.e. observing and borrowing), the ownership state of a name reverts to
its previous value at the end of this region of text.

The following operations observe a name that denotes a managed object and identify a corresponding observer:

• An assignment operation that is used to initialize an access object, where this target object (the observer) is a
stand-alone variable of an anonymous access-to-constant type, or a constant (including a formal parameter of a
procedure or generic formal object of mode in) of an anonymous access-to-constant type.

The source expression of the assignment shall be either a name denoting a part of a stand-alone object or of a
parameter, or a call on a traversal function whose result type is an (anonymous) access type. If the source of the
assignment is a call on a traversal function then the name being observed denotes the actual traversed parameter
of the call. Otherwise the name being observed denotes the source of the assignment.

• Inside the body of a borrowing traversal function, an assignment operation that is used to initialize an access
object, where this target object (the observer) is a stand-alone object of an anonymous access-to-variable type
[redundant: which does not include a formal parameter of a procedure or generic formal object of mode in] and
the source expression of the assignment is either directly or indirectly a name denoting a part of the traversed
parameter for the traversal function. The indirect case occurs when the source expression denotes a part of a
call to another traversal function whose argument for its own traversed parameter respects the same constraint
[redundant: of being either directly or indirectly a name denoting a part of the traversed parameter for the
traversal function]. The name being observed denotes the traversed parameter for the traversal function whose
body is considered.

• An assignment operation that is used to initialize a constant object (including a generic formal object of mode
in) of an owning composite type. The name being observed denotes the source of the assignment. The initialized
object is the observer.

• A procedure call where an actual parameter is a name denoting a managed object, and the corresponding formal
parameter is of mode in and composite or aliased. The name being observed denotes the actual parameter. The
formal parameter is the observer.

Such an operation is called an observing operation.

In the region of program text beween the point where a name denoting a managed object is observed and the end of
the scope of the observer, the ownership state of the name is Observed. While a name that denotes a managed object
is in the Observed state it provides a constant view [redundant: , even if the name denotes a variable].

At the point where a name that denotes a managed object is observed, every name of a reachable element of the object
is observed.

The following operations borrow a name that denotes a managed object and identify a corresponding borrower:

• An assignment operation that is used to initialize an access object, where this target object (the borrower) is a
stand-alone variable of an anonymous access-to-variable type, or a constant (including a formal parameter of a
procedure or generic formal object of mode in) of a (named or anonymous) access-to-variable type, unless this
assignment is already an observing operation inside the body of a borrowing traversal function, per the rules
defining observe above.

The source expression of the assignment shall be either a name denoting a part of a stand-alone object or of
a parameter, or a call on a traversal function whose result type is an (anonymous) access-to-variable type. If
the source of the assignment is a call on a traversal function then the name being borrowed denotes the actual
traversed parameter of the call. Otherwise the name being borrowed denotes the source of the assignment.

• A call (or instantiation) where the (borrowed) name denotes an actual parameter that is a managed object other
than an owning access object, and the formal parameter (the borrower) is of mode out or in out (or the generic
formal object is of mode in out).

• An object renaming where the (borrowed) name is the object_name denoting the renamed object. In this case,
the renamed object shall not be in the Observed or Borrowed state. The newly declared name is the borrower.

Such an operation is called a borrowing operation.

The borrowed name of the source of a borrow operation is the smallest name that is borrowed in the borrow operation.

In the region of program text beween the point where a name denoting a managed object is borrowed and the end of
the scope of the borrower, the ownership state of the name is Borrowed.

An indirect borrower of a name is defined to be a borrower either of a borrower of the name or of an indirect borrower
of the name. A direct borrower of a name is just another term for a borrower of the name, usually used together with
the term “indirect borrower”. The terms “indirect observer” and “direct observer” are defined analogously.

While a name that denotes a managed object is in the Borrowed state it provides a constant view [redundant: , even if
the name denotes a variable]. Furthermore, the only permitted read of a managed object in the Borrowed state is the
introduction of a new observer of the object. Within the scope of such a new observer any direct or indirect borrower
of the original name similarly enters the Observed state and provides only a constant view.

At the point where a name that denotes a managed object is borrowed, every name of a reachable element of the object
is borrowed.

The following operations are said to be move operations:

• An assignment operation, where the target is a variable or return object (see Ada RM 6.5) of an owning type.

[Redundant: In the case of a formal parameter of an access type of mode in out or out, this includes all
assignments to or from such a formal parameter: copy-in before the call, copy-back after the call, and any
assignments to or from the parameter during the call.]

• An assignment operation where the target is part of an aggregate of an owning type.

[Redundant: Passing a parameter by reference is not a move operation.]

A move operation results in a transfer of ownership. The state of the source object of the assignment operation becomes
Moved and remains in this state until the object is assigned another value.

[Redundant: Roughly speaking, any access-valued parts of an object in the Moved state can be thought of as being
“poisoned”; such a poisoned object is treated analogously to an uninitialized object in the sense that various rules
statically prevent the reading of such a value. Thus, an assignment like:

Pointer_1 : Some_Access_Type := new Designated_Type'(...);
Pointer_2 : Some_Access_Type := Pointer_1;

does not violate the “single owner” rule because the move operation poisons Pointer_1, leaving Pointer_2 as the unique
owner of the allocated object. Any attempt to read such a poisoned value is detected and rejected.

Note that a name may be “poisoned” even if its value is “obviously” null. For example, given:

X : Linked_List_Node := (Data => 123, Link => null);
Y : Linked_List_Node := X;

X.Link is poisoned by the assignment to Y.]

Legality Rules

[Redundant: For clarity of presentation, some legality rules are stated in the preceding “Static Semantics” section (e.g.,
the rule that an owning type shall not be a tagged type; stating that rule earlier eliminates the need to say anything
about the circumstances, if any, under which a class-wide type might be an owning type).]

1. At the point of a move operation the state of the source object (if any) and all of its reachable elements shall be
Unrestricted. After a move operation, the state of any access parts of the source object (if there is one) becomes
Moved.

2. An owning object’s state shall be Moved or Unrestricted at any point where

• the object is the target of an assignment operation; or

• the object is part of an actual parameter of mode out in a call.

[Redundant: In the case of a call, the state of an actual parameter of mode in or in out remains unchanged
(although one might choose to think of it as being borrowed at the point of the call and then “unborrowed” when
the call returns - either model yields the same results); the state of an actual parameter of mode out becomes
Unrestricted.]

3. If the target of an assignment operation is an object of an anonymous access-to-object type (including copy-in
for a parameter), then the source shall be a name denoting a part of a stand-alone object, a part of a parameter,
or a part of a call to a traversal function.

[Redundant: One consequence of this rule is that every allocator is of a named access type.]

4. A declaration of a stand-alone object of an anonymous access type shall have an explicit initial value and shall
occur immediately within a subprogram body, an entry body, or a block statement.

[Redundant: Because such declarations cannot occur immediately within a package declaration or body, the
associated borrowing/observing operation is limited by the scope of the subprogram, entry or block statement.
Thus, it is not necessary to add rules restricting the visibility of such declarations.]

5. A return statement that applies to a traversal function that has an anonymous access-to-constant (respectively,
access-to-variable) result type, shall return either the literal null or an access object denoted by a direct or indirect
observer (respectively, borrower) of the traversed parameter. [Redundant: Roughly speaking, a traversal function
always yields either null or a result which is reachable from the traversed parameter.]

6. If a prefix of a name is of an owning type, then the prefix shall denote neither a non-traversal function call, an
aggregate, an allocator, nor any other expression whose associated object is (or, as in the case of a conditional
expression, might be) the same as that of such a forbidden expression (e.g., a qualified expression or type
conversion whose operand would be forbidden as a prefix by this rule).

7. For an assignment statement where the target is a stand-alone object of an anonymous access-to-object type:

• If the type of the target is an anonymous access-to-variable type (an owning access type), and the target was
declared as a local variable in the body of a borrowing traversal function, whose initialization expression
was either directly or indirectly a name denoting a part of the traversed parameter for the traversal function,
then the source shall be an owning access object [redundant: denoted by a name that is not in the Moved
state, and] whose root object is the target object itself;

• If the type of the target is an anonymous access-to-variable type (an owning access type), and the pre-
vious case does not apply, the source shall be an owning access object denoted by a name that is in the
Unrestricted state, and whose root object is the target object itself;

• If the type of the target is an anonymous access-to-constant type (an observing access type), the source
shall be an owning access object denoted by a name that is not in the Moved state, and whose root object
is not in the Moved state and is not declared at a statically deeper accessibility level than that of the target
object.

8. At the point of a dereference of an object, the object shall not be in the Moved or Borrowed state.

9. At the point of a read of an object, or of passing an object as an actual parameter of mode in or in out, or of a
call where the object is a global input of the callee, neither the object nor any of its reachable elements shall be
in the Moved or Borrowed state.

At the point of a return statement, or at any other point where a call completes normally (e.g., the end of a
procedure body), no inputs or outputs of the callee being returned from shall be in the Moved state. In the
case of an input of the callee which is not also an output, this rule may be enforced at the point of the move
operation (because there is no way for the moved input to transition out of the Moved state), even in the case of
a subprogram which never returns.

Similarly, at the end of the elaboration of both the declaration and of the body of a package, no reachable
element of an object denoted by the name of an initialization_item of the package’s Initializes aspect or by an
input occuring in the input_list of such an initialization_item shall be in the Moved state.

The source of a move operation shall not be a part of a library-level constant without variable inputs.

10. If the state of a name that denotes a managed object is Observed, the name shall not be moved, borrowed, or
assigned.

11. If the state of a name that denotes a managed object is Borrowed, the name shall not be moved, borrowed,
observed, or assigned.

12. At the point of a call, any name that denotes a managed object that is a global output of the callee (i.e., an
output other than a parameter of the callee or a function result) shall not be in the Observed or Borrowed state.
Similarly, any name that denotes a managed object that is a global input of the callee shall not be in the Moved
or Borrowed state.

13. The prefix of an Old or Loop_Entry attribute reference shall not be of an owning or observing type unless the
prefix is a function_call and the called function is not a traversal function.

14. If the designated type of a named nonderived access type is incomplete at the point of the access type’s dec-
laration then the incomplete type declaration and its completion shall occur in the same declaration list. [This
implies that the incomplete type shall not be declared in the limited view of a package, and that if it is declared
in the private part of a package then its completion shall also occur in that private part.]

Verification Rules

15. When an owning access object other than a borrower, an observer, or an object in the Moved state is finalized,
or when such an object is passed as a part of an actual parameter of mode out, its value shall be null.

[Redundant: This rule disallows storage leaks. Without this rule, it would be possible to “lose” the last reference
to an allocated object.]

[Redundant: This rule applies to any finalization associated with a call to an instance of
Ada.Unchecked_Deallocation. For details, see the Ada RM 13.11.2 rule “Free(X), ... first performs finalization
of the object designated by X”.]

3.11 Declarative Parts

No extensions or restrictions.

CHAPTER

FOUR

NAMES AND EXPRESSIONS

The term assertion expression denotes an expression that appears inside an assertion, which can be a pragma Assert, a
precondition or postcondition, a type invariant or (subtype) predicate, or other assertions introduced in SPARK 2014.

4.1 Names

Legality Rules

1. Neither explicit_dereference nor implicit_dereference are in SPARK 2014.

4.1.1 Indexed Components

No extensions or restrictions.

4.1.2 Slices

No extensions or restrictions.

4.1.3 Selected Components

Some constructs which would unconditionally raise an exception at run time in Ada are rejected as illegal in SPARK
2014 if this property can be determined prior to formal program verification.

Legality Rules

1. If the prefix of a record component selection is known statically to be constrained so that the selected component
is not present, then the component selection (which, in Ada, would raise Constraint_Error if it were to be
evaluated) is illegal.

4.1.4 Attributes

Many of the Ada language defined attributes are in SPARK 2014 but there are exclusions. For a full list of attributes
supported by SPARK 2014 see Language-Defined Attributes.

A SPARK 2014 implementation is permitted to support other attributes which are not Ada or SPARK 2014 language
defined attributes and these should be documented in the User Guide for the tool.

Legality Rules

41

1. The prefix of a ‘Access attribute_reference shall be a constant without variable input. [This ensures that
information flows through such access values only depend on assignments to the access objects, not assignments
to the accessed objects. See Object Declarations.]

4.1.5 User-Defined References

Legality Rules

1. User-defined references are not allowed.

2. The aspect Implicit_Dereference is not permitted.

4.1.6 User-Defined Indexing

Legality Rules

1. User-defined indexing is not allowed.

2. The aspects Constant_Indexing and Variable_Indexing are not permitted.

4.2 Literals

No extensions or restrictions.

4.3 Aggregates

Legality Rules

1. The box symbol, <>, shall not be used in an aggregate unless the type(s) of the corresponding component(s)
define full default initialization.

2. If the ancestor_part of an extension_aggregate is a subtype_mark, then the type of the denoted
subtype shall define full default initialization.

[The box symbol cannot be used in an aggregate to produce an uninitialized scalar value or a composite value having
an uninitialized scalar value as a subcomponent. Similarly for an ancestor subtype in an extension aggregate.]

4.4 Expressions

An expression is said to be side-effect free if the evaluation of the expression does not update any object. The evaluation
of an expression free from side-effects only retrieves or computes a value.

Legality Rules

1. An expression shall be side-effect free. [Strictly speaking, this “rule” is a consequence of other rules, most
notably the rule that a function cannot have outputs other than its result.]

2. An expression (or range) in SPARK 2014 occurring in certain contexts (listed below) shall not have a variable
input. This means that such an expression shall not read a variable, nor shall it call a function which (directly or
indirectly) reads a variable. These contexts include:

• a constraint other than the range of a loop parameter specification (see Subtype Declarations);

• the default_expression of a component declaration (see Record Types);

• the default_expression of a discriminant_specification (see Discriminants);

• a Dynamic_Predicate aspect specification (see Subtype Predicates);

• a Type_Invariant aspect specification (see Type Invariants);

• an indexing expression of an indexed_component or the discrete_range of a slice in an object renaming
declaration which renames part of that indexed_component or slice (see Object Renaming Declarations);

• a generic actual parameter corresponding to a generic formal object having mode in (see Generic Instan-
tiation);

• the borrowed name of the expression of an object declaration defining a borrowing operation, except for a
single occurrence of the root object of the expression (see Access Types).

except when the context itself occurs within a declare expression.

[An expression in one of these contexts may read a constant which is initialized with the value of a variable.]

[These rules simplify analysis by eliminating the need to deal with implicitly created anonymous constants. An
expression which does not have a variable input will always yield the same result if it is (conceptually, for purposes
of static analysis) reevaluated later. This is not true of an expression that has a variable input because the value of the
variable might have changed.]

[For purposes of these rules, the current instance of a type or subtype is not considered to be a variable input in the
case of a Dynamic_Predicate or Type_Invariant condition, but is considered to be a variable input in the case of the
default_expression of a component declaration.]

4.4.1 Update Expressions

The Update attribute provides a way of overwriting specified components of a copy of a given composite value.

For a prefix X that denotes an object of a nonlimited record type or record extension T, the attribute

X'Update (record_component_association_list)

is defined and yields a value of type T and is a record update expression.

For a prefix X that denotes an object of a nonlimited one dimensional array type T, the attribute

X'Update (array_component_association {, array_component_association})

is defined and yields a value of type T and is an array update expression.

For a prefix X that denotes an object of a nonlimited multidimensional array type T, the attribute

X'Update (multidimensional_array_component_association
{, multidimensional_array_component_association})

is defined and yields a value of type T and is a multi-dimensional array update. Where
multidimensional_array_component_association has the following syntax:

Syntax

multidimensional_array_component_association ::=
index_expression_list_list => expression

index_expression_list_list ::=
index_expression_list { | index_expression_list }

index_expression_list ::=
(expression {, expression})

Legality Rules

1. The box symbol, <>, may not appear in any expression appearing in an update expression.

Dynamic Semantics

2. In all cases (i.e., whether T is a record type, a record extension type, or an array type - see below), evaluation
of X'Update begins with the creation of an anonymous object of type T which is initialized to the value of X
in the same way as for an occurrence of X'Old (except that the object is constrained by its initial value but not
constant).

3. Next, components of this object are updated as described in the following subsections. The attribute reference
then denotes a constant view of this updated object. The master and accessibility level of this object are defined
as for the anonymous object of an aggregate.

4. The assignments to components of the result object described in the following subsections are assignment oper-
ations and include performance of any checks associated with evaluation of the target component name or with
implicit conversion of the source value to the component subtype.

Record Update Expressions

For a record update expression of type T the following are required.

Legality Rules

5. The record_component_association_list shall have one or more
record_component_associations, each of which shall have a non-others
component_choice_list and an expression.

6. Each selector_name of each record_component_name shall denote a distinct non discriminant com-
ponent of T.

7. Each record_component_association‘s associated components shall all be of the same
type. The expected type and applicable index constraint of the expression is defined as for a
record_component_association occurring within a record aggregate.

8. Each selector of all component_choice_lists of a record update expression shall denote a distinct com-
ponent.

Dynamic Semantics

9. For each component for which an expression is provided, the expression value is assigned to the corresponding
component of the result object. The order in which the components are updated is unspecified.

[Components in a record update expression must be distinct. The following is illegal

Some_Record'Update
(Field_1 => ... ,
Field_2 => ... ,
Field_1 => ...); -- illegal; components not distinct

because the order of component updates is unspecified.]

Array Update Expressions

For an array update expression of type T the following are required.

Legality Rules

10. Each array_component_association of the attribute reference shall have one or more
array_component_associations, each of which shall have an expression.

11. The expected type and applicable index constraint of the expression is defined as for an
array_component_association occurring within an array aggregate of type T. The expected
type for each discrete_choice is the index type of T.

12. The reserved word others shall not occur as a discrete_choice of an
array_component_association of the attribute_reference.

Dynamic Semantics

13. The discrete choices and array component expressions are evaluated. Each array component expression is
evaluated once for each associated component, as for an array aggregate. For each such associated component
of the result object, the expression value is assigned to the component.

14. Evaluations and updates are performed in the order in which the array_component_associations
are given; within a single array_component_association, in the order of the
discrete_choice_list; and within the range of a single discrete_choice, in ascending or-
der.

[Note: the Update attribute for an array object allows multiple assignments to the same component, as in either

Some_Array'Update (1 .. 10 => True, 5 => False)

or

Some_Array'Update (Param_1'Range => True, Param_2'Range => False)
-- ok even if the two ranges overlap]

Multi-dimensional Array Update Expressions

For a multi-dimensional array update expression of type T the following are required.

Legality Rules

15. The expected type and applicable index constraint of the expression of a
multidimensional_array_component_association are defined as for the expression of an
array_component_association occurring within an array aggregate of type T.

16. The length of each index_expression_list shall equal the dimensionality of T. The expected type for
each expression in an index_expression_list is the corresponding index type of T.

Dynamic Semantics

17. For each multidimensional_array_component association (in the order in which they are given)
and for each index_expression_list (in the order in which they are given), the index values of the
index_expression_list and the expression are evaluated (in unspecified order) and the expression value
is assigned to the component of the result object indexed by the given index values. Each array component
expression is evaluated once for each associated index_expression_list.

Examples

1 package Update_Examples
2 with SPARK_Mode
3 is
4 type Rec is record
5 X, Y : Integer;
6 end record;
7

8 type Arr is array (1 .. 3) of Integer;
9

10 type Arr_2D is array (1 .. 3, 1 .. 3) of Integer;
11

12 type Nested_Rec is record
13 A : Integer;
14 B : Rec;
15 C : Arr;
16 D : Arr_2D;
17 end record;
18

19 type Nested_Arr is array (1 .. 3) of Nested_Rec;
20

21 -- Simple record update
22 procedure P1 (R : in out Rec)
23 with Post => R = R'Old'Update (X => 1);
24 -- this is equivalent to:
25 -- R = (X => 1,
26 -- Y => R'Old.Y)
27

28 -- Simple 1D array update
29 procedure P2 (A : in out Arr)
30 with Post => A = A'Old'Update (1 => 2);
31 -- this is equivalent to:
32 -- A = (1 => 2,
33 -- 2 => A'Old (2),
34 -- 3 => A'Old (3));
35

36 -- 2D array update
37 procedure P3 (A2D : in out Arr_2D)
38 with Post => A2D = A2D'Old'Update ((1, 1) => 1,
39 (2, 2) => 2,
40 (3, 3) => 3);
41 -- this is equivalent to:
42 -- A2D = (1 => (1 => 1,
43 -- 2 => A2D'Old (1, 2),
44 -- 3 => A2D'Old (1, 3)),
45 -- 2 => (2 => 2,
46 -- 1 => A2D'Old (2, 1),
47 -- 3 => A2D'Old (2, 3)),
48 -- 3 => (3 => 3,
49 -- 1 => A2D'Old (3, 1),
50 -- 2 => A2D'Old (3, 2)));
51

52 -- Nested record update
53 procedure P4 (NR : in out Nested_Rec)
54 with Post => NR = NR'Old'Update (A => 1,
55 B => NR'Old.B'Update (X => 1),
56 C => NR'Old.C'Update (1 => 5));
57 -- this is equivalent to:
58 -- NR = (A => 1,
59 -- B.X => 1,
60 -- B.Y => NR'Old.B.Y,
61 -- C (1) => 5,
62 -- C (2) => NR'Old.C (2),
63 -- C (3) => NR'Old.C (3),
64 -- D => NR'Old.D)
65

66 -- Nested array update
67 procedure P5 (NA : in out Nested_Arr)
68 with Post =>
69 NA = NA'Old'Update (1 => NA'Old (1)'Update
70 (A => 1,
71 D => NA'Old (1).D'Update ((2, 2) => 0)),
72 2 => NA'Old (2)'Update
73 (B => NA'Old (2).B'Update (X => 2)),
74 3 => NA'Old (3)'Update
75 (C => NA'Old (3).C'Update (1 => 5)));
76 -- this is equivalent to:
77 -- NA = (1 => (A => 1,
78 -- B => NA'Old (1).B,
79 -- C => NA'Old (1).C,
80 -- D => NA'Old (1).D),
81 -- 2 => (B.X => 2,
82 -- B.Y => NA'Old (2).B.Y,
83 -- A => NA'Old (2).A,
84 -- C => NA'Old (2).C,
85 -- D => NA'Old (2).D),
86 -- 3 => (C => (1 => 5,
87 -- 2 => NA'Old (3).C (2),
88 -- 3 => NA'Old (3).C (3)),
89 -- A => NA'Old (3).A,
90 -- B => NA'Old (3).B,
91 -- D => NA'Old (3).D));
92

93 end Update_Examples;

4.5 Operators and Expression Evaluation

Ada grants implementations the freedom to reassociate a sequence of predefined operators of the same precedence
level even if this changes the behavior of the program with respect to intermediate overflow (see Ada 2012 RM 4.5).
SPARK 2014 assumes that an implementation does not take advantage of this permission; in particular, a proof of the
absence of intermediate overflow in this situation may depend on this assumption.

A SPARK 2014 tool is permitted to provide a warning where operators may be re-associated by a compiler.

[The GNAT Ada 2012 compiler does not take advantage of this permission. The GNAT compiler also provides an
option for rejecting constructs to which this permission would apply. Explicit parenthesization can always be used to
force a particular association in this situation.]

4.6 Type Conversions

No extensions or restrictions.

4.7 Qualified Expressions

No extensions or restrictions.

4.8 Allocators

Legality Rules

1. The designated type of the type of an uninitialized allocator shall define full default initialization.

2. Evaluation of an allocator is subject to the same restrictions as calling a volatile function (e.g., an allocator is
not allowed within a non-volatile function). [If it seems helpful, an allocator may be thought of as being like a
call to a volatile function which returns the access value designating the allocated object.]

3. The type of an allocator shall not be anonymous.

4.9 Static Expressions and Static Subtypes

No extensions or restrictions.

CHAPTER

FIVE

STATEMENTS

SPARK 2014 restricts the use of some statements, and adds a number of pragmas which are used for verification,
particularly involving loop statements.

5.1 Simple and Compound Statements - Sequences of Statements

SPARK 2014 excludes certain kinds of statements that complicate verification.

Legality Rules

1. A simple_statement shall not be a requeue_statement, an abort_statement, or a
code_statement.

2. A compound_statement shall not be an accept_statement or a select_statement.

3. A statement is only in SPARK 2014 if all the constructs used in the statement are in SPARK 2014.

4. A goto_statement shall be located before the target statement in the innermost
sequence_of_statements enclosing the target statement.

5.2 Assignment Statements

No extensions or restrictions.

5.3 If Statements

No extensions or restrictions.

5.4 Case Statements

No extensions or restrictions.

49

5.5 Loop Statements

5.5.1 User-Defined Iterator Types

Legality Rules

1. The generic package Ada.Iterator_Interfaces shall not be referenced. [In particular, Ada.Iterator_Interfaces shall
not be instantiated. An alternative mechanism for defining iterator types is described in the next section.]

5.5.2 Generalized Loop Iteration

Static Semantics

1. Ada’s generalized loop iteration is supported in SPARK 2014, but only in a modified form. Ada’s existing
generalized loop iteration is defined in terms of other constructs which are not in SPARK 2014 (e.g., access
discriminants).

2. Instead, SPARK 2014 provides a new mechanism for defining an iterable container type (see Ada RM 5.5.1).
Iteration over the elements of an object of such a type is then allowed as for any iterable container type (see
Ada RM 5.5.2), although with dynamic semantics as described below. Similarly, SPARK 2014 provides a new
mechanism for defining an iterator type (see Ada RM 5.5.1), which then allows generalized iterators as for any
iterator type (see Ada RM 5.5.2). Other forms of generalized loop iteration are not in SPARK 2014.

3. The type-related operational representation aspect Iterable may be specified for any non-array type. The
aspect_definition for an Iterable aspect specification for a subtype of a type T shall follow the following
grammar for iterable_specification:

iterable_specification ::=
(First => name,
Next => name,
Has_Element => name[,
Element => name])

4. If the aspect Iterable is visibly specified for a type, the (view of the) type is defined to be an iterator type (view).
If the aspect Iterable is visibly specified for a type and the specification includes an Element argument then the
(view of the) type is defined to be an iterable container type (view). [The visibility of an aspect specification is
defined in Ada RM 8.8]. [Because other iterator types and iterable container types as defined in Ada RM 5.5.1
are necessarily not in SPARK 2014, this effectively replaces, rather than extends, those definitions].

Legality Rules

5. Each of the four (or three, if the optional argument is omitted) names shall denote an explicitly declared primitive
function of the type, referred to respectively as the First, Next, Has_Element, and Element functions of the type.
All parameters of all four subprograms shall be of mode In.

6. The First function of the type shall take a single parameter, which shall be of type T. The “iteration cursor
subtype” of T is defined to be result subtype of the First function. The First function’s name shall be resolvable
from these rules alone. [This means the iteration cursor subtype of T can be determined without examining the
other subprogram names]. The iteration cursor subtype of T shall be definite and shall not be limited.

7. The Next function of the type shall have two parameters, the first of type T and the second of the cursor subtype
of T; the result subtype of the function shall be the cursor subtype of T.

8. The Has_Element function of the type shall have two parameters, the first of type T and the second of the cursor
subtype of T; the result subtype of the function shall be Boolean.

9. The Element function of the type, if one is specified, shall have two parameters, the first of type T and the
second of the cursor subtype of T; the default element subtype of T is then defined to be the result subtype of
the Element function.

10. Reverse container element iterators are not in SPARK 2014. The loop parameter of a container element iterator
is a constant object.

11. A container element iterator shall only occur as the loop_parameter_specification of a quantified_expression[,
and not as the iteration_scheme of a loop statement].

Dynamic Semantics

12. Iteration associated with a generalized iterator or a container element iterator procedes as follows. An object
of the iteration cursor subtype of T (hereafter called “the cursor”) is created and is initialized to the result of
calling First, passing in the given container object. Each iteration begins by calling Has_Element, passing in
the container and the cursor. If False is returned, execution of the associated loop is completed. If True is
returned then iteration continues and the loop parameter for the next iteration of the loop is either (in the case of
a generalized iterator) the cursor or (in the case of a container element iterator) the result of calling the Element
function, passing in the container and the cursor. At the end of the iteration, Next is called (passing in the
container and the cursor) and the result is assigned to the cursor.

5.5.3 Loop Invariants, Variants and Entry Values

Two loop-related pragmas, Loop_Invariant and Loop_Variant, and a loop-related attribute, Loop_Entry are defined.
The pragma Loop_Invariant is used to specify the essential non-varying properties of a loop. Pragma Loop_Variant is
intended for use in ensuring termination. The Loop_Entry attribute is used to refer to the value that an expression had
upon entry to a given loop in much the same way that the Old attribute in a subprogram postcondition can be used to
refer to the value an expression had upon entry to the subprogram.

Syntax

loop_variant_parameters ::= loop_variant_item {, loop_variant_item}
loop_variant_item ::= change_direction => discrete_expression
change_direction ::= Increases | Decreases

where discrete_expression is an expression of a discrete type.

Static Semantics

1. Pragma Loop_Invariant is like a pragma Assert except it also acts as a cut point in formal verification. A cut
point means that a prover is free to forget all information about modified variables that has been established
within the loop. Only the given Boolean expression is carried forward.

2. Pragma Loop_Variant is used to demonstrate that a loop will terminate by specifying expressions that will
increase or decrease as the loop is executed.

Legality Rules

3. Loop_Invariant is an assertion just like pragma Assert with respect to syntax of its Boolean actual parameter,
name resolution, legality rules and dynamic semantics, except for extra legality rules given below.

4. Loop_Variant is an assertion and has an expected actual parameter which is a specialization of an Ada expres-
sion. Otherwise, it has the same name resolution and legality rules as pragma Assert, except for extra legality
rules given below.

5. The following constructs are said to be restricted to loops:

• A Loop_Invariant pragma;

• A Loop_Variant pragma;

• A block_statement whose sequence_of_statements or declarative_part immediately
includes a construct which is restricted to loops.

6. A construct which is restricted to loops shall occur immediately within either:

• the sequence_of_statements of a loop_statement; or

• the sequence_of_statements or declarative_part of a block_statement.

The construct is said to apply to the innermost enclosing loop.

[Roughly speaking, a Loop_Invariant or Loop_Variant pragma shall only occur immediately within a loop state-
ment except that intervening block statements are ignored for purposes of this rule.]

7. The expression of a loop_variant_item shall be of any discrete type.

8. Two Loop_Invariant or Loop_Variant pragmas which apply to the same loop shall occur in the same
sequence_of_statements, separated only by [zero or more] other Loop_Invariant or Loop_Variant prag-
mas.

Dynamic Semantics

9. Other than the above legality rules, pragma Loop_Invariant is equivalent to pragma Assert. Pragma
Loop_Invariant is an assertion (as defined in Ada RM 11.4.2(1.1/3)) and is governed by the Loop_Invariant
assertion aspect [and may be used in an Assertion_Policy pragma].

10. The elaboration of a Checked Loop_Variant pragma begins by evaluating the discrete_expressions in
textual order. For the first elaboration of the pragma within a given execution of the enclosing loop statement, no
further action is taken. For subsequent elaborations of the pragma, one or more of these expression results are
each compared to their corresponding result from the previous iteration as follows: comparisons are performed
in textual order either until unequal values are found or until values for all expressions have been compared.
In either case, the last pair of values to be compared is then checked as follows: if the change_direction
for the associated loop_variant_item is Increases (respectively, Decreases) then a check is performed
that the expression value obtained during the current iteration is greater (respectively, less) than the value ob-
tained during the preceding iteration. The exception Assertions.Assertion_Error is raised if this check fails. All
comparisons and checks are performed using predefined operations. Pragma Loop_Variant is an assertion (as
defined in Ada RM 11.4.2(1.1/3)) and is governed by the Loop_Variant assertion aspect [and may be used in an
Assertion_Policy pragma].

Examples

The following example illustrates some pragmas of this section

1 procedure Loop_Var_Loop_Invar is
2 type Total is range 1 .. 100;
3 subtype T is Total range 1 .. 10;
4 I : T := 1;
5 R : Total := 100;
6 begin
7 while I < 10 loop
8 pragma Loop_Invariant (R >= 100 - 10 * I);
9 pragma Loop_Variant (Increases => I,

10 Decreases => R);
11 R := R - I;
12 I := I + 1;
13 end loop;
14 end Loop_Var_Loop_Invar;

Note that in this example, the loop variant is unnecessarily complex, stating that I increases is enough to prove
termination of this simple loop.

Attribute Loop_Entry

Static Semantics

1. For a prefix X that denotes an object of a nonlimited type, the following attribute is defined:

X'Loop_Entry [(loop_name)]

2. X’Loop_Entry [(loop_name)] denotes a constant object of the type of X. [The value of this constant is the value
of X on entry to the loop that is denoted by loop_name or, if no loop_name is provided, on entry to the
closest enclosing loop.]

Legality Rules

3. A Loop_Entry attribute_reference applies to a loop_statement in the same way that an
exit_statement does (see Ada RM 5.7). For every rule about exit_statements in the Name
Resolution Rules and Legality Rules sections of Ada RM 5.7, a corresponding rule applies to Loop_Entry
attribute_references.

4. In many cases, the language rules pertaining to the Loop_Entry attribute match those pertaining to the Old
attribute (see Ada LRM 6.1.1), except with “Loop_Entry” substituted for “Old”. These include:

• prefix name resolution rules (including expected type definition)

• nominal subtype definition

• accessibility level definition

• run-time tag-value determination (in the case where X is tagged)

• interactions with abstract types

• interactions with anonymous access types

• forbidden attribute uses in the prefix of the attribute_reference.

The following rules are not included in the above list; corresponding rules are instead stated explicitly below:

• the requirement that an Old attribute_reference shall only occur in a postcondition expression;

• the rule disallowing a use of an entity declared within the postcondition expression;

• the rule that a potentially unevaluated Old attribute_reference shall statically name an entity;

• the prefix of the attribute_reference shall not contain a Loop_Entry
attribute_reference.

5. A Loop_Entry attribute_reference shall occur within a Loop_Variant or Loop_Invariant
pragma, or an Assert, Assume or Assert_And_Cut pragma appearing in a position where a
Loop_Invariant pragma would be allowed.

[Roughly speaking, a Loop_Entry attribute_reference can occur in an Assert, Assume or
Assert_And_Cut pragma immediately within a loop statement except that intervening block statements are
ignored for purposes of this rule.]

6. The prefix of a Loop_Entry attribute_reference shall not contain a use of an entity declared within the
loop_statement but not within the prefix itself.

[This rule is to allow the use of I in the following example:

loop
pragma Assert

((Var > Some_Function (Param => (for all I in T => F (I))))'Loop_Entry);

In this example the value of the inequality “>” that would have been evaluated on entry to the loop is obtained
even if the value of Var has since changed].

7. The prefix of a Loop_Entry attribute_reference shall statically name an entity, or shall denote an
object_renaming_declaration, if

• the attribute_reference is potentially unevaluated; or

• the attribute_reference does not apply to the innermost enclosing loop_statement.

[This rule follows the corresponding Ada RM rule for ‘Old: the prefix of an Old attribute_reference that is
potentially unevaluated shall statically name an entity. This rule has the same rationale. If the following was
allowed:

procedure P (X : in out String; Idx : Positive) is
begin

Outer :
loop

if Idx in X'Range then
loop

pragma Loop_Invariant (X(Idx) > X(Idx)'Loop_Entry(Outer));

this would introduce an exception in the case where Idx is not in X’Range.]

Dynamic Semantics

8. For each X’Loop_Entry other than one occurring within an Ignored assertion expression, a constant is implicitly
declared at the beginning of the associated loop statement. The constant is of the type of X and is initialized to
the result of evaluating X (as an expression) at the point of the constant declaration. The value of X’Loop_Entry
is the value of this constant; the type of X’Loop_Entry is the type of X. These implicit constant declarations
occur in an arbitrary order.

9. The previous paragraph notwithstanding, the implicit constant declaration is not elaborated if
the loop_statement has an iteration_scheme whose evaluation yields the result that the
sequence_of_statements of the loop_statement will not be executed (loosely speaking, if the loop
completes after zero iterations).

[Note: This means that the constant is not elaborated unless the loop body will execute (or at least begin
execution) at least once. For example, a while loop

while <condition> do
sequence_of_statements; -- contains Loop_Entry uses

end loop;

may be thought of as being transformed into

if <condition> then
declare
... implicitly declared Loop_Entry constants
begin

loop
sequence_of_statements;
exit when not <condition>;

end loop;
end;

end if;

The rule also prevents the following example from raising Constraint_Error:

declare
procedure P (X : in out String) is
begin

for I in X'Range loop
pragma Loop_Invariant (X(X'First)'Loop_Entry >= X(I));
X := F(X); -- modify X

end loop;
end P;
Length_Is_Zero : String := "";

begin
P (Length_Is_Zero);

end; -- ...]

Examples

1 type Array_Of_Int is array (1 .. 10) of Integer;
2

3 procedure Reverse_Order (A : in out Array_Of_Int)
4 with Post => (for all J in A'Range => A (J) = A'Old (A'Last - J + 1) and
5 A (A'Last - J + 1) = A'Old (J))
6 is
7 Temp : Integer;
8 begin
9 for Index in A'First .. (A'Last + 1) / 2 loop

10 Temp := A (Index);
11 A (Index) := A (A'Last - Index + 1);
12 A (A'Last - Index + 1) := Temp;
13 pragma Loop_Invariant
14 (-- Elements that have been visited so far are swapped
15 (for all J in A'First .. Index =>
16 A (J) = A'Loop_Entry (A'Last - J + 1) and
17 A (A'Last - J + 1) = A'Loop_Entry (J))
18 and then
19 -- Elements not yet visited are unchanged
20 (for all J in Index + 1 .. A'Last - Index =>
21 A (J) = A'Loop_Entry (J)));
22

23 end loop;
24 end Reverse_Order;

5.6 Block Statements

No extensions or restrictions.

5.7 Exit Statements

No extensions or restrictions.

5.8 Goto Statements

Legality Rules

1. The goto statement is not permitted.

5.9 Proof Pragmas

This section discusses the pragmas Assert_And_Cut and Assume.

Two SPARK 2014 pragmas are defined, Assert_And_Cut and Assume. Each is an assertion and has a single Boolean
parameter (an assertion expression) and may be used wherever pragma Assert is allowed.

Assert_And_Cut may be used within a subprogram when the given expression sums up all the work done so far
in the subprogram, so that the rest of the subprogram can be verified (informally or formally) using only the entry
preconditions, and the expression in this pragma. This allows dividing up a subprogram into sections for the purposes
of testing or formal verification. The pragma also serves as useful documentation.

A Boolean expression which is an actual parameter of pragma Assume can be assumed to be True for the remainder of
the subprogram. If the Assertion_Policy is Check for pragma Assume and the Boolean expression does not evaluate
to True, the exception Assertions.Assertion_Error will be raised. However, in proof, no verification of the expression
is performed and in general it cannot. It has to be used with caution and is used to state axioms.

Static Semantics

1. Pragma Assert_And_Cut is an assertion the same as a pragma Assert except it also acts as a cut point in formal
verification. The cut point means that a prover is free to forget all information about modified variables that
has been established from the statement list before the cut point. Only the given Boolean expression is carried
forward.

2. Pragma Assume is an assertion the same as a pragma Assert except that there is no verification condition to
prove the truth of the Boolean expression that is its actual parameter. [Pragma Assume indicates to proof tools
that the expression can be assumed to be True.]

Legality Rules

3. Pragmas Assert_And_Cut and Assume have the same syntax for their Boolean actual parameter, name resolution
rules and dynamic semantics as pragma Assert.

Verification Rules

4. The verification rules for pragma Assume are significantly different to those of pragma Assert. [It would be
difficult to overstate the importance of the difference.] Even though the dynamic semantics of pragma Assume
and pragma Assert are identical, pragma Assume does not introduce a corresponding verification condition.
Instead the prover is given permission to assume the truth of the assertion, even though this has not been proven.
[A single incorrect Assume pragma can invalidate an arbitrarily large number of proofs - the responsibility for
ensuring correctness rests entirely upon the user.]

Examples

1 function F (S : String) return Integer
2 with SPARK_Mode,
3 Post => F'Result in 0 .. 999
4 is
5 subtype Control_Chars is Character range '0' .. '3';
6 Control_Char : Control_Chars ;
7 Valid : Boolean;
8 begin
9 if S'Length >= 6 then

10 Valid := S (S'First .. S'First + 3) = "ABCD";
11 if Valid and then S (S'First + 4) in Control_Chars then
12 Valid := True;
13 Control_Char := S (S'First + 4);

14 else
15 Valid := False;
16 end if;
17 else
18 Valid := False;
19 end if;
20

21 pragma Assert_And_Cut (if Valid then Control_Char in Control_Chars);
22

23 -- A conditional flow error will be reported when it used in the following
24 -- case as statement flow analysis techniques cannot determine that
25 -- Control_Char is initialized when Valid is True.
26 -- The Assert_And_Cut verifies that Control_Char is initialized if Valid
27 -- is True and the conditional flow which raised the error cannot occur.
28 -- The complicated decision process and the details of the string S are
29 -- not required to prove the postcondition and so the Assert_And_Cut
30 -- cuts out all of the unnecessary complex information gathered from this
31 -- process from the proof tool and the eye of the human viewer.
32

33 if Valid then
34 case Control_Char is
35 when '0' => return 0;
36 when '1' => return 7;
37 when '2' => return 42;
38 when '3' => return 99;
39 end case;
40 else
41 return 999;
42 end if;
43 end F;

1 -- The up-time timer is updated once a second
2 package Up_Timer
3 with SPARK_Mode
4 is
5 type Time_Register is limited private;
6 type Times is range 0 .. 2**63 - 1;
7

8 procedure Inc (Up_Time : in out Time_Register);
9

10 function Get (Up_Time : Time_Register) return Times;
11

12 private
13 type Time_Register is record
14 Time : Times := 0;
15 end record;
16 end Up_Timer;

1 package body Up_Timer
2 with SPARK_Mode
3 is
4 procedure Inc (Up_Time : in out Time_Register) is
5 begin
6 -- The up timer is incremented every second.
7 -- The system procedures require that the system is rebooted
8 -- at least once every three years - as the Timer_Reg is a 64 bit
9 -- integer it cannot reach Times'Last before a system reboot.

10 pragma Assume (if Times'Last = 2**63 - 1 then Up_Time.Time < Times'Last);
11

12 -- Without the previous assume statement it would not be possible
13 -- to prove that the following addition would not overflow.
14 Up_Time.Time := Up_Time.Time + 1;
15 end Inc;
16

17 function Get (Up_Time : Time_Register) return Times is (Up_Time.Time);
18 end Up_Timer;

CHAPTER

SIX

SUBPROGRAMS

6.1 Subprogram Declarations

We distinguish the declaration view introduced by a subprogram_declaration from the implementa-
tion view introduced by a subprogram_body or an expression_function_declaration. For
subprograms that are not declared by a subprogram_declaration, the subprogram_body or
expression_function_declaration also introduces a declaration view which may be in SPARK 2014 even
if the implementation view is not.

Rules are imposed in SPARK 2014 to ensure that the execution of a function call does not modify any variables
declared outside of the function. It follows as a consequence of these rules that the evaluation of any SPARK 2014
expression is side-effect free.

We also introduce the notion of a global item, which is a name that denotes a global object or a state abstraction (see
Abstraction of State). Global items are presented in Global aspects (see Global Aspects).

An entire object is an object which is not a subcomponent of a larger containing object. More specifically, an entire
object is an object declared by an object_declaration (as opposed to, for example, a slice or the result object of
a function call) or a formal parameter of a subprogram. In particular, a component of a protected unit is not an entire
object.

An object O1 is said to be a reachable element of an object O2 if

• O1 is a part of O2; or

• O1 is a reachable element of the object designated by (the value of) an access-valued part of O2.

Static Semantics

1. The exit value of a global item or parameter of a subprogram is its value immediately following the successful
call of the subprogram.

2. The entry value of a global item or parameter of a subprogram is its value at the call of the subprogram.

3. An output of a subprogram is a global item or parameter whose final value, or the final value of any of its
reachable elements, may be updated by a successful call to the subprogram. The result of a function is also an
output. A global item or parameter which is an external state with the property Async_Readers => True, and for
which intermediate values are written during an execution leading to a successful call, is also an output even if
the final state is the same as the initial state. (see External State). [On the contrary, a global item or parameter
is not an output of the subprogram if it is updated only on paths that lead to an explicit raise_statement
or to a pragma Assert (statically_False) or to a call to a subprogram marked No_Return.]

4. An input of a subprogram is a global item or parameter whose initial value (or that of any of its reachable
elements) may be used in determining the exit value of an output of the subprogram. For a global item or
parameter which is an external state with Async_Writers => True, each successive value read from the external
state is also an input of the subprogram (see External State). As a special case, a global item or parameter is

59

also an input if it is mentioned in a null_dependency_clause in the Depends aspect of the subprogram
(see Depends Aspects).

5. An output of a subprogram is said to be fully initialized by a call if all parts of the output are initialized as a
result of any successful execution of a call of the subprogram. In the case of a parameter X of a class-wide type
T’Class, this set of “all parts” is not limited to the (statically known) parts of T. For example, if the underlying
dynamic tag of X is T2’Tag, where T2 is an extension of T that declares a component C, then C would be
included in the set. In this case, this set of “all parts” is not known statically. [In order to fully initialize such
a parameter, it is necessary to use some form of dispatching assignment. This can be done by either a direct
(class-wide) assignment to X, passing X as an actual out-mode parameter in a call where the formal parameter
is of a class-wide type, or passing X as a controlling out-mode parameter in a dispatching call.] The meaning of
“all parts” in the case of a parameter of a specific tagged type is determined by the applicable Extensions_Visible
aspect (see Extensions_Visible Aspects). [A state abstraction cannot be fully initialized by initializing individual
constituents unless its refinement is visible.]

Legality Rules

6. A function declaration shall not have a parameter_specification with a mode of out or in out. This
rule also applies to a subprogram_body for a function for which no explicit declaration is given. A function
shall have no outputs other than its result.

7. A subprogram parameter of mode in shall not be an output of its subprogram unless the type of the parameter is
an access type and the subprogram is not a function.

Verification Rules

8. At the point of a call, all inputs of the callee except for those that have relaxed initialization (see Relaxed
Initialization) shall be fully initialized. Similarly, upon return from a call all outputs of the callee except for
those that have relaxed initialization shall be fully initialized.

6.1.1 Preconditions and Postconditions

Legality Rules

1. The corresponding expression for an inherited Pre’Class or Post’Class of an inherited subprogram S of a tagged
type T shall not call a non-inherited primitive function of type T.

[The notion of corresponding expression is defined in Ada RM 6.1.1(18/4) as follows: If a Pre’Class or Post’Class
aspect is specified for a primitive subprogram S of a tagged type T, or such an aspect defaults to True, then a corre-
sponding expression also applies to the corresponding primitive subprogram S of each descendant of T.]

[The rationale for this rule is that, otherwise, if the contract applicable to an inherited subprogram changes due to
called subprograms in its contract being overridden, then the inherited subprogram would have to be re-verified for the
derived type. This rule forbids the cases that require re-verification.]

2. The Pre aspect shall not be specified for a primitive operation of a type T at a point where T is tagged. [Pre’Class
should be used instead to express preconditions.]

[The rationale for this rule is that, otherwise, the combination of dynamic semantics and verification rules below would
force an identical Pre’Class each time Pre is used on a dispatching operation.]

3. A subprogram_renaming_declaration shall not declare a primitive operation of a tagged type.

[Consider

package Outer is
type T is tagged null record;
package Nested is

procedure Op (X : T) with Pre => ..., Post => ... ;
-- not a primitive, so Pre/Post specs are ok

end Nested;
procedure Renamed_Op (X : T) renames Nested.Op; -- illegal

end Outer;

Allowing this example in SPARK would introduce a case of a dispatching operation which is subject to a
Pre (and Post) aspect specification. This rule is also intended to avoid problematic interactions between the
Pre/Pre’Class/Post/Post’Class aspects of the renamed subprogram and the Pre’Class/Post’Class inheritance associated
with the declaration of a primitive operation of a tagged type.

Note that a dispatching subprogram can be renamed as long as the renaming does not itself declare a dispatching
operation. Note also that this rule would never apply to a renaming-as-body.]

Verification Rules

For a call on a nondispatching operation, a verification condition is introduced (as for any run-time check) to ensure
that the specific precondition check associated with the statically denoted callee will succeed. Upon entry to such a
subprogram, the specific preconditions of the subprogram may then be assumed.

For a call (dispatching or not) on a dispatching operation, a verification condition is introduced (as for any run-time
check) to ensure that the class-wide precondition check associated with the statically denoted callee will succeed.

The verification condition associated with the specific precondition of a dispatching subprogram is imposed on the
callee, as opposed to on callers of the subprogram. Upon entry to a subprogram, the class-wide preconditions of the
subprogram may be assumed. Given this, the specific preconditions of the subprogram must be proven.

The callee is responsible for discharging the verification conditions associated with any postcondition checks, class-
wide or specific. The success of these checks may then be assumed by the caller.

In the case of an overriding dispatching operation whose Pre’Class attribute is explicitly specified, a verification condi-
tion is introduced to ensure that the specified Pre’Class condition is implied by the Pre’Class condition of the overrid-
den inherited subprogram(s). Similarly, in the case of an overriding dispatching operation whose Post’Class attribute is
explicitly specified, a verification condition is introduced to ensure that the specified Post’Class condition implies the
Post’Class condition of the overridden inherited subprogram(s). [These verification conditions do not correspond to
any run-time check. They are intended to, in effect, require users to make explicit the implicit disjunction/conjunction
of class-wide preconditions/postconditions that is described in Ada RM 6.1.1.]

6.1.2 Subprogram Contracts

In order to extend Ada’s support for specification of subprogram contracts (e.g., the Pre and Post) by providing more
precise and/or concise contracts, the SPARK 2014 aspects, Global, Depends, and Contract_Cases are defined.

Legality Rules

1. The Global, Depends and Contract_Cases aspects may be specified for a subprogram with an
aspect_specification. More specifically, such aspect specifications are allowed in the same contexts
as Pre or Post aspect specifications. [In particular, these aspects may be specified for a generic subprogram but
not for an instance of a generic subprogram.]

2. The Global, Depends and Contract_Cases aspects shall not be specified for an abstract subprogram or a null
procedure. Only Global’Class and Depends’Class may be specified for such a subprogram.

See section Contract Cases for further detail on Contract_Case aspects, section Global Aspects for further detail on
Global aspects and section Depends Aspects for further detail on Depends aspects.

6.1.3 Contract Cases

The Contract_Cases aspect provides a structured way of defining a subprogram contract using mutually exclusive
subcontract cases. The final case in the Contract_Case aspect may be the keyword others which means that,
in a specific call to the subprogram, if all the conditions are False this contract_case is taken. If an
others contract_case is not specified, then in a specific call of the subprogram exactly one of the guarding
conditions should be True.

A Contract_Cases aspect may be used in conjunction with the language-defined aspects Pre and Post in which case
the precondition specified by the Pre aspect is augmented with a check that exactly one of the conditions of the
contract_case_list is satisfied and the postcondition specified by the Post aspect is conjoined with conditional
expressions representing each of the contract_cases. For example:

procedure P (...)
with Pre => General_Precondition,

Post => General_Postcondition,
Contract_Cases => (A1 => B1,

A2 => B2,
...
An => Bn);

is short hand for

procedure P (...)
with Pre => General_Precondition

and then Exactly_One_Of (A1, A2, ..., An),
Post => General_Postcondition

and then (if A1'Old then B1)
and then (if A2'Old then B2)
and then ...
and then (if An'Old then Bn);

where

A1 .. An are Boolean expressions involving the entry values of formal parameters and global objects and

B1 .. Bn are Boolean expressions that may also use the exit values of formal parameters, global objects
and results.

Exactly_One_Of(A1,A2...An) evaluates to True if exactly one of its inputs evaluates to True and
all other of its inputs evaluate to False.

The Contract_Cases aspect is specified with an aspect_specification where the aspect_mark is Con-
tract_Cases and the aspect_definition must follow the grammar of contract_case_list given below.

Syntax

contract_case_list ::= (contract_case {, contract_case})
contract_case ::= condition => consequence

| others => consequence

where

consequence ::= Boolean_expression

Legality Rules

1. A Contract_Cases aspect may have at most one others contract_case and if it exists it shall be the last one
in the contract_case_list.

2. A consequence expression is considered to be a postcondition expression for purposes of determining the
legality of Old or Result attribute_references.

Static Semantics

3. A Contract_Cases aspect is an assertion (as defined in RM 11.4.2(1.1/3)); its assertion expressions are as de-
scribed below. Contract_Cases may be specified as an assertion_aspect_mark in an Assertion_Policy
pragma.

Dynamic Semantics

4. Upon a call of a subprogram which is subject to an enabled Contract_Cases aspect, Contract_Cases checks are
performed as follows:

• Immediately after the specific precondition expression is evaluated and checked (or, if that check is dis-
abled, at the point where the check would have been performed if it were enabled), all of the conditions
of the contract_case_list are evaluated in textual order. A check is performed that exactly one (if
no others contract_case is provided) or at most one (if an others contract_case is provided) of
these conditions evaluates to True; Assertions.Assertion_Error is raised if this check fails.

• Immediately after the specific postcondition expression is evaluated and checked (or, if that check is
disabled, at the point where the check would have been performed if it were enabled), exactly one of
the consequences is evaluated. The consequence to be evaluated is the one corresponding to
the one condition whose evaluation yielded True (if such a condition exists), or to the others
contract_case (if every condition‘s evaluation yielded False). A check is performed that the
evaluation of the selected consequence evaluates to True; Assertions.Assertion_Error is raised if this
check fails.

5. If an Old attribute_reference occurs within a consequence other than the consequence selected
for (later) evaluation as described above, then the associated implicit constant declaration (see Ada RM 6.1.1)
is not elaborated. [In particular, the prefix of the Old attribute_reference is not evaluated].

Verification Rules

The verification conditions associated with the Contract_Cases runtime checks performed at the beginning of a call
are assigned in the same way as those associated with a specific precondition check. More specifically, the verification
condition is imposed on the caller or on the callee depending on whether the subprogram in question is a dispatching
operation.

Examples

-- This subprogram is specified using a Contract_Cases aspect.
-- The prover will check that the cases are disjoint and
-- cover the domain of X.
procedure Incr_Threshold (X : in out Integer; Threshold : in Integer)

with Contract_Cases => (X < Threshold => X = X'Old + 1,
X >= Threshold => X = X'Old);

-- This is the equivalent specification not using Contract_Cases.
-- It is noticeably more complex and the prover is not able to check
-- for disjoint cases or that he domain of X is covered.
procedure Incr_Threshold_1 (X : in out Integer; Threshold : in Integer)
with Pre => (X < Threshold and not (X = Threshold))

or else (not (X < Threshold) and X = Threshold),
Post => (if X'Old < Threshold then X = X'Old + 1

elsif X'Old = Threshold then X = X'Old);

-- Contract_Cases can be used in conjunction with pre and postconditions.
procedure Incr_Threshold_2 (X : in out Integer; Threshold : in Integer)
with Pre => X in 0 .. Threshold,

Post => X >= X'Old,

Contract_Cases => (X < Threshold => X = X'Old + 1,
X = Threshold => X = X'Old);

6.1.4 Global Aspects

A Global aspect of a subprogram lists the global items whose values are used or affected by a call of the subprogram.

The Global aspect shall only be specified for the initial declaration of a subprogram (which may be a declaration,
a body or a body stub), of a protected entry, or of a task unit. The implementation of a subprogram body shall
be consistent with the subprogram’s Global aspect. Similarly, the implementation of an entry or task body shall be
consistent with the entry or task’s Global aspect.

Note that a Refined_Global aspect may be applied to a subprogram body when using state abstraction; see section
Refined_Global Aspects for further details.

The Global aspect is introduced by an aspect_specification where the aspect_mark is Global and the
aspect_definition must follow the grammar of global_specification

For purposes of the rules concerning the Global, Depends, Refined_Global, and Refined_Depends aspects, when any of
these aspects are specified for a task unit the task unit’s body is considered to be the body of a nonreturning procedure
and the current instance of the task unit is considered to be a formal parameter (of that notional procedure) of mode
in out. [For example, rules which refer to the “subprogram body” refer, in the case of a task unit, to the task body.]
[Because a task (even a discriminated task) is effectively a constant, one might think that a mode of in would make
more sense. However, the current instance of a task unit is, strictly speaking, a variable; for example, it may be passed
as an actual out or in out mode parameter in a call.] The Depends and Refined_Depends aspect of a task unit T need
not mention this implicit parameter; an implicit specification of “T => T” is assumed, although this may be confirmed
explicitly.

Similarly, for purposes of the rules concerning the Global, Refined_Global, Depends, and Refined_Depends aspects
as they apply to protected operations, the current instance of the enclosing protected unit is considered to be a formal
parameter (of mode in for a protected function, of mode in out otherwise) and a protected entry is considered to be a
protected procedure. [For example, rules which refer to the “subprogram body” refer, in the case of a protected entry,
to the entry body. As another example, the Global aspect of a subprogram nested within a protected operation might
name the current instance of the protected unit as a global in the same way that it might name any other parameter of
the protected operation.]

[Note that AI12-0169 modifies the Ada RM syntax for an entry_body to allow an optional
aspect_specification immediately before the entry_barrier. This is relevant for aspects such as
Refined_Global and Refined_Depends.]

Syntax

global_specification ::= (moded_global_list {, moded_global_list})
| global_list
| null_global_specification

moded_global_list ::= mode_selector => global_list
global_list ::= global_item

| (global_item {, global_item})
mode_selector ::= Input | Output | In_Out | Proof_In
global_item ::= name
null_global_specification ::= null

Static Semantics

1. A global_specification that is a global_list is shorthand for a moded_global_list with the
mode_selector Input.

2. A global_item is referenced by a subprogram if:

• It denotes an input or an output of the subprogram, or;

• Its entry value is used to determine the value of an assertion expression within the subprogram, or;

• Its entry value is used to determine the value of an assertion expression within another subprogram that is
called either directly or indirectly by this subprogram.

3. A null_global_specification indicates that the subprogram does not reference any global_item
directly or indirectly.

4. If a subprogram’s Global aspect is not otherwise specified and either

• the subprogram is a library-level subprogram declared in a library unit that is declared pure (i.e., a subpro-
gram to which the implementation permissions of Ada RM 10.2.1 apply); or

• a Pure_Function pragma applies to the subprogram

then a Global aspect of null is implicitly specified for the subprogram.

Name Resolution Rules

5. A global_item shall denote an entire object or a state abstraction. [This is a name resolution rule because a
global_item can unambiguously denote a state abstraction even if a function having the same fully qualified
name is also present].

Legality Rules

6. The Global aspect may only be specified for the initial declaration of a subprogram (which may be a declaration,
a body or a body stub), of a protected entry, or of a task unit.

7. A global_item occurring in a Global aspect specification of a subprogram shall not denote a formal param-
eter of the subprogram.

8. A global_item shall not denote a state abstraction whose refinement is visible. [A state abstraction cannot
be named within its enclosing package’s body other than in its refinement. Its constituents shall be used rather
than the state abstraction.]

9. Each mode_selector shall occur at most once in a single Global aspect.

10. A function subprogram shall not have a mode_selector of Output or In_Out in its Global aspect.

11. A user-defined equality operation on a record type shall have a Global aspect of null (see Overloading of
Operators).

[This avoids the case where such a record type is a component of another composite type, whose predefined
equality operation now depends on variables through the primitive equality operation on its component.]

12. The global_items in a single Global aspect specification shall denote distinct entities.

13. If a subprogram is nested within another and if the global_specification of the outer subprogram has
an entity denoted by a global_item with a mode_specification of Input or the entity is a formal pa-
rameter with a mode of in, then a global_item of the global_specification of the inner subprogram
shall not denote the same entity with a mode_selector of In_Out or Output.

Dynamic Semantics

There are no dynamic semantics associated with a Global aspect as it is used purely for static analysis purposes and is
not executed.

Verification Rules

14. For a subprogram that has a global_specification, an object (except a constant without variable inputs)
or state abstraction that is declared outside the scope of the subprogram, shall only be referenced within its
implementation if it is a global_item in the global_specification.

15. A global_item shall occur in a Global aspect of a subprogram if and only if it denotes an entity (except for
a constant without variable inputs) that is referenced by the subprogram.

16. Where the refinement of a state abstraction is not visible (see State Refinement) and a subprogram references
one or more of its constituents the constituents may be represented by a global_item that denotes the state
abstraction in the global_specification of the subprogram. [The state abstraction encapsulating a con-
stituent is known from the Part_Of indicator on the declaration of the constituent.]

17. Each entity denoted by a global_item in a global_specification of a subprogram that is an input or
output of the subprogram shall satisfy the following mode specification rules [which are checked during analysis
of the subprogram body]:

• a global_item that denotes an input but not an output has a mode_selector of Input;

• a global_item has a mode_selector of Output if:

– it denotes an output but not an input, other than the use of a discriminant or an attribute related to a
property, not its value, of the global_item [examples of attributes that may be used are A’Last,
A’First and A’Length; examples of attributes that are dependent on the value of the object and shall
not be used are X’Old and X’Update] and

– it does not have relaxed initialization (see Relaxed Initialization);

• a global_item that denotes an output which is not an input and which has relaxed initialization may
have a mode_selector of Output or In_Out;

• otherwise the global_item denotes both an input and an output, and has a mode_selector of
In_Out.

[For purposes of determining whether an output of a subprogram shall have a mode_selector of
Output or In_Out, reads of array bounds, discriminants, or tags of any part of the output are ignored.
Similarly, for purposes of determining whether an entity is fully initialized as a result of any successful
execution of the call, only nondiscriminant parts are considered. This implies that given an output of a
discriminated type that is not known to be constrained (“known to be constrained” is defined in Ada RM
3.3), the discriminants of the output might or might not be updated by the call.]

18. An entity that is denoted by a global_item which is referenced by a subprogram but is neither an input
nor an output but is only referenced directly, or indirectly in assertion expressions has a mode_selector of
Proof_In.

19. A global_item shall not denote a constant object other than a formal parameter [of an enclosing subprogram]
of mode in, a generic formal object of mode in, or a constant with variable inputs.

If a global_item denotes a generic formal object of mode in, then the corresponding global_item in
an instance of the generic unit may denote a constant which has no variable inputs. [This can occur if the
corresponding actual parameter is an expression which has no variable inputs]. Outside of the instance, such a
global_item is ignored. For example,

generic
Xxx : Integer;

package Ggg is
procedure Ppp (Yyy : in out Integer) with Global => Xxx,

Depends => (Yyy =>+ Xxx);
end Ggg;

package body Ggg is
procedure Ppp (Yyy : in out Integer) is
begin

Yyy := Integer'Max (Xxx, Yyy);
end Ppp;

end Ggg;

package Iii is new Ggg
(Xxx => 123); -- actual parameter lacks variable inputs

procedure Qqq (Zzz : in out Integer) with Global => null,
Depends => (Zzz =>+ null);

procedure Qqq (Zzz : in out Integer) is
begin

Iii.Ppp (Yyy => Zzz);
end Qqq;

-- Qqq's Global and Depends aspects don't mention Iii.Xxx even though
-- Qqq calls Iii.Ppp which does reference Iii.Xxx as a global.
-- As seen from outside of Iii, Iii.Ppp's references to Iii.Xxx in its
-- Global and Depends aspect specifications are ignored.

20. The mode_selector of a global_item denoting a constant with variable inputs shall be Input or
Proof_In.

21. The mode_selector of a global_item denoting a variable marked as a constant after elaboration shall be
Input or Proof_In [, to ensure that such variables are only updated directly by package elaboration code].
A subprogram or entry having such a global_item shall not be called during library unit elaboration[, to
ensure only the final (“constant”) value of the object is referenced].

Examples

with Global => null; -- Indicates that the subprogram does not reference
-- any global items.

with Global => V; -- Indicates that V is an input of the subprogram.
with Global => (X, Y, Z); -- X, Y and Z are inputs of the subprogram.
with Global => (Input => V); -- Indicates that V is an input of the subprogram.
with Global => (Input => (X, Y, Z)); -- X, Y and Z are inputs of the subprogram.
with Global => (Output => (A, B, C)); -- A, B and C are outputs of

-- the subprogram.
with Global => (In_Out => (D, E, F)); -- D, E and F are both inputs and

-- outputs of the subprogram
with Global => (Proof_In => (G, H)); -- G and H are only used in

-- assertion expressions within
-- the subprogram

with Global => (Input => (X, Y, Z),
Output => (A, B, C),
In_Out => (P, Q, R),
Proof_In => (T, U));
-- A global aspect with all types of global specification

6.1.5 Depends Aspects

A Depends aspect defines a dependency relation for a subprogram which may be given in the
aspect_specification of the subprogram. A dependency relation is a sort of formal specification which
specifies a simple relationship between inputs and outputs of the subprogram. It may be used with or without a
postcondition.

The Depends aspect shall only be specified for the initial declaration of a subprogram (which may be a declaration, a
body or a body stub), of a protected entry, or of a task unit.

Unlike a postcondition, the Depends aspect must be complete in the sense that every input and output of the subpro-
gram must appear in it. A postcondition need only specify properties of particular interest.

Like a postcondition, the dependency relation may be omitted from a subprogram declaration when it defaults to the
conservative relation that each output depends on every input of the subprogram. A particular SPARK 2014 tool
may synthesize a more accurate approximation from the subprogram implementation if it is present (see Synthesis of
SPARK 2014 Aspects).

For accurate information flow analysis the Depends aspect should be present on every subprogram.

A Depends aspect for a subprogram specifies for each output every input on which it depends. The meaning of X
depends on Y in this context is that the input value(s) of Y may affect:

• the exit value of X; and

• the intermediate values of X if it is an external state (see section External State), or if the subprogram is a
nonreturning procedure [, possibly the notional nonreturning procedure corresponding to a task body].

This is written X => Y. As in UML, the entity at the tail of the arrow depends on the entity at the head of the arrow.

If an output does not depend on any input this is indicated using a null, e.g., X => null. An output may be self-
dependent but not dependent on any other input. The shorthand notation denoting self-dependence is useful here, X
=>+ null.

Note that a Refined_Depends aspect may be applied to a subprogram body when using state abstraction; see section
Refined_Depends Aspects for further details.

See section Global Aspects regarding how the rules given in this section apply to protected operations and to task
bodies.

The Depends aspect is introduced by an aspect_specification where the aspect_mark is Depends and the
aspect_definition must follow the grammar of dependency_relation given below.

Syntax

dependency_relation ::= null
| (dependency_clause {, dependency_clause})

dependency_clause ::= output_list =>[+] input_list
| null_dependency_clause

null_dependency_clause ::= null => input_list
output_list ::= output

| (output {, output})
input_list ::= input

| (input {, input})
| null

input ::= name
output ::= name | function_result

where

function_result is a function Result attribute_reference.

Name Resolution Rules

1. An input or output of a dependency_relation shall denote only an entire object or a state abstraction.
[This is a name resolution rule because an input or output can unambiguously denote a state abstraction
even if a function having the same fully qualified name is also present.]

Legality Rules

2. The Depends aspect shall only be specified for the initial declaration of a subprogram (which may be a declara-
tion, a body or a body stub), of a protected entry, or of a task unit.

3. An input or output of a dependency_relation shall not denote a state abstraction whose refinement
is visible [a state abstraction cannot be named within its enclosing package’s body other than in its refinement].

4. The explicit input set of a subprogram is the set of formal parameters of the subprogram of mode in and
in out along with the entities denoted by global_items of the Global aspect of the subprogram with a
mode_selector of Input and In_Out.

5. The input set of a subprogram is the explicit input set of the subprogram augmented with those formal parame-
ters of mode out and those global_items with a mode_selector of Output having discriminants, array
bounds, or a tag which can be read and whose values are not implied by the subtype of the parameter. More
specifically, it includes formal parameters of mode out and global_items with a mode_selector of Out-
put which are of an unconstrained array subtype, an unconstrained discriminated subtype, a tagged type (with
one exception), or a type having a subcomponent of an unconstrained discriminated subtype. The exception
mentioned in the previous sentence is in the case where the formal parameter is of a specific tagged type and the
applicable Extensions_Visible aspect is False. In that case, the tag of the parameter cannot be read and so the
fact that the parameter is tagged does not cause it to included in the subprogram’s input_set, although it may be
included for some other reason (e.g., if the parameter is of an unconstrained discriminated subtype).

6. The output set of a subprogram is the set of formal parameters of the subprogram of mode in out and out along
with the entities denoted by global_items of the Global aspect of the subprogram with a mode_selector
of In_Out and Output and (for a function) the function_result.

[TBD: include in-mode parameters that are outputs. Do we want to define a term for such parameters?]

7. The entity denoted by each input of a dependency_relation of a subprogram shall be a member of the
input set of the subprogram.

8. Every member of the explicit input set of a subprogram shall be denoted by at least one input of the
dependency_relation of the subprogram.

9. The entity denoted by each output of a dependency_relation of a subprogram shall be a member of
the output set of the subprogram.

10. Every member of the output set of a subprogram shall be denoted by exactly one output in the
dependency_relation of the subprogram.

11. For the purposes of determining the legality of a Result attribute_reference, a
dependency_relation is considered to be a postcondition of the function to which the enclosing
aspect_specification applies.

12. In a dependency_relation there can be at most one dependency_clause which is a
null_dependency_clause and if it exists it shall be the last dependency_clause in the
dependency_relation.

13. An entity denoted by an input which is in an input_list of a null_dependency_clause shall not
be denoted by an input in another input_list of the same dependency_relation.

14. The inputs in a single input_list shall denote distinct entities.

15. A null_dependency_clause shall not have an input_list of null.

Static Semantics

16. A dependency_clause with a “+” symbol in the syntax output_list =>+ input_list means that
each output in the output_list has a self-dependency, that is, it is dependent on itself. [The text (A, B,
C) =>+ Z is shorthand for (A => (A, Z), B => (B, Z), C => (C, Z)).]

17. A dependency_clause of the form A =>+ A has the same meaning as A => A. [The reason for this rule is
to allow the short hand: ((A, B) =>+ (A, C)) which is equivalent to (A => (A, C), B => (A, B, C)).]

18. A dependency_clause with a null input_list means that the final value of the entity denoted by each
output in the output_list does not depend on any member of the input set of the subprogram (other than
itself, if the output_list =>+ null self-dependency syntax is used).

19. The inputs in the input_list of a null_dependency_clause may be read by the subprogram but
play no role in determining the values of any outputs of the subprogram.

20. A Depends aspect of a subprogram with a null dependency_relation indicates that the subprogram has
no inputs or outputs. [From an information flow analysis viewpoint it is a null operation (a no-op).]

21. A function without an explicit Depends aspect specification has the default dependency_relation that
its result is dependent on all of its inputs. [Generally an explicit Depends aspect is not required for a function
declaration.]

22. A procedure without an explicit Depends aspect specification has a default dependency_relation that
each member of its output set is dependent on every member of its input set. [This conservative approximation
may be improved by analyzing the body of the subprogram if it is present.]

Dynamic Semantics

There are no dynamic semantics associated with a Depends aspect as it is used purely for static analysis purposes and
is not executed.

Verification Rules

23. Each entity denoted by an output given in the Depends aspect of a subprogram shall be an output in the
implementation of the subprogram body and the output shall depend on all, but only, the entities denoted by the
inputs given in the input_list associated with the output.

24. Each output of the implementation of the subprogram body is denoted by an output in the Depends aspect of
the subprogram.

25. Each input of the implementation of a subprogram body is denoted by an input of the Depends aspect of the
subprogram.

26. If not all parts of an output are updated, then the updated entity is dependent on itself as the parts that are not
updated have their current value preserved.

[In the case of a parameter of a tagged type (specific or class-wide), see the definition of “fully initialized” for a
clarification of what the phrase “all parts” means in the preceding sentence.]

Examples

procedure P (X, Y, Z in : Integer; Result : out Boolean)
with Depends => (Result => (X, Y, Z));

-- The exit value of Result depends on the entry values of X, Y and Z

procedure Q (X, Y, Z in : Integer; A, B, C, D, E : out Integer)
with Depends => ((A, B) => (X, Y),

C => (X, Z),
D => Y,
E => null);

-- The exit values of A and B depend on the entry values of X and Y.
-- The exit value of C depends on the entry values of X and Z.
-- The exit value of D depends on the entry value of Y.
-- The exit value of E does not depend on any input value.

procedure R (X, Y, Z : in Integer; A, B, C, D : in out Integer)
with Depends => ((A, B) =>+ (A, X, Y),

C =>+ Z,
D =>+ null);

-- The "+" sign attached to the arrow indicates self-dependency, that is
-- the exit value of A depends on the entry value of A as well as the
-- entry values of X and Y.
-- Similarly, the exit value of B depends on the entry value of B
-- as well as the entry values of A, X and Y.

-- The exit value of C depends on the entry value of C and Z.
-- The exit value of D depends only on the entry value of D.

procedure S
with Global => (Input => (X, Y, Z),

In_Out => (A, B, C, D)),
Depends => ((A, B) =>+ (A, X, Y, Z),

C =>+ Y,
D =>+ null);

-- Here globals are used rather than parameters and global items may appear
-- in the Depends aspect as well as formal parameters.

function F (X, Y : Integer) return Integer
with Global => G,

Depends => (F'Result => (G, X),
null => Y);

-- Depends aspects are only needed for special cases like here where the
-- parameter Y has no discernible effect on the result of the function.

6.1.6 Class-Wide Global and Depends Aspects

The Global’Class and Depends’Class aspects may be specified for a dispatching subprogram just as the Global and
Depends aspects may be specified for any subprogram (dispatching or not). [The syntax, static semantics, and legality
rules are all the same, except that the Depends’Class aspect of a subprogram is checked for consistency with the
Global’Class aspect of the subprogram rather than with the Global aspect.]

Verification Rules

When analyzing a dispatching call, the Global and Depends aspects of the statically denoted callee play no role; the
corresponding class-wide aspects are used instead.

[No relationship between the Global’Class/Depends’Class aspects of a subprogram and the subprogram’s implemen-
tation is explicitly verified. This is instead accomplished implicitly by checking the consistency of the subprogram’s
implementation with its Global/Depends aspects (as described in preceding sections) and then checking (as described
in this section) the consistency of the Global/Depends aspects with the Global’Class/Depends’Class aspects.]

Static Semantics

A Global or Global’Class aspect specification G2 is said to be a valid overriding of another such specification, G1, if
the following conditions are met:

• each Input-mode item of G2 is an Input-mode or an In_Out-mode item of G1 or a direct or indirect constituent
thereof; and

• each In_Out-mode item of G2 is an In_Out-mode item of G1 or a direct or indirect constituent thereof; and

• each Output-mode item of G2 is an Output-mode or In_Out-mode item of G1 or a direct or indirect constituent
therof; and

• each Output-mode item of G1 which is not a state abstraction whose refinement is visible at the point of G2 is
an Output-mode item of G2; and

• for each Output-mode item of G1 which is a state abstraction whose refinement is visible at the point of G2,
each direct or indirect constituent thereof is an Output-mode item of G2.

A Depends or Depends’Class aspect specification D2 is said to be a valid overriding of another such specification,
D1, if the set of dependencies of D2 is a subset of the dependencies of D1 or, in the case where D1 mentions a
state abstraction whose refinement is visible at the point of D2, if D2 is derivable from such a subset as described in
Refined_Depends Aspects.

Legality Rules

The Global aspect of a subprogram shall be a valid overriding of the Global’Class aspect of the subprogram. The
Global’Class aspect of an an overriding subprogram shall be a valid overriding of the Global’Class aspect(s) of the
overridden inherited subprogram(s).

The Depends aspect of a subprogram shall be a valid overriding of the Depends’Class aspect of the subprogram. The
Depends’Class aspect of an an overriding subprogram shall be a valid overriding of the Depends’Class aspect(s) of
the overridden inherited subprogram(s).

6.1.7 Extensions_Visible Aspects

1. The Extensions_Visible aspect provides a mechanism for ensuring that “hidden” components of a formal param-
eter of a specific tagged type are unreferenced. For example, if a formal parameter of a specific tagged type T is
converted to a class-wide type and then used as a controlling operand in a dispatching call, then the (dynamic)
callee might reference components of the parameter which are declared in some extension of T. Such a use of
the formal parameter could be forbidden via an Extensions_Visible aspect specification as described below. The
aspect also plays a corresponding role in the analysis of callers of the subprogram.

Static Semantics

2. Extensions_Visible is a Boolean-valued aspect which may be specified for a noninstance subprogram or a
generic subprogram. If directly specified, the aspect_definition shall be a static [Boolean] expression. The
aspect is inherited by an inherited primitive subprogram. If the aspect is neither inherited nor directly specified
for a subprogram, then the aspect is False, except in the case of the predefined equality operator of a type ex-
tension. In that case, the aspect value is that of the primitive [(possibly user-defined)] equality operator for the
parent type.

Legality Rules

3. If the Extensions_Visible aspect is False for a subprogram, then certain restrictions are imposed on the use
of any parameter of the subprogram which is of a specific tagged type (or of a private type whose full view
is a specific tagged type). Such a parameter shall not be converted (implicitly or explicitly) to a class-wide
type. Such a parameter shall not be passed as an actual parameter in a call to a subprogram whose Exten-
sions_Visible aspect is True. These restrictions also apply to any parenthesized expression, qualified expres-
sion, or type conversion whose operand is subject to these restrictions, to any Old, Update, or Loop_Entry
attribute_reference whose prefix is subject to these restrictions, and to any conditional expression hav-
ing at least one dependent_expression which is subject to these restrictions. [A subcomponent of a parameter
is not itself a parameter and is therefore not subject to these restrictions. A parameter whose type is class-wide
is not subject to these restrictions. An Old, Update, or Loop_Entry attribute_reference does not itself
violate these restrictions (despite the fact that (in the tagged case) each of these attributes yields a result having
the same underlying dynamic tag as their prefix).]

4. A subprogram whose Extensions_Visible aspect is True shall not override an inherited primitive operation of a
tagged type whose Extensions_Visible aspect is False. [The reverse is allowed.]

5. If a nonnull type extension inherits a procedure having both a False Extensions_Visible aspect and one or more
controlling out-mode parameters, then the inherited procedure requires overriding. [This is because the inherited
procedure would not initialize the noninherited component(s).]

6. The Extensions_Visible aspect shall not be specified for a subprogram which has no parameters of either a
specific tagged type or a private type unless the subprogram is declared in an instance of a generic unit and the
corresponding subprogram in the generic unit satisfies this rule. [Such an aspect specification, if allowed, would
be ineffective.]

7. [These rules ensure that the value of the underlying tag (at run time) of the actual parameter of a call to a
subprogram whose Extensions_Visible aspect is False will have no effect on the behavior of that call. In partic-

ular, if the actual parameter has any additional components which are not components of the type of the formal
parameter, then these components are unreferenced by the execution of the call.]

Verification Rules

1. [SPARK 2014 typically requires that an actual parameter corresponding to an in mode or in out mode formal
parameter in a call shall be fully initialized before the call; similarly, the callee is typically responsible for fully
initializing any out-mode formal parameters before returning. For details (including interactions with relaxed
initialization), see the verification rule about full initialization of subprogram inputs and outputs (which include
parameters) in Subprogram Declarations and then Relaxed Initialization].

2. In the case of a formal parameter of a specific tagged type T (or of a private type whose full view is a specific
tagged type), the set of components which shall be initialized in order to meet these requirements depends on
the Extensions_Visible aspect of the callee. If the aspect is False, then that set of components is the [statically
known] set of nondiscriminant components of T. If the aspect is True, then this set is the set of nondiscriminant
components of the specific type associated with the tag of the corresponding actual parameter. [In general, this is
not statically known. This set will always include the nondiscriminant components of T, but it may also include
additional components.]

3. [To put it another way, if the applicable Extensions_Visible aspect is True, then the initialization requirements
(for both the caller and the callee) for a parameter of a specific tagged type T are the same as if the formal
parameter’s type were T’Class. If the aspect is False, then components declared in proper descendants of T
need not be initialized. In the case of an out mode parameter, such initialization by the callee is not only not
required, it is effectively forbidden because such an out-mode parameter could not be fully initialized without
some form of dispatching (e.g., a class-wide assignment or a dispatching call in which an out-mode parameter
is a controlling operand). Such a dispatching assignment will always fully initialize its controlling out-mode
parameters, regardless of the Extensions_Visible aspect of the callee. An assignment statement whose target is
of a class-wide type T’Class is treated, for purposes of formal verification, like a call to a procedure with two
parameters of type T’Class, one of mode out and one of mode in.]

4. [In the case of an actual parameter of a call to a subprogram whose Extensions_Visible aspect is False where
the corresponding formal parameter is of a specific tagged type T, these rules imply that formal verification can
safely assume that any components of the actual parameter which are not components of T will be neither read
nor written by the call.]

6.2 Formal Parameter Modes

In flow analysis, particularly information flow analysis, the update of a component of composite object is treated as
updating the whole of the composite object with the component set to its new value and the remaining components of
the composite object with their value preserved.

This means that if a formal parameter of a subprogram is a composite type and only individual components, but not
all, are updated, then the mode of the formal parameter should be in out.

In general, it is not possible to statically determine whether all elements of an array have been updated by a subprogram
if individual array elements are updated. The mode of a formal parameter of an array with such updates should be in
out.

A formal parameter with a mode of out is treated as not having an entry value (apart from any discriminant or attributes
of properties of the formal parameter). Hence, a subprogram cannot read a value of a formal parameter of mode out
until the subprogram has updated it.

Verification Rules

1. A subprogram formal parameter of a composite type which is updated but not fully initialized by the subprogram
shall have a mode of in out.

2. A subprogram formal parameter of mode out shall not be read by the subprogram until it has been updated
by the subprogram. The use of a discriminant or an attribute related to a property, not its value, of the formal
parameter is not considered to be a read of the formal parameter. [Examples of attributes that may be used are
A’First, A’Last and A’Length; examples of attributes that are dependent on the value of the formal parameter
and shall not be used are X’Old and X’Update.]

Examples

1 -- The following example is acceptable in Ada
2 -- but will raise a flow anomaly in SPARK stating that
3 -- X may not be initialized because an out parameter indicates
4 -- that the entire String is initialized.
5 procedure Param_1_Illegal (X : out String)
6 is
7 begin
8 if X'Length > 0 and X'First = 1 then
9 X (1) := '?';

10 end if;
11 end Param_1_Illegal;

1 -- In SPARK the parameter mode should be in out meaning that the
2 -- entire array is initialized before the call to the subprogram.
3 procedure Param_1_Legal (X : in out String)
4 is
5 begin
6 if X'Length > 0 and X'First = 1 then
7 X (1) := '?';
8 end if;
9 end Param_1_Legal;

6.3 Subprogram Bodies

6.3.1 Conformance Rules

No extensions or restrictions.

6.3.2 Inline Expansion of Subprograms

No extensions or restrictions.

6.4 Subprogram Calls

No extensions or restrictions.

6.4.1 Parameter Associations

No extensions or restrictions.

6.4.2 Anti-Aliasing

An alias is a name which refers to the same object as another name. The presence of aliasing is inconsistent with the
underlying flow analysis and proof models used by the tools which assume that different names represent different
entities. In general, it is not possible or is difficult to deduce that two names refer to the same object and problems
arise when one of the names is used to update the object (although object renaming declarations are not problematic
in SPARK 2014).

A common place for aliasing to be introduced is through the actual parameters and between actual parameters and
global variables in a procedure call. Extra verification rules are given that avoid the possibility of aliasing through
actual parameters and global variables. A function is not allowed to have side-effects and cannot update an actual
parameter or global variable. Therefore, function calls cannot introduce aliasing and are excluded from the anti-
aliasing rules given below for procedure calls.

Static Semantics

1. An object is said to be interfering if it is unsynchronized (see section Tasks and Synchronization) or it is syn-
chronized only due to being constant after elaboration (see section Object Declarations).

Two names that potentially overlap (see section Access Types) and which each denotes an interfering object
are said to potentially introduce aliasing via parameter passing. [This definition has the effect of exempting
most synchronized objects from the anti-aliasing rules given below; aliasing of most synchronized objects via
parameter passing is allowed.]

2. A formal parameter is said to be immutable in the following cases:

• it is an anonymous access-to-constant parameter; or

• it is of mode in and not of an access type.

Otherwise, the formal parameter is said to be mutable.

Verification Rules

3. A procedure call shall not pass two actual parameters which potentially introduce aliasing via parameter passing
unless either

• both of the corresponding formal parameters are immutable; or

• at least one of the corresponding formal parameters is immutable and is of a by-copy type that is not an
access type.

4. If an actual parameter in a procedure call and a global_item referenced by the called procedure potentially
introduce aliasing via parameter passing, then

• the corresponding formal parameter shall be immutable; and

• if the global_item‘s mode is Output or In_Out, then the corresponding formal parameter shall be of a
by-copy type that is not an access type.

5. Where one of these rules prohibits the occurrence of an object V or any of its subcomponents as an actual
parameter, the following constructs are also prohibited in this context:

• A type conversion whose operand is a prohibited construct;

• A call to an instance of Unchecked_Conversion whose operand is a prohibited construct;

• A qualified expression whose operand is a prohibited construct;

• A prohibited construct enclosed in parentheses.

Examples

1 procedure Anti_Aliasing is
2 type Rec is record
3 X : Integer;
4 Y : Integer;
5 end record;
6

7 type Arr is array (1 .. 10) of Integer;
8

9 type Arr_With_Rec is array (1 .. 10) of Rec;
10

11 Local_1, Local_2 : Integer := 0;
12

13 Rec_1 : Rec := (0, 0);
14

15 Arr_1 : arr := (others => 0);
16

17 Arr_Rec : Arr_With_Rec := (others => (0, 0));
18

19 procedure One_In_One_Out (X : in Integer; Y : in out Integer)
20 is
21 begin
22 Y := X + Y;
23 end One_In_One_Out;
24

25 procedure Two_In_Out (X, Y : in out Integer) with Global => null
26 is
27 Temp : Integer;
28 begin
29 Temp := Y;
30 Y := X + Y;
31 X := Temp;
32 end Two_In_Out;
33

34 procedure With_In_Global (I : in out Integer)
35 with Global => Local_1
36 is
37 begin
38 I := I + Local_1;
39 end With_In_Global;
40

41 procedure With_In_Out_Global (I : in Integer)
42 with Global => (In_Out => Local_1)
43 is
44 begin
45 Local_1 := I + Local_1;
46 end With_In_Out_Global;
47

48 procedure With_Composite_In_Out_Global (I : in Integer)
49 with Global => (In_Out => Rec_1)
50 is
51 begin
52 Rec_1.X := I + Rec_1.X;
53 end With_Composite_In_Out_Global;
54

55 begin
56 -- This is ok because parameters are by copy and there
57 -- is only one out parameter
58 One_In_One_Out (Local_1, Local_1);

59

60 -- This is erroneous both parameters are in out and
61 -- the actual parameters overlap
62 Two_In_Out (Local_1, Local_1);
63

64 -- This is ok the variables do not overlap even though
65 -- they are part of the same record.
66 Two_In_Out (Rec_1.X, Rec_1.Y);
67

68 -- This is ok the variables do not overlap they
69 -- can statically determined to be distinct elements
70 Two_In_Out (Arr_1 (1), Arr_1 (2));
71

72 -- This is erroneous because it cannot be determined statically
73 -- whether the elements overlap
74 Two_In_Out (Arr_1 (Local_1), Arr_1 (Local_2));
75

76 -- This is ok the variables do not overlap they
77 -- can statically determined to be distinct components
78 Two_In_Out (Arr_Rec (Local_1).X , Arr_Rec (Local_2).Y);
79

80 -- This erroneous Global and formal in out parameter overlap.
81 With_In_Global (Local_1);
82

83 -- This erroneous Global In_Out and formal parameter overlap.
84 With_In_Out_Global (Local_1);
85

86 -- This erroneous Global In_Out and formal parameter overlap.
87 With_Composite_In_Out_Global (Rec_1.Y);
88

89 end Anti_Aliasing;

6.5 Return Statements

No extensions or restrictions.

6.5.1 Nonreturning Procedures

Verification Rules

1. A call to a nonreturning procedure introduces an obligation to prove that the statement will not be executed,
much like the verification condition associated with

pragma Assert (False);

[In other words, the verification conditions introduced for a call to a nonreturning procedure are the same as
those introduced for a runtime check which fails unconditionally. See also section Exceptions, where a similar
verification rule is imposed on raise_statements.]

6.6 Overloading of Operators

Legality Rules

1. [A user-defined equality operation on a record type shall have a Global aspect of null; see Global Aspects for
the statement of this rule.]

Verification Rules

2. A user-defined equality operation on a record type shall always terminate.

6.7 Null Procedures

No extensions or restrictions.

6.8 Expression Functions

Legality Rules

1. Contract_Cases, Global and Depends aspects may be applied to an expression function as for any other function
declaration if it does not have a separate declaration. If it has a separate declaration then the aspects are applied
to that. It may have refined aspects applied (see State Refinement).

Examples

function Expr_Func_1 (X : Natural; Y : Natural) return Natural is (X + Y)
with Pre => X <= Natural'Last - Y;

6.9 Ghost Entities

Ghost entities are intended for use in discharging verification conditions and in making it easier to express assertions
about a program. The essential property of ghost entities is that they have no effect on the dynamic behavior of a
valid SPARK program. More specifically, if one were to take a valid SPARK program and remove all ghost entity
declarations from it and all “innermost” statements, declarations, and pragmas which refer to those declarations (re-
placing removed statements with null statements when syntactically required), then the resulting program might no
longer be a valid SPARK program (e.g., it might no longer be possible to discharge all of the program’s verification
conditions) but its dynamic semantics (when viewed as an Ada program) should be unaffected by this transformation.
[This transformation might affect the performance characteristics of the program (e.g., due to no longer evaluating
provably true assertions), but that is not what we are talking about here. In rare cases, it might be necessary to make
a small additional change after the removals (e.g., adding an Elaborate_Body pragma) in order to avoid producing a
library package that no longer needs a body (see Ada RM 7.2(4))].

Static Semantics

1. SPARK 2014 defines the Boolean-valued representation aspect Ghost. Ghost is an aspect of all entities (e.g.,
subprograms, types, objects). An entity whose Ghost aspect is True is said to be a ghost entity; terms such as
“ghost function” or “ghost variable” are defined analogously (e.g., a function whose Ghost aspect is True is said
to be a ghost function). In addition, a subcomponent of a ghost object is a ghost object.

Ghost is an assertion aspect. [This means that Ghost can be named in an Assertion_Policy pragma.]

2. The Ghost aspect of an entity declared inside of a ghost entity (e.g., within the body of a ghost subprogram) is
defined to be True. The Ghost aspect of an entity implicitly declared as part of the explicit declaration of a ghost
entity (e.g., an implicitly declared subprogram associated with the declaration of a ghost type) is defined to be
True. The Ghost aspect of a child of a ghost library unit is defined to be True.

3. A statement or pragma is said to be a “ghost statement” if

• it occurs within a ghost subprogram or package; or

• it is a call to a ghost procedure; or

• it is an assignment statement whose target is a ghost variable; or

• it is a pragma which encloses a name denoting a ghost entity or which specifies an aspect of a ghost entity.

4. If the Ghost assertion policy in effect at the point of a ghost statement or the declaration of a ghost entity
is Ignore, then the elaboration of that construct (at run time) has no effect, other Ada or SPARK 2014 rules
notwithstanding. Similarly, the elaboration of the completion of a ghost entity has no effect if the Ghost assertion
policy in effect at the point of the entity’s initial declaration is Ignore. [A Ghost assertion policy of Ignore can
be used to ensure that a compiler generates no code for ghost constructs.] Such a declaration is said to be a
disabled ghost declaration; terms such as “disabled ghost type” and “disabled ghost subprogram” are defined
analogously.

Legality Rules

5. The Ghost aspect may only be specified [explicitly] for the declaration of a subprogram, a
generic subprogram, a type (including a partial view thereof), an object (or list of objects, in
the case of an aspect_specification for an object_declaration having more than one
defining_identifier), a package, or a generic package. The Ghost aspect may be specified via either
an aspect_specification or via a pragma. The representation pragma Ghost takes a single argument,
a name denoting one or more entities whose Ghost aspect is then specified to be True. [In particular, SPARK
2014 does not currently include any form of ghost components of non-ghost record types, or ghost parameters of
non-ghost subprograms. SPARK 2014 does define ghost state abstractions, but these are described elsewhere.]

6. A Ghost aspect value of False shall not be explicitly specified except in a confirming aspect specification. [For
example, a non-ghost declaration cannot occur within a ghost subprogram.]

The value specified for the Ghost assertion policy in an Assertion_Policy pragma shall be either Check or Ignore.
[In other words, implementation-defined assertion policy values are not permitted.] The Ghost assertion policy
in effect at any point of a SPARK program shall be either Check or Ignore.

7. A ghost type or object shall not be effectively volatile. A ghost object shall not be imported or exported. [In
other words, no ghost objects for which reading or writing would constitute an external effect (see Ada RM
1.1.3).]

8. A ghost primitive subprogram of a non-ghost type extension shall not override an inherited non-ghost primitive
subprogram. A non-ghost primitive subprogram of a type extension shall not override an inherited ghost primi-
tive subprogram. [A ghost subprogram may be a primitive subprogram of a non-ghost tagged type. A ghost type
extension may have a non-ghost parent type or progenitor; primitive subprograms of such a type may override
inherited (ghost or non-ghost) subprograms.]

9. A Ghost pragma which applies to a declaration occuring in the visible part of a package shall not occur in the
private part of that package. [This rule is to ensure that the ghostliness of a visible entity can be determined
without having to look into the private part of the enclosing package.]

10. A ghost entity shall only be referenced:

• from within an assertion expression; or

• from within an aspect specification [(i.e., either an aspect_specification or an aspect-specifying
pragma)]; or

• within the declaration or completion of a ghost entity (e.g., from within the body of a ghost subprogram);
or

• within a ghost statement; or

• within a with_clause or use_clause; or

• within a renaming_declaration which either renames a ghost entity or occurs within a ghost subprogram
or package.

11. A ghost entity shall not be referenced within an aspect specification [(including an aspect-specifying pragma)]
which specifies an aspect of a non-ghost entity except in the following cases:

• the reference occurs within an assertion expression which is not a predicate expression; or

• the specified aspect is either Global, Depends, Refined_Global, Refined_Depends, Initializes, or Re-
fined_State. [For example, the Global aspect of a non-ghost subprogram might refer to a ghost variable.]

[Predicate expressions are excluded because predicates participate in membership tests; no Asser-
tion_Policy pragma has any effect on this participation. In the case of a Static_Predicate expression,
there are also other reasons (e.g., case statements).]

12. An out or in out mode actual parameter in a call to a ghost subprogram shall be a ghost variable.

13. If the Ghost assertion policy in effect at the point of the declaration of a ghost entity is Ignore, then the Ghost
assertion policy in effect at the point of any reference to that entity shall be Ignore. If the Ghost assertion policy
in effect at the point of the declaration of a ghost variable is Check, then the Ghost assertion policy in effect at
the point of any assignment to a part of that variable shall be Check. [This includes both assignment statements
and passing a ghost variable as an out or in out mode actual parameter.]

14. An Assertion_Policy pragma specifying a Ghost assertion policy shall not occur within a ghost subprogram or
package. If a ghost entity has a completion then the Ghost assertion policies in effect at the declaration and at
the completion of the entity shall be the same. [This rule applies to subprograms, packages, types, and deferred
constants.]

The Ghost assertion policies in effect at the point of the declaration of an entity and at the point of an aspect
specification which applies to that entity shall be the same.

15. The Ghost assertion policies in effect at the declaration of a state abstraction and at the declaration of each
constituent of that abstraction shall be the same.

16. The Ghost assertion policies in effect at the declaration of a primitive subprogram of a ghost tagged type and at
the declaration of the ghost tagged type shall be the same.

17. If a tagged type is not a disabled ghost type, and if a primitive operation of the tagged type overrides an inherited
operation, then the corresponding operation of the ancestor type shall be a disabled ghost subprogram if and only
if the overriding subprogram is a disabled ghost subprogram.

18. If the Ghost assertion policy in effect at the point of an a reference to a Ghost entity which occurs within an
assertion expression is Ignore, then the assertion policy which governs the assertion expression (e.g., Pre for a
precondition expression, Assert for the argument of an Assert pragma) shall [also] be Ignore.

19. A ghost type shall not have a task or protected part. A ghost object shall not be of a type which yields syn-
chronized objects (see section Tasks and Synchronization). A ghost object shall not have a volatile part. A
synchronized state abstraction shall not be a ghost state abstraction (see Abstract_State Aspects).

Verification Rules

20. A ghost procedure shall not have a non-ghost [global] output.

21. An output of a non-ghost subprogram other than a state abstraction or a ghost global shall not depend on a ghost
input. [It is intended that this follows as a consequence of other rules. Although a non-ghost state abstraction
output which depends on a ghost input may have a non-ghost constituent, other rules prevent such a non-ghost
constituent from depending on the ghost input.]

22. A ghost procedure shall not have an effectively volatile global input with the properties Async_Writers or
Effective_Reads set to True. [This rule says, in effect, that ghost procedures are subject to the same restrictions
as non-ghost nonvolatile functions with respect to reading volatile objects.] A name occurring within a ghost

statement shall not denote an effectively volatile object with the properties Async_Writers or Effective_Reads
set to True. [In other words, a ghost statement is subject to effectively the same restrictions as a ghost procedure.]

23. If the Ghost assertion policy in effect at the point of the declaration of a ghost variable or ghost state abstraction
is Check, then the Ghost assertion policy in effect at the point of any call to a procedure for which that variable
or state abstraction is a global output shall be Check.

Examples

function A_Ghost_Expr_Function (Lo, Hi : Natural) return Natural is
(if Lo > Integer'Last - Hi then Lo else ((Lo + Hi) / 2))
with Pre => Lo <= Hi,

Post => A_Ghost_Expr_Function'Result in Lo .. Hi,
Ghost;

function A_Ghost_Function (Lo, Hi : Natural) return Natural
with Pre => Lo <= Hi,

Post => A_Ghost_Function'Result in Lo .. Hi,
Ghost;

-- The body of the function is declared elsewhere.

function A_Nonexecutable_Ghost_Function (Lo, Hi : Natural) return Natural
with Pre => Lo <= Hi,

Post => A_Nonexecutable_Ghost_Function'Result in Lo .. Hi,
Ghost,
Import;

-- The body of the function is not declared elsewhere.

6.10 Relaxed Initialization

SPARK 2014 defines the Boolean-valued aspect Relaxed_Initialization and the related Boolean-valued attribute, Ini-
tialized.

Without the Relaxed_Initialization aspect, the rules that statically prevent reading an uninitialized scalar object are
defined with “whole object” granularity. For example, all inputs of a subprogram are required to be fully initialized
at the point of a call to the subprogram and all outputs of a subprogram are required to be fully initialized at the
point of a return from the subprogram. The Relaxed_Initialization aspect, together with the Initialized attribute,
provides a mechanism for safely (i.e., without introducing the possibility of improperly reading an uninitialized scalar)
referencing partially initialized Inputs and Outputs.

The Relaxed_Initialization aspect may be specified for a type, for a standalone object, for a state abstraction, or (at
least in effect - see below for details) for a parameter or function result of a subprogram or entry. The prefix of an
Initialized attribute reference shall denote an object.

Static Semantics

1. An object is said to have relaxed initialization if and only if

• its Relaxed_Initialization aspect is True; or

• the Relaxed_Initialization aspect of its type is True; or

• it is a subcomponent of an object that has relaxed initialization; or

• it is the return object of a function call and the Relaxed_Initialization aspect of the function’s result is True;
or

• it is the return object of a call to a predefined concatenation operator and at least one of the operands is a
name denoting an object having relaxed initialization; or

• it is the result object of an aggregate having a least one component whose value is that of an object that
has relaxed initialization; or

• it is the result of evaluating a value conversion whose operand has relaxed initialization; or

• it is the associated object of an expression (e.g., a view conversion, a qualified expression, or a conditional
expression) which has at least one operative constituent (see Ada RM 4.4) which is not the expression
itself and whose associated object has relaxed initialization.

A state abstraction or a type has relaxed initialization if its Relaxed_Initialization aspect is True. An expression
has relaxed initialization if its evaluation yields an object that has relaxed initialization.

2. A Relaxed_Initialization aspect specification for a formal parameter of a callable entity or for a function’s result
is expressed syntactically as an aspect_specification of the declaration of the enclosing callable entity. [This is
expressed this way because Ada does not provide syntax for specifying aspects for subprogram/entry parameters,
or for the result of a function.] In the following example, the parameter X1 and the result of F are specified as
having relaxed initialization; the parameters X2 and X3 are not:

function F (X1 : T1; X2 : T2; X3 : T3) return T4
with Relaxed_Initialization => (X1 => True, F'Result);

More precisely, the Relaxed_Initialization aspect for a subprogram
or entry (or a generic subprogram) is specified by
an ``aspect_specification`` where the ``aspect_mark`` is
Relaxed_Initialization and the ``aspect_definition`` follows the
following grammar for ``profile_aspect_spec``:

profile_aspect_spec ::= (profile_spec_item {, profile_spec_item})
profile_spec_item ::= parameter_name [=> aspect_definition]

| function_name'Result [=> aspect_definition]

3. Relaxed_Initialization aspect specifications are inherited by a derived type (if the aspect is specified for the
ancestor type) and by an inherited subprogram (if the aspect is specified for the corresponding primitive subpro-
gram of the ancestor type).

4. For a prefix X that denotes an object, the following attribute is defined:

X'Initialized

X’Initialized is True if and only if every scalar reachable element of X has been initialized. [It typicallly follows
as a consequence of this definition and the other rules of SPARK 2014 that if X’Initialized is True, then for every
reachable element Y of X (scalar or not), Y belongs to its subtype. There are pathological counterexamples,
such as a componentless record declared with “Dynamic_Predicate => False”.] An Initialized attribute reference
is never a static expression.

Legality Rules

5. The following rules apply to the profile_aspect_spec of a Relaxed_Initialization aspect specification for a sub-
program, a generic subprogram, or an entry.

• Each parameter_name shall name a parameter of the given callable entity and no parameter shall be named
more than once. It is not required that every parameter be named.

• Each aspect_definition within a profile_aspect_spec shall be as for a Boolean aspect.

• The form of profile_spec_item that includes a Result attribute reference shall only be provided if the given
callable entity is a function or generic function; in that case, the prefix of the attribute reference shall denote
that function or generic function. Such a Result attribute reference is allowed, other language restrictions
on the use of Result attribute references notwithstanding (i.e., despite the fact that such a Result attribute
reference does not occur within a postcondition expression).

• A Boolean value of True is implicitly specified if no aspect_definition is provided, as per Ada RM 13.1.1’s
rules for Boolean-valued aspects. A Boolean value of False is implicitly specified if a given parameter (or,
in the case of a function or generic function, the result) is not mentioned in any profile_spec_item.

6. A constituent of a state abstraction shall have relaxed initialization if and only if the state abstraction has relaxed
initialization.

7. No part of a tagged type, or of a tagged object, shall have relaxed initialization.

8. No part of an effectively volatile type, or of an effectively volatile object, shall have relaxed initialization.

9. No part of an Unchecked_Union type shall have relaxed initialization. No part of the type of the prefix of an
Initialized attribute reference shall be of an Unchecked_Union type.

10. A Relaxed_Initialization aspect specification which applies to a declaration occuring in the visible part of a
package [(e.g., the declaration of a private type or of a deferred constant)] shall not occur in the private part of
that package.

11. A formal parameter of a dispatching operation shall not have relaxed initialization; the result of a dispatching
function shall not have relaxed initialization.

Verification Rules

12. At the point of a read of a scalar object X that has relaxed initialization, a verification condition is introduced
to ensure that X is initialized. This includes the case where X is a subcomponent of a composite object that is
passed as an argument in a call to a predefined relational operator (e.g., “=” or “<”). Such a verification condition
is also introduced in the case where X is a reachable element of the [source] expression of an assignment
operation and the target of the assignment does not have relaxed initialization, where X is a reachable element
of an actual parameter in a call where the corresponding formal parameter is of mode in or in out and does not
have relaxed initialization, upon a call whose precondition implies X’Initialized, and upon return from a call
whose postcondition implies X’Initialized.

[For updates to X that do not involve calls, this check that X is initialized is implemented via flow analysis and
no additional annotations are required. Preconditions and postconditions that mention X’Initialized may also be
used to communicate information about the initialization status of X across subprogram boundaries.

These rules statically prevent any of the bounded-error or erroneous execution scenarios associated with reading
an uninitialized scalar object described in Ada RM 13.9.1. It may provide useful intuition to think of a subpro-
gram as having (roughly speaking) an implicit precondition of X’Initialized for each of its inputs X that does not
have relaxed initialization and an implicit postcondition of Y’Initialized for each of its outputs Y that does not
have relaxed initialization; this imprecise description ignores things like volatile objects and state abstractions.
For a particular call, this notional precondition is also in effect for a given formal parameter if the corresponding
actual parameter does not have relaxed initialization (even if the formal parameter does).

The verification conditions described here are not needed if X does not have relaxed initialization because the
more conservative whole-object-granularity rules that govern that case will ensure that X is initialized whenever
it is read.]

13. For any object X, evaluation of X’Initialized includes the evaluation of Y’Initialized for every scalar reach-
able element Y of X (excluding “hidden” components of tagged objects - see Type Invariants). Evaluation of
X’Initialized for a scalar object X is considered to be a read of X if and only if X does not have relaxed initial-
ization. If X has relaxed initialization, then an evaluation of X’Initialized is instead treated like an evaluation of
X’Valid [, which is not a read of X]. If X does not have relaxed initialization, then this implies that evaluation
of X’Initialized introduces the same initialization requirements as would be introduced for any other read of X;
as a result of meeting these requirements, X’Initialized will always return True for such an object.

CHAPTER

SEVEN

PACKAGES

Verification Rules

1. The elaboration of a package shall not update, directly or indirectly, a reachable element of a variable that is not
declared immediately within the package. [Roughly speaking, this means that the outputs of the notional spec
and body elaboration subprograms shall all be objects declared immediately within the package.]

2. The elaboration of a package declaration or body shall not leave any object in the Moved state unless the object
was already in the Moved state at the start of that elaboration.

7.1 Package Specifications and Declarations

7.1.1 Abstraction of State

The variables declared within a package but not within a subprogram body or block which does not also enclose the
given package constitute the persistent state of the package. A package’s persistent state is divided into visible state
and hidden state. If a declaration that is part of a package’s persistent state is visible outside of the package, then it is
a constituent of the package’s visible state; otherwise it is a constituent of the package’s hidden state.

Though the variables may be hidden they still form part (or all) of the persistent state of the package and the hidden
state cannot be ignored. State abstraction is the means by which this hidden state is represented and managed. A state
abstraction represents one or more declarations which are part of the hidden state of a package.

SPARK 2014 extends the concept of state abstraction to provide hierarchical data abstraction whereby the state ab-
straction declared in a package may contain the persistent state of other packages given certain restrictions described
in Abstract_State, Package Hierarchy and Part_Of . This provides data refinement similar to the refinement available
to types whereby a record may contain fields which are themselves records.

Static Semantics

1. The visible state of a package P consists of:

• any variables, or constants with variable inputs, declared immediately within the visible part of package
P; and

• the state abstractions declared by the Abstract_State aspect specification (if any) of package P; and

• the visible state of any packages declared immediately within the visible part of package P.

2. The hidden state of a package P consists of:

• any variables, or constants with variable inputs, declared immediately in the private part or body of P; and

• the visible state of any packages declared immediately within the private part or body of P.

85

3. The preceding two rules notwithstanding, an object or state abstraction whose Part_Of aspect refers to a task
or protected unit is not (directly) part of the visible state or hidden state of any package (see section Tasks and
Synchronization).

7.1.2 External State

External state is a state abstraction or variable representing something external to a program. For instance, an input or
output device, or a communication channel to another subsystem such as another SPARK 2014 program.

Updating external state might have some external effect. It could be writing a value to be read by some external device
or subsystem which then has a potential effect on that device or subsystem. Similarly the value read from an external
state might depend on a value provided by some external device or subsystem.

Ada uses the terms external readers and writers to describe entities external to a program which interact with the
program through reading and writing data. Of particular concern to SPARK 2014 are external readers and writers
which are not strictly under control of the program. It is not known precisely when a value will be written or read by
an external reader or writer. These are called asynchronous readers and asynchronous writers in SPARK 2014.

Each read or update of an external state might be significant, for instance reading or writing a stream of characters to a
file, or individual reads or writes might not be significant, for instance reading a temperature from a device or writing
the same value to a lamp driver or display. SPARK 2014 provides a mechanism to indicate whether a read or write is
always significant.

A type is said to be effectively volatile if it is either a volatile type, an array type whose Volatile_Component aspect
is True, an array type whose component type is effectively volatile, a protected type, or a descendant of the type
Ada.Synchronous_Task_Control.Suspension_Object.

A nonvolatile protected type is said to be nonvolatile during a protected action if none of its subcomponent types are
effectively volatile. [In other words, if the only reason that the protected type is effectively volatile is because it is
protected.]

An effectively volatile object is a volatile object for which the property No_Caching (see below) is False, or an object
of an effectively volatile type. There are two exceptions to this rule:

• the current instance of a protected unit whose (protected) type is nonvolatile during a protected action is, by
definition, not an effectively volatile object. [This exception reflects the fact that the current instance cannot be
referenced in contexts where unsynchronized updates are possible. This means, for example, that the Global
aspect of a nonvolatile function which is declared inside of a protected operation may reference the current
instance of the protected unit.]

• a constant object associated with the evaluation of a function call, an aggregate, or a type conversion is, by
definition, not an effectively volatile object. [See Ada RM 4.6 for the rules about when a type conversion
introduces a new object; in cases where it is unspecified whether a new object is created, we assume (for
purposes of the rules in this section) that no new object is created].

External state is an effectively volatile object or a state abstraction which represents one or more effectively volatile
objects (or it could be a null state abstraction; see Abstract_State Aspects). [The term “external” does not necessarily
mean that this state is accessed outside of the SPARK portion of the program (although it might be); it refers to the
state being potentially visible to multiple tasks (as well as to the outside world), so that it is externally visible from the
perspective of any one task.]

Four Boolean valued properties of external states that may be specified are defined:

• Async_Readers - a component of the system external to the program might read/consume a value written to an
external state.

• Async_Writers - a component of the system external to the program might update the value of an external state.

• Effective_Writes - every update of the external state is significant.

• Effective_Reads - every read of the external state is significant.

These properties may be specified for an effectively volatile object as Boolean aspects or as external properties of an
external state abstraction.

A fifth property No_Caching can be specified on a volatile object of a non-effectively volatile type, to express that
such a variable can be analyzed as not volatile in SPARK, but that the compiler should not cache its value between
accesses to the object (e.g. as a defense against fault injection).

The Boolean aspect Volatile_Function may be specified as part of the (explicit) initial declaration of a function. A
function whose Volatile_Function aspect is True is said to be a volatile function. Volatile functions can read volatile
objects; nonvolatile functions cannot. However note that the rule that a function must not have any output other than
its result still applies; in effect this bans a volatile function from reading an object with Effective_Reads => True.
As a result, calling a volatile function is considered as having an effect, and such calls are only allowed in certain
contexts (see External State - Variables and Types). A protected function is also defined to be a volatile function, as is
an instance of Unchecked_Conversion where one or both of the actual Source and Target types are effectively volatile
types. [Unlike nonvolatile functions, two calls to a volatile function with all inputs equal need not return the same
result.]

A protected function whose corresponding protected type is nonvolatile during a protected action and whose
Volatile_Function aspect is False is said to be nonvolatile for internal calls.

Legality Rules

1. If an external state is declared without any of the external properties specified then all of the external properties
[i.e. except No_Caching] default to a value of True.

2. If just the name of the property is given then its value defaults to True [for instance Async_Readers defaults to
Async_Readers => True].

3. A property may be explicitly given the value False [for instance Async_Readers => False].

4. If any one property is explicitly defined, all undefined properties default to a value of False.

5. The expression defining the Boolean valued property shall be static.

6. Only the following combinations of properties are valid:

Async_Readers Async_Writers Effective_Writes Effective_Reads No_Caching
True – True – –
– True – True –
True – – – –
– True – – –
True True True – –
True True – True –
True True – – –
True True True True –
– – – – True

[Another way of expressing this rule is that No_Caching is incompatible with the four external properties,
that Effective_Reads can only be True if Async_Writers is True and Effective_Writes can only be True if
Async_Readers is True.]

Static Semantics

7. Every update of an external state is considered to be read by some external reader if Async_Readers => True.

8. Each successive read of an external state might have a different value [written by some external writer] if
Async_Writers => True.

9. If Effective_Writes => True, then every value written to the external state is significant. [For instance writing a
sequence of values to a port.]

10. If Effective_Reads => True, then every value read from the external state is significant. [For example a value
read from a port might be used in determining how the next value is processed.]

11. Each update of an external state has no external effect if both Async_Readers => False and Effective_Writes =>
False.

12. Each successive read of an external state will result in the last value explicitly written [by the program] if
Async_Writers => False.

13. Every explicit update of an external state might affect the next value read from the external state even if
Async_Writers => True.

14. An external state which has the property Async_Writers => True need not be initialized before being read
although explicit initialization is permitted. [The external state might be initialized by an external writer.]

15. A subprogram whose Volatile_Function aspect is True shall not override an inherited primitive operation of a
tagged type whose Volatile_Function aspect is False. [The reverse is allowed.]

16. A protected object has at least the properties Async_Writers => True and Async_Readers => True. If and only
if it has at least one Part_Of component with Effective_Writes => True or Effective_Reads => True, then the
protected object also carries this property. [This is particularly relevant if a protected object is a constituent of
an external state, or if a protected object is an input of a volatile function.]

7.1.3 External State - Variables and Types

In Ada interfacing to an external device or subsystem normally entails using one or more effectively volatile objects
to ensure that writes and reads to the device are not optimized by the compiler into internal register reads and writes.

SPARK 2014 refines the specification of volatility by introducing four new Boolean aspects which may be applied only
to effectively volatile objects or to volatile types. The aspects may be specified in the aspect specification of an object
declaration (this effectively excludes volatile objects that are formal parameters, but allows such aspect specifications
for generic formal objects) or of a type declaration (including a formal_type_declaration).

The new aspects are:

• Async_Readers - as described in External State.

• Async_Writers - as described in External State.

• Effective_Reads - as described in External State.

• Effective_Writes - as described in External State.

These four aspects are said to be the volatility refinement aspects. Ada’s notion of volatility corresponds to the case
where all four aspects are True. Specifying a volatility refinement aspect value of False for an object or type grants
permission for the SPARK 2014 implementation to make additional assumptions about how the object in question (or,
respectively, about how an object of the type in question) is accessed; it is the responsibility of the user to ensure that
these assumptions hold. In contrast, specifying a value of True imposes no such obligation on the user.

For example, consider

X : Integer with Volatile, Async_Readers => True, Async_Writers => False,
Effective_Reads => True, Effective_Writes => True;

...
procedure Proc with ... is

Y : Integer;
begin

X := 0;
Y := X;
pragma Assert (Y = 0);

end Proc;

The verification condition associated with the assertion can be successfully discharged but this success depends on the
Async_Writers aspect specification.

The volatility refinement aspects of types (as opposed to those of objects) are type related representation aspects. The
value of a given volatility refinement aspect of a volatile type is determined as follows:

• if the aspect’s value is explicitly specified, then it is the specified value;

• otherwise, if the type is a derived type whose parent type is volatile then the aspect value is inherited from the
parent type;

• otherwise, if at least one other volatility refinement aspect is explicitly specified for the type then the given
aspect of the type is implicitly specified to be False;

• otherwise, the given aspect of the type is implicitly specified to be True.

[This is similar to the rules for external state abstractions, except that there is no notion of inheritance in that case.]

The value of a given volatility refinement aspect of an effectively volatile object is determined as follows:

• if the object is a reachable element of a stand-alone object or of a formal parameter but is not itself such an object,
then it is the value of the given aspect of that enclosing or owning object (see section Subprogram Declarations
for definitions of “reachable element” and “owning object”).

• otherwise, if the object is declared by an object declaration and the given aspect is explicitly specified for the
object declaration then it is the specified value;

• otherwise, if the object is declared by an object declaration and then at least one other volatility refinement
aspect is explicitly specified for the object declaration then the given aspect of the object is implicitly specified
to be False;

• otherwise, it is the value of the given aspect of the type of the object.

Given two entities (each either an object or a type) E1 and E2, E1 is said to be compatible with respect to volatility
with E2 if

• E1 is not effectively volatile; or

• both E1 and E2 are effectively volatile and each of the four volatility refinement aspects is either False for E1 or
True for E2.

Legality Rules

1. Any specified value for a volatility refinement aspect shall be static.

[If a volatility refinement aspect of a derived type is inherited from an ancestor type and has the boolean value
True, the inherited value shall not be overridden to have the value False for the derived type. This follows from
the corresponding Ada RM 13.1.1 rule and is stated here only to clarify the point that there is no exception to
that rule for volatility refinement aspects. This is consistent with Ada’s treatment of the Volatile aspect.]

2. The value of a volatility refinement aspect shall only be specified for an effectively volatile stand-alone object
or for an effectively volatile type (which may be a formal type). [A formal parameter is not a stand-alone object;
see Ada RM 3.3.1 .] If specified for a stand-alone object, the declared object shall be compatible with respect to
volatility with its type.

3. The declaration of an effectively volatile stand-alone object or type shall be a library-level declaration. [In
particular, it shall not be declared within a subprogram.]

4. A constant object (other than a formal parameter of mode in) shall not be effectively volatile.

5. An effectively volatile type other than a protected type shall not have a discriminated part.

6. A component type of a composite type shall be compatible with respect to volatility with the composite type.
Similarly, the [full view of] the designated type of a named nonderived access type shall be compatible with
respect to volatility with the access type.

7. In a generic instantiation, the actual parameter corresponding to a formal type or formal object parameter shall
be compatible with respect to volatility with the corresponding formal parameter.

8. A global_item of a nonvolatile function, or of a function which is nonvolatile for internal calls, shall not
denote either an effectively volatile object or an external state abstraction.

9. A formal parameter (or result) of a nonvolatile function, or of a function which is nonvolatile for internal
calls, shall not be of an effectively volatile type. [For a protected function, this rule does not apply to
the notional parameter denoting the current instance of the associated protected unit described in section
Global Aspects.]

10. Contrary to the general SPARK 2014 rule that expression evaluation cannot have side effects, a read of an
effectively volatile object with the properties Async_Writers or Effective_Reads set to True is considered to
have an effect when read. To reconcile this discrepancy, a name denoting such an object shall only occur in a
non-interfering context. A name occurs in a non-interfering context if it is:

• the name on the left-hand side of an assignment statement; or

• the [right-hand side] expression of an assignment statement; or

• the expression of an initialization expression of an object declaration which does not occur inside a
declare expression; or

• the object_name of an object_renaming_declaration; or

• the actual parameter in a call to an instance of Unchecked_Conversion whose result is renamed [in
an object renaming declaration]; or

• an actual parameter in a call for which the corresponding formal parameter is of a non-scalar effec-
tively volatile type; or

• the (protected) prefix of a name denoting a protected operation; or

• the return expression of a simple_return_statement which applies to a volatile function; or

• the initial value expression of the extended_return_object_declaration of an
extended_return_statement which applies to a volatile function; or

• the prefix of a slice, selected_component, indexed_component, or
attribute_reference which is itself a name occurring in a non-interfering context;
or

• the prefix of an attribute_reference whose attribute_designator is either Align-
ment, Component_Size, First, First_Bit, Last, Last_Bit, Length, Position, Size, or Storage_Size;
or

• the expression of a type conversion occurring in a non-interfering context; or

• the expression in a delay_statement.

[The attributes listed above all have the property that when their prefix denotes an object, evaluation of
the attribute does not involve the evaluation of any part ot the object.]

The same restrictions also apply to a call to a volatile function (except not in the case of an internal call to
a protected function which is nonvolatile for internal calls) and to the evaluation of any attribute which is
defined to introduce an implicit dependency on a volatile state abstraction [(these are the Callable, Caller,
Count, and Terminated attributes; see section Tasks and Synchronization)]. [An internal call to a protected
function is treated like a call to a nonvolatile function if the function’s Volatile_Function aspect is False.]

Dynamic Semantics

11. There are no dynamic semantics associated with these aspects.

Verification Rules

12. An effectively volatile formal parameter of mode out shall not be read, even after it has been updated. [This is
because the Async_Writers aspect of the parameter is True].

Examples

1 with System.Storage_Elements;
2

3 package Input_Port
4 with SPARK_Mode
5 is
6 Sensor : Integer
7 with Volatile,
8 Async_Writers,
9 Address => System.Storage_Elements.To_Address (16#ACECAF0#);

10 end Input_Port;

1 with System.Storage_Elements;
2

3 package Output_Port
4 with SPARK_Mode
5 is
6 Sensor : Integer
7 with Volatile,
8 Async_Readers,
9 Address => System.Storage_Elements.To_Address (16#ACECAF0#);

10 end Output_Port;

1 with System.Storage_Elements;
2

3 package Multiple_Ports
4 with SPARK_Mode
5 is
6 type Volatile_Type is record
7 I : Integer;
8 end record with Volatile;
9

10 -- This type declaration indicates all objects of this type will
11 -- be volatile. We can declare a number of objects of this type
12 -- with different properties.
13

14 -- V_In_1 is essentially an external input since it has
15 -- Async_Writers => True but Async_Readers => False. Reading a
16 -- value from V_In_1 is independent of other reads of the same
17 -- object. Two successive reads might not have the same value.
18 V_In_1 : Volatile_Type
19 with Async_Writers,
20 Address => System.Storage_Elements.To_Address (16#A1CAF0#);
21

22 -- V_In_2 is similar to V_In_1 except that each value read is
23 -- significant. V_In_2 can only be used as a Global with a
24 -- mode_Selector of Output or In_Out or as an actual parameter
25 -- whose corresponding formal parameter is of a Volatile type and
26 -- has mode out or in out.
27 V_In_2 : Volatile_Type
28 with Async_Writers,
29 Effective_Reads,
30 Address => System.Storage_Elements.To_Address (16#ABCCAF0#);
31

32

33 -- V_Out_1 is essentially an external output since it has
34 -- Async_Readers => True but Async_Writers => False. Writing the
35 -- same value successively might not have an observable effect.
36 V_Out_1 : Volatile_Type
37 with Async_Readers,
38 Address => System.Storage_Elements.To_Address (16#BBCCAF0#);
39

40 -- V_Out_2 is similar to V_Out_1 except that each write to
41 -- V_Out_2 is significant.
42 V_Out_2 : Volatile_Type
43 with Async_Readers,
44 Effective_Writes,
45 Address => System.Storage_Elements.To_Address (16#ADACAF0#);
46

47 -- This declaration defaults to the following properties:
48 -- Async_Readers => True,
49 -- Async_Writers => True,
50 -- Effective_Reads => True,
51 -- Effective_Writes => True;
52 -- That is the most comprehensive type of external interface which
53 -- is bi-directional and each read and write has an observable
54 -- effect.
55 V_In_Out : Volatile_Type
56 with Address => System.Storage_Elements.To_Address (16#BEECAF0#);
57

58 -- These volatile variable declarations may be used in specific
59 -- ways as global items and actual parameters of subprogram calls
60 -- depend on their properties.
61

62 procedure Read (Value : out Integer)
63 with Global => (Input => V_In_1),
64 Depends => (Value => V_in_1);
65 -- V_In_1, V_Out_1 and V_Out_2 are compatible with a mode selector
66 -- of Input as this mode requires Effective_Reads => False.
67

68 procedure Write (Value : in Integer)
69 with Global => (Output => V_Out_1),
70 Depends => (V_Out_1 => Value);
71 -- Any Volatile Global is compatible with a mode selector of
72 -- Output. A flow error will be raised if the subprogram attempts
73 -- to read a Volatile Global with Async_Writers and/or
74 -- Effective_Reads set to True.
75

76 procedure Read_With_Effect (Value : out Integer)
77 with Global => (In_Out => V_In_2),
78 Depends => (Value => V_In_2,
79 V_In_2 => null);
80 -- Any Volatile Global is compatible with a mode selector of
81 -- In_Out. The Depends aspect is used to specify how the Volatile
82 -- Global is intended to be used and this is checked by flow
83 -- analysis to be compatible with the properties specified for the
84 -- Volatile Global.
85

86 -- When a formal parameter is volatile, assumptions have to be
87 -- made in the body of the subprogram as to the possible
88 -- properties that the actual volatile parameter might have
89 -- depending on the mode of the formal parameter.

90

91 procedure Read_Port (Port : in Volatile_Type; Value : out Integer)
92 with Depends => (Value => Port);
93 -- Port is Volatile and of mode in. Assume that the formal
94 -- parameter has the properties Async_Writers => True and
95 -- Effective_Reads => False. The actual parameter in a call of the
96 -- subprogram must have Async_Writers => True and
97 -- Effective_Reads => False and may have Async_Writers and/or
98 -- Effective_Writes set to True. As an in mode parameter it can
99 -- only be read by the subprogram.

100 -- Eg. Read_Port (V_In_1, Read_Value).
101

102 procedure Write_Port (Port : out Volatile_Type; Value : in Integer)
103 with Depends => (Port => Value);
104 -- Port is volatile and of mode out. Assume the formal parameter
105 -- has the properties Async_Readers => True and
106 -- Effective_Writes => True. The actual parameter in a call to the
107 -- subprogram must have Async_Readers and/or Effective_Writes
108 -- True, and may have Async_Writers and Effective_Reads True. As
109 -- the mode of the formal parameter is mode out, it is
110 -- incompatible with reading the parameter because this could read
111 -- a value from an Async_Writer. A flow error will be signalled if
112 -- a read of the parameter occurs in the subprogram.
113 -- Eg. Write_Port (V_Out_1, Output_Value) and
114 -- Write_Port (V_Out_2, Output_Value).
115

116 -- A Volatile formal parameter type of mode in out is
117 -- assumed to have all the properties True:
118 -- Async_Readers => True,
119 -- Async_Writers => True,
120 -- Effective_Reads => True,
121 -- Effective_Writes => True;
122 -- The corresponding actual parameter in a subprogram call must be
123 -- volatile with all of the properties set to True.
124 procedure Read_And_Ack (Port : in out Volatile_Type; Value : out Integer)
125 with Depends => (Value => Port,
126 Port => Port);
127 -- Port is Volatile and reading a value may require the sending of
128 -- an acknowledgement, for instance.
129 -- Eg. Read_And_Ack (V_In_Out, Read_Value).
130

131 end Multiple_Ports;

7.1.4 Abstract_State Aspects

State abstraction provides a mechanism for naming, in a package’s visible part, state (typically a collection of variables)
that will be declared within the package’s body (its hidden state). For example, a package declares a visible procedure
and we wish to specify the set of global variables that the procedure reads and writes as part of the specification of
the subprogram. The variables declared in the package body cannot be named directly in the package specification.
Instead, we introduce a state abstraction which is visible in the package specification and later, when the package body
is declared, we specify the set of variables that constitute or implement the state abstraction.

If immediately within a package body, for example, a nested package is declared, then a state abstraction of the inner
package may also be part of the implementation of the given state abstraction of the outer package.

The hidden state of a package may be represented by one or more state abstractions, with each pair of state abstractions
representing disjoint sets of hidden variables.

If a subprogram P with a Global aspect is declared in the visible part of a package and P reads or updates any of
the hidden state of the package then the state abstractions shall be denoted by P. If P has a Depends aspect then the
state abstractions shall be denoted as inputs and outputs of P, as appropriate, in the dependency_relation of the
Depends aspect.

SPARK 2014 facilitates the specification of a hierarchy of state abstractions by allowing a single state abstraction to
contain visible declarations of package declarations nested immediately within the body of a package, private child or
private sibling units and descendants thereof. Each visible state abstraction or variable of a private child or descendant
thereof has to be specified as being part of a state abstraction of its parent or a public descendant of its parent.

The Abstract_State aspect is introduced by an aspect_specification where the aspect_mark is Ab-
stract_State and the aspect_definition shall follow the grammar of abstract_state_list given below.

Syntax

abstract_state_list ::= null
| state_name_with_options
| (state_name_with_options { , state_name_with_options })

state_name_with_options ::= state_name
| (state_name with option_list)

option_list ::= option { , option }
option ::= simple_option

| name_value_option
simple_option ::= Ghost | Synchronous
name_value_option ::= Part_Of => abstract_state

| External [=> external_property_list]
external_property_list ::= external_property

| (external_property {, external_property})
external_property ::= Async_Readers [=> expression]

| Async_Writers [=> expression]
| Effective_Writes [=> expression]
| Effective_Reads [=> expression]
| others => expression

state_name ::= defining_identifier
abstract_state ::= name

Legality Rules

1. An option shall not be repeated within a single option_list.

2. If External is specified in an option_list then there shall be at most one occurrence of each of
Async_Readers, Async_Writers, Effective_Writes and Effective_Reads.

3. If an option_list contains one or more name_value_option items then they shall be the final options in
the list. [This eliminates the possibility of a positional association following a named association in the property
list.]

4. A package_declaration or generic_package_declaration that contains a non-null Abstract_State aspect shall have
a completion (i.e., a body).

[Ada RM 7.1’s rule defining when a package “requires a completion” is unaffected by the presence of an Ab-
stract_State aspect specification; such an aspect spec does not cause a package to “require a completion”. This
rule therefore implies that if an Abstract_State aspect specification occurs anywhere within the specification of a
library unit package or generic package, then that library unit is going to have to contain a basic_declarative_item
that requires a completion (or have an Elaborate_Body pragma) because otherwise it would be impossible to
simultaneously satisfy this rule and Ada’s rule that a library unit cannot have a package body unless it is required
(Ada RM 7.2(4)). One could imagine a simpler rule that an Abstract_State aspect specification causes a pack-
age to “require a completion”, but we want a SPARK program with its SPARK aspects removed (or ignored) to
remain a legal Ada program.]

Static Semantics

5. Each state_name occurring in an Abstract_State aspect specification for a given package P introduces an
implicit declaration of a state abstraction entity. This implicit declaration occurs at the beginning of the visible
part of P. This implicit declaration shall have a completion and is overloadable.

[The declaration of a state abstraction has the same visibility as any other declaration but a state abstraction shall
only be named in contexts where this is explicitly permitted (e.g., as part of a Global aspect specification). A state
abstraction is not an object; it does not have a type. The completion of a state abstraction declared in a package
aspect_specification can only be provided as part of a Refined_State aspect_specification
within the body of the package.]

6. A null abstract_state_list specifies that a package contains no hidden state.

7. An External state abstraction is one declared with an option_list that includes the External option (see
External State).

8. If a state abstraction which is declared with an option_list that includes a Part_Of name_value_option
whose name denote a state abstraction, this indicates that it is a constituent (see State Refinement) of the de-
noted state abstraction. [Alternatively, the name may denote a task or protected unit (see section Tasks and
Synchronization).]

9. A state abstraction for which the simple_option Ghost is specified is said to be a ghost state abstraction.
A state abstraction for which the simple_option Synchronous is specified is said to be a synchronized
state abstraction. [The option name “Synchronous” is used instead of “Synchronized” to avoid unnecessary
complications associated with the use of an Ada reserved word.] Every synchronized state abstraction is also
(by definition) an external state abstraction. A synchronized state abstraction for which the simple_option
External is not (explicitly) specified has (by definition) its Async_Readers and Async_Writers aspects specified
to be True and its Effective_Writes and Effective_Reads aspects specified to be False.

Dynamic Semantics

There are no dynamic semantics associated with the Abstract_State aspect.

Verification Rules

There are no verification rules associated with the Abstract_State aspect.

Examples

1 package Q
2 with Abstract_State => State -- Declaration of abstract state named State
3 -- representing internal state of Q.
4 is
5 function Is_Ready return Boolean -- Function checking some property of the

↪→State.
6 with Global => State; -- State may be used in a global aspect.
7

8 procedure Init -- Procedure to initialize the internal state
↪→of Q.

9 with Global => (Output => State), -- State may be used in a global aspect.
10 Post => Is_Ready;
11

12 procedure Op_1 (V : Integer) -- Another procedure providing some operation on
↪→State

13 with Global => (In_Out => State),
14 Pre => Is_Ready,
15 Post => Is_Ready;
16 end Q;

1 package X
2 with Abstract_State => (A,
3 B,
4 (C with External => (Async_Writers,
5 Effective_Reads => False))
6 -- Three abstract state names are declared A, B & C.
7 -- A and B are internal abstract states.
8 -- C is specified as external state which is an external input.
9 is

10 ...
11 end X;

7.1.5 Initializes Aspects

The Initializes aspect specifies the visible variables and state abstractions of a package that are initialized by the
elaboration of the package. In SPARK 2014 a package shall only initialize variables declared immediately within the
package.

If the initialization of a variable or state abstraction, V, during the elaboration of a package, P, is dependent on the
value of a visible variable or state abstraction from another package, then this entity shall be denoted in the input list
associated with V in the Initializes aspect of P.

The Initializes aspect is introduced by an aspect_specification where the aspect_mark is Initializes and
the aspect_definition shall follow the grammar of initialization_spec given below.

Syntax

initialization_spec ::= initialization_list
| null

initialization_list ::= initialization_item
| (initialization_item { , initialization_item })

initialization_item ::= name [=> input_list]

Legality Rules

1. An Initializes aspect shall only appear in the aspect_specification of a package_specification.

2. The name of each initialization_item in the Initializes aspect definition for a package shall denote a
state abstraction of the package or an entire object declared immediately within the visible part of the package.
[For purposes of this rule, formal parameters of a generic package are not considered to be “declared in the
package”.]

3. Each name in the input_list shall denote an object, or a state abstraction but shall not denote an entity
declared in the package with the aspect_specification containing the Initializes aspect.

4. Each entity in a single input_list shall be distinct.

5. An initialization_item with a null input_list is equivalent to the same
initialization_item without an input_list. [That is Initializes => (A => null) is equivalent
to Initializes => A.]

Static Semantics

6. The Initializes aspect of a package has visibility of the declarations occurring immediately within the visible
part of the package.

7. The Initializes aspect of a package specification asserts which state abstractions and visible variables of the
package are initialized by the elaboration of the package, both its specification and body, and any units which
have state abstractions or variable declarations that are part (constituents) of a state abstraction declared by the
package. [A package with a null initialization_list, or no Initializes aspect does not initialize any of
its state abstractions or variables.]

8. An initialization_item shall have an input_list if and only if its initialization is dependent on
visible variables and state abstractions not declared within the package containing the Initializes aspect. Then
the names in the input_list shall denote variables and state abstractions which are used in determining the
initial value of the state abstraction or variable denoted by the name of the initialization_item but are
not constituents of the state abstraction.

Dynamic Semantics

There are no dynamic semantics associated with the Initializes aspect.

Verification Rules

9. If the Initializes aspect is specified for a package, then after the body (which may be implicit if the package has
no explicit body) has completed its elaboration, every (entire) variable and state abstraction denoted by a name
in the Initializes aspect shall be initialized. A state abstraction is said to be initialized if all of its constituents
are initialized. An entire variable is initialized if all of its components are initialized. Other parts of the visible
state of the package shall not be initialized.

10. If an initialization_item has an input_list then the variables and state abstractions denoted in
the input list shall be used in determining the initialized value of the entity denoted by the name of the
initialization_item.

11. All variables and state abstractions which are not declared within the package but are used in the initialization
of an initialization_item shall appear in an input_list of the initialization_item.

12. Any initialization_item that is a constant shall be a constant with variable input. Any entity in an
input_list that is a constant shall be a parameter or constant with variable input.

[Note: these rules allow a variable or state abstraction to be initialized by the elaboration of a package but not be de-
noted in an Initializes aspect. In such a case the analysis tools will treat the variable or state abstraction as uninitialized
when analyzing clients of the package.]

Examples

1 package Q
2 with Abstract_State => State, -- Declaration of abstract state name State
3 Initializes => (State, -- Indicates that State
4 Visible_Var) -- and Visible_Var will be initialized
5 -- during the elaboration of Q.
6 is
7 Visible_Var : Integer;
8 ...
9 end Q;

1 with Q;
2 package R
3 with Abstract_State => S1, -- Declaration of abstract state name

↪→S1
4 Initializes => (S1 => Q.State, -- Indicates that S1 will be

↪→initialized
5 -- dependent on the value of Q.State
6 X => Q.Visible_Var) -- and X dependent on Q.Visible_Var
7 -- during the elaboration of R.
8 is

9 X : Integer := Q.Visible_Var;
10 ...
11 end R;

1 package Y
2 with Abstract_State => (A, B, (C with External => (Async_Writers, Effective_

↪→Reads))),
3 -- Three abstract state names are declared A, B & C
4 Initializes => A
5 -- A is initialized during the elaboration of Y.
6 -- C is specified as external state with Async_Writers
7 -- and need not be explicitly initialized.
8 -- B is not initialized.
9 is

10 ...
11 end Y;

1 package Z
2 with Abstract_State => A,
3 Initializes => null
4 -- Package Z has an abstract state name A declared but the
5 -- elaboration of Z and its private descendants do not
6 -- perform any initialization during elaboration.
7 is
8 ...
9 end Z;

7.1.6 Initial_Condition Aspects

The Initial_Condition aspect is introduced by an aspect_specification where the aspect_mark is Ini-
tial_Condition and the aspect_definition shall be a Boolean_expression.

Legality Rules

1. An Initial_Condition aspect shall only be placed in an aspect_specification of a
package_specification.

Static Semantics

2. An Initial_Condition aspect is an assertion and behaves as a postcondition for the elaboration of both the spec-
ification and body of a package. If present on a package, then its assertion expression defines properties (a
predicate) of the state of the package which can be assumed to be true immediately following the elabora-
tion of the package. [The expression of the Initial_Condition cannot denote a state abstraction or hidden state.
This means that to express properties of hidden state, functions declared in the visible part acting on the state
abstractions of the package must be used.]

Dynamic Semantics

3. With respect to dynamic semantics, specifying a given expression as the Initial_Condition aspect of a package
is equivalent to specifying that expression as the argument of an Assert pragma occurring at the end of the
(possibly implicit) statement list of the (possibly implicit) body of the package. [This equivalence includes all
interactions with pragma Assertion_Policy but does not extend to matters of static semantics, such as name
resolution.] An Initial_Condition expression does not cause freezing until the point where it is evaluated [, at
which point everything that it might freeze has already been frozen].

Verification Rules

4. [The Initial_Condition aspect gives a verification condition to show that the implementation of the
package_specification and its body satisfy the predicate given in the Initial_Condition aspect.]

5. Each variable or indirectly referenced state abstraction in an Initial_Condition aspect of a package Q which is
declared immediately within the visible part of Q shall be initialized during the elaboration of Q and be denoted
by a name of an initialization_item of the Initializes aspect of Q.

Examples

1 package Q
2 with Abstract_State => State, -- Declaration of abstract state name State
3 Initializes => State, -- State will be initialized during

↪→elaboration
4 Initial_Condition => Is_Ready -- Predicate stating the logical state after
5 -- initialization.
6 is
7 function Is_Ready return Boolean
8 with Global => State;
9 end Q;

1 package X
2 with Abstract_State => A, -- Declares an abstract state named A
3 Initializes => (A, B), -- A and visible variable B are initialized
4 -- during package initialization.
5 Initial_Condition => A_Is_Ready and B = 0
6 -- The logical conditions that hold
7 -- after package elaboration.
8 is
9 ...

10 B : Integer;
11

12 function A_Is_Ready return Boolean
13 with Global => A;
14 end X;

7.2 Package Bodies

7.2.1 State Refinement

A state_name declared by an Abstract_State aspect in the specification of a package shall denote an abstraction
representing all or part of its hidden state. The declaration must be completed in the package body by a Refined_State
aspect. The Refined_State aspect defines a refinement for each state_name. The refinement shall denote the
variables and subordinate state abstractions represented by the state_name and these are known as its constituents.

Constituents of each state_name have to be initialized consistently with that of their representative state_name
as determined by its denotation in the Initializes aspect of the package.

A subprogram may have an abstract view and a refined view. The abstract view is a subprogram declaration in a
package specification of a package where a subprogram may refer to private types and state abstractions whose details
are not visible. A refined view of a subprogram is the body or body stub of the subprogram in the package body whose
specification declares its abstract view.

In a refined view a subprogram has visibility of the full type declarations of any private types declared by the enclosing
package and visibility of the refinements of state abstractions declared by the package. Refined versions of aspects are
provided to express the contracts of a refined view of a subprogram.

7.2.2 Refined_State Aspects

The Refined_State aspect is introduced by an aspect_specification where the aspect_mark is Re-
fined_State and the aspect_definition shall follow the grammar of refinement_list given below.

Syntax

refinement_list ::= (refinement_clause { , refinement_clause })
refinement_clause ::= state_name => constituent_list
constituent_list ::= null

| constituent
| (constituent { , constituent })

where

constituent ::= object_name | state_name

Name Resolution Rules

1. A Refined_State aspect of a package_body has visibility extended to the declarative_part of the body.

Legality Rules

2. A Refined_State aspect shall only appear in the aspect_specification of a package_body. [The use
of package_body rather than package body allows this aspect to be specified for generic package bodies.]

3. If a package_specification has a non-null Abstract_State aspect its body shall have a Refined_State
aspect.

4. If a package_specification does not have an Abstract_State aspect, then the corresponding
package_body shall not have a Refined_State aspect.

5. Each constituent shall be either a variable, a constant, or a state abstraction.

6. An object which is a constituent shall be an entire object.

7. A constituent of a state abstraction of a package shall denote either an entity with no Part_Of option or
aspect which is part of the hidden state of the package, or an entity whose declaration has a Part_Of option or
aspect which denotes this state abstraction (see Abstract_State, Package Hierarchy and Part_Of).

8. Each abstract_state_name declared in the package specification shall be denoted exactly once as the
state_name of a refinement_clause in the Refined_State aspect of the body of the package.

9. Every entity of the hidden state of a package shall be denoted as a constituent of exactly one ab-
stract_state_name in the Refined_State aspect of the package and shall not be denoted more than once.
[These constituents shall be either objects declared in the private part or body of the package, or the
declarations from the visible part of nested packages declared immediately therein.]

10. In a package body where the refinement of a state abstraction is visible the constituents of the state ab-
straction must be denoted in aspect specifications rather than the state abstraction.

11. The legality rules related to a Refined_State aspect given in Abstract_State, Package Hierarchy and Part_Of
also apply.

12. Each constituent of a ghost state abstraction shall be either a ghost variable or a ghost state abstraction.
[The reverse situation (i.e., a ghost constituent of a non-ghost state abstraction) is permitted.]

13. A constituent of a synchronized state abstraction shall be either a synchronized object or another synchro-
nized state abstraction. A constituent of a state abstraction which is neither external nor synchronized shall
be not be an effectively volatile object, a synchronized state abstraction, or an external state abstraction.

Static Semantics

14. A Refined_State aspect of a package_body completes the declaration of the state abstractions occurring in
the corresponding package_specification and defines the objects and each subordinate state abstraction
that are the constituents of the abstract_state_names declared in the package_specification.

15. A null constituent_list indicates that the named abstract state has no constituents and termed a
null_refinement. The state abstraction does not represent any actual state at all. [This feature may be useful
to minimize changes to Global and Depends aspects if it is believed that a package may have some extra state in
the future, or if hidden state is removed.]

Dynamic Semantics

There are no dynamic semantics associated with Refined_State aspect.

Verification Rules

16. Each constituent that is a constant shall be a constant with variable inputs.

17. If the Async_Writers aspect of a state abstraction is True and the Async_Writers aspect of a constituent of that
state abstraction is False, then after the elaboration of the (possibly implicit) body of the package which declares
the abstraction, the constituent shall be initialized.

Examples

1 -- Here, we present a package Q that declares two abstract states:
2 package Q
3 with Abstract_State => (A, B),
4 Initializes => (A, B)
5 is
6 ...
7 end Q;
8

9 -- The package body refines
10 -- A onto three concrete variables declared in the package body
11 -- B onto the abstract state of a nested package
12 package body Q
13 with Refined_State => (A => (F, G, H),
14 B => R.State)
15 is
16 F, G, H : Integer := 0; -- all initialized as required
17

18 package R
19 with Abstract_State => State,
20 Initializes => State -- initialized as required
21 is
22 ...
23 end R;
24

25 ...
26 end Q;

7.2.3 Initialization Issues

Every state abstraction specified as being initialized in the Initializes aspect of a package has to have all of its con-
stituents initialized. This may be achieved by initialization within the package, by assumed pre-initialization (in the
case of external state) or, for constituents which reside in another package, initialization by their declaring package.

Verification Rules

1. For each state abstraction denoted by the name of an initialization_item of an Initializes aspect of a
package, all the constituents of the state abstraction must be initialized by:

• initialization within the package; or

• assumed pre-initialization (in the case of external states); or

• for constituents which reside in another unit [and have a Part_Of indicator associated with their declaration
(see Abstract_State, Package Hierarchy and Part_Of)] by their declaring package. [It follows that such
constituents will appear in the initialization clause of the declaring unit unless they are external states.]

7.2.4 Refined_Global Aspects

A subprogram declared in the specification of a package may have a Refined_Global aspect applied to its body or body
stub. A Refined_Global aspect of a subprogram defines a refinement of the Global Aspect of the subprogram; that is,
the Refined_Global aspect repeats the Global aspect of the subprogram except that references to state abstractions
whose refinements are visible at the point of the subprogram_body are replaced with references to [some or all of the]
constituents of those abstractions. References to a state abstraction whose refinement is not visible at the point of the
subprogram_body may also be similarly replaced if Part_Of aspect specifications which are visible at the point of the
subprogram body identify one or more constituents of the abstraction; such a state abstraction is said to be optionally
refinable at the point of the subprogram body.

See section Global Aspects regarding how the rules given in this section apply to protected operations and to task
bodies.

The Refined_Global aspect is introduced by an aspect_specification where the aspect_mark is Re-
fined_Global and the aspect_definition shall follow the grammar of global_specification in Global
Aspects.

Static Semantics

1. The static semantics are as for those of the Global aspect given in Global Aspects. [Differences between these
two aspects for one subprogram stem from differences in state abstraction visibility between the points where
the two aspects are specified.]

Legality Rules

2. A Refined_Global aspect is permitted on a body_stub (if one is present), subprogram body, entry body, or
task body if and only if the stub or body is the completion of a declaration occurring in the specification of an
enclosing package, the declaration has a Global aspect which denotes a state abstraction declared by the package
and either the refinement of the state abstraction is visible or a Part_Of specification specifying a constituent of
the state abstraction is visible.

3. A Refined_Global aspect specification shall refine the subprogram’s Global aspect as follows:

(a) For each global_item in the Global aspect which denotes a state abstraction whose non-null refinement
is visible at the point of the Refined_Global aspect specification, the Refined_Global specification shall
include one or more global_items which denote constituents of that state abstraction.

(b) For each global_item in the Global aspect which denotes a state abstraction whose null re-
finement is visible at the point of the Refined_Global aspect specification, there are no corre-
sponding global_items in the Refined_Global specification. If this results in a Refined_Global
specification with no global_items, then the Refined_Global specification shall include a
null_global_specification.

(c) For each global_item in the Global aspect which does not denote a state abstraction whose refinement
is visible and does not denote an optionally refinable state abstraction, the Refined_Global specification
shall include exactly one global_item which denotes the same entity as the global_item in the
Global aspect.

(d) For each global_item in the Global aspect which designates a state abstraction which is optionally
refinable, refinement of the abstraction is optional in the following sense: either the reference to the state
abstraction may be replaced with references to its constituents (following the rules of case ‘a’ above) or

not (in which case the rules of case ‘c’ above apply). However, only the latter option is available if the
mode of the state abstraction in the Global specification is Output.

(e) No other global_items shall be included in the Refined_Global aspect specification.

(f) At least one state abstraction mentioned in the Global aspect specification shall be unmentioned in the
Refined_Global aspect specification. [This usually follows as a consequence of other rules, but not in
some cases involving optionally refinable state abstractions where the option is declined.]

4. Global_items in a Refined_Global aspect_specification shall denote distinct entities.

5. The mode of each global_item in a Refined_Global aspect shall match that of the corresponding
global_item in the Global aspect unless that corresponding global_item denotes a state abstraction
which is not mentioned in the Refined_Global aspect. In that case, the modes of the global_items in the
Refined_Global aspect which denote (direct or indirect) constituents of that state abstraction collectively de-
termine (as described below) an “effective mode” for the abstraction. If there is at least one such constituent,
then that “effective mode” shall match that of the corresponding global_item in the Global aspect; it is
determined as follows:

(a) If the refinement of the abstraction is visible and every constituent of the abstraction is mentioned in the
Refined_Global aspect with a mode of Output, then the effective mode is Output;

(b) Otherwise, if at least one constituent of the abstraction is mentioned in the Refined_Global aspect with a
mode of Output or In_Out, then the effective mode is In_Out;

(c) Otherwise, if at least one constituent of the abstraction is mentioned in the Refined_Global aspect with a
mode of Input, then the effective mode is Input;

(d) Otherwise, the effective mode is Proof_In.

[If there is no such consituent (e.g., because a null refinement is visible) then the mode of the state abstraction
in the Global aspect plays no role in determining the legality of the Refined_Global aspect.]

6. The legality rules for Global Aspects and External states described in Refined External States also apply.

Dynamic Semantics

There are no dynamic semantics associated with a Refined_Global aspect.

Verification Rules

8. If a subprogram has a Refined_Global aspect it is used in the analysis of the subprogram body rather than its
Global aspect.

9. The verification rules given for Global Aspects also apply.

Examples

1 package Refined_Global_Examples
2 with SPARK_Mode,
3 Abstract_State => (S1, S2),
4 Initializes => (S1, V1)
5 is
6 V1 : Integer := 0; -- Visible state variables
7

8 procedure P1_1 (I : in Integer)
9 with Global => (In_Out => S1);

10

11 procedure P1_2 (I : in Integer)
12 with Global => (In_Out => S1);
13

14 procedure P1_3 (Result : out Integer)
15 with Global => (Input => S1);

16

17 procedure P1_4 (I : in Integer)
18 with Global => (Output => S1);
19

20 procedure P2
21 with Global => (Input => V1,
22 In_Out => S2);
23

24 procedure P3 (J : in Integer)
25 with Global => (Output => V1);
26

27 procedure P4
28 with Global => (Input => (S1, V1),
29 In_Out => S2);
30 end Refined_Global_Examples;

1 package body Refined_Global_Examples
2 with SPARK_Mode,
3 Refined_State => (S1 => (A, B),
4 S2 => (X, Y, Z))
5 is
6 A : Integer := 1; -- The constituents of S1
7 B : Integer := 2; -- Initialized as promised
8

9 X, Y, Z : Integer; -- The constituents of S2
10 -- Not initialized
11

12 procedure P1_1 (I : in Integer)
13 with Refined_Global => (In_Out => A, -- Refined onto constituents of S1
14 Output => B) -- B is Output but A is In_Out and
15 -- so Global S1 is also In_Out
16 is
17 begin
18 B := A;
19 A := I;
20 end P1_1;
21

22 procedure P1_2 (I : in Integer)
23 with Refined_Global => (Output => A) -- Not all of the constituents of
24 -- S1 are updated and so the Global
25 -- S1 must In_Out
26 is
27 begin
28 A := I;
29 end P1_2;
30

31 procedure P1_3 (Result : out Integer)
32 with Refined_Global => (Input => B) -- Not all of the constituents of S1
33 -- are read but none of them are
34 -- updated so the Global S1 is Input
35 is
36 begin
37 Result := B;
38 end P1_3;
39

40 procedure P1_4 (I : in Integer)
41 with Refined_Global => (Output => (A, B)) -- The constituents of S1 are
42 -- not read but they are all

43 -- updated and so the mode
44 -- selector of S1 is Output
45 is
46 begin
47 A := I;
48 B := A;
49 end P1_4;
50

51 procedure P2
52 with Refined_Global => (Input => V1, -- V1 has no constituents and is
53 -- not subject to refinement.
54 Output => Z) -- Only constituent Z of S2 is
55 -- updated and so mode selector of
56 -- Global S2 is In_Out.
57 is
58 begin
59 Z := V1;
60 end P2;
61

62 procedure P3 (J : in Integer)
63 -- No Refined_Global aspect here because V1 has no refinement.
64 is
65 begin
66 V1 := J;
67 end P3;
68

69 procedure P4
70 with Refined_Global => (Input => (A, V1), -- The refinement of both S1
71 -- and S2 are visible and
72 Output => (X, Y)) -- cannot be denoted here.
73 -- Their constituents must be
74 -- used instead.
75 is
76 begin
77 X := V1;
78 Y := A;
79 end P4;
80 end Refined_Global_Examples;

7.2.5 Refined_Depends Aspects

A subprogram declared in the specification of a package may have a Refined_Depends aspect applied to its body or
body stub. A Refined_Depends aspect of a subprogram defines a refinement of the Depends aspect of the subprogram;
that is, the Refined_Depends aspect repeats the Depends aspect of the subprogram except that references to state
abstractions, whose refinements are visible at the point of the subprogram_body, are replaced with references to [some
or all of the] constituents of those abstractions.

See section Global Aspects regarding how the rules given in this section apply to protected operations and to task
bodies.

The Refined_Depends aspect is introduced by an aspect_specification where the aspect_mark is Re-
fined_Depends and the aspect_definition shall follow the grammar of dependency_relation in Depends
Aspects.

Static Semantics

1. The static semantics are as for those of the Depends aspect given in Depends Aspects. [Differences between

these two aspects for one subprogram stem from differences in state abstraction visibility between the points
where the two aspects are specified.]

Legality Rules

2. A Refined_Depends aspect is permitted on a body_stub (if one is present), subprogram body, entry body, or
task body if and only if the stub or body is the completion of a declaration in the specification of an enclosing
package and the declaration has a Depends aspect which denotes a state abstraction declared by the package and
the refinement of the state abstraction is visible.

3. A Refined_Depends aspect specification is, in effect, a copy of the corresponding Depends aspect specification
except that any references in the Depends aspect to a state abstraction, whose refinement is visible at the point of
the Refined_Depends specification, are replaced with references to zero or more direct or indirect constituents
of that state abstraction. A Refined_Depends aspect shall have a dependency_relation which is derivable
from the original given in the Depends aspect as follows:

(a) A partially refined dependency relation is created by first copying, from the Depends aspect, each output
that is not state abstraction whose refinement is visible at the point of the Refined_Depends aspect, along
with its input_list, to the partially refined dependency relation as an output denoting the same
entity with an input_list denoting the same entities as the original. [The order of the outputs and
the order of inputs within the input_list is insignificant.]

(b) The partially refined dependency relation is then extended by replacing each output in the Depends
aspect that is a state abstraction, whose refinement is visible at the point of the Refined_Depends, by zero
or more outputs in the partially refined dependency relation. It shall be zero only for a null refinement,
otherwise all of the outputs shall denote a constituent of the state abstraction.

(c) If the output in the Depends aspect denotes a state abstraction which is not also an input, then each
constituent of the state abstraction shall be denoted as an output of the partially refined dependency
relation.

(d) These rules may, for each output in the Depends aspect, introduce more than one output in the partially
refined dependency relation. Each of these outputs has an input_list that has zero or more of the
inputs from the input_list of the original output. The union of these inputs and the original
state abstraction, if it is an input in the input_list, shall denote the same inputs that appear in the
input_list of the original output.

(e) If the Depends aspect has a null_dependency_clause, then the partially refined dependency relation
has a null_dependency_clause added with an input_list denoting the same inputs as the
original.

(f) The partially refined dependency relation is completed by replacing each input which is a state abstrac-
tion, whose refinement is visible at the point of the Refined_Depends aspect, by zero or more inputs
which are its constituents.

(g) If a state abstraction is denoted in an input_list of a dependency_clause of the original Depends
aspect and its refinement is visible at the point of the Refined_Depends aspect (derived via the process
described in the rules 3a - 3f above), then:

• at least one of its constituents shall be denoted as an input in at least one of
the dependency_clauses of the Refined_Depends aspect corresponding to the original
dependency_clause in the Depends aspect; or

• at least one of its constituents shall be denoted in the input_list of a
null_dependency_clause; or

• the state abstraction is both an input and an output and not every constituent of the state
abstraction is an output of the Refined_Depends aspect. [This rule does not exclude denoting a
constituent of such a state abstraction in an input_list.]

4. These rules result in omitting each state abstraction whose null refinement is visible at the point of the Re-
fined_Depends. If and only if required by the syntax, the state abstraction shall be replaced by a null symbol
rather than being omitted.

5. No other outputs or inputs shall be included in the Refined_Depends aspect specification. Outputs in the
Refined_Depends aspect specification shall denote distinct entities. Inputs in an input_list shall denote
distinct entities.

6. [The above rules may be viewed from the perspective of checking the consistency of a Refined_Depends aspect
with its corresponding Depends aspect. In this view, each input in the Refined_Depends aspect that is a
constituent of a state abstraction, whose refinement is visible at the point of the Refined_Depends aspect,
is replaced by its representative state abstraction with duplicate inputs removed.

Each output in the Refined_Depends aspect, which is a constituent of the same state abstraction whose
refinement is visible at the point of the Refined_Depends aspect, is merged along with its input_list into a
single dependency_clause whose output denotes the state abstraction and input_list is the union of
all of the inputs replaced by their encapsulating state abstraction, as described above, and the state abstraction
itself if not every constituent of the state abstraction appears as an output in the Refined_Depends
aspect.]

7. The rules for Depends Aspects also apply.

Dynamic Semantics

There are no dynamic semantics associated with a Refined_Depends aspect as it is used purely for static analysis
purposes and is not executed.

Verification Rules

8. If a subprogram has a Refined_Depends aspect it is used in the analysis of the subprogram body rather than its
Depends aspect.

9. The verification rules given for Depends Aspects also apply.

Examples

1 package Refined_Depends_Examples
2 with SPARK_Mode,
3 Abstract_State => (S1, S2),
4 Initializes => (S1, V1)
5 is
6 V1 : Integer := 0; -- Visible state variables
7

8 procedure P1_1 (I : in Integer)
9 with Global => (In_Out => S1),

10 Depends => (S1 =>+ I);
11

12 procedure P1_2 (I : in Integer)
13 with Global => (In_Out => S1),
14 Depends => (S1 =>+ I);
15

16 procedure P1_3 (Result : out Integer)
17 with Global => (Input => S1),
18 Depends => (Result => S1);
19

20 procedure P1_4 (I : in Integer)
21 with Global => (Output => S1),
22 Depends => (S1 => I);
23

24 procedure P2
25 with Global => (Input => V1,

26 In_Out => S2),
27 Depends => (S2 =>+ V1);
28

29 procedure P3 (J : in Integer)
30 with Global => (Output => V1),
31 Depends => (V1 => J);
32

33 procedure P4
34 with Global => (Input => (S1, V1),
35 In_Out => S2),
36 Depends => (S2 =>+ (S1, V1));
37 end Refined_Depends_Examples;

1 package body Refined_Depends_Examples
2 with SPARK_Mode,
3 Refined_State => (S1 => (A, B),
4 S2 => (X, Y, Z))
5 is
6 A : Integer := 1; -- The constituents of S1
7 B : Integer := 2; -- Initialized as promised
8

9 X, Y, Z : Integer; -- The constituents of S2
10 -- Not initialized
11

12 procedure P1_1 (I : in Integer)
13 with Refined_Global => (In_Out => A,
14 Output => B),
15 Refined_Depends => (A => I, -- A and B are constituents of S1 and
16 -- both are outputs.
17 B => A) -- A is dependent on I but A is also an
18 -- input and B depends on A. Hence the
19 -- Depends => (S1 =>+ I).
20 is
21 begin
22 B := A;
23 A := I;
24 end P1_1;
25

26 procedure P1_2 (I : in Integer)
27 with Refined_Global => (Output => A),
28 Refined_Depends => (A => I) -- One but not all of the constituents
29 -- of S1 is updated hence the
30 -- Depends => (S1 =>+ I)
31 is
32 begin
33 A := I;
34 end P1_2;
35

36 procedure P1_3 (Result : out Integer)
37 with Refined_Global => (Input => B),
38 Refined_Depends => (Result => B) -- Not all of the constituents of
39 -- S1 are read but none of them
40 -- are updated, hence
41 -- Depends => (Result => S1)
42 is
43 begin
44 Result := B;
45 end P1_3;

46

47 procedure P1_4 (I : in Integer)
48 with Refined_Global => (Output => (A, B)),
49 Refined_Depends => ((A, B) => I) -- The constituents of S1 are not
50 -- inputs but all constituents of
51 -- S1 are updated, hence,
52 -- Depends => (S1 => I)
53 is
54 begin
55 A := I;
56 B := I;
57 end P1_4;
58

59 procedure P2
60 with Refined_Global => (Input => V1,
61 Output => Z),
62 Refined_Depends => (Z => V1) -- Only constituent Z of S2 is an
63 -- output. The other constituents of
64 -- S2 are preserved, hence,
65 -- Depends => (S2 =>+ V1);
66 is
67 begin
68 Z := V1;
69 end P2;
70

71 procedure P3 (J : in Integer)
72 -- No Refined_Depends aspect here because V1 has no refinement.
73 is
74 begin
75 V1 := J;
76 end P3;
77

78 procedure P4
79 with Refined_Global => (Input => (A, V1),
80 Output => (X, Y)),
81 Refined_Depends => (X => V1, -- Only constituents X and Y of S2 are
82 -- updated.
83 Y => A) -- Z is not updated and so S2 must have
84 -- a self-dependency. Constituent A of
85 -- S1 is read and no constituent of S1
86 -- is updated, hence,
87 -- Depends => (S2 =>+ (S1, V1))
88 is
89 begin
90 X := V1;
91 Y := A;
92 end P4;
93 end Refined_Depends_Examples;

7.2.6 Abstract_State, Package Hierarchy and Part_Of

In order to avoid aliasing-related problems (see Anti-Aliasing), SPARK 2014 must ensure that if a given piece of state
(either an object or a state abstraction) is going to be a constituent of a given state abstraction, that relationship must
be known at the point where the constituent is declared.

For a variable declared immediately within a package body, this is not a problem. The state refinement in which the
variable is specified as a constituent precedes the declaration of the variable, and so there is no window between the

introduction of the variable and its identification as a constituent. Similarly for a variable or state abstraction that is
part of the visible state of a package that is declared immediately within the given package body.

For variable declared immediately within the private part of a package, such an unwanted window does exist (and
similarly for a variable or state abstraction that is part of the visible state of a package that is declared immediately
within the given private part).

In order to cope with this situation, the Part_Of aspect provides a mechanism for specifying at the point of a con-
stituent’s declaration the state abstraction to which it belongs, thereby closing the window. The state abstraction’s
refinement will eventually confirm this relationship. The Part_Of aspect, in effect, makes visible a preview of (some
of) the state refinement that will eventually be provided in the package body.

This mechanism is also used in the case of the visible state of a private child unit (or a public descendant thereof).

The Part_Of aspect can also be used in a different way to indicate that an object or state abstraction is to be treated as
though it were declared within a protected unit or task unit (see section Tasks and Synchronization).

Static Semantics

1. A Part_Of indicator is a Part_Of option of a state abstraction declaration in an Abstract_State aspect, a
Part_Of aspect specification applied to a variable declaration or a Part_Of specification aspect applied to a
generic package instantiation. The Part_Of indicator shall denote the encapsulating state abstraction of which
the declaration is a constituent, or shall denote a task or protected unit (see section Tasks and Synchronization).

Legality Rules

2. A variable declared immediately within the private part of a given package or a variable or state abstraction that
is part of the visible state of a package that is declared immediately within the private part of the given package
shall have its Part_Of indicator specified; the Part_Of indicator shall denote a state abstraction declared by the
given package.

3. A variable or state abstraction which is part of the visible state of a non-generic private child unit (or a public de-
scendant thereof) shall have its Part_Of indicator specified; the Part_Of indicator shall denote a state abstraction
declared by either the parent unit of the private unit or by a public descendant of that parent unit.

4. A Part_Of aspect specification for a package instantiation applies to each part of the visible state of the instanti-
ation. More specifically, explicitly specifying the Part_Of aspect of a package instantiation implicitly specifies
the Part_Of aspect of each part of the visible state of that instantiation. The legality rules for such an implicit
specification are the same as for an explicit specification.

5. No other declarations shall have a Part_Of indicator which denotes a state abstraction. [Other declarations may
have a Part_Of indicator which denotes a task or protected unit (see section Tasks and Synchronization).]

6. The refinement of a state abstraction denoted in a Part_Of indicator shall denote as constituents all of the
declarations that have a Part_Of indicator denoting the state abstraction. [This might be performed once the
package body has been processed.]

7. A state abstraction and a constituent (direct or indirect) thereof shall not both be denoted in one Global, Depends,
Initializes, Refined_Global or Refined_Depends aspect specification. The denotation must be consistent between
the Global and Depends or between Refined_Global and Refined_Depends aspects of a single subprogram.

Verification Rules

8. For flow analysis, where a state abstraction is visible as well as one or more of its constituents, its refine-
ment is not visible and the Global and or Depends aspects of a subprogram denote the state abstraction, then in
the implementation of the subprogram a direct or indirect

• read of a constituent of the state abstraction shall be treated as a read of the encapsulating state
abstraction of the constituent; or

• update of a constituent of the state abstraction shall be treated as an update of the encapsulating
state abstraction of the constituent. An update of such a constituent is regarded as updating its

encapsulating state abstraction with a self dependency as it is unknown what other constituents the
state abstraction encapsulates.

Examples

1 package P
2 -- P has no state abstraction
3 is
4 ...
5 end P;
6

7 -- P.Pub is the public package that declares the state abstraction
8 package P.Pub -- public unit
9 with Abstract_State => (R, S)

10 is
11 ...
12 end P.Pub;
13

14 -- State abstractions of P.Priv, A and B, plus the concrete variable X,
15 -- are split up among two state abstractions within P.Pub, R and S.
16 with P.Pub;
17 private package P.Priv -- private unit
18 with Abstract_State => ((A with Part_Of => P.Pub.R),
19 (B with Part_Of => P.Pub.S))
20 is
21 X : T -- visible variable which is a constituent of P.Pub.R.
22 with Part_Of => P.Pub.R;
23 end P.Priv;
24

25 with P.Priv; -- P.Priv has to be with'd because its state is part of
26 -- the refined state.
27 package body P.Pub
28 with Refined_State => (R => (P.Priv.A, P.Priv.X, Y),
29 S => (P.Priv.B, Z))
30 is
31 Y : T2; -- hidden state
32 Z : T3; -- hidden state
33 ...
34 end P.Pub;

1 package Outer
2 with Abstract_State => (A1, A2)
3 is
4 procedure Init_A1
5 with Global => (Output => A1),
6 Depends => (A1 => null);
7

8 procedure Init_A2
9 with Global => (Output => A2),

10 Depends => (A2 => null);
11

12 private
13 -- A variable declared in the private part must have a Part_Of aspect
14 Hidden_State : Integer
15 with Part_Of => A2;
16

17 package Inner
18 with Abstract_state => (B1 with Part_Of => Outer.A1)
19 -- State abstraction declared in the private

20 -- part must have a Part_Of option.
21 is
22 -- B1 may be used in aspect specifications provided
23 -- Outer.A1 is not also used.
24 procedure Init_B1
25 with Global => (Output => B1),
26 Depends => (B1 => null);
27

28 procedure Init_A2
29 -- We can only refer to Outer.Hidden_State which is a constituent
30 -- of Outer.A2 if the subprogram does not also refer to Outer.A2.
31 with Global => (Output => Hidden_State),
32 Depends => (Hidden_State => null);
33 end Inner;
34 end Outer;
35

36 package body Outer
37 with Refined_State => (A1 => Inner.B1,
38 A2 => (Hidden_State, State_In_Body))
39 -- A1 and A2 cannot be denoted in the body of Outer because their
40 -- refinements are visible.
41 is
42 State_In_Body : Integer;
43

44 package body Inner
45 with Refined_State => (B1 => null) -- Oh, there isn't any state after all
46 is
47 procedure Init_B1
48 with Refined_Global => null, -- Refined_Global and
49 Refined_Depends => null -- Refined_Depends of a null refinement
50 is
51 begin
52 null;
53 end Init_B1;
54

55 procedure Init_A2
56 -- The Global sparct is already in terms of the constituent
57 -- Hidden_State which is part of A2, so no refined
58 -- Global or Depends aspects are required.
59 is
60 begin
61 Outer.Hidden_State := 0;
62 end Init_A2;
63

64 end Inner;
65

66 procedure Init_A1
67 with Refined_Global => (Output => Inner.B1),
68 Refined_Depends => (Inner.B1 => null)
69 is
70 begin
71 Inner.Init_B1;
72 end Init_A1;
73

74 procedure Init_A2
75 with Refined_Global => (Output => (Hidden_State, State_In_Body)),
76 Refined_Depends => ((Hidden_State, State_In_Body) => null)
77 is

78 begin
79 State_In_Body := 42;
80 Inner.Init_A2;
81 end Init_A2;
82

83 end Outer;
84

85 package Outer.Public_Child is
86 -- Outer.A1 and Outer.A2 are visible but
87 -- Outer.Hidden_State is not (by the rules of Ada).
88 -- The Global and Depends Aspects are in terms
89 -- of the encapsulating state abstraction Outer.A2.
90 procedure Init_A2_With (Val : in Integer)
91 with Global => (Output => Outer.A2),
92 Depends => (Outer.A2 => Val);
93 end Outer.Public_Child;
94

95 package body Outer.Public_Child is
96 -- Outer.Hidden is visible here but the
97 -- refinement of A2 is not so there are
98 -- no Refined_Global or Refined_Depends.
99 procedure Init_A2_With (Val : in Integer) is

100 begin
101 Outer.Init_A2;
102 Outer.Hidden_State := Val;
103 end Init_A2_With;
104 end Outer.Public_Child;

1 package Q
2 with Abstract_State => (Q1, Q2)
3 is
4 -- Q1 and Q2 may be denoted here
5 procedure Init_Q1
6 with Global => (Output => Q1),
7 Depends => (Q1 => null);
8

9 procedure Init_Q2
10 with Global => (Output => Q2),
11 Depends => (Q2 => null);
12

13 private
14 Hidden_State : Integer
15 with Part_Of => Q2;
16 end Q;
17

18 private package Q.Child
19 with Abstract_State => (C1 with Part_Of => Q.Q1)
20 is
21 -- C1 rather than the encapsulating state abstraction
22 -- may be used in aspect specifications provided
23 -- Q.Q1 is not also denoted in the same aspect
24 -- specification.
25

26 -- Here C1 is used so Q1 cannot also be used in
27 -- the aspect specifications of this subprogram.
28 procedure Init_Q1
29 with Global => (Output => C1),
30 Depends => (C1 => null);

31

32 -- Q.Hidden_State which is a constituent of Q.Q2
33 -- is visible here so it can be used in a aspect
34 -- specification provided Q.Q2 is not also used.
35 procedure Init_Q2
36 with Global => (Output => Q.Hidden_State),
37 Depends => (Q.Hidden_State => null);
38 end Q.Child;
39

40 package body Q.Child
41 with Refined_State => (C1 => Actual_State)
42 is
43 -- C1 shall not be denoted here - only Actual_State
44 -- but Q.Q2 and Q.Hidden_State may be denoted.
45 Actual_State : Integer;
46

47 procedure Init_Q1
48 with Refined_Global => (Output => Actual_State),
49 Refined_Depends => (Actual_State => null)
50 is
51 begin
52 Actual_State := 0;
53 end Init_Q1;
54

55 -- The refinement of Q2 is not visible and so Init_Q2
56 -- has no Refined_Global or Refined_Depends aspects.
57 procedure Init_Q2 is
58 begin
59 Q.Hidden_State := 0;
60 end Init_Q2;
61

62 end Q.Child;
63

64 with Q.Child;
65

66 package body Q
67 with Refined_State => (Q1 => Q.Child.C1,
68 Q2 => (Hidden_State, State_In_Body))
69 is
70 -- Q1 and Q2 shall not be denoted here but the constituents
71 -- Q.Child.C1, State_In_Body and Hidden_State may be.
72 State_In_Body : Integer;
73

74 procedure Init_Q1
75 with Refined_Global => (Output => Q.Child.C1),
76 Refined_Depends => (Q.Child.C1 => null)
77 is
78 begin
79 Q.Child.Init_Q1;
80 end Init_Q1;
81

82 procedure Init_Q2
83 with Refined_Global => (Output => (Hidden_State, State_in_Body)),
84 Refined_Depends => ((Hidden_State, State_in_Body) => null)
85 is
86 begin
87 State_In_Body := 42;
88 Q.Child.Init_Q2;

89 end Init_Q2;
90 end Q;

1 package R
2 with Abstract_State => R1
3 is
4 -- R1 may be denoted here
5 procedure Init_R1
6 with Global => (Output => R1),
7 Depends => (R1 => null);
8

9 procedure Op_1 (I : in Integer)
10 with Global => (In_Out => R1),
11 Depends => (R1 =>+ I);
12 end Q;
13

14 private package R.Child
15 with Abstract_State => (R2 with Part_Of => R.R1)
16 is
17 -- Both R.R1 and R2 are visible.
18

19 -- Here more than just the R2 constituent of R.R1
20 -- will be updated and so we use R.R1 in the
21 -- aspect specifications rather than R2.
22 -- R2 cannot also be used in the aspect
23 -- specifications of this subprogram.
24 procedure Private_Op (I, J : in Integer)
25 with Global => (In_Out => R.R1),
26 Depends => (R.R1 =>+ (I, J));
27 end R.Child;
28

29 package body R.Child
30 with Refined_State => (R2 => Actual_State)
31 is
32 -- R2 shall not be denoted here - only Actual_State
33 -- but R.R1 may be denoted.
34 Actual_State : Integer;
35

36 -- The Global and Depends aspects of Private_Op
37 -- are in terms of R.R1 and the refinement of
38 -- R.R1 is not visible and so Refined_Global
39 -- and Refined_Depends are not required.
40 procedure Private_Op (I, J : in Integer) is
41 begin
42 R.Op_1 (I);
43 Actual_State := J;
44 end Private_Op;
45 end R.Child;

7.2.7 Refined Postcondition Aspects

A subprogram declared in the specification of a package may have a Refined_Post aspect applied to its body or body
stub. The Refined_Post aspect may be used to restate a postcondition given on the declaration of a subprogram in
terms of the full view of a private type or the constituents of a refined state_name.

The Refined_Post aspect is introduced by an aspect_specification where the aspect_mark is “Re-

fined_Post” and the aspect_definition shall be a Boolean expression.

Legality Rules

1. A Refined_Post aspect may only appear on a body_stub (if one is present) or the body (if no stub is present)
of a subprogram or entry which is declared in the specification of a package, its abstract view. If the initial
declaration in the visible part has no explicit postcondition, a postcondition of True is assumed for the abstract
view.

2. A Refined_Post aspect is an assertion. The same legality rules apply to a Refined_Post aspect as for a postcon-
dition (a Post aspect).

Static Semantics

3. [A Refined Postcondition of a subprogram defines a refinement of the postcondition of the subprogram and is
intended for use by callers who can see the body of the subprogram.]

4. [Logically, the Refined Postcondition of a subprogram must imply its postcondition. This means that it is
perfectly logical for the declaration not to have a postcondition (which in its absence defaults to True) but
for the body or body stub to have a Refined Postcondition. It also means that a caller who sees the Refined
Postcondition of a subprogram will always be able to prove at least as much about the results of the call as if the
usual precondition were used instead.]

5. The static semantics are otherwise as for a postcondition.

Dynamic Semantics

6. When a subprogram or entry with a Refined Postcondition is called, the Refined Postcondition is evaluated
immediately before the evaluation of the postcondition or, if there is no postcondition, immediately before the
point at which a postcondition would have been evaluated. If the Refined Postcondition evaluates to False, then
the exception Assertion.Assertion_Error is raised. Otherwise, the postcondition is then evaluated and checked
as described in the Ada RM.

Verification Rules

7. If a subprogram has both a Refined_Post aspect and a Post (and/or Post’Class) aspect, then the verification
condition associated with postcondition checking is discharged in two steps.

First, the success of the Refined_Post run-time check must be proven as usual (i.e., just like any other run-time
check).

Next, an additional proof obligation is generated which relates the Refined_Post to the Post (and Post’Class)
aspects of the subprogram according to a “wrapper” model. Imagine two subprograms with the same parameter
profile and Global and Depends aspects, but with different postconditions P1 and P2 (neither of these two
subprograms has a Refined_Post aspect). Suppose further that the first subprogram is a “wrapper” for the
second; that is, its implementation consists of nothing but a call to the second subprogram (for functions, the
call would occur in a return statement). Consider the proof obligation generated for the postcondition check of
that “wrapper” subprogram; roughly speaking, it is a check that P1 is implied by P2. In that sense of the word
“implied”, a verification condition is generated that any Post/Post’Class condition for a subprogram is implied
by its Refined_Post condition. In particular, knowledge about the internals of the subprogram that was available
in proving the Refined_Post condition is not available in proving this implication (just as, in the “wrapper”
illustration, the internal details of the second subprogram are not available in proving the postcondition of the
first).

8. If a Refined_Post aspect specification is visible at the point of a call to the subprogram, then the Refined_Post
is used instead of the Postcondition aspect for purposes of formal analysis of the call. Similarly for using the
Refined_Global aspect instead of the Global aspect and the Refined_Depends aspect instead of the Depends
aspect. [Roughly speaking, the “contract” associated with a call is defined by using the Refined_* aspects of
the callee instead of the corresponding non-refined aspects in the case where Refined_* aspect specifications are
visible.]

Examples

These examples show the two ways in which the Refined_Post aspect is useful:

1. To write a postcondition in terms of the full view of a private type.

2. To write a postcondition in terms of the constituents of a state abstraction.

In either case a postcondition may be strengthened by the Refined_Post aspect by adding further constraints. The
combination of these two types of usage in a single package is not necessarily common but is used here for brevity of
the example.

1 package Stacks_1
2 with SPARK_Mode
3 is
4 type Stack_Type is private;
5

6 function Is_Empty (S : Stack_Type) return Boolean;
7 -- Default postcondition is True.
8

9 function Is_Full (S : Stack_Type) return Boolean;
10 -- Default postcondition is True.
11

12 procedure Push (S : in out Stack_Type; I : in Integer)
13 with Pre => not Is_Full (S),
14 Post => not Is_Empty (S);
15

16 procedure Pop (S : in out Stack_Type)
17 with Post => not Is_Full (S);
18

19 function Top (S : Stack_Type) return Integer
20 with Pre => not Is_Empty (S);
21 private
22 -- Full type declaration of private type.
23 Stack_Size : constant := 100;
24

25 type Pointer_Type is range 0 .. Stack_Size;
26 subtype Stack_Index is Pointer_Type range 1 .. Pointer_Type'Last;
27 type Stack_Array is array (Stack_Index) of Integer;
28

29 -- All stack objects have default initialization.
30 type Stack_Type is record
31 Pointer : Pointer_Type := 0;
32 Vector : Stack_Array := (others => 0);
33 end record;
34 end Stacks_1;

1 package body Stacks_1
2 with SPARK_Mode
3 is
4 function Is_Empty (S : Stack_Type) return Boolean is (S.Pointer = 0);
5 -- Default Refined_Post => Is_Empty'Result = S.Pointer = 0
6 -- refines the postcondition of True in terms of the full view of
7 -- Stack_Type.
8

9 function Is_Full (S : Stack_Type) return Boolean is
10 (S.Pointer = Stack_Size);
11 -- Default Refined_Post => Is_Full'Result = (S.Pointer = Stack_Size)
12 -- refines the postcondition of True in terms of the full view of
13 -- Stack_Type.

14

15 procedure Push (S : in out Stack_Type; I : in Integer)
16 with Refined_Post => S.Pointer = S.Pointer'Old + 1 and
17 S.Vector = S.Vector'Old'Update (S.Pointer => I)
18 -- Refined_Post in terms of full view of Stack_Type and a
19 -- further constraint added specifying what is required by the
20 -- implementation.
21 is
22 begin
23 S.Pointer := S.Pointer + 1;
24 S.Vector (S.Pointer) := I;
25 end Push;
26

27 procedure Pop (S : in out Stack_Type)
28 with Refined_Post => S.Pointer = S.Pointer'Old - 1
29 -- Refined_Post in terms of full view of Stack_Type and also
30 -- specifies what is required by the implementation.
31 is
32 begin
33 if S.Pointer > 0 then
34 S.Pointer := S.Pointer - 1;
35 end if;
36 end Pop;
37

38 function Top (S : Stack_Type) return Integer is (S.Vector (S.Pointer));
39 -- Default Refined_Post => Top'Result = S.Vector (S.Pointer)
40 -- refines the postcondition of True in terms of the full view of
41 -- Stack_Type.
42 end Stacks_1;

1 package Stacks_2
2 with SPARK_Mode,
3 Abstract_State => The_Stack,
4 Initializes => The_Stack
5 is
6 function Is_Empty return Boolean
7 with Global => The_Stack;
8 -- Default postcondition is True.
9

10 function Is_Full return Boolean
11 with Global => The_Stack;
12 -- Default postcondition is True.
13

14 procedure Push (I : Integer)
15 with Global => (In_Out => The_Stack),
16 Pre => not Is_Full,
17 Post => not Is_Empty;
18

19 procedure Pop
20 with Global => (In_Out => The_Stack),
21 Post => not Is_Full;
22

23 function Top return Integer
24 with Global => The_Stack,
25 Pre => not Is_Empty;
26 -- Default postcondition is True.
27 private
28 -- Full type declaration of private type for usage (1).

29 Stack_Size : constant := 100;
30

31 type Pointer_Type is range 0 .. Stack_Size;
32 subtype Stack_Index is Pointer_Type range 1 .. Pointer_Type'Last;
33 type Stack_Array is array (Stack_Index) of Integer;
34

35 -- All stack objects have default initialization.
36 type Stack_Type is record
37 Pointer : Pointer_Type := 0;
38 Vector : Stack_Array := (others => 0);
39 end record;
40 end Stacks_2;

1 package body Stacks_2
2 with SPARK_Mode,
3 Refined_State => (The_Stack => (A_Pointer, A_Vector))
4 is
5 -- Constituents of state abstraction The_Stack
6 -- We promised to initialize The_Stack
7 A_Pointer : Pointer_Type := 0;
8 A_Vector : Stack_Array := (others => 0);
9

10 -- Is_Empty could have been written as a expression function as was done
11 -- for Is_Empty (S : Stack_Type) but is presented here as a subproram body
12 -- to contrast the two approaches
13 function Is_Empty return Boolean
14 with Refined_Global => A_Pointer,
15 Refined_Post => Is_Empty'Result = (A_Pointer = 0)
16 -- Refines the postcondition of True in terms of the constituent A_Pointer.
17 is
18 begin
19 return A_Pointer = 0;
20 end Is_Empty;
21

22 -- Could be written as an expression function
23 function Is_Full return Boolean
24 with Refined_Global => A_Pointer,
25 Refined_Post => Is_Full'Result = (A_Pointer = Stack_Size)
26 -- Refines the postcondition of True in terms of the constituent A_Pointer.
27 is
28 begin
29 return A_Pointer = Stack_Size;
30 end Is_Full;
31

32 procedure Push (I : Integer)
33 with Refined_Global => (In_Out => (A_Pointer, A_Vector)),
34 Refined_Post => A_Pointer = A_Pointer'Old + 1 and
35 A_Vector = A_Vector'Old'Update (A_Pointer => I)
36 -- Refined_Post in terms of constituents A_Pointer and A_Vector and a further
37 -- constraint added specifying what is required by the implementation.
38 is
39 begin
40 A_Pointer := A_Pointer + 1;
41 A_Vector (A_Pointer) := I;
42 end Push;
43

44 procedure Pop
45 with Refined_Global => (In_Out => A_Pointer),

46 Refined_Post => A_Pointer = A_Pointer'Old - 1
47 -- Refined_Post in terms of constituents A_Pointer and also
48 -- specifies what is required by the implementation.
49 is
50 begin
51 A_Pointer := A_Pointer - 1;
52 end Pop;
53

54 function Top return Integer is (A_Vector (A_Pointer))
55 with Refined_Global => (A_Pointer, A_Vector);
56 -- Default Refined_Post => Top'Result = A_Vector (S.Pointer)
57 -- refines the postcondition of True in terms of the constituents
58 -- A_Pointer and A_Vector.
59 end Stacks_2;

7.2.8 Refined External States

External state which is a state abstraction requires a refinement as does any state abstraction. There are rules which
govern refinement of a state abstraction on to external states which are given in this section.

Legality Rules

1. A state abstraction that is not specified as External shall not have constituents which are External states.

2. An External state abstraction shall have each of the properties set to True which are True for any of its
constituents.

3. Refined_Global aspects must respect the rules related to external properties of constituents which are external
states given in External State and External State - Variables and Types.

4. All other rules for Refined_State, Refined_Global and Refined_Depends aspect also apply.

Examples

1 package Externals
2 with SPARK_Mode,
3 Abstract_State => ((Combined_Inputs with External => Async_Writers),
4 (Displays with External => Async_Readers),
5 (Complex_Device with External => (Async_Readers,
6 Effective_Writes,
7 Async_Writers))),
8 Initializes => Complex_Device
9 is

10 procedure Read (Combined_Value : out Integer)
11 with Global => Combined_Inputs, -- Combined_Inputs is an Input;
12 -- it does not have Effective_Reads and
13 -- may be an specified just as an
14 -- Input in Global and Depends aspects.
15 Depends => (Combined_Value => Combined_Inputs);
16

17 procedure Display (D_Main, D_Secondary : in String)
18 with Global => (Output => Displays), -- Displays is an Output and may
19 -- be specified just as an
20 -- Output in Global and Depends
21 -- aspects.
22 Depends => (Displays => (D_Main, D_Secondary));
23

24 function Last_Value_Sent return Integer

25 with Volatile_Function,
26 Global => Complex_Device; -- Complex_Device is an External
27 -- state. It can be a global_item of
28 -- a function provided the Refined_Global
29 -- aspect only refers to non-volatile
30 -- constituents and to external
31 -- state abstractions via calls to
32 -- functions defined on them.
33

34 procedure Output_Value (Value : in Integer)
35 with Global => (In_Out => Complex_Device),
36 Depends => (Complex_Device => (Complex_Device, Value));
37 -- Output_Value only sends out a value if it is not the same
38 -- as the last value sent. When a value is sent it updates
39 -- the saved value and has to check a status port.
40 -- The subprogram must be a procedure.
41

42 end Externals;

1 private package Externals.Temperature
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers,
4 Part_Of => Externals.Combined_Inputs)
5 is
6 procedure Read (Temp : out Integer)
7 with Global => State,
8 Depends => (Temp => State);
9 end Externals.Temperature;

1 private package Externals.Pressure
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers,
4 Part_Of => Externals.Combined_Inputs)
5 is
6 procedure Read (Press : out Integer)
7 with Global => State,
8 Depends => (Press => State);
9 end Externals.Pressure;

1 private package Externals.Main_Display
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Readers,
4 Part_Of => Externals.Displays)
5 is
6 procedure Display (Text: in String)
7 with Global => (Output => State),
8 Depends => (State => Text);
9 end Externals.Main_Display;

1 private package Externals.Secondary_Display
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Readers,
4 Part_Of => Externals.Displays)
5 is
6 procedure Display (Text: in String)
7 with Global => (Output => State),

8 Depends => (State => Text);
9 end Externals.Secondary_Display;

1 with System.Storage_Elements,
2 Externals.Temperature,
3 Externals.Pressure,
4 Externals.Main_Display,
5 Externals.Secondary_Display;
6

7 package body Externals
8 with SPARK_Mode,
9 Refined_State => (Combined_Inputs => (Externals.Temperature.State,

10 Externals.Pressure.State),
11 -- Both Temperature and
12 -- Pressure are inputs only.
13

14 Displays => (Externals.Main_Display.State,
15 Externals.Secondary_Display.State),
16 -- Both Main_Display and
17 -- Secondary_Display are outputs only.
18

19 Complex_Device => (Saved_Value,
20 Out_Reg,
21 In_Reg))
22 -- Complex_Device is a mixture of inputs, outputs and
23 -- non-volatile constituents.
24 is
25 Saved_Value : Integer := 0; -- Initialized as required.
26

27 Out_Reg : Integer
28 with Volatile,
29 Async_Readers,
30 Effective_Writes, -- Every value written to the port is significant.
31 Address => System.Storage_Elements.To_Address (16#ACECAFE0#);
32

33 In_Reg : Integer
34 with Volatile,
35 Async_Writers,
36 Address => System.Storage_Elements.To_Address (16#A11CAFE0#);
37

38 procedure Read (Combined_Value : out Integer)
39 with Refined_Global => (Temperature.State, Pressure.State),
40 Refined_Depends => (Combined_Value => (Temperature.State,
41 Pressure.State))
42 is
43 Temp,
44 Press : Integer;
45 K : constant := 1234;
46 begin
47 Temperature.Read (Temp);
48 Pressure.Read (Press);
49 Combined_Value := Press + Temp * K;-- Some_Function_Of (Temp, Pressure);
50 end Read;
51

52 procedure Display (D_Main, D_Secondary : in String)
53 with Refined_Global => (Output => (Main_Display.State,
54 Secondary_Display.State)),
55 Refined_Depends => (Main_Display.State => D_Main,

56 Secondary_Display.State => D_Secondary)
57 is
58 begin
59 Main_Display.Display (D_Main);
60 Secondary_Display.Display (D_Secondary);
61 end Display;
62

63 function Last_Value_Sent return Integer
64 with Refined_Global => Saved_Value -- Refined_Global aspect only
65 -- refers to a non-volatile
66 -- constituent.
67 is
68 begin
69 return Saved_Value;
70 end Last_Value_Sent;
71

72 procedure Output_Value (Value : in Integer)
73 with Refined_Global => (Input => In_Reg,
74 Output => Out_Reg,
75 In_Out => Saved_Value),
76 -- Refined_Global aspect refers to both volatile
77 -- and non-volatile constituents.
78

79 Refined_Depends => ((Out_Reg,
80 Saved_Value) => (Saved_Value,
81 Value),
82 null => In_Reg)
83 is
84 Ready : constant Integer := 42;
85 Status : Integer;
86 begin
87 if Saved_Value /= Value then
88 loop
89 Status := In_Reg; -- In_Reg has the property Async_Writers
90 -- and may appear on RHS of assignment
91 -- but not in a condition.
92 exit when Status = Ready;
93 end loop;
94

95 Out_Reg := Value; -- Out_Reg has the property Async_Readers
96 -- and the assigned value will be consumed.
97 Saved_Value := Value; -- Writing to the Out_Reg also results
98 -- in updating Saved_Value.
99 end if;

100 end Output_Value;
101 end Externals;

1 -- This is a hardware abstraction layer (HAL)
2 -- which handles input and output streams over serial interfaces
3 -- and monitors and resets an area of shared memory used
4 -- as a watchdog.
5 package HAL
6 with SPARK_Mode,
7 Abstract_State =>
8 ((FIFO_Status
9 with External => Async_Writers),

10 (Serial_In
11 with External => (Async_Writers,

12 Effective_Reads)),
13 -- Each value received is significant
14 (FIFO_Control
15 with External => Async_Readers),
16 (Serial_Out
17 with External => (Async_Readers,
18 Effective_Writes)),
19 (Wdog_State
20 with External => (Async_Readers,
21 Async_Writers)))
22 is
23 type Byte_T is mod 256;
24

25 -- This procedure reads the next byte available on
26 -- the serial input port using a FIFO buffer.
27 procedure Get_Byte (A_Byte : out Byte_T)
28 with Global => (In_Out => Serial_In),
29 Depends => (A_Byte => Serial_In,
30 Serial_In => Serial_In);
31

32 -- This procedure skips input bytes until
33 -- the byte matches the given pattern or the input
34 -- FIFO is empty.
35 procedure Skip_To (Pattern : in Byte_T; Found : out Boolean)
36 with Global => (Input => FIFO_Status,
37 In_Out => Serial_In),
38 Depends => ((Found,
39 Serial_In) => (FIFO_Status,
40 Pattern,
41 Serial_In));
42

43 -- This procedure reads the status of the input and output FIFOs.
44 procedure Get_FIFO_Status (A_Byte : out Byte_T)
45 with Global => (Input => FIFO_Status),
46 Depends => (A_Byte => FIFO_Status);
47

48 -- This procedure writes a byte to the serial
49 -- output port using a FIFO buffer.
50 procedure Put_Byte (A_Byte : Byte_T)
51 with Global => (Output => Serial_Out),
52 Depends => (Serial_Out => A_Byte);
53

54

55 -- This procedure clears the input FIFO.
56 procedure Clear_In_FIFO
57 with Global => (Output => FIFO_Control),
58 Depends => (FIFO_Control => null);
59

60

61 -- This procedure clears the output FIFO.
62 procedure Clear_Out_FIFO
63 with Global => (Output => FIFO_Control),
64 Depends => (FIFO_Control => null);
65

66

67 -- This procedure checks and then resets the status of
68 -- the watchdog state.
69 procedure Wdog_Timed_Out (Result : out Boolean)

70 with Global => (In_Out => Wdog_State),
71 Depends => (Result => Wdog_State,
72 Wdog_State => Wdog_State);
73 end HAL;

1 with System.Storage_Elements;
2

3 package body HAL
4 with SPARK_Mode,
5 Refined_State => (Serial_In => Read_FIFO,
6 Serial_Out => Write_FIFO,
7 FIFO_Status => Status,
8 FIFO_Control => Control,
9 Wdog_State => Wdog_Shared_memory)

10 is
11 -- Each byte read is significant, it is a sequence of bytes
12 -- and so Effective_Reads => True.
13 Read_FIFO: Byte_T
14 with Volatile,
15 Async_Writers,
16 Effective_Reads,
17 Address => System.Storage_Elements.To_Address(16#A1CAFE0#);
18

19 -- Each byte written is significant, it is a sequence of bytes
20 -- and so Effective_Writes => True.
21 Write_FIFO: Byte_T
22 with Volatile,
23 Async_Readers,
24 Effective_Writes,
25 Address => System.Storage_Elements.To_Address(16#A2CAFE0#);
26

27 -- The read of the FIFO status is a snap shot of the current status
28 -- individual reads are independent of other reads of the FIFO status
29 -- and so Effective_Reads => False.
30 Status: Byte_T
31 with Volatile,
32 Async_Writers,
33 Address => System.Storage_Elements.To_Address(16#A3CAFE0#);
34

35 -- The value written to the FIFO control register are independent
36 -- of other value written to the control register and so
37 -- Effective_Writes => False.
38 Control: Byte_T
39 with Volatile,
40 Async_Readers,
41 Address => System.Storage_Elements.To_Address(16#A4CAFE0#);
42

43 -- This is a bidirectional port but individual reads and writes
44 -- are independent and so Effective_Reads and Effective_Writes
45 -- are both False.
46 Wdog_Shared_Memory : Boolean
47 with Volatile,
48 Async_Writers,
49 Async_Readers,
50 Address => System.Storage_Elements.To_Address(16#A5CAFE0#);
51

52 procedure Get_Byte (A_Byte : out Byte_T)
53 with Refined_Global => (In_Out => Read_FIFO),

54 Refined_Depends => (A_Byte => Read_FIFO,
55 Read_FIFO => Read_FIFO)
56 is
57 begin
58 A_Byte := Read_FIFO;
59 end Get_Byte;
60

61 procedure Skip_To (Pattern : in Byte_T; Found : out Boolean)
62 with Refined_Global => (Input => Status,
63 In_Out => Read_FIFO),
64 Refined_Depends => ((Found,
65 Read_FIFO) => (Status,
66 Pattern,
67 Read_FIFO))
68 is
69 Read_FIFO_Empty : constant Byte_T := 16#010#;
70 Current_Status : Byte_T;
71 Next_Byte : Byte_T;
72 begin
73 Found := False;
74 loop
75 Get_FIFO_Status (Current_Status);
76 exit when Current_Status = Read_FIFO_Empty;
77 Get_Byte (Next_Byte);
78 if Next_Byte = Pattern then
79 Found := True;
80 exit;
81 end if;
82 end loop;
83 end Skip_To;
84

85 procedure Get_FIFO_Status (A_Byte : out Byte_T)
86 with Refined_Global => (Input => Status),
87 Refined_Depends => (A_Byte => Status)
88 is
89 begin
90 A_Byte := Status;
91 end Get_FIFO_Status;
92

93 procedure Put_Byte (A_Byte : Byte_T)
94 with Refined_Global => (Output => Write_FIFO),
95 Refined_Depends => (Write_FIFO => A_Byte)
96 is
97 begin
98 Write_FIFO := A_Byte;
99 end Put_Byte;

100

101 procedure Clear_In_FIFO
102 with Refined_Global => (Output => Control),
103 Refined_Depends => (Control => null)
104 is
105 In_FIFO_Clear : constant Byte_T := 16#010#;
106 begin
107 Control := In_FIFO_Clear;
108 end Clear_In_FIFO;
109

110 procedure Clear_Out_FIFO
111 with Refined_Global => (Output => Control),

112 Refined_Depends => (Control => null)
113 is
114 Out_FIFO_Clear : constant Byte_T := 16#020#;
115 begin
116 Control := Out_FIFO_Clear;
117 end Clear_Out_FIFO;
118

119 procedure Wdog_Timed_Out (Result : out Boolean)
120 with Refined_Global => (In_Out => Wdog_Shared_Memory),
121 Refined_Depends => (Result => Wdog_Shared_Memory,
122 Wdog_Shared_memory => Wdog_Shared_Memory)
123 is
124 Watch_Dog_OK : Boolean;
125 begin
126 Watch_Dog_OK := Wdog_Shared_Memory;
127 if Watch_Dog_OK then
128 -- Retrigger the watch dog timer
129 Wdog_shared_memory := True;
130 -- It has not timed out.
131 Result := False;
132 else
133 Result := True;
134 end if;
135 end Wdog_Timed_Out;
136

137 end HAL;

1 with HAL;
2 use type HAL.Byte_T;
3

4 procedure Main_Hal
5 with SPARK_Mode,
6 Global => (Input => HAL.FIFO_Status,
7 In_Out => (HAL.Serial_In,
8 HAL.Wdog_State),
9 Output => (HAL.FIFO_Control,

10 HAL.Serial_Out)),
11 Depends => (HAL.Serial_In =>+ (HAL.FIFO_Status,
12 HAL.Wdog_State),
13 HAL.Serial_Out => (HAL.Serial_In,
14 HAL.FIFO_Status,
15 HAL.Wdog_State),
16 HAL.Wdog_State =>+ HAL.FIFO_Status,
17 HAL.FIFO_Control => null)
18 is
19 Wdog_Timed_Out, Found : Boolean;
20 A_Byte : HAL.Byte_T;
21 begin
22 HAL.Clear_Out_FIFO;
23

24 -- The start of the data is marked by the sequence 16#5555#
25 -- Skip until we find the start of the message or the FIFO is empty.
26 loop
27 HAL.Wdog_Timed_Out (Wdog_Timed_Out);
28 exit when Wdog_Timed_Out;
29 HAL.Skip_To (16#55#, Found);
30 exit when not Found;
31 HAL.Get_Byte (A_Byte);

32 exit when A_Byte = 16#55#;
33 end loop;
34

35 if Found and not Wdog_Timed_Out then
36 -- We have found the start of the data
37

38 -- As long as the watchdog doesn't time out, move data
39 -- from Serial_In to Serial_Out.
40 loop
41 HAL.Wdog_Timed_Out (Wdog_Timed_Out);
42

43 exit when Wdog_Timed_Out;
44

45 HAL.Get_Byte (A_Byte);
46 HAL.Put_Byte (A_Byte);
47 end loop;
48 end if;
49 end Main_Hal;

7.3 Private Types and Private Extensions

No extensions or restrictions.

7.3.1 Private Operations

No extensions or restrictions.

7.3.2 Type Invariants

[Type invariants are supported in SPARK, but are subject to restrictions which imply that if a type invariant is specified
for a type T, then any new verification conditions which this introduces outside of the package which defines T are
trivially satisified. These restrictions ensure that any object or value of type T (or a descendant thereof) which can be
named outside of that package will satisfy the invariant and so, for example, could not fail the runtime check associated
with passing that object or value as a parameter in call to a procedure for which Ada requires runtime checking of the
invariant (which, in turn, means that the verification condition corresponding to that runtime check is trivally satisfied).
In order to accomplish this goal, verification conditions for type invariants are introduced in several contexts where
Ada does not define corresponding runtime checks.]

[As a consequence of this approach, adding or deleting a type invariant for a private type should have little or no impact
on users outside of the package defining the private type; on the other hand, such a change could have a great deal of
impact on the verification conditions generated for the implementation of the private type and its operations.]

[Just as a reminder to the reader, text enclosed in square brackets is non-normative expository text. This is true
everywhere in the SPARK RM, but there is a lot of such expository text in this section and we don’t want anyone to
be confused about what is strictly part of the language definition and what is not.]

Static Semantics

1. For a given type-invariant bearing type T, a boundary subprogram is a subprogram which is declared inside the
immediate scope of type T, and visible outside the immediate scope of T.

The point at which a generic is declared plays no role in determining whether a subprogram declared as or within
an instantiation of that generic is a boundary subprogram.

Legality Rules

2. The aspect Type_Invariant may be specified in SPARK, but only for the completion of a private type. [In other
words, the Type_Invariant aspect shall not be specified for a partial view of a type, nor for the completion of a
private extension.] The aspect Type_Invariant’Class is not in SPARK.

3. [A Type_Invariant expression shall not have a variable input; see Expressions for the statement of this rule.]

4. A Type_Invariant shall not apply to an effectively volatile type.

Verification Rules

In Ada RM 7.3.2, Ada defines the points at which runtime checking of type invariants is performed. In SPARK, these
rules (or, more precisely, the verification conditions corresponding to these Ada dynamic semantics rules) are extended
in several ways. In effect, verification conditions are generated as if Ada defined additional dynamic type invariant
checking at several points (described below) where, in fact, Ada defines no such checks. [This means that when we
talk below about extending invariant checks, we are only talking about generating additional verification conditions;
we are not talking about any changes in a program’s behavior at run-time.]

5. The type invariant expression for a type T shall not include a call to a boundary function for type T. [This
often means that a type invariant expression cannot contain calls to functions declared in the visible part of the
package in question.]

Ramification: It is a consequence of other rules that upon entry to a boundary subprogram for a type T, every part of
every input that is of type T can be assumed to satisfy T’s invariant.

6. Upon returning from a boundary subprogram for a type T, a verification condition is introduced for every part
of every output that is of type T (or a descendant thereof), to ensure that this part satisfies T’s invariant.

7. For every subprogram declared inside the immediate scope of type T, the preceding rule [and ramification] also
apply to [any parts of] any global input or output and to [any parts of] any tagged subprogram parameter.

8. When calling a boundary subprogram for a type T or a subprogram declared outside of the immediate scope of
T, a verification condition is introduced for every part of every input that is of type T (or a descendant thereof),
to ensure that this part satisfies T’s invariant. [This verification condition is trivially satisfied if the caller is
outside of the immediate scope of T, or if the input in question is subject to rule 5 and constant for the caller.
The idea here is to prevent invariant-violating values from “leaking out”.]

Ramification: It is a consequence of other rules that upon return from a boundary subprogram for a type T or a
subprogram declared outside of the immediate scope of T, every part of every output that is of type T (or a descendant
thereof) can be assumed to satisfy T’s invariant.

9. For every subprogram, the preceding rule [and ramification] also apply to [any parts of] any global input or
output and to [any parts of] any tagged subprogram parameter. [The verification condition of rule 6 is trivially
satisfied if the caller is outside of the immediate scope of T, or if the input in question is subject to rule 4 and
constant for the caller.]

10. At the end of the elaboration of a package (i.e., at the point where the Initial_Condition, if any, is checked) a
verification condition is introduced for the objects (both variables and constants) declared within the package.
[If one chooses to think of package elaboration as being performed by a notional parameterless “elaboration”
subprogram, then this rule (very roughly speaking) says that the global outputs of this notional subprogram
follow much the same rules as for other subprograms.]

Ramification: In determining whether a dispatching call is a call to a boundary subprogram or to a subprogram
declared outside of the immediate scope of T, the statically named callee is used.

Ramification: It is possible that the underlying tag of a tagged object (at runtime) may differ from the tag of its
nominal (compile time) type. Suppose that an object X is (statically) of type T1 (or T1’Class) but has T2’Tag as its
underlying tag, and that T2 has one or more components which are not components of T1. Ada does not define runtime
checking of type invariants for such “hidden” components of parameters. The rules about tagged inputs and outputs

in rules 6 and 8 are introduced in order to deal with technical difficulties that would otherwise arise in the treatment of
these hidden components.

7.3.3 Default_Initial_Condition Aspects

The Default_Initial_Condition aspect is introduced by an aspect_specification where the aspect_mark
is Default_Initial_Condition. The aspect may be specified only as part of the aspect_specification of a
private_type_declaration. The aspect_definition, if any, of such an aspect specification
shall be either a null literal or a Boolean_expression.

The aspect_definition may be omitted; this is semantically equivalent to specifying a static
Boolean_expression having the value True.

An aspect specification of “null” indicates that the partial view of the type does not define full default
initialization (see Declarations). [The full view of the type might or might not define full default initial-
ization.]

Conversely, an aspect specification of a Boolean_expression indicates that the partial view of the type
does define full default initialization. In this case, the completion of the private type shall define full
default initialization. [Implementations may provide a mechanism for suppressing enforcement of this
rule as described; the burden is then on the user to ensure that this does not result in undetected uses of
uninitialized variables.]

Unlike the null literal case, this case has associated dynamic semantics. The Boolean_expression
(which might typically mention the current instance of the type, although this is not required) is an asser-
tion which is checked (at run time) after any object of the given type (or of any descendant of the given
type for which the specified aspect is inherited and not overridden), is “initialized by default” (see Ada
RM 3.3.1). [Note that an imported object is not “initialized by default” (see Ada RM B.3).]

The Boolean_expression, if any, causes freezing in the same way as the default_expression
of a component_declaration. [If the expresion is non-static, this means that the expression does
not cause freezing where it occurs, but instead when an object of the type is initialized by default.]

Default_Initial_Condition assertion is an assertion aspect, which means that it may be used in an Asser-
tion_Policy pragma.

Within the Boolean expression of the Default_Initial_Condition aspect of a tagged type T, a name that
denotes the current instance of the tagged type is interpreted as though it had a (notional) type NT that
is a formal derived type whose ancestor type is T, with directly visible primitive operations. [This name
resolution rule is similar to the “notional formal derived type” name resolution rule introduced in Ada
RM 6.1.1 for certain subexpressions of class-wide precondition and postcondition expressions.] Any
operations within a Default_Initial_Condition expression that were resolved in this way (i.e., as primitive
operations of the (notional) formal derived type NT), are in the evaluation of the expression (i.e., at run-
time) bound to the corresponding operations of the type of the object being “initialized by default” (see
Ada RM 3.3.1).

7.4 Deferred Constants

No extensions or restrictions.

7.5 Limited Types

No extensions or restrictions.

7.6 Assignment and Finalization

Legality Rules

1. Controlled types are not permitted in SPARK 2014.

7.7 Elaboration Issues

SPARK 2014 imposes a set of restrictions which ensure that a call to a subprogram cannot occur before the body of
the subprogram has been elaborated. The success of the runtime elaboration check associated with a call is guaranteed
by these restrictions and so the verification condition associated with such a check is trivially discharged. Similar
restrictions are imposed to prevent the reading of uninitialized library-level variables during library unit elaboration,
and to prevent instantiation of a generic before its body has been elaborated. Finally, restrictions are imposed in order
to ensure that the Initial_Condition (and Initializes aspect) of a library-level package can be meaningfully used.

These restrictions are described in this section. Because all of these elaboration-related issues are treated similarly,
they are discussed together in one section.

Note that throughout this section an implicit call (e.g., one associated with default initialization of an object or with a
defaulted parameter in a call) is treated in the same way as an explicit call, and an explicit call which is unevaluated at
the point where it (textually) occurs is ignored at that point (but is not ignored later at a point where it is evaluated).
This is similar to the treatment of expression evaluation in Ada’s freezing rules. This same principle applies to the
rules about reading global variables discussed later in this section.

Static Semantics

1. A call which occurs within the same compilation_unit as the subprogram_body of the callee is said to be an
intra-compilation_unit call.

2. A construct (specifically, a call to a subprogram or a read or write of a variable) which occurs in elaboration code
for a library-level package is said to be executable during elaboration. If a subprogram call is executable during
elaboration and the callee’s body occurs in the same compilation_unit as the call, then any constructs occurring
within that body are also executable during elaboration. [If a construct is executable during elaboration, this
means that it could be executed during the elaboration of the enclosing library unit and is subject to certain
restrictions described below.]

For a given library unit L1 and a given distinct library unit’s spec or body L2 depending on L1 through a chain
of with_clauses, the elaboration of the body of L1 is said to be known to precede the elaboration of L2 if
either:

(a) L2 references L1 in an Elaborate or Elaborate_All pragma; or

(b) L1’s Elaborate_Body aspect is True; or

(c) L1 does not require a body (the terminology is a little odd in this case because L1 has no body); or

(d) L1 is preelaborated and L2’s library unit is not; or

(e) L2 semantically depends on some library_item L3 such that the elaboration of the body of L1 is known to
precede the elaboration of L3. [See Ada RM 10.1.1 for definition of semantic dependence.]

Legality Rules

3. SPARK 2014 requires that an intra-compilation_unit call which is executable during elaboration shall occur
after a certain point in the unit (described below) where the subprogram’s completion is known to have been
elaborated. The portion of the unit following this point and extending to the start of the completion of the
subprogram is defined to be the early call region for the subprogram. An intra-compilation_unit call which is
executable during elaboration and which occurs (statically) before the start of the completion of the callee shall
occur within the early call region of the callee.

4. The start of the early call region is obtained by starting at the subprogram’s completion (typically a subpro-
gram_body) and then traversing the preceding constructs in reverse elaboration order until a non-preelaborable
statement/declarative_item/pragma is encountered. The early call region starts immediately after this non-
preelaborable construct (or at the beginning of the enclosing block (or library unit package spec or body) if
no such non-preelaborable construct is found).

[The idea here is that once elaboration reaches the start of the early call region, there will be no further expression
evaluation or statement execution (and, in particular, no further calls) before the subprogram_body has been
elaborated because all elaborable constructs that will be elaborated in that interval will be preelaborable. Hence,
any calls that occur statically after this point cannot occur dynamically before the elaboration of the subprogram
body.]

[These rules allow this example

package body Pkg is
...
procedure P;
procedure Q;
X : Integer := Some_Function_Call; -- not preelaborable
procedure P is ... if Blap then Q; end if; ... end P;
procedure Q is ... if Blaq then P; end if; ... end Q;

begin
P;

end;

even though the call to Q precedes the body of Q. The early call region for either P or Q begins immediately
after the declaration of X. Note that because the call to P is executable during elaboration, so is the call to Q.]

5. For purposes of the above rules, a subprogram completed by a renaming-as-body is treated as though it were
a wrapper which calls the renamed subprogram (as described in Ada RM 8.5.4(7.1/1)). [The notional “call”
occuring in this wrapper is then subject to the above rules, like any other call.]

6. If an instance of a generic occurs in the same compilation_unit as the body of the generic, the body must precede
the instance.

[If this rule were only needed in order to avoid elaboration check failures, a similar rule to the rule for calls
could be defined. This stricter rule is used in order to avoid having to cope with use-before-definition, as in

generic
package G is

...
end G;

procedure Proc is
package I is new G; -- expansion of I includes references to X

begin ... ; end;

X : Integer;

package body G is
... <uses of X> ...

end G;

This stricter rule applies even if the declaration of the instantiation is not “executable during elaboration”].

7. In the case of a dispatching call, the subprogram_body mentioned in the above rules is that (if any) of the
statically denoted callee.

8. The first freezing point of a tagged type shall occur within the early call region of each of its overriding primitive
operations.

[This rule is needed to prevent a dispatching call before the body of the (dynamic, not static) callee has been
elaborated. The idea here is that after the freezing point it would be possible to declare an object of the type and
then use it as a controlling operand in a dispatching call to a primitive operation of an ancestor type. No analysis
is performed to identify scenarios where this is not the case, so conservative rules are adopted.]

[Ada ensures that the freezing point of a tagged type will always occur after both the completion of the type
and the declarations of each of its primitive subprograms; the freezing point of any type will occur before the
declaration of any objects of the type or the evaluation of any expressions of the type. This is typically all
that one needs to know about freezing points in order to understand how the above rule applies to a particular
example.]

9. For purposes of defining the early call region, the specification and body of a library unit package whose Elab-
orate_Body aspect is True are treated as if they both belonged to some enclosing declaration list with the body
immediately following the specification. This means that the early call region in which a call is permitted can
span the specification/body boundary.

This is important for tagged type declarations.

10. For each call that is executable during elaboration for a given library unit package spec or body, there are two
cases: it is (statically) a call to a subprogram whose completion is in the current compilation_unit (or in a
preelaborated unit), or it is not. In the latter case, an Elaborate_All pragma shall be provided to ensure that the
given library unit spec or body will not be elaborated until after the complete semantic closure of the unit in
which the (statically denoted) callee is declared.

11. For an instantiation of a generic package (excluding a bodiless generic package) which does not occur in the
same compilation unit as the generic body, the same rules apply as described above for a call (i.e., an Elabo-
rate_All pragma is required). For an instantiation of a generic subprogram which does not occur in the same
compilation unit as the generic body, the same rules also apply except that only an Elaborate (as opposed to an
Elaborate_All) pragma is required.

12. An implementation is permitted to accept constructs which violate the preceding rules in this section (e.g.,
an implementation might choose to behave, for purposes of defining an early call region, as though some non-
preelaborable construct is preelaborable), but only if the implementation is able to statically ensure that accepting
these constructs does not introduce the possibility of failing an elaboration check (either for a call or for an
instantiation), reading an uninitialized variable, or unsafe reliance on a package’s Initial_Condition. [If an
implementation chooses to take advantage of this permission, then the burden is entirely on the implementation
to “get it right”.]

[These rules correctly prohibit the following example:

package P is
function F return Boolean;
Flag : Boolean := F; -- would fail elaboration checks

end; --]

Examples

1 function Times_2 (X : Integer) return Integer is
2 begin
3 return 2 * X;
4 end Times_2;

1 with Times_2;
2

3 package Intra_Unit_Elaboration_Order_Examples
4 with Initializes => (X, Y)
5 is
6 pragma Elaborate_Body; -- Ensures body of package is elaborated
7 -- immediately after its declaration

8 procedure P (I : in out Integer); -- P and hence Q are executable during
9 procedure Q (J : in out Integer); -- elaboration as P is called in the

10 -- package body
11

12 X : Integer := Times_2 (10); -- Not preelaborable
13 -- The early call region begins here
14 -- and extends into the package body because
15 -- of the Elaborate_Body pragma.
16

17 Y : Integer;
18

19 procedure R (Z : in out Integer)
20 with Post => Z = G (Z'Old); -- The call to G is allowed here as it is in
21 -- the early call region
22

23 procedure S (A : in out Integer)
24 with Global => Y; -- Global Y needs to be initialized.
25

26 function F (I : Integer) return Integer;
27 function G (J : Integer) return Integer is (2 * F (J));
28 -- The call to F is allowed here as it is in
29 -- early call region.
30 end Intra_Unit_Elaboration_Order_Examples;

1 package body Intra_Unit_Elaboration_Order_Examples is
2

3 function F (I : Integer) return Integer is (I + 1);
4 -- The early call region for F ends here as the body has been
5 -- declared. It can now be called using normal visibility rules.
6

7 procedure P (I : in out Integer) is
8 begin
9 if I > 10 then

10 Q (I); -- Q is still in the early call region and so this call is
11 -- allowed
12 end if;
13 end P;
14 -- The early call region for P ends here as the body has been
15 -- declared. It can now be called using normal visibility rules.
16

17 procedure Q (J : in out Integer) is
18 begin
19 if J > 20 then
20 J := J - 10;
21 P (J); -- P can be called as its body is declared.
22 end if;
23 end Q;
24 -- The early call region for Q ends here as the body has been
25 -- declared. It can now be called using normal visibility rules.
26

27 procedure R (Z : in out Integer) is
28 begin
29 Z := G (Z); -- The expression function G has been declared and
30 -- so can be called
31 end R;
32

33 procedure S (A : in out Integer) is
34 begin

35 A := A + Y; -- Reference to Y is ok because it is in the early call
36 -- region and the Elaborate_Body pragma ensures it is
37 -- initialized before it is used.
38 end S;
39

40 begin
41 Y := 42;
42 P (X); -- Call to P and hence Q during the elaboration of the package.
43 end Intra_Unit_Elaboration_Order_Examples;

1 package Inter_1 is
2 function F (I : Integer) return Integer;
3 end Inter_1;

1 package body Inter_1 is
2 function F (I : Integer) return Integer is (I);
3 end Inter_1;

1 package Inter_2 is
2 function G (I : Integer) return Integer;
3 end Inter_2;

1 package body Inter_2 is
2 function G (I : Integer) return Integer is (I);
3 end Inter_2;

1 with Inter_1;
2 pragma Elaborate_All (Inter_1); -- Ensure the body of the called function F
3 -- has been elaborated.
4

5 package Inter_Unit_Elaboration_Examples with Elaborate_Body is
6 X : Integer := Inter_1.F (10); -- The call to F is ok because its body is
7 -- sure to have been elaborated.
8 Y : Integer;
9

10 procedure P (I : in out Integer); -- P is declared so that the package
11 -- requires a body for this example.
12 end Inter_Unit_Elaboration_Examples;

1 with Inter_2;
2 pragma Elaborate_All (Inter_2); -- Ensure body of called function G has
3 -- been elaborated.
4

5 package body Inter_Unit_Elaboration_Examples is
6 procedure P (I : in out Integer) is
7 begin
8 I := 2 * I;
9 end P;

10 begin
11 Y := Inter_2.G (20); -- Call to G is ok because the body of
12 -- G is sure to have been elaborated.
13 end Inter_Unit_Elaboration_Examples;

7.7.1 Use of Initial_Condition and Initializes Aspects

Static Semantics

To ensure the correct semantics of the Initializes and Initial_Condition aspects, when applied to library units, language
restrictions (described below) are imposed in SPARK 2014 which have the following consequences:

1. During the elaboration of a library unit package (spec or body), library-level variables declared outside of that
package cannot be modified and library-level variables declared outside of that package can only be read if

(a) the variable (or its state abstraction) is mentioned in the Initializes aspect of its enclosing package (from
Initializes Aspects); and

(b) either the variable is declared and initialized during the elaboration of the specification of its enclosing
library unit package or the elaboration of the body of that library unit is known to precede the elaboration
of the spec or body which reads the variable.

2. From the end of the elaboration of a library package’s body to the invocation of the main program (i.e., during
subsequent library unit elaboration), variables declared in the package (and constituents of state abstractions
declared in the package) remain unchanged. The Initial_Condition aspect is an assertion which is checked at
the end of the elaboration of a package body (but occurs textually in the package spec; see Initial_Condition
Aspects). The initial condition of a library-level package will remain true from this point until the invocation
of the main subprogram (because none of the inputs used in computing the condition can change during this
interval). This means that a package’s initial condition can be assumed to be true both upon entry to the main
subprogram itself and during elaboration of any other unit (spec or body) whose elaboration is known to follow
that of the body of the package (see preceding definition of “known to precede”; known to follow is, by definition,
the inverse relationship). An Initial_Condition which depends on no variable inputs can also be assumed to be
true throughout the execution of the main subprogram.

3. If a package’s Initializes aspect mentions a state abstraction whose refinement includes constituents declared
outside of that package, then the elaboration of bodies of the enclosing packages of those constituents will
precede the elaboration of the body of the package declaring the abstraction (as a consequence of the rules given
in Elaboration Issues). The idea here is that all constituents of a state abstraction whose initialization has been
promised are in fact initialized by the end of the elaboration of the body of the abstraction’s unit - we don’t have
to wait for the elaboration of other units (e.g., private children) which contribute to the abstraction.

Verification Rules

4. If a read of a variable (or state abstraction, in the case of a call to a subprogram which takes an abstraction as an
input) declared in another library unit is executable during elaboration (as defined above), then either

• the entity being read shall be a variable (i.e., not a state abstraction) and shall be initialized (perhaps by
default) during the elaboration of its enclosing library unit specification; or

• the elaboration of the compilation unit which performs the read shall be known to follow that of the body
of the unit declaring the variable or state abstraction.

In either case, the variable or state abstraction shall be specified as being initialized in the Initializes aspect of
the declaring package. [This is needed to ensure that the variable has been initialized at the time of the read.]

5. If a variable is declared (immediately or not) within a library unit package specification, and if that variable is
initialized (perhaps by default) during the elaboration of that specification, and if any part of that variable is
also assigned to during the elaboration of the corresponding library unit package body, then that library unit’s
Elaborate_Body aspect shall be True. [This is needed to ensure that the variable remains unread between the
elaboration of the specification and of the body of its enclosing library unit.]

6. The elaboration of a package’s specification and body shall not write to a variable (or state abstraction, in the
case of a call to a procedure which takes an abstraction as an output) declared outside of the package. The output
associated with a read of an external state with the property Effective_Reads is permitted. [This rule applies to
all packages: library-level or not, instantiations or not.] The inputs and outputs of a package’s elaboration

(including the elaboration of any private descendants of a library unit package) shall be as described in the
Initializes aspect of the package.

Legality Rules

7. The elaboration of a package body shall be known to follow the elaboration of the body of each of the library
units [(typically private children)] which provide constituents for a state abstraction denoted in the Initializes
aspect of the given package.

Examples

1 package P
2 with Initializes => VP
3 is
4 pragma Elaborate_Body; -- Needed because VP is
5 VP : Integer; -- Initialized in the body
6 end P;

1 with P;
2 pragma Elaborate_All (P); -- P.VP is used in initialization of V
3

4 package Initialization_And_Elaboration
5 with Abstract_State => State,
6 Initializes => (State,
7 V => P.VP), -- Initializing V depends on P.VP
8 Initial_Condition => V = P.VP and Get_It = 0
9 is

10 V : Integer := P.VP;
11

12 procedure Do_It (I : in Integer)
13 with Global => (In_Out => State);
14

15 function Get_It return Integer
16 with Global => State;
17 end Initialization_And_Elaboration;

1 private package Initialization_And_Elaboration.Private_Child
2 with Abstract_State => (State with Part_Of =>
3 Initialization_And_Elaboration.State),
4 Initializes => State,
5 Initial_Condition => Get_Something = 0
6 is
7 procedure Do_Something (I : in Integer)
8 with Global => (In_Out => State);
9

10 function Get_Something return Integer
11 with Global => State;
12 end Initialization_And_Elaboration.Private_Child;

1 with Initialization_And_Elaboration.Private_Child;
2 pragma Elaborate (Initialization_And_Elaboration.Private_Child);
3 -- pragma Elaborate for the private child is required because it is a
4 -- constituent of the state abstraction
5 -- Initialization_And_Elaboration.State, which is mentioned in the
6 -- Initializes aspect of the package.
7

8 package body Initialization_And_Elaboration
9 with Refined_State => (State => Private_Child.State)

10 -- State is initialized
11 -- Private child must be elaborated.
12 is
13 procedure Do_It (I : in Integer)
14 with Refined_Global => (In_Out => Private_Child.State)
15 is
16 begin
17 Private_Child.Do_Something (I);
18 end Do_It;
19

20 function Get_It return Integer
21 with Refined_Global => Private_Child.State
22 is
23 begin
24 return Private_Child.Get_Something;
25 end Get_It;
26 end Initialization_And_Elaboration;

CHAPTER

EIGHT

VISIBILITY RULES

8.1 Declarative Region

No extensions or restrictions.

8.2 Scope of Declarations

No extensions or restrictions.

8.3 Visibility

No extensions or restrictions.

8.3.1 Overriding Indicators

No extensions or restrictions.

8.4 Use Clauses

Legality Rules

1. Use clauses are always in SPARK 2014, even if the unit mentioned is not completely in SPARK 2014.

8.5 Renaming Declarations

8.5.1 Object Renaming Declarations

Legality Rules

1. [An expression or range occurring as part of an object_renaming_declaration shall not have a variable
input; see Expressions for the statement of this rule.] [This rule can apply to an index of an indexed_component
and the range of a slice.]

139

8.5.2 Exception Renaming Declarations

No extensions or restrictions.

8.5.3 Package Renaming Declarations

No extensions or restrictions.

8.5.4 Subprogram Renaming Declarations

From the point of view of both static and dynamic verification, a renaming-as-body is treated as a one-line subprogram
that “calls through” to the renamed unit.

Legality Rules

1. The aspect_specification on a subprogram_renaming_declaration shall not include any of
the SPARK 2014-defined aspects introduced in this document.

8.5.5 Generic Renaming Declarations

No extensions or restrictions.

8.6 The Context of Overload Resolution

No extensions or restrictions.

CHAPTER

NINE

TASKS AND SYNCHRONIZATION

Tasks and protected types are in SPARK 2014, but are subject to the restrictions of the Ravenscar profile (see Ada RM
D.13) or the more permissive Extended Ravenscar profile (see http://docs.adacore.com/gnathie_ug-docs/html/gnathie_
ug/gnathie_ug/the_predefined_profiles.html#the-extended-ravenscar-profiles). In particular, task entry declarations
are never in SPARK 2014.

Tasks may communicate with each other via synchronized objects; these include protected objects, suspension objects,
atomic objects, constants, and “constant after elaboration” objects (described later).

Other objects are said to be unsynchronized and may only be referenced (directly or via intermediate calls) by a single
task (including the environment task) or by the protected operations of a single protected object.

These rules statically eliminate the possibility of erroneous concurrent access to shared data (i.e., “data races”).

Tagged task types, tagged protected types, and the various forms of synchronized interface types are in SPARK 2014.
Subject to the restrictions of (extended) Ravenscar, delay statements and protected procedure handlers are in SPARK
2014. The attributes Callable, Caller, Identity and Terminated are in SPARK 2014.

Static Semantics

1. A type is said to yield synchronized objects if it is

• a task type; or

• a protected type; or

• a synchronized interface type; or

• an array type whose element type yields synchronized objects; or

• a record type or type extension whose discriminants, if any, lack default values, which has at least one
nondiscriminant component (possibly inherited), and all of whose nondiscriminant component types yield
synchronized objects; or

• a descendant of the type Ada.Synchronous_Task_Control.Suspension_Object; or

• a private type whose completion yields synchronized objects.

An object is said to be synchronized if it is

• of a type which yields synchronized objects; or

• an atomic object whose Async_Writers aspect is True; or

• a variable which is “constant after elaboration” (see section Object Declarations); or

• a constant.

[Synchronized objects may be referenced by multiple tasks without causing erroneous execution. The
declaration of a synchronized stand-alone variable shall be a library-level declaration.]

Legality Rules

141

http://docs.adacore.com/gnathie_ug-docs/html/gnathie_ug/gnathie_ug/the_predefined_profiles.html#the-extended-ravenscar-profiles
http://docs.adacore.com/gnathie_ug-docs/html/gnathie_ug/gnathie_ug/the_predefined_profiles.html#the-extended-ravenscar-profiles

2. Task and protected units are in SPARK 2014, but their use requires the (extended) Ravenscar profile. [In
other words, a task or protected unit is not in SPARK 2014 if neither the Ravenscar profile nor the Ex-
tended Ravenscar profile apply to the enclosing compilation unit.] Similarly, the use of task or protected
units also requires a Partition_Elaboration_Policy of Sequential. [This is to prevent data races during library
unit elaboration.] Similarly, the use of any subprogram which references the predefined state abstraction
Ada.Task_Identification.Tasking_State (described below) as a global requires the (extended) Ravenscar profile.

3. If the declaration of a variable or a package which declares a state abstraction follows (within
the same immediately enclosing declarative region) a single_task_declaration or a
single_protected_declaration, then the Part_Of aspect of the variable or state abstraction
may denote the task or protected unit. This indicates that the object or state abstraction is not part of the visible
state or private state of its enclosing package. [Loosely speaking, flow analysis will treat the object as though
it were declared within its “owner”. This can be useful if, for example, a protected object’s operations need to
reference an object whose Address aspect is specified. The protected (as opposed to task) case corresponds to
the previous notion of “virtual protected elements” in RavenSPARK.]

An object or state abstraction which “belongs” to a task unit in this way is treated as a local object of the task
(e.g., it cannot be named in a Global aspect specification occurring outside of the body of the task unit, just as an
object declared immediately within the task body could not be). An object or state abstraction which “belongs”
to a protected unit in this way is treated as a component of the (anonymous) protected type (e.g., it can never be
named in any Global aspect specification, just as a protected component could not be). [There is one obscure
exception to these rules, described in the next paragraph: a subprogram which is declared within the statement
list of the body of the immediately enclosing package (this is possible via a block statement).]

Any name denoting such an object or state abstraction shall occur within either

• the body of the “owning” task or protected unit; or

• the statement list of the object’s immediately enclosing package; or

• an Initializes or Initial_Condition aspect specification for the object’s immediately enclosing package.

[Roughly speaking, such an object can only be referenced from within the “owning” unit or during the execution
of the statement list of its enclosing package].

The notional equivalences described above break down in the case of package elaboration. The presence or
absence of such a Part_Of aspect specification is ignored in determining the legality of an Initializes or Ini-
tial_Condition aspect specification. [Very roughly speaking, the restrictions implied by such a Part_Of aspect
specification are not really “in effect” during library unit elaboration; or at least that’s one way to view it. For
example such an object can be accessed from within the elaboration code of its immediately enclosing package.
On the other hand, it could not be accessed from within a subprogram unless the subprogram is declared within
either the task unit body in question (in the task case) or within the statement list of the body of the immediately
enclosing package (in either the task or the protected case).]

4. A protected type shall define full default initialization. A variable whose Part_Of aspect specifies a task unit or
protected unit shall be of a type which defines full default initialization, or shall be declared with an initial value
expression, or shall be imported.

5. A type which does not yield synchronized objects shall not have a component type which yields synchronized
objects. [Roughly speaking, no mixing of synchronized and unsynchronized component types.]

6. A constituent of a synchronized state abstraction shall be a synchronized object or a synchronized state abstrac-
tion.

Verification Rules

7. A global_item occurring in a Global aspect specification of a task unit or of a protected operation shall not
denote an object or state abstraction which is not synchronized.

8. A global_item occurring in the Global aspect specification of the main subprogram shall not denote an ob-
ject or state abstraction whose Part_Of aspect denotes a task or protected unit. [In other words, the environment

task cannot reference objects which “belong” to other tasks.]

9. A state abstraction whose Part_Of aspect specifies a task unit or protected unit shall be named in the Initializes
aspect of its enclosing package.

10. The precondition of a protected operation shall not reference a global variable, unless it is constant after elabo-
ration.

11. The Ravenscar profile includes “Max_Entry_Queue_Length => 1” and “Max_Protected_Entries => 1” restric-
tions. The Extended Ravenscar profile does not, but does allow use of pragma Max_Queue_Length to specify
the maximum entry queue length for a particular entry. If the maximum queue length for some given entry of
some given protected object is specified (via either mechanism) to have the value N, then at most N distinct
tasks (including the environment task) shall ever call (directly or via intermediate calls) the given entry of the
given protected object. [Roughly speaking, each such protected entry can be statically identified with a set of
at most N “caller tasks” and no task outside that set shall call the entry. This rule is enforced via (potentially
conservative) flow analysis, as opposed to by introducing verification conditions.]

For purposes of this rule, Ada.Synchronous_Task_Control.Suspension_Object is assumed to be a protected type
having one entry and the procedure Suspend_Until_True is assumed to contain a call to the entry of its parameter.
[This rule discharges the verification condition associated with the Ada rule that two tasks cannot simultaneously
suspend on one suspension object (see Ada RM D.10(10)).]

12. The verification condition associated with the Ada rule that it is a bounded error to invoke an operation that
is potentially blocking (including due to cyclic locking) during a protected action (see Ada RM 9.5.1(8)) is
discharged via (potentially conservative) flow analysis, as opposed to by introducing verification conditions.
[Support for the “Potentially_Blocking” aspect discussed in AI12-0064 may be incorporated into SPARK 2014
at some point in the future.]

The verification condition associated with the Ada rule that it is a bounded error to call the Current_Task function
from an entry_body, or an interrupt handler (see Ada RM C.7.1(17/3)) is discharged similarly.

The verification condition associated with the Ada rule that the active priority of a caller of a protected oper-
ation is not higher than the ceiling of the corresponding protected object (see Ada RM D.3(13)) is dependent
on (potentially conservative) flow analysis. This flow analysis is used to determine which tasks potentially call
(directly or indirectly) a protected operation of which protected objects, and similarly which protected objects
have protected operations that potentially perform calls (directly or indirectly) on the operations of other pro-
tected objects. A verification condition is created for each combination of potential (task or protected object)
caller and called protected object to ensure that the (task or ceiling) priority of the potential caller is no greater
than the ceiling priority of the called protected object.

13. The end of a task body shall not be reachable. [This follows from from (extended) Ravenscar’s
No_Task_Termination restriction.]

14. A nonvolatile function shall not be potentially blocking. [Strictly speaking this rule is already implied by other
rules of SPARK 2014, notably the rule that a nonvolatile function cannot depend on a volatile input.] [A
dispatching call which statically denotes a primitive subprogram of a tagged type T is a potentially blocking
operation if the corresponding primitive operation of any descendant of T is potentially blocking.]

15. The package Ada.Task_Identification declares (and initializes) a synchronized external state abstraction named
Tasking_State. The packages Ada.Real_Time and Ada.Calendar declare (and initialize) synchronized external
state abstractions named Clock_Time. The Async_Readers and Async_Writers aspects of all those state abstrac-
tions are True, and their Effective_Reads and Effective_Writes aspects are False. Each is listed in the Initializes
aspect of its respective package. For each of the following language-defined functions, the Volatile_Function
aspect of the function is defined to be True and the Global aspect of the function specifies that one of these two
state abstractions is referenced as an Input global:

• Ada.Real_Time.Clock references Ada.Real_Time.Clock_Time;

• Ada.Execution_Time.Clock references Ada.Real_Time.Clock_Time;

• Ada.Execution_Time.Clock_For_Interrupts references Ada.Real_Time.Clock_Time;

• Ada.Execution_Time.Interrupts.Clock references Ada.Real_Time.Clock_Time;

• Ada.Calendar.Clock (which is excluded by the Ravenscar profile but not by the Extended Ravenscar
profile) references Ada.Calendar.Clock_Time;

• Ada.Task_Identification.Current_Task references Ada.Task_Identification.Tasking_State;

• Ada.Task_Identification.Is_Terminated references Ada.Task_Identification.Tasking_State;

• Ada.Task_Identification.Is_Callable references Ada.Task_Identification.Tasking_State;

• Ada.Task_Identification.Activation_Is_Complete references Ada.Task_Identification.Tasking_State;

• Ada.Dispatching.EDF.Get_Deadline references Ada.Task_Identification.Tasking_State;

• Ada.Interrupts.Is_Reserved references Ada.Task_Identification.Tasking_State;

• Ada.Interrupts.Is_Attached references Ada.Task_Identification.Tasking_State;

• Ada.Interrupts.Detach_Handler references Ada.Task_Identification.Tasking_State;

• Ada.Interrupts.Get_CPU references Ada.Task_Identification.Tasking_State;

• Ada.Synchronous_Task_Control.Current_State references Ada.Task_Identification.Tasking_State.

[Functions excluded by the Extended Ravenscar profile (and therefore also by the Ravenscar profile) are
not on this list.]

16. For each of the following language-defined procedures, the Global aspect of the procedure specifies that the
state abstraction Ada.Task_Identification.Tasking_State is referenced as an In_Out global:

• Ada.Interrupts.Detach_Handler;

• Ada.Dispatching.Yield.

17. For purposes of determining global inputs and outputs, a delay statement is considered to reference the state
abstraction Ada.Real_Time.Clock_Time as an input. [In other words, a delay statement can be treated like a
call to a procedure which takes the delay expression as an actual parameter and references the Clock_Time state
abstraction as an Input global.]

18. For purposes of determining global inputs and outputs, a use of any of the Callable, Caller, Count, or Terminated
attributes is considered to reference the state abstraction Ada.Task_Identification.Tasking_State as an Input. [In
other words, evaluation of one of these attributes can be treated like a call to a volatile function which takes
the attribute prefix as a parameter (in the case where the prefix denotes an object or value) and references the
Tasking_State state abstraction as an Input global.] [On the other hand, use of the Identity or Storage_Size
attributes introduces no such dependency.]

19. Preconditions are added to suprogram specifications as needed in order to avoid the failure of language-defined
runtime checks for the following subprograms:

• for Ada.Execution_Time.Clock, T does not equal Task_Identification.Null_Task_Id.

• for Ada.Execution_Time.Clock_For_Interrupts, Interrupt_Clocks_Supported is True.

• for Ada.Execution_Time.Interrupts.Clock, Separate_Interrupt_Clocks_Supported is True.

• for Ada.Execution_Time’s arithmetic and conversion operators (including Time_Of), preconditions are defined
to ensure that the result belongs to the result type.

• for Ada.Real_Time’s arithmetic and conversion operators (including Time_Of), preconditions are defined to
ensure that the result belongs to the result type.

20. All procedures declared in the visible part of Ada.Synchronous_Task_Control have a dependency “(S => null)”
despite the fact that S has mode in out.

CHAPTER

TEN

PROGRAM STRUCTURE AND COMPILATION ISSUES

SPARK 2014 supports constructive, modular analysis. This means that analysis may be performed before a program
is complete based on unit interfaces. For instance, to analyze a subprogram which calls another all that is required is a
specification of the called subprogram including, at least, its global_specification and if formal verification of
the calling program is to be performed, then the Pre and Postcondition of the called subprogram need to be provided.
The body of the called subprogram does not need to be implemented to analyze the caller. The body of the called
subprogram is checked to be conformant with its specification when its implementation code is available and analyzed.

The separate compilation of Ada compilation_units is consistent with SPARK 2014 modular analysis except
where noted in the following subsections but, particularly with respect to incomplete programs, analysis does not
involve the execution of the program.

10.1 Separate Compilation

Legality Rules

1. A program unit cannot be a task unit, a protected unit or a protected entry.

10.1.1 Compilation Units - Library Units

No restrictions or extensions.

10.1.2 Context Clauses - With Clauses

Legality Rules

1. With clauses are always in SPARK 2014, even if the unit mentioned is not completely in SPARK 2014.

Abstract Views

State abstractions are visible in the limited view of packages in SPARK 2014. The notion of an abstract view of
an object declaration is also introduced, and the limited view of a package includes the abstract view of any objects
declared in the visible part of that package. The only allowed uses of an abstract view of an object are where the use
of a state abstraction would be allowed (for example, in a Global aspect_specification).

Legality Rules

2. A name denoting the abstract view of an object shall occur only:

(a) as a global_item in a Global or Refined_Global aspect specification; or

145

(b) as an input or output in a Depends or Refined_Depends aspect specification; or

(c) in an input_list of an Initializes aspect.

Static Semantics

3. Any state abstractions declared within a given package are present in the limited view of the package. [This
means that, for example, a Global aspect_specification for a subprogram declared in a library unit
package P1 could refer to a state abstraction declared in a package P2 if P1 has a limited with of P2.]

4. For every object declared by an object_declaration occurring immediately within the visible part of a
given package, the limited view of the package contains an abstract view of the object.

10.1.3 Subunits of Compilation Units

No restrictions or extensions.

10.1.4 The Compilation Process

The analysis process in SPARK 2014 is similar to the compilation process in Ada except that the
compilation_units are analyzed, that is flow analysis and formal verification is performed, rather than com-
piled.

10.1.5 Pragmas and Program Units

No restrictions or extensions.

10.1.6 Environment-Level Visibility Rules

No restrictions or extensions.

10.2 Program Execution

SPARK 2014 analyses do not involve program execution. However, SPARK 2014 programs are executable including
those new language defined aspects and pragmas where they have dynamic semantics given.

10.2.1 Elaboration Control

No extensions or restrictions.

CHAPTER

ELEVEN

EXCEPTIONS

11.1 Exception Declarations

No additions or restrictions

11.2 Exception Handlers

Legality Rules

1. Exception handlers are not permitted in SPARK 2014.

11.3 Raise Statements

Raise statements are in SPARK 2014, but must (as described below) be provably never executed.

Verification Rules

1. A raise_statement introduces an obligation to prove that the statement will not be executed, much like
the verification condition associated with

pragma Assert (False);

[In other words, the verification conditions introduced for a raise statement are the same as those introduced for
a run-time check which fails unconditionally.]

11.4 Exception Handling

No additions or restrictions but exception handlers are not permitted in SPARK 2014.

11.4.1 The Package Exceptions

11.4.2 Pragmas Assert and Assertion_Policy

Legality Rules

1. The pragmas Assertion_Policy, Suppress, and Unsuppress are allowed in SPARK 2014, but have
no effect on the generation of verification conditions. [For example, an array index value must be shown to be
in bounds regardless of whether Index_Check is suppressed at the point of the array indexing.]

147

2. The following SPARK 2014 defined aspects and pragmas are assertions and their Boolean_expressions are
assertion expressions:

• Assert_And_Cut;

• Assume;

• Contract_Cases;

• Default_Initial_Condition;

• Initial_Condition;

• Loop_Invariant;

• Loop_Variant; and

• Refined_Post.

There is an assertion_aspect_mark for each of these aspects and pragmas with the same identifier as the
corresponding aspect or pragma. In addition, Ghost is a SPARK 2014 defined assertion_aspect_mark.

An implementation may introduce further implementation defined assertion_aspect_marks some of which
may apply to groups of these assertions.

CHAPTER

TWELVE

GENERIC UNITS

Enforcement of SPARK 2014‘s rules within a generic unit is not guaranteed. Violations might not be reported until
an instance of the generic unit is analyzed. If an instance of a generic unit occurs within another generic unit, this
principle is applied recursively.

12.1 Generic Instantiation

Legality Rules

1. An instantiation of a generic is or is not in SPARK 2014 depending on whether the instance declaration and
the instance body (described in section 12.3 of the Ada reference manual) are in SPARK 2014 [(i.e., when
considered as a package (or, in the case of an instance of a generic subprogram, as a subprogram)].

2. [A generic actual parameter corresponding to a generic formal object having mode in shall not have a variable
input; see Expressions for the statement of this rule.]

[For example, a generic which takes a formal limited private type would be in SPARK 2014. An instantiation which
passes in a general access type as the actual type would not be in SPARK 2014; another instantiation of the same
generic which passes in, for example, Standard.Integer, might be in SPARK 2014.]

[Ada has a rule that legality rules are not enforced in an instance body (and, in some cases, in the private part of an
instance of a generic package). No such rule applies to the restrictions defining which Ada constructs are in SPARK
2014. For example, a backward goto statement in an instance body would cause the instantiation to not be in SPARK
2014.]

[Consider the problem of correctly specifying the Global and Depends aspects of a subprogram declared within an
instance body which contains a call to a generic formal subprogram (more strictly speaking, to the corresponding
actual subprogram of the instantiation in question). These aspects are simply copied from the corresponding aspect
specification in the generic, so this implies that we have to “get them right” in the generic (where “right” means “right
for all instantiations”). One way to do this is to assume that a generic formal subprogram references no globals (or,
more generally, references any fixed set of globals) and to only instantiate the generic with actual subprograms that
meet this requirement.]

149

CHAPTER

THIRTEEN

REPRESENTATION ISSUES

13.1 Operational and Representation Aspects

SPARK 2014 defines several Boolean-valued aspects. These include the Async_Readers, Async_Writers, Con-
stant_After_Elaboration, Effective_Reads, Effective_Writes, Extensions_Visible, Ghost, and Volatile_Function as-
pects. [Note that this list does not include expression-valued aspects, such as Default_Initial_Condition or Ini-
tial_Condition.]

The following rules apply to each of these aspects unless specified otherwise for a particular aspect:

1. In the absence of an aspect specification (explicit or inherited), the default value of the given aspect is False.

2. If the given aspect is specified via an aspect_specification [(as opposed to via a pragma)] then the as-
pect_definition (if any) shall be a static Boolean expression. [Omitting the aspect_definition in an as-
pect_specification is equivalent to specifying a value of True as described in Ada RM 13.1.1(15).]

3. The usage names in an aspect_definition for the given aspect are resolved at the point of the associated declara-
tion. [This supersedes the name resolution rule given in Ada RM 13.1.1 that states that such names are resolved
at the end of the enclosing declaration list.]

[One case where the “unless specified otherwise” clause applies is illustrated by

X : Integer with Volatile;

where the Async_Readers aspect of X is True, not False.]

Ada allows aspect specifications for package declarations and package bodies but does not define any aspects which
can be specified in this way. SPARK 2014 defines, for example, the Initial_Condition and Refined_State aspects (the
former can be specified for a package declaration; the latter for a package body). Ada’s usual rule that

The usage names in an aspect_definition [are not resolved at the point of the associated declaration, but
rather] are resolved at the end of the immediately enclosing declaration list.

is applied for such aspects as though “the immediately enclosing declaration list” is that of the visible part (in the
former case) or of the body (in the latter case). [For example, the Initial_Condition expression of a package which
declares a variable in its visible part can (directly) name that variable. Simlarly, the Refined_State aspect specification
for a package body can name variables declared within the package body.]

13.2 Packed Types

No restrictions or additions.

151

13.3 Operational and Representation Attributes

No restrictions or additions.

13.4 Enumeration Representation Clauses

No restrictions or additions.

13.5 Record Layout

13.6 Change of Representation

No restrictions or additions.

13.7 The Package System

Direct manipulation of addresses is restricted in SPARK 2014. In particular, the use of address clauses or aspects to
define the address of an object in memory is restricted in SPARK 2014. If the address of an object X is specified to
be the address of another object Y, then X is said to overlay Y. Both X and Y are said to be overlaid objects. The
verification rules below impose restrictions on overlaid objects in SPARK 2014. Other address clauses and aspects are
not restricted; the onus is on the user to ensure that this is correct with respect to the program semantics of SPARK
2014.

Legality Rules

1. The use of the operators defined for type Address are not permitted in SPARK 2014 except for use within
representation clauses.

Verification Rules

2. If an object X overlays an object Y, then the sizes of X and Y shall be known at compile-time and shall be equal.

3. If an object X overlays an object Y, then the alignment of X shall be an integral multiple of the alignment of Y.

4. The type of an overlaid object shall be suitable for unchecked conversion (see Unchecked Type Conversions);

13.8 Machine Code Insertions

Legality Rules

1. Machine code insertions are not in SPARK 2014.

13.9 Unchecked Type Conversions

A subtype S is said to be suitable for unchecked conversion if:

• S has a contiguous representation. No part of S is of a tagged type, of an access type, of a subtype that is subject
to a predicate, of a type that is subject to a type_invariant, of an immutably limited type, or of a private type
whose completion fails to meet these requirements.

• Given the size N of S in bits, there exist exactly 2**N distinct values that belong to S and contain no invalid
scalar parts. [In other words, every possible assignment of values to the bits representing an object of subtype S
represents a distinct value of S.]

Unchecked type conversions are in SPARK 2014, with some restrictions described below. Although it is not mandated
by Ada standard, the compiler should ensure that it does not return the result of unchecked conversion by reference if
it could be misaligned (as GNAT ensures).

Verification Rules

1. The source and target subtypes of an instance of Unchecked_Conversion shall have the same size.

2. The source and target subtypes shall be suitable for unchecked conversion.

13.9.1 Data Validity

SPARK 2014 rules ensure the only possible cases of invalid data in a SPARK 2014 program come from interfacing
with the external world, either through the hardware-software or Operating Systems integration, or through interactions
with non-SPARK 2014 code in the same program. In particular, it is up to users to ensure that data read from external
sources are valid.

Validity can be ensured by using a type for the target of the data read from an external source (or an unchecked type
conversion when used to read data from external source) which is sufficient to encompass all possible values of the
source. Alternatively the X’Valid (or X’Valid_Scalars for composite types) may be used to help determine the validity
of an object.

The use of invalid values in a program (other than in a Valid, or Valid_Scalars attribute) may invalidate any proofs
performed on the program.

13.10 Unchecked Access Value Creation

Legality Rules

1. The Unchecked_Access attribute is not in SPARK 2014.

13.11 Storage Management

Legality Rules

1. Aspect specifications for the Storage_Pool and Storage_Size aspects are not in SPARK 2014, nor are uses of the
corresponding attributes. The predefined unit System.Storage_Pools is not in SPARK 2014, nor is any other predefined
unit that semantically depends on it. The pragma Default_Storage_Pool is not in SPARK.

13.12 Pragma Restrictions and Pragma Profile

Restrictions and Profiles will be available with SPARK 2014 to provide profiles suitable for different application
environments.

13.13 Streams

Legality Rules

1. Stream types and operations are not in SPARK 2014.

13.14 Freezing Rules

No restrictions or additions.

CHAPTER

FOURTEEN

PREDEFINED LANGUAGE ENVIRONMENT (ANNEX A)

This chapter describes how SPARK 2014 treats the Ada predefined language environment and standard libraries,
corresponding to appendices A through H of the Ada RM.

SPARK 2014 programs are able to use much of the Ada predefined language environment and standard libraries.
The standard libraries are not necessarily mathematically, formally proven in any way, unless specifically stated, and
should be treated as tested code.

In addition many standard library subprograms have checks on the consistency of the actual parameters when they are
called. If they are inconsistent in some way they will raise an exception. It is strongly recommended that each call of
a standard library subprogram which may raise an exception due to incorrect actual parameters should be immediately
preceded by a pragma Assert to check that the actual parameters meet the requirements of the called subprogram.
Alternatively the called subprogram may be wrapped in a user defined subprogram with a suitable precondition.
Examples of these approaches are given in The Package Strings.Maps (A.4.2).

No checks or warnings are given that this protocol is followed. The onus is on the user to ensure that a library
subprogram is called with consistent actual parameters.

14.1 The Package Standard (A.1)

SPARK 2014 supports all of the types, subtypes and operators declared in package Standard. The predefined excep-
tions are considered to be declared in Standard, but their use is constrained by other language restrictions.

14.2 The Package Ada (A.2)

No additions or restrictions.

14.3 Character Handling (A.3)

14.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters
(A.3.1)

No additions or restrictions. As in Ada, the wide character sets provided are SPARK 2014 tool, compiler and platform
dependent.

155

14.3.2 The Package Characters.Handling (A.3.2)

No additions or restrictions.

14.3.3 The Package Characters.Latin_1 (A.3.3)

No additions or restrictions.

14.3.4 The Package Characters.Conversions (A.3.4)

No Additions or restrictions.

14.3.5 The Package Wide_Characters.Handling (A.3.5)

No additions or restrictions.

14.3.6 The Package Wide_Wide_Characters.Handling (A.3.6)

No additions or restrictions.

14.4 String Handling (A.4)

No additions or restrictions.

14.4.1 The Package Strings (A.4.1)

No additions or restrictions.

The predefined exceptions are considered to be declared in Stings, but their use is constrained by other language
restrictions.

14.4.2 The Package Strings.Maps (A.4.2)

1. The type declaration Character_Mapping_Function is not in SPARK 2014 and cannot be referenced within
SPARK 2014 program text.

The function To_Mapping may raise the exception Translation_Error if its actual parameters are inconsistent. To guard
against this exception each call of To_Mapping should be immediately preceded by an assert statement checking that
the actual parameters are correct.

Examples

-- From the Ada RM for To_Mapping: "To_Mapping produces a
-- Character_Mapping such that each element of From maps to the
-- corresponding element of To, and each other character maps to
-- itself. If From'Length /= To'Length, or if some character is
-- repeated in From, then Translation_Error is propagated".

-- Each call should be preceded with a pragma Assert, checking the

-- actual parameters, of the form:
pragma Assert (Actual_From'Length = Actual_To'Length and then

(for all I in Actual_From'Range =>
(for all J in Actual_From'Range =>

(if I /= J then Actual_From (I) /= Actual_From (J)))));
CM := To_Mapping (From => Actual_From,

To => Actual_To);

-- Alternatively To_Mapping could be wrapped in a user defined
-- subprogram with a suitable precondition and used to call
-- To_Mapping indirectly. For example:
function My_To_Mapping (From, To : in Character_Sequence)

return Character_Mapping
with Pre => (From'Length = To'Length and then

(for all I in From'Range =>
(for all J in From'Range =>

(if I /= J then From (I) /= From (J)))));
is
begin

return Ada.Strings.Maps.To_Mapping (From, To);
end My_To_Mapping;

14.4.3 Fixed-Length String Handling (A.4.3)

1. Translate (with Maps.Character_Mapping_Function formal parameter) is not callable from SPARK 2014 as it
has a an access to function type parameter.

All other subprograms may be called but the subprograms Move, Index, Count (with a mapping formal parameter),
Find_Token, Replace_Slice, Insert, Overwrite, Head (with Justify formal parameter), Tail (with Justify formal param-
eter) may raise an exception if they are called with inconsistent actual parameters. Each call of these subprograms
should be preceded with a pragma Assert to check that the actual parameters are consistent.

14.4.4 Bounded-Length String Handling (A.4.4)

1. The subprograms Index, Count and Translate with Maps.Character_Mapping_Function formal parameters are
not callable from SPARK 2014.

The other subprograms in Bounded-Length String Handling are callable from SPARK 2014 program texts but many
of them may raise an exception if they are called with inconsistent actual parameters. Each call of these subprograms
should be preceded with a pragma Assert to check that the actual parameters are consistent.

14.4.5 Unbounded-Length String Handling (A.4.5)

1. The type String_Access and the procedure Free are not in SPARK 2014 as they require non-owning access types
and cannot be denoted in SPARK 2014 program text.

2. The subprograms Index, Count and Translate with Maps.Character_Mapping_Function formal parameters are
not callable from SPARK 2014.

The function and procedure Unbounded_Slice both may propagate Index_Error if Low > Length(Source)+1 or High
> Length(Source) and so every call to each of these subprograms should be immediately preceded by a pragma Assert
of the form:

pragma Assert (Actual_Low <= Length (Actual_Source) and
Actual_High <= Length (Actual_Source));

14.4.6 String-Handling Sets and Mappings (A.4.6)

No additions or restrictions.

14.4.7 Wide_String Handling (A.4.7)

1. The types Wide_String_Access and Wide_Character_Mapping_Function are not in SPARK 2014 nor are the
subprograms which have formal parameters of these types and cannot be denoted in SPARK 2014 program
texts.

Each call of a subprogram which may raise an exception if it is called with inconsistent actual parameters should be
immediately preceded by a pragma Assert checking the consistency of the actual parameters.

14.4.8 Wide_Wide_String Handling (A.4.8)

1. The types Wide_Wide_String_Access and Wide_Wide_Character_Mapping_Function are not in SPARK 2014
nor are the subprograms which have formal parameters of these types and cannot be denoted in SPARK 2014
program texts.

Each call of a subprogram which may raise an exception if it is called with inconsistent actual parameters should be
immediately preceded by a pragma Assert checking the consistency of the actual parameters.

14.4.9 String Hashing (A.4.9)

No additions or restrictions.

14.4.10 String Comparison (A.4.10)

No additions or restrictions.

14.4.11 String Encoding (A.4.11)

The subprograms of this package are callable from SPARK 2014 but those that may raise an exception due to in-
consistent parameters should have a pragma Assert confirming that the actual parameters are consistent immediately
preceding each call of such a subprogram.

14.5 The Numerics Packages (A.5)

No additions or restrictions

14.5.1 Elementary Functions (A.5.1)

Most of the elementarty functions may raise an exception. The functions have no preconditions to guard against an
exception being raised. The functions should be treated as tested code and call of an elementary function should be
immediately preceded by a pragma assert in lieu of a precondition.

For instance a call to Log (X, Base) should be immediately preceded by the assert statement:

pragma Assert (X > 0 and Base > 1);

Even with such a guard certain elementary functions may raise a constraint error. The onus is on the user to ensure
this does not happen or is handled in non-SPARK 2014 text in a manner compatible with SPARK 2014.

14.5.2 Random Number Generation (A.5.2)

The package Ada.Numerics.Float_Random and an instantiation of package Ada.Numerics.Discrete_Random is osten-
sibly in SPARK 2014 but the functions have side effects and should not be called from SPARK 2014 text.

14.6 Input-Output (A.6)

No additions or restrictions.

14.7 External Files and File Objects (A.7)

No additions or restrictions.

14.8 Sequential and Direct Files (A.8)

No additions or restrictions.

14.8.1 The Generic Package Sequential_IO (A.8.1)

An instantiation of Sequential_IO will ostensibly be in SPARK 2014 but in use it may give rise to flow-errors as the ef-
fect of reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions
based on external events.

14.8.2 File Management (A.8.2)

No additions or restrictions.

14.8.3 Sequential Input-Output Operations (A.8.3)

No additions or restrictions.

14.8.4 The Generic Package Direct_IO (A.8.4)

An instantiation of Direct_IO will ostensibly be in SPARK 2014 but in use it may give rise to flow-errors as the effect
of reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions
based on external events.

14.8.5 Direct Input-Output Operations (A.8.5)

No additions or restrictions.

14.9 The Generic Package Storage_IO (A.9)

An instantiation of Storage_IO will ostensibly be in SPARK 2014 but in use it may give rise to flow-errors as the effect
of reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions
based on external events.

14.10 Text Input-Output (A.10)

No additions or restrictions.

14.10.1 The Package Text_IO (A.10.1)

Ada.Text_IO is ostensibly in SPARK 2014 except for the type File_Access and the functions which return this type.
The use Ada.Text_IO may give rise to flow-errors as the effect of reads and writes is not captured in the subprogram
contracts. The Ada.Text_IO.Get_Line functions should not be called as they have a side effect of reading data from a
file and updating its file pointers. The subprograms Set_Input, Set_Output and Set_Error should not be called as they
introduce an alias to the file passed as a parameter. Calls to the subprograms of Ada.Text_IO may raise IO_Exceptions
based on external events.

14.10.2 Text File Management (A.10.2)

No additions or restrictions.

14.10.3 Default Input, Output and Error Files (A.10.3)

The subprograms Ada.Text_IO.Set_Input, Ada.Text_IO.Set_Output and Ada.Text_IO.Set_Error should not be called
from SPARK 2014 program text as they introduce an alias of the file parameter.

14.10.4 Specification of Line and Page Lengths (A.10.4)

No additions or restrictions.

14.10.5 Operations on Columns, Lines and Pages (A.10.5)

No additions or restrictions.

14.10.6 Get and Put Procedures (A.10.6)

No additions or restrictions.

14.10.7 Input-Output of Characters and Strings (A.10.7)

The functions Ada.Text_IO.Get_Line should not be called from SPARK 2014 program text as the functions have a
side effect of reading from a file.

14.10.8 Input-Output for Integer Types (A.10.8)

No additions or restrictions.

14.10.9 Input-Output for Real Types (A.10.9)

No additions or restrictions.

14.10.10 Input-Output for Enumeration Types (A.10.10)

No additions or restrictions.

14.10.11 Input-Output for Bounded Strings (A.10.11)

An instantiation of Bounded_IO will ostensibly be in SPARK 2014 but in use it may give rise to flow-errors as the effect
of reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions
based on external events.

14.10.12 Input-Output of Unbounded Strings (A.10.12)

Ada.Text_IO.Unbounded_IO is ostensibly in SPARK 2014 but in use it may give rise to flow-errors as the effect of
reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions based
on external events.

The functions Ada.Text_IO.Unbounded_IO.Get_Line should not be called from SPARK 2014 program text as the
functions have a side effect of reading from a file.

14.11 Wide Text Input-Output and Wide Wide Text Input-Output (A.11)

These packages have the same constraints as was discussed for Ada.Text_IO.

14.12 Stream Input-Output (A.12)

Stream input and output is not supported by SPARK 2014 and the use of the package Ada.Streams.Stream_IO and the
child packages of Ada.Text_IO concerned with streams is not permitted in SPARK 2014 program text.

14.13 Exceptions in Input-Output (A.13)

The exceptions declared in package Ada.IO_Exceptions which are raised by the Ada input-output subprograms are in
SPARK 2014 but the exceptions cannot be handled in SPARK 2014 program text.

14.14 File Sharing (A.14)

File sharing is not permitted in SPARK 2014, since it may introduce an alias.

14.15 The Package Command_Line (A.15)

The package Command_Line is in SPARK 2014 except that the function Argument may propagate Constraint_Error.
To avoid this exception each call to Argument should be immediately preceded by the assertion:

pragma Assert (Number <= Argument_Count);

where Number represents the actual parameter to the function Argument.

14.16 The Package Directories (A.16)

The package Directories is ostensibly in SPARK 2014 but in use it may give rise to flow-errors as the effect of reads
and writes is not captured in the subprogram contracts. Calls to its subprograms may raise IO_Exceptions based on
external events.

14.17 The Package Environment_Variables (A.17)

The package Environment_Variables is ostensibly mostly in SPARK 2014 but in use it may give rise to flow-errors
as the effect of reads and writes is not captured in the subprogram contracts. Calls to its subprograms may raise
IO_Exceptions based on external events.

The procedure Iterate is not in SPARK 2014.

14.18 Containers (A.18)

The standard Ada container libraries are not supported in SPARK 2014.

An implementation may choose to provide alternative container libraries whose specifications are in SPARK 2014 and
are intended to support formal verification.

14.19 The Package Locales (A.19)

No additions or restrictions.

14.20 Interface to Other Languages (Annex B)

This section describes features for mixed-language programming in SPARK 2014, covering facilities offered by Ada’s
Annex B.

Package Interfaces can be used in SPARK 2014, including its intrinsic “Shift” and “Rotate” functions.

Other packages are not directly supported.

14.21 Systems Programming (Annex C)

This section describes features for systems programming in SPARK 2014, covering facilities offered by Ada’s Annex
C.

Almost all of the facilities offered by this Annex are out of scope for SPARK 2014 and so are not supported.

14.21.1 Pragma Discard_Names (C.5)

Pragma Discard_Names is not permitted in SPARK 2014, since its use can lead to implementation defined behaviour
at run time.

14.21.2 Shared Variable Control (C.6)

The following restrictions are applied to the declaration of volatile types and objects in SPARK 2014:

Legality Rules

1. A volatile representation aspect may only be applied to an object_declaration or a
full_type_declaration.

2. A type which is not effectively volatile shall not have a volatile subcomponent.

3. A discriminant shall not be volatile.

4. Neither a discriminated type nor an object of such a type shall be volatile.

5. Neither a tagged type nor an object of such a type shall be volatile.

6. An effectively volatile object shall only be declared at library-level.

14.22 Real-Time Systems (Annex D)

SPARK 2014 supports the parts of the real-time systems annex that comply with the Ravenscar
profile (see Ada RM D.13) or the Extended Ravenscar profile (see docs.adacore.com/gnathie_ug-
docs/html/gnathie_ug/gnathie_ug/the_predefined_profiles.html#the-extended-ravenscar-profiles). See section
Tasks and Synchronization.

14.23 Distributed Systems (Annex E)

SPARK 2014 does not support the distributed systems annex.

14.24 Information Systems (Annex F)

The Machine_Radix aspect and attribute are permitted in SPARK 2014.

The package Ada.Decimal may be used, although it declares constants whose values are implementation defined.

The packages Ada.Text_IO.Editing and its “Wide” variants are not directly supported in SPARK 2014.

14.25 Numerics (Annex G)

This section describes features for numerical programming in SPARK 2014, covering facilities offered by Ada’s Annex
G.

Packages declared in this Annex are usable in SPARK 2014, although many details are implementation defined.

Implementations (both compilers and verification tools) should document how both strict mode and relaxed mode are
implemented and their effect on verification and performance.

14.26 High Integrity Systems (Annex H)

SPARK 2014 fully supports the requirements of Ada’s Annex H.

CHAPTER

FIFTEEN

LANGUAGE-DEFINED ASPECTS AND ATTRIBUTES (ANNEX K)

15.1 Language-Defined Aspects

1. Ada language aspects are permitted as shown in the following table:

Aspect Allowed in SPARK 2014 Comment
Address Yes
Alignment (object) Yes
Alignment (subtype) Yes
All_Calls_Remote No
Asynchronous No
Atomic Yes
Atomic_Components Yes
Attach_Handler Yes
Bit_Order Yes
Coding Yes
Component_Size Yes
Constant_Indexing No
Convention Yes
CPU Yes
Default_Component_Value Yes
Default_Iterator No
Default_Storage_Pool No
Default_Value Yes
Default_Storage_Pool No Restricted access types
Dispatching_Domain No Ravenscar
Dynamic_Predicate Yes
Elaborate_Body Yes
Export Yes
External_Name Yes
External_Tag No No tags
Implicit_Dereference No Restricted access types
Import Yes
Independent Yes
Independent_Components Yes
Inline Yes
Interrupt_Handler Yes
Interrupt_Priority Yes
Iterator_Element No

Continued on next page

165

Table 15.1 – continued from previous page
Aspect Allowed in SPARK 2014 Comment
Layout (record) Yes
Link_Name Yes
Machine_Radix Yes
No_Return Yes
Output No No streams
Pack Yes
Pre Yes
Pre’Class Yes
Post Yes
Post’Class Yes
Predicate_Failure Yes
Preelaborate Yes
Priority Yes
Pure Yes
Relative_Deadline Yes
Remote_Call_Interface No
Remote_Types No
Shared_Passive No
Size (object) Yes
Size (subtype) Yes
Small Yes
Static_Predicate Yes
Storage_Pool No Restricted access types
Storage_Size (access) No Restricted access types
Storage_Size (task) Yes
Stream_Size No No streams
Synchronization Yes
Type_Invariant Yes
Type_Invariant’Class No
Unchecked_Union Yes
Variable_Indexing No
Volatile Yes
Volatile_Components Yes
Write No No streams

2. SPARK 2014 defines the following aspects:

Aspect Allowed in SPARK 2014 Comment
Abstract_State Yes
Async_Readers Yes
Async_Writers Yes
Constant_After_Elaboration Yes
Contract_Cases Yes
Default_Initial_Condition Yes
Depends Yes
Depends’Class Yes
Effective_Reads Yes
Effective_Writes Yes
Extensions_Visible Yes
Ghost Yes
Global Yes
Global’Class Yes
Initial_Condition Yes
Initializes Yes
Part_Of Yes
Refined_Depends Yes
Refined_Global Yes
Refined_Post Yes
Refined_State Yes
SPARK_Mode Yes Language defined but implementation dependent
Volatile_Function Yes

15.2 Language-Defined Attributes

1. The following attributes are in SPARK 2014.

Attribute Allowed in SPARK 2014 Comment
P’Access No Restricted access types
X’Access Yes
X’Address No Only allowed in representation clauses
S’Adjacent Yes Implicit precondition (Ada RM A.5.3(50))
S’Aft Yes
S’Alignment Warn Warning in pedantic mode
X’Alignment Warn Warning in pedantic mode
S’Base Yes
S’Bit_Order Warn Warning in pedantic mode
P’Body_Version Yes
T’Callable Yes
E’Caller Yes
S’Ceiling Yes
S’Class Yes
X’Component_Size Warn Warning in pedantic mode
S’Compose No
A’Constrained Yes
S’Copy_Sign Yes
E’Count No
S’Definite Yes

Continued on next page

Table 15.2 – continued from previous page
Attribute Allowed in SPARK 2014 Comment
S’Delta Yes
S’Denorm Yes
S’Digits Yes
S’Exponent No
S’External_Tag No No tags
A’First Yes
S’First Yes
A’First(N) Yes
R.C’First_Bit Warn Warning in Pedantic mode
S’First_Valid Yes
S’Floor Yes
S’Fore Yes
S’Fraction No
X’Has_Same_Storage No
E’Identity No
T’Identity Yes
X’Image Yes Same as S’Image(X) (Ada RM 3.5(55.4/4))
S’Image Yes
S’Class’Input No No streams
S’Input No No streams
A’Last Yes
S’Last Yes
A’Last(N) Yes
R.C’Last_Bit Warn Warning in pedantic mode
S’Last_Valid Yes
S’Leading_Part No
A’Length Yes
A’Length(N) Yes
X’Loop_Entry Yes
S’Machine Yes
S’Machine_Emax Yes
S’Machine_Emin Yes
S’Machine_Mantissa Yes
S’Machine_Overflows Yes
S’Machine_Radix Yes
S’Machine_Rounding Yes
S’Machine_Rounds Yes
S’Max Yes
S’Max_Alignment_For_Allocation No Restricted access types
S’Max_Size_In_Storage_Elements No Restricted access types
S’Min Yes
S’Mod Yes
S’Model Yes
S’Model_Emin Yes
S’Model_Epsilon Yes
S’Model_Mantissa Yes
S’Model_Small Yes
S’Modulus Yes
X’Old Yes

Continued on next page

Table 15.2 – continued from previous page
Attribute Allowed in SPARK 2014 Comment
S’Class’Output No No streams
S’Output No No streams
X’Overlaps_Storage No
D’Partition_Id Yes
S’Pos Yes
R.C’Position Warn Warning in pedantic mode
S’Pred Yes Implicit precondition (Ada RM 3.5(27))
P’Priority No Ravenscar
A’Range Yes
S’Range Yes
A’Range(N) Yes
S’Class’Read No No streams
S’Read No No streams
S’Remainder Yes
F’Result Yes
S’Round Yes
S’Rounding Yes
S’Safe_First Yes
S’Safe_Last Yes
S’Scale Yes
S’Scaling Yes
S’Size Warn Warning in pedantic
X’Size Warn Warning in pedantic
S’Small Yes
S’Storage_Pool No Restricted access types
S’Storage_Size No Restricted access types
T’Storage_Size Yes
S’Stream_Size No No streams
S’Succ Yes Implicit precondition (Ada RM 3.5(24))
S’Tag No No tags
X’Tag No No tags
T’Terminated Yes
System’To_Address Yes
S’Truncation Yes
S’Truncation Yes
X’Unchecked_Access No
X’Update Yes
S’Val Yes Implicit precondition (Ada RM 3.5.5(7))
X’Valid Yes Assumed to be True at present
S’Value Yes Implicit precondition (Ada RM 3.5(55/3))
P’Version Yes
S’Wide_Image Yes
S’Wide_Value Yes Implicit precondition (Ada RM 3.5(43/3))
S’Wide_Wide_Image Yes
S’Wide_Wide_Value Yes Implicit precondition (Ada RM 3.5(39.12/3))
S’Wide_Wide_Width Yes
S’Wide_Width Yes
S’Width Yes
S’Class’Write No No streams

Continued on next page

Table 15.2 – continued from previous page
Attribute Allowed in SPARK 2014 Comment
S’Write No No streams

15.3 GNAT Implementation-Defined Attributes

The following GNAT implementation-defined attributes are permitted in SPARK 2014:

Attribute Allowed in SPARK 2014 Comment
X’Img Yes Same as X’Image (Ada RM 3.5(55.4/4))

CHAPTER

SIXTEEN

LANGUAGE-DEFINED PRAGMAS (ANNEX L)

16.1 Ada Language-Defined Pragmas

The following Ada language-defined pragmas are supported as follows:

Pragma Allowed in SPARK 2014 Comment
All_Calls_Remote No
Assert Yes
Assertion_Policy Yes No effect on provability (see section “Assertion Pragmas” in the SPARK User’s Guide)
Asynchronous No
Atomic Yes
Atomic_Components Yes
Attach_Handler Yes
Convention Yes
CPU Yes
Default_Storage_Pool No Restricted access types
Detect_Blocking Yes
Discard_Names No
Dispatching_Domain No Ravenscar
Elaborate Yes
Elaborate_All Yes
Elaborate_Body Yes
Export Yes
Import Yes
Independent Yes
Independent_Components Yes
Inline Yes
Inspection_Point Yes
Interrupt_Handler Yes
Interrupt_Priority Yes
Linker_Options Yes
List Yes
Locking_Policy Yes
No_Return Yes
Normalize_Scalars Yes
Optimize Yes
Pack Yes
Page Yes
Partition_Elaboration_Policy Yes Ravenscar

Continued on next page

171

Table 16.1 – continued from previous page
Pragma Allowed in SPARK 2014 Comment
Preelaborable_Initialization Yes
Preelaborate Yes
Priority Yes
Priority_Specific_Dispatching No Ravenscar
Profile Yes
Pure Yes
Queuing_Policy Yes Ravenscar
Relative_Deadline Yes
Remote_Call_Interface No Distributed systems
Remote_Types No Distributed systems
Restrictions Yes
Reviewable Yes
Shared_Passive No Distributed systems
Storage_Size Yes/No tasks, not access types
Suppress Yes
Task_Dispatching_Policy No Ravenscar
Unchecked_Union Yes
Unsuppress Yes
Volatile Yes
Volatile_Components Yes

16.2 SPARK 2014 Language-Defined Pragmas

The following SPARK 2014 language-defined pragmas are defined:

Pragma Allowed in SPARK 2014 Comment
Abstract_State Yes
Assert_And_Cut Yes
Assume Yes
Async_Readers Yes
Async_Writers Yes
Constant_After_Elaboration Yes
Contract_Cases Yes
Default_Initial_Condition Yes
Depends Yes
Effective_Reads Yes
Effective_Writes Yes
Extensions_Visible Yes
Ghost Yes
Global Yes
Initial_Condition Yes
Initializes Yes
Loop_Invariant Yes
Loop_Variant Yes
No_Caching Yes
Part_Of Yes
Refined_Depends Yes
Refined_Global Yes
Refined_Post Yes
Refined_State Yes
SPARK_Mode Yes Language defined but implementation dependent
Unevaluated_Use_Of_Old Yes
Volatile_Function Yes

16.3 GNAT Implementation-Defined Pragmas

The following GNAT implementation-defined pragmas are permitted in SPARK 2014:

Pragma Allowed in SPARK 2014 Comment
Ada_83 Yes
Ada_95 Yes
Ada_05 Yes
Ada_12 Yes
Ada_2005 Yes
Ada_2012 Yes
Ada_2020 Yes
Annotate Yes
Check Yes
Check_Policy Yes No effect on provability (see section “Assertion Pragmas” in the SPARK User’s Guide)
Compile_Time_Error Yes Ignored (replaced by null statement)
Compile_Time_Warning Yes Ignored (replaced by null statement)
Debug Yes Ignored (replaced by null statement)
Default_Scalar_Storage_Order Yes
Export_Function Yes
Export_Procedure Yes

Continued on next page

Table 16.2 – continued from previous page
Pragma Allowed in SPARK 2014 Comment
Ignore_Pragma Yes
Inline_Always Yes
Invariant Yes
Linker_Section Yes
Max_Queue_Length Yes Extended Ravenscar
No_Elaboration_Code_All Yes
No_Heap_Finalization Yes
No_Tagged_Streams Yes
Overflow_Mode Yes
Post Yes
Postcondition Yes
Post_Class Yes
Pre Yes
Precondition Yes
Pre_Class Yes
Predicate Yes
Predicate_Failure Yes
Provide_Shift_Operators Yes
Pure_Function Yes
Restriction_Warnings Yes
Secondary_Stack_Size Yes
Style_Checks Yes
Test_Case Yes
Type_Invariant Yes
Type_Invariant_Class Yes
Unmodified Yes
Unreferenced Yes
Unused Yes
Validity_Checks Yes
Volatile_Full_Access Yes
Warnings Yes
Weak_External Yes

CHAPTER

SEVENTEEN

GLOSSARY

The SPARK 2014 Reference Manual uses a number of technical terms to describe its features and rules. Some of these
terms are well known others are less well known or have been defined within this document. In the glossary given
here the less well known terms and those defined by SPARK 2014 are listed with a brief explanation to their meaning.

• Data-Flow analysis is the process of collecting information about the way the variables are used and defined
in the program. In particular, in SPARK 2014 it is used to detect the use of uninitialized variables and state
abstractions.

• Executable semantics

• Flow analysis is a term used to cover both data-flow and information-flow analysis.

• Formal Analysis is a term used to cover flow analysis and formal verification.

• Formal Verification, in the context of hardware and software systems, is the act of proving or disproving the
correctness of intended algorithms underlying a system with respect to a certain formal specification or property,
using formal methods of mathematics. In SPARK 2014 this entails proving the implementation of a subprogram
against its specification given its precondition using an automatic theorem prover (which may be part of the
SPARK 2014 toolset. The specification may be given by a postcondition or assertions or may be implicit from
the definition of Ada when proving absence of run-time exceptions (robustness property).

• Formal verification of functional properties is the proof that an implementation meets its specification given as
an assertion expression such as a postcondition.

• Formal verification of robustness properties, in Ada terminology, is the proof that certain predefined checks such
as the ones that raise Constraint_Error will never fail at run-time.

• Information-Flow analysis in an information theoretical context is the transfer of information from a variable x
to a variable y in a given process, that is x depends on y. Not all flows may be desirable. For example, a system
shouldn’t leak any secret (partially or not) to public observers. In SPARK 2014 information-flow analysi is used
to detect ineffective statements and check that the implementation of a subprogram satisfies its Global aspect
and Depends aspect (if it is present). It may also be used for security analysis in SPARK 2014.

• Refinement

• State abstraction

175

APPENDIX

A

SPARK 2005 TO SPARK 2014 MAPPING SPECIFICATION

This appendix defines the mapping between SPARK 2005 and SPARK 2014. It is intended as both a completeness
check for the SPARK 2014 language design, and as a guide for projects upgrading from SPARK 2005 to SPARK 2014.

A.1 SPARK 2005 Features and SPARK 2014 Alternatives

Nearly every SPARK 2005 feature has a SPARK 2014 equivalent or there is an alternative way of providing the same
feature in SPARK 2014. The only SPARK 2005 (not including RavenSPARK) features that do not have a direct
alternative are:

• the ‘Always_Valid attribute;

• the ability to add pre and postconditions to an instantiation of a generic subprogram, e.g.,
Unchecked_Conversion; and

• a precondition on the body of a subprogram refining the one on the specification - this is not usually required in
SPARK 2014, it is normally replaced by the use of expression functions.

At the moment the first two features have to be accomplished using pragma Assume.

The following subsections of this appendix demonstrate how many SPARK 2005 idioms map into SPARK 2014. As a
quick reference the table below shows, for each SPARK 2005 annotation or SPARK 2005 specific feature, a reference
to the equivalent or alternative in SPARK 2014. In the table headings 2014 RM is the SPARK 2014 Reference Manual
and Mapping is this appendix, the SPARK 2005 to SPARK 2014 mapping specification.

SPARK 2005 SPARK 2014 2014 RM Mapping
~ in post ‘Old attribute - see Ada RM 6.1.1 A.2.2
~ in body ‘Loop_Entry attribute 5.5.3 A.7
<-> =
A -> B (if A then B) - see Ada RM 4.5.7 A.2.2
% not needed A.7
always_valid not supported A.4.1
assert pragma Assert_And_Cut 5.9 A.4.2
assert in loop pragma Loop_Invariant 5.5.3 A.4.1
assume pragma Assume 5.9 A.4.1
check pragma Assert - see Ada RM 11.4.2 A.4.1
derives on spec Depends aspect 6.1.5 A.2.1
derives on body No separate spec - Depends aspect
derives on body Separate spec - Refined_Depends aspect 7.2.5 A.3.2
for all quantified_expression - see Ada RM 4.5.8 A.2.3
for some quantified_expression - See Ada RM 4.5.8 A.4.1

Continued on next page

177

Table A.1 – continued from previous page
SPARK 2005 SPARK 2014 2014 RM Mapping
global on spec Global aspect 6.1.4 A.2.1
global on body No separate spec - Global aspect
global on body Separate spec - Refined_Global aspect 7.2.4 A.2.4
hide pragma SPARK_Mode - see User Guide
inherit not needed A.3.4
initializes Initializes aspect 7.1.5 A.2.4
main_program not needed
object assertions rule declarations are not needed A.5.3
own on spec Abstract_State aspect 7.1.4 A.3.2
own on body Refined_State aspect 7.2.2 A.3.2
post on spec postcondition - see Ada RM 6.1.1 6.1.1 A.2.2
post on body No separate spec - postcondition
post on body Separate spec - Refined_Post aspect 7.2.7
pre precondition - see Ada RM 6.1.1 6.1.1
proof functions Ghost functions 6.9 A.5.3
proof types Ada types A.5.5
return ‘Result attribute - see Ada RM 6.1.1 A.2.2
update ‘Update attribute 4.4.1 A.6

A.2 Subprogram patterns

A.2.1 Global and Derives

This example demonstrates how global variables can be accessed through procedures/functions and presents how the
SPARK 2005 derives annotation maps over to depends in SPARK 2014. The example consists of one procedure
(Swap) and one function (Add). Swap accesses two global variables and swaps their contents while Add returns their
sum.

Specification in SPARK 2005:

1 package Swap_Add_05
2 --# own X, Y: Integer;
3 is
4 X, Y: Integer;
5

6 procedure Swap;
7 --# global in out X, Y;
8 --# derives X from Y &
9 --# Y from X;

10

11 function Add return Integer;
12 --# global in X, Y;
13

14 end Swap_Add_05;

body in SPARK 2005:

1 package body Swap_Add_05
2 is
3 procedure Swap
4 is

5 Temporary: Integer;
6 begin
7 Temporary := X;
8 X := Y;
9 Y := Temporary;

10 end Swap;
11

12 function Add return Integer
13 is
14 begin
15 return X + Y;
16 end Add;
17

18 end Swap_Add_05;

Specification in SPARK 2014:

1 package Swap_Add_14
2 with SPARK_Mode
3 is
4 -- Visible variables are not state abstractions.
5 X, Y: Integer;
6

7 procedure Swap
8 with Global => (In_Out => (X, Y)),
9 Depends => (X => Y, -- to be read as "X depends on Y"

10 Y => X); -- to be read as "Y depends on X"
11

12 function Add return Integer
13 with Global => (Input => (X, Y));
14 end Swap_Add_14;

Body in SPARK 2014:

1 package body Swap_Add_14
2 with SPARK_Mode
3 is
4 procedure Swap is
5 Temporary: Integer;
6 begin
7 Temporary := X;
8 X := Y;
9 Y := Temporary;

10 end Swap;
11

12 function Add return Integer is (X + Y);
13 end Swap_Add_14;

A.2.2 Pre/Post/Return contracts

This example demonstrates how the Pre/Post/Return contracts are restructured and how they map from SPARK 2005
to SPARK 2014. Procedure Swap and function Add perform the same task as in the previous example, but the global
variables have been replaced by parameters (this is not necessarry for proof) and they have been augmented by pre and
post annotations. Two additional functions (Max and Divide) and one additional procedure (Swap_Array_Elements)
have also been included in this example in order to demonstrate further features. Max returns the maximum of the two

parameters. Divide returns the division of the two parameters after having ensured that the divisor is not equal to zero.
The Swap_Array_Elements procedure swaps the contents of two elements of an array.

Specification in SPARK 2005:

1 package Swap_Add_Max_05 is
2

3 subtype Index is Integer range 1..100;
4 type Array_Type is array (Index) of Integer;
5

6 procedure Swap (X, Y : in out Integer);
7 --# post X = Y~ and Y = X~;
8

9 function Add (X, Y : Integer) return Integer;
10 --# pre ((X >= 0 and Y >= 0) -> (X + Y <= Integer'Last)) and
11 --# ((X < 0 and Y < 0) -> (X + Y >= Integer'First));
12 --# return X + Y;
13

14 function Max (X, Y : Integer) return Integer;
15 --# return Z => (X >= Y -> Z = X) and
16 --# (Y > X -> Z = Y);
17

18 function Divide (X, Y : Integer) return Integer;
19 --# pre Y /= 0 and X > Integer'First;
20 --# return X / Y;
21

22 procedure Swap_Array_Elements(I, J : Index; A: in out Array_Type);
23 --# post A = A~[I => A~(J); J => A~(I)];
24

25 end Swap_Add_Max_05;

Body in SPARK 2005:

1 package body Swap_Add_Max_05
2 is
3 procedure Swap (X, Y: in out Integer)
4 is
5 Temporary: Integer;
6 begin
7 Temporary := X;
8 X := Y;
9 Y := Temporary;

10 end Swap;
11

12 function Add (X, Y : Integer) return Integer
13 is
14 begin
15 return X + Y;
16 end Add;
17

18 function Max (X, Y : Integer) return Integer
19 is
20 Result: Integer;
21 begin
22 if X >= Y then
23 Result := X;
24 else
25 Result := Y;
26 end if;

27 return Result;
28 end Max;
29

30 function Divide (X, Y : Integer) return Integer
31 is
32 begin
33 return X / Y;
34 end Divide;
35

36 procedure Swap_Array_Elements(I, J : Index; A: in out Array_Type)
37 is
38 Temporary: Integer;
39 begin
40 Temporary := A(I);
41 A(I) := A(J);
42 A(J) := Temporary;
43 end Swap_Array_Elements;
44

45 end Swap_Add_Max_05;

Specification in SPARK 2014:

1 package Swap_Add_Max_14
2 with SPARK_Mode
3 is
4 subtype Index is Integer range 1..100;
5 type Array_Type is array (Index) of Integer;
6

7 procedure Swap (X, Y : in out Integer)
8 with Post => (X = Y'Old and Y = X'Old);
9

10 function Add (X, Y : Integer) return Integer
11 with Pre => (if X >= 0 and Y >= 0 then X <= Integer'Last - Y
12 elsif X < 0 and Y < 0 then X >= Integer'First - Y),
13 -- The precondition may be written as X + Y in Integer if
14 -- an extended arithmetic mode is selected
15 Post => Add'Result = X + Y;
16

17 function Max (X, Y : Integer) return Integer
18 with Post => Max'Result = (if X >= Y then X else Y);
19

20 function Divide (X, Y : Integer) return Integer
21 with Pre => Y /= 0 and X > Integer'First,
22 Post => Divide'Result = X / Y;
23

24 procedure Swap_Array_Elements(I, J : Index; A: in out Array_Type)
25 with Post => A = A'Old'Update (I => A'Old (J),
26 J => A'Old (I));
27 end Swap_Add_Max_14;

Body in SPARK 2014:

1 package body Swap_Add_Max_14
2 with SPARK_Mode
3 is
4 procedure Swap (X, Y : in out Integer) is
5 Temporary: Integer;
6 begin

7 Temporary := X;
8 X := Y;
9 Y := Temporary;

10 end Swap;
11

12 function Add (X, Y : Integer) return Integer is (X + Y);
13

14 function Max (X, Y : Integer) return Integer is
15 (if X >= Y then X
16 else Y);
17

18 function Divide (X, Y : Integer) return Integer is (X / Y);
19

20 procedure Swap_Array_Elements(I, J : Index; A: in out Array_Type) is
21 Temporary: Integer;
22 begin
23 Temporary := A(I);
24 A(I) := A(J);
25 A(J) := Temporary;
26 end Swap_Array_Elements;
27 end Swap_Add_Max_14;

A.2.3 Attributes of unconstrained out parameter in precondition

The following example illustrates the fact that the attributes of an unconstrained formal array parameter of mode “out”
are permitted to appear in a precondition. The flow analyzer also needs to be smart about this, since it knows that
X’First and X’Last are well-defined in the body, even though the content of X is not.

Specification in SPARK 2005:

1 package P
2 is
3 type A is array (Positive range <>) of Integer;
4

5 -- Shows that X'First and X'Last _can_ be used in
6 -- precondition here, even though X is mode "out"...
7 procedure Init (X : out A);
8 --# pre X'First = 1 and
9 --# X'Last >= 20;

10 --# post for all I in Positive range X'Range =>
11 --# ((I /= 20 -> (X (I) = 0)) and
12 --# (I = 1 -> (X (I) = X'Last)) and
13 --# (I = 20 -> (X (I) = -1)));
14

15 end P;

Body in SPARK 2005:

1 package body P is
2

3 procedure Init (X : out A) is
4 begin
5 X := (others => 0);
6 X (1) := X'Last;
7 X (20) := -1;
8 end Init;

9

10 end P;

Specification in SPARK 2014:

1 package P
2 with SPARK_Mode
3 is
4 type A is array (Positive range <>) of Integer;
5

6 -- Shows that X'First, X'Last and X'Length _can_ be used
7 -- in precondition here, even though X is mode "out"...
8 procedure Init (X : out A)
9 with Pre => X'First = 1 and X'Last >= 20,

10 Post => (for all I in X'Range =>
11 (if I = 1 then X (I) = X'Last
12 elsif I = 20 then X (I) = -1
13 else X (I) = 0));
14 end P;

Body in SPARK 2014:

1 package body P
2 with SPARK_Mode
3 is
4 procedure Init (X : out A) is
5 begin
6 X := (1 => X'Last, 20 => -1, others => 0);
7 end Init;
8 end P;

A.2.4 Data Abstraction, Refinement and Initialization

This example demonstrates data abstraction and refinement. It also shows how abstract data is shown to be initialized
during package elaboration (it need not be - it could be initialized through an explicit subprogram call, in which case
the Initalizes annotation should not be given). There is also a demonstration of how procedures and functions can
be nested within other procedures and functions. Furthermore, it illustrates how global variable refinement can be
performed.

Specification in SPARK 2005:

1 package Nesting_Refinement_05
2 --# own State;
3 --# initializes State;
4 is
5 procedure Operate_On_State;
6 --# global in out State;
7 end Nesting_Refinement_05;

Body in SPARK 2005:

1 package body Nesting_Refinement_05
2 --# own State is X, Y; -- Refined State
3 is
4 X, Y: Integer;
5

6 procedure Operate_On_State
7 --# global in out X; -- Refined Global
8 --# out Y;
9 is

10 Z: Integer;
11

12 procedure Add_Z_To_X
13 --# global in out X;
14 --# in Z;
15 is
16 begin
17 X := X + Z;
18 end Add_Z_To_X;
19

20 procedure Overwrite_Y_With_Z
21 --# global out Y;
22 --# in Z;
23 is
24 begin
25 Y := Z;
26 end Overwrite_Y_With_Z;
27 begin
28 Z := 5;
29 Add_Z_To_X;
30 Overwrite_Y_With_Z;
31 end Operate_On_State;
32

33 begin -- Promised to initialize State
34 -- (which consists of X and Y)
35 X := 10;
36 Y := 20;
37 end Nesting_Refinement_05;

Specification in SPARK 2014:

1 package Nesting_Refinement_14
2 with SPARK_Mode,
3 Abstract_State => State,
4 Initializes => State
5 is
6 procedure Operate_On_State
7 with Global => (In_Out => State);
8 end Nesting_Refinement_14;

Body in SPARK 2014:

1 package body Nesting_Refinement_14
2 -- State is refined onto two concrete variables X and Y
3 with SPARK_Mode,
4 Refined_State => (State => (X, Y))
5 is
6 X, Y: Integer;
7

8 procedure Operate_On_State
9 with Refined_Global => (In_Out => X,

10 Output => Y)
11 is
12 Z: Integer;

13

14 procedure Add_Z_To_X
15 with Global => (In_Out => X,
16 Input => Z)
17 is
18 begin
19 X := X + Z;
20 end Add_Z_To_X;
21

22 procedure Overwrite_Y_With_Z
23 with Global => (Output => Y,
24 Input => Z)
25 is
26 begin
27 Y := Z;
28 end Overwrite_Y_With_Z;
29 begin
30 Z := 5;
31 Add_Z_To_X;
32 Overwrite_Y_With_Z;
33 end Operate_On_State;
34

35 begin
36 -- Promised to initialize State
37 -- (which consists of X and Y)
38 X := 10;
39 Y := 20;
40 end Nesting_Refinement_14;

A.3 Package patterns

A.3.1 Abstract Data Types (ADTs)

Visible type

The following example adds no mapping information. The SPARK 2005 and SPARK 2014 versions of the code are
identical. Only the specification of the SPARK 2005 code will be presented. The reason why this code is being
provided is to allow for a comparison between a package that is purely public and an equivalent one that also has
private elements.

Specification in SPARK 2005:

1 package Stacks_05 is
2 Stack_Size : constant := 100;
3 type Pointer_Range is range 0 .. Stack_Size;
4 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
5 type Vector is array(Index_Range) of Integer;
6

7 type Stack is
8 record
9 Stack_Vector : Vector;

10 Stack_Pointer : Pointer_Range;
11 end record;
12

13 function Is_Empty(S : Stack) return Boolean;

14 function Is_Full(S : Stack) return Boolean;
15

16 procedure Clear(S : out Stack);
17 procedure Push(S : in out Stack; X : in Integer);
18 procedure Pop(S : in out Stack; X : out Integer);
19 end Stacks_05;

Private type

Similarly to the previous example, this one does not contain any annotations either. Due to this, the SPARK 2005 and
SPARK 2014 versions are exactly the same. Only the specification of the 2005 version shall be presented.

Specification in SPARK 2005:

1 package Stacks_05 is
2

3 type Stack is private;
4

5 function Is_Empty(S : Stack) return Boolean;
6 function Is_Full(S : Stack) return Boolean;
7

8 procedure Clear(S : out Stack);
9 procedure Push(S : in out Stack; X : in Integer);

10 procedure Pop(S : in out Stack; X : out Integer);
11

12 private
13 Stack_Size : constant := 100;
14 type Pointer_Range is range 0 .. Stack_Size;
15 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
16 type Vector is array(Index_Range) of Integer;
17

18 type Stack is
19 record
20 Stack_Vector : Vector;
21 Stack_Pointer : Pointer_Range;
22 end record;
23 end Stacks_05;

Private type with pre/post contracts

This example demonstrates how pre and post conditions of subprograms may be specified in terms of functions de-
clared in the same package specification. The function declarations are completed in the body and the postconditions
of the completed functions are used to prove the implementations of the other subprograms. In SPARK 2014 explicit
postconditions do not have to be specified on the bodies of the functions as they are implemented as expression func-
tions and the expression, E, of the function acts as a default refined postcondition, i.e., F’Result = E. Note that the
SPARK 2014 version is proven entirely automatically whereas the SPARK 2005 version requires user defined proof
rules.

Specification in SPARK 2005:

1 package Stacks_05
2 is
3

4 type Stack is private;
5

6 function Is_Empty(S : Stack) return Boolean;
7 function Is_Full(S : Stack) return Boolean;
8

9 procedure Clear(S : in out Stack);
10 --# post Is_Empty(S);
11 procedure Push(S : in out Stack; X : in Integer);
12 --# pre not Is_Full(S);
13 --# post not Is_Empty(S);
14 procedure Pop(S : in out Stack; X : out Integer);
15 --# pre not Is_Empty(S);
16 --# post not Is_Full(S);
17

18 private
19 Stack_Size : constant := 100;
20 type Pointer_Range is range 0 .. Stack_Size;
21 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
22 type Vector is array(Index_Range) of Integer;
23

24 type Stack is
25 record
26 Stack_Vector : Vector;
27 Stack_Pointer : Pointer_Range;
28 end record;
29 end Stacks_05;

Body in SPARK 2005:

1 package body Stacks_05 is
2

3 function Is_Empty (S : Stack) return Boolean
4 --# return S.Stack_Pointer = 0;
5 is
6 begin
7 return S.Stack_Pointer = 0;
8 end Is_Empty;
9

10 function Is_Full (S : Stack) return Boolean
11 --# return S.Stack_Pointer = Stack_Size;
12 is
13 begin
14 return S.Stack_Pointer = Stack_Size;
15 end Is_Full;
16

17 procedure Clear (S : in out Stack)
18 --# post Is_Empty(S);
19 is
20 begin
21 S.Stack_Pointer := 0;
22 end Clear;
23

24 procedure Push (S : in out Stack; X : in Integer)
25 is
26 begin
27 S.Stack_Pointer := S.Stack_Pointer + 1;
28 S.Stack_Vector (S.Stack_Pointer) := X;
29 end Push;
30

31 procedure Pop (S : in out Stack; X : out Integer)

32 is
33 begin
34 X := S.Stack_Vector (S.Stack_Pointer);
35 S.Stack_Pointer := S.Stack_Pointer - 1;
36 end Pop;
37 end Stacks_05;

Specification in SPARK 2014:

1 package Stacks_14
2 with SPARK_Mode
3 is
4 type Stack is private;
5

6 function Is_Empty(S : Stack) return Boolean;
7 function Is_Full(S : Stack) return Boolean;
8

9 procedure Clear(S : in out Stack)
10 with Post => Is_Empty(S);
11

12 procedure Push(S : in out Stack; X : in Integer)
13 with Pre => not Is_Full(S),
14 Post => not Is_Empty(S);
15

16 procedure Pop(S : in out Stack; X : out Integer)
17 with Pre => not Is_Empty(S),
18 Post => not Is_Full(S);
19

20 private
21 Stack_Size : constant := 100;
22 type Pointer_Range is range 0 .. Stack_Size;
23 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
24 type Vector is array(Index_Range) of Integer;
25

26 type Stack is record
27 Stack_Vector : Vector;
28 Stack_Pointer : Pointer_Range;
29 end record;
30 end Stacks_14;

Body in SPARK 2014:

1 package body Stacks_14
2 with SPARK_Mode
3 is
4 -- Expression function has default refined postcondition of
5 -- Is_Empty'Result = (S.Stack_Pointer = 0)
6 function Is_Empty(S : Stack) return Boolean is (S.Stack_Pointer = 0);
7

8 -- Expression function has default refined postcondition of
9 -- Is_Empty'Result = (S.Stack_Pointer = Stack_Size)

10 function Is_Full(S : Stack) return Boolean is (S.Stack_Pointer = Stack_Size);
11

12 procedure Clear(S : in out Stack) is
13 begin
14 S.Stack_Pointer := 0;
15 end Clear;
16

17 procedure Push(S : in out Stack; X : in Integer) is
18 begin
19 S.Stack_Pointer := S.Stack_Pointer + 1;
20 S.Stack_Vector(S.Stack_Pointer) := X;
21 end Push;
22

23 procedure Pop(S : in out Stack; X : out Integer) is
24 begin
25 X := S.Stack_Vector(S.Stack_Pointer);
26 S.Stack_Pointer := S.Stack_Pointer - 1;
27 end Pop;
28 end Stacks_14;

Private/Public child visibility

The following example demonstrates visibility rules that apply between public children, private children and their
parent in SPARK 2005. More specifically, it shows that:

• Private children are able to see their private siblings but not their public siblings.

• Public children are able to see their public siblings but not their private siblings.

• All children have access to their parent but the parent can only access private children.

Applying the SPARK tools on the following files will produce certain errors. This was intentionally done in order to
illustrate both legal and illegal access attempts.

SPARK 2014 shares Ada2012’s visibility rules. No restrictions have been applied in terms of visibility. Note that
SPARK 2014 code does not require Inherit annotations.

Specification of parent in SPARK 2005:

1 package Parent_05
2 is
3 function F (X : Integer) return Integer;
4 function G (X : Integer) return Integer;
5 end Parent_05;

Specification of private child A in SPARK 2005:

1 --#inherit Parent_05; -- OK
2 private package Parent_05.Private_Child_A_05
3 is
4 function F (X : Integer) return Integer;
5 end Parent_05.Private_Child_A_05;

Specification of private child B in SPARK 2005:

1 --#inherit Parent_05.Private_Child_A_05, -- OK
2 --# Parent_05.Public_Child_A_05; -- error, public sibling
3 private package Parent_05.Private_Child_B_05
4 is
5 function H (X : Integer) return Integer;
6 end Parent_05.Private_Child_B_05;

Specification of public child A in SPARK 2005:

1 --#inherit Parent_05, -- OK
2 --# Parent_05.Private_Child_A_05; -- error, private sibling
3 package Parent_05.Public_Child_A_05
4 is
5 function G (X : Integer) return Integer;
6 end Parent_05.Public_Child_A_05;

Specification of public child B in SPARK 2005:

1 --#inherit Parent_05.Public_Child_A_05; -- OK
2 package Parent_05.Public_Child_B_05
3 is
4 function H (X : Integer) return Integer;
5 end Parent_05.Public_Child_B_05;

Body of parent in SPARK 2005:

1 with Parent_05.Private_Child_A_05, -- OK
2 Parent_05.Public_Child_A_05; -- error, public children not visible
3 package body Parent_05
4 is
5 function F (X : Integer) return Integer is
6 begin
7 return Private_Child_A_05.F (X);
8 end F;
9

10 function G (X : Integer) return Integer is
11 begin
12 return Public_Child_A_05.G (X);
13 end G;
14

15 end Parent_05;

Body of public child A in SPARK 2005:

1 package body Parent_05.Public_Child_A_05
2 is
3 function G (X : Integer) return Integer is
4 Result : Integer;
5 begin
6 if X <= 0 then
7 Result := 0;
8 else
9 Result := Parent_05.F (X); -- OK

10 end if;
11 return Result;
12 end G;
13 end Parent_05.Public_Child_A_05;

Body of public child B in SPARK 2005:

1 with Parent_05.Private_Child_B_05;
2 package body Parent_05.Public_Child_B_05
3 is
4 function H (X : Integer) return Integer is
5 begin
6 return Parent_05.Private_Child_B_05.H (X);

7 end H;
8 end Parent_05.Public_Child_B_05;

Body of private child B in SPARK 2005:

1 package body Parent_05.Private_Child_B_05
2 is
3 function H (X : Integer) return Integer is
4 Result : Integer;
5 begin
6 if X <= 10 then
7 Result := 10;
8 else
9 Result := Parent_05.F (X); -- Illegal in SPARK 2005

10 end if;
11 return Result;
12 end H;
13 end Parent_05.Private_Child_B_05;

Specification of parent in SPARK 2014:

1 package Parent_14
2 with SPARK_Mode
3 is
4 function F (X : Integer) return Integer;
5 function G (X : Integer) return Integer;
6 end Parent_14;

Specification of private child A in SPARK 2014:

1 private package Parent_14.Private_Child_A_14
2 with SPARK_Mode
3 is
4 function F (X : Integer) return Integer;
5 end Parent_14.Private_Child_A_14;

Specification of private child B in SPARK 2014:

1 private package Parent_14.Private_Child_B_14
2 with SPARK_Mode
3 is
4 function H (X : Integer) return Integer;
5 end Parent_14.Private_Child_B_14;

Specification of public child A in SPARK 2014:

1 package Parent_14.Public_Child_A_14
2 with SPARK_Mode
3 is
4 function G (X : Integer) return Integer;
5 end Parent_14.Public_Child_A_14;

Specification of public child B in SPARK 2014:

1 package Parent_14.Public_Child_B_14
2 with SPARK_Mode
3 is

4 function H (X : Integer) return Integer;
5 end Parent_14.Public_Child_B_14;

Body of parent in SPARK 2014:

1 with Parent_14.Private_Child_A_14, -- OK
2 Parent_14.Public_Child_A_14; -- OK
3

4 package body Parent_14
5 with SPARK_Mode
6 is
7 function F (X : Integer) return Integer is (Private_Child_A_14.F (X));
8

9 function G (X : Integer) return Integer is (Public_Child_A_14.G (X));
10 end Parent_14;

Body of public child A in SPARK 2014:

1 package body Parent_14.Public_Child_A_14
2 with SPARK_Mode
3 is
4 function G (X : Integer) return Integer is
5 (if X <= 0 then 0
6 else Parent_14.F (X)); -- OK
7 end Parent_14.Public_Child_A_14;

Body of public child B in SPARK 2014:

1 with Parent_14.Private_Child_B_14;
2

3 package body Parent_14.Public_Child_B_14
4 with SPARK_Mode
5 is
6 function H (X : Integer) return Integer is
7 (Parent_14.Private_Child_B_14.H (X));
8 end Parent_14.Public_Child_B_14;

Body of private child B in SPARK 2014:

1 package body Parent_14.Private_Child_B_14
2 with SPARK_Mode
3 is
4 function H (X : Integer) return Integer is
5 (if X <= 10 then 10
6 else Parent_14.F (X)); -- Legal in SPARK 2014
7 end Parent_14.Private_Child_B_14;

A.3.2 Abstract State Machines (ASMs)

Visible, concrete state

Initialized by declaration

The example that follows presents a way in SPARK 2005 of initializing a concrete own variable (a state that is not
refined) at the point of the declaration of the variables that compose it. Generally it is not good practice to declare

several concrete own variables, data abstraction should be used but here we are doing it for the point of illustration.

In SPARK 2014 the client’s view of package state is either visible (declared in the visible part of the package) or a state
abstraction representing hidden state. A variable cannot overload the name of a state abstraction and therefore a state
abstraction must be completed by a refinement given in the body of the package - there is no concept of a concrete
state abstraction. The constituents of a state abstraction may be initialized at their declaration.

Specification in SPARK 2005:

1 package Stack_05
2 --# own S, Pointer; -- concrete state
3 --# initializes S, Pointer;
4 is
5 procedure Push(X : in Integer);
6 --# global in out S, Pointer;
7

8 procedure Pop(X : out Integer);
9 --# global in S; in out Pointer;

10 end Stack_05;

Body in SPARK 2005:

1 package body Stack_05
2 is
3 Stack_Size : constant := 100;
4 type Pointer_Range is range 0 .. Stack_Size;
5 subtype Index_Range is Pointer_Range range 1..Stack_Size;
6 type Vector is array(Index_Range) of Integer;
7

8 S : Vector := Vector'(Index_Range => 0); -- Initialization of S
9 Pointer : Pointer_Range := 0; -- Initialization of Pointer

10

11 procedure Push(X : in Integer)
12 is
13 begin
14 Pointer := Pointer + 1;
15 S(Pointer) := X;
16 end Push;
17

18 procedure Pop(X : out Integer)
19 is
20 begin
21 X := S(Pointer);
22 Pointer := Pointer - 1;
23 end Pop;
24

25 end Stack_05;

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => (S_State, Pointer_State),
4 Initializes => (S_State, Pointer_State)
5 is
6 procedure Push(X : in Integer)
7 with Global => (In_Out => (S_State, Pointer_State));
8

9 procedure Pop(X : out Integer)

10 with Global => (Input => S_State,
11 In_Out => Pointer_State);
12 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (S_State => S,
4 Pointer_State => Pointer)
5 is
6 Stack_Size : constant := 100;
7 type Pointer_Range is range 0 .. Stack_Size;
8 subtype Index_Range is Pointer_Range range 1..Stack_Size;
9 type Vector is array(Index_Range) of Integer;

10

11 S : Vector := Vector'(Index_Range => 0); -- Initialization of S
12 Pointer : Pointer_Range := 0; -- Initialization of Pointer
13

14 procedure Push (X : in Integer)
15 with Refined_Global => (In_Out => (S, Pointer))
16 is
17 begin
18 Pointer := Pointer + 1;
19 S (Pointer) := X;
20 end Push;
21

22 procedure Pop(X : out Integer)
23 with Refined_Global => (Input => S,
24 In_Out => Pointer)
25 is
26 begin
27 X := S (Pointer);
28 Pointer := Pointer - 1;
29 end Pop;
30 end Stack_14;

Initialized by elaboration

The following example presents how a package’s concrete state can be initialized at the statements section of the
body. The specifications of both SPARK 2005 and SPARK 2014 are not presented since they are identical to the
specifications of the previous example.

Body in SPARK 2005:

1 package body Stack_05
2 is
3 Stack_Size : constant := 100;
4 type Pointer_Range is range 0 .. Stack_Size;
5 subtype Index_Range is Pointer_Range range 1..Stack_Size;
6 type Vector is array(Index_Range) of Integer;
7

8 S : Vector;
9 Pointer : Pointer_Range;

10

11 procedure Push(X : in Integer)

12 is
13 begin
14 Pointer := Pointer + 1;
15 S(Pointer) := X;
16 end Push;
17

18 procedure Pop(X : out Integer)
19 is
20 begin
21 X := S(Pointer);
22 Pointer := Pointer - 1;
23 end Pop;
24

25 begin -- initialization
26 Pointer := 0;
27 S := Vector'(Index_Range => 0);
28 end Stack_05;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (S_State => S,
4 Pointer_State => Pointer)
5 is
6 Stack_Size : constant := 100;
7 type Pointer_Range is range 0 .. Stack_Size;
8 subtype Index_Range is Pointer_Range range 1..Stack_Size;
9 type Vector is array(Index_Range) of Integer;

10

11 S : Vector;
12 Pointer : Pointer_Range;
13

14 procedure Push (X : in Integer)
15 with Refined_Global => (In_Out => (S, Pointer))
16 is
17 begin
18 Pointer := Pointer + 1;
19 S (Pointer) := X;
20 end Push;
21

22 procedure Pop(X : out Integer)
23 with Refined_Global => (Input => S,
24 In_Out => Pointer)
25 is
26 begin
27 X := S (Pointer);
28 Pointer := Pointer - 1;
29 end Pop;
30 begin
31 -- initialization
32 Pointer := 0;
33 S := Vector'(Index_Range => 0);
34 end Stack_14;

Private, concrete state

In SPARK 2005 variables declared in the private part of a package are considered to be concrete own variables. In
SPARK 2014 they are hidden state and must be constituents of a state abstraction.

The SPARK 2005 body has not been included since it does not contain any annotations.

Specification in SPARK 2005:

1 package Stack_05
2 --# own S, Pointer;
3 is
4 procedure Push(X : in Integer);
5 --# global in out S, Pointer;
6

7 procedure Pop(X : out Integer);
8 --# global in S;
9 --# in out Pointer;

10 private
11 Stack_Size : constant := 100;
12 type Pointer_Range is range 0 .. Stack_Size;
13 subtype Index_Range is Pointer_Range range 1..Stack_Size;
14 type Vector is array(Index_Range) of Integer;
15

16 S : Vector;
17 Pointer : Pointer_Range;
18 end Stack_05;

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => (S_State, Pointer_State)
4 is
5 procedure Push(X : in Integer)
6 with Global => (In_Out => (S_State, Pointer_State));
7

8 procedure Pop(X : out Integer)
9 with Global => (Input => S_State,

10 In_Out => Pointer_State);
11

12 private
13 Stack_Size : constant := 100;
14 type Pointer_Range is range 0 .. Stack_Size;
15 subtype Index_Range is Pointer_Range range 1..Stack_Size;
16 type Vector is array(Index_Range) of Integer;
17

18 S : Vector with Part_Of => S_State;
19 Pointer : Pointer_Range with Part_Of => Pointer_State;
20 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (S_State => S,
4 Pointer_State => Pointer)
5 is
6 procedure Push(X : in Integer)

7 with Refined_Global => (In_Out => (S, Pointer))
8 is
9 begin

10 Pointer := Pointer + 1;
11 S (Pointer) := X;
12 end Push;
13

14 procedure Pop (X : out Integer)
15 with Refined_Global => (Input => S,
16 In_Out => Pointer)
17 is
18 begin
19 X := S (Pointer);
20 Pointer := Pointer - 1;
21 end Pop;
22 end Stack_14;

Private, abstract state, refining onto concrete states in body

Initialized by procedure call

In this example, the abstract state declared at the specification is refined at the body. Procedure Init can be invoked by
users of the package, in order to initialize the state.

Specification in SPARK 2005:

1 package Stack_05
2 --# own State;
3 is
4 procedure Push(X : in Integer);
5 --# global in out State;
6

7 procedure Pop(X : out Integer);
8 --# global in out State;
9

10 procedure Init;
11 --# global out State;
12

13 end Stack_05;

Body in SPARK 2005:

1 package body Stack_05
2 --# own State is S, Pointer;
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8

9 Pointer : Pointer_Range;
10 S : Vector;
11

12 procedure Push(X : in Integer)
13 --# global in out Pointer, S;
14 is

15 begin
16 Pointer := Pointer + 1;
17 S(Pointer) := X;
18 end Push;
19

20 procedure Pop(X : out Integer)
21 --# global in S;
22 --# in out Pointer;
23 is
24 begin
25 X := S(Pointer);
26 Pointer := Pointer - 1;
27 end Pop;
28

29 procedure Init
30 --# global out Pointer, S;
31 is
32 begin
33 Pointer := 0;
34 S := Vector'(Index_Range => 0);
35 end Init;
36 end Stack_05;

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => State
4 is
5 procedure Push(X : in Integer)
6 with Global => (In_Out => State);
7

8 procedure Pop(X : out Integer)
9 with Global => (In_Out => State);

10

11 procedure Init
12 with Global => (Output => State);
13 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (State => (Pointer, S))
4 is
5 Stack_Size : constant := 100;
6 type Pointer_Range is range 0 .. Stack_Size;
7 subtype Index_Range is Pointer_Range range 1..Stack_Size;
8 type Vector is array(Index_Range) of Integer;
9

10 Pointer : Pointer_Range;
11 S : Vector;
12

13 procedure Push(X : in Integer)
14 with Refined_Global => (In_Out => (Pointer, S))
15 is
16 begin
17 Pointer := Pointer + 1;

18 S (Pointer) := X;
19 end Push;
20

21 procedure Pop (X : out Integer)
22 with Refined_Global => (In_Out => Pointer,
23 Input => S)
24 is
25 begin
26 X := S (Pointer);
27 Pointer := Pointer - 1;
28 end Pop;
29

30 procedure Init
31 with Refined_Global => (Output => (Pointer, S))
32 is
33 begin
34 Pointer := 0;
35 S := (Index_Range => 0);
36 end Init;
37 end Stack_14;

Initialized by elaboration of declaration

The example that follows introduces an abstract state at the specification and refines it at the body. The constituents of
the abstract state are initialized at declaration.

Specification in SPARK 2005:

1 package Stack_05
2 --# own State;
3 --# initializes State;
4 is
5 procedure Push(X : in Integer);
6 --# global in out State;
7

8 procedure Pop(X : out Integer);
9 --# global in out State;

10

11 end Stack_05;

Body in SPARK 2005:

1 package body Stack_05
2 --# own State is Pointer, S; -- refinement of state
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8

9 S : Vector := Vector'(others => 0);
10 Pointer : Pointer_Range := 0;
11 -- initialization by elaboration of declaration
12

13 procedure Push(X : in Integer)
14 --# global in out Pointer, S;

15 is
16 begin
17 Pointer := Pointer + 1;
18 S(Pointer) := X;
19 end Push;
20

21 procedure Pop(X : out Integer)
22 --# global in S;
23 --# in out Pointer;
24 is
25 begin
26 X := S(Pointer);
27 Pointer := Pointer - 1;
28 end Pop;
29 end Stack_05;

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => State,
4 Initializes => State
5 is
6 procedure Push(X : in Integer)
7 with Global => (In_Out => State);
8

9 procedure Pop(X : out Integer)
10 with Global => (In_Out => State);
11 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (State => (Pointer, S)) -- refinement of state
4 is
5 Stack_Size : constant := 100;
6 type Pointer_Range is range 0 .. Stack_Size;
7 subtype Index_Range is Pointer_Range range 1..Stack_Size;
8 type Vector is array(Index_Range) of Integer;
9

10 S : Vector := (others => 0);
11 Pointer : Pointer_Range := 0;
12 -- initialization by elaboration of declaration
13

14 procedure Push(X : in Integer)
15 with Refined_Global => (In_Out => (Pointer, S))
16 is
17 begin
18 Pointer := Pointer + 1;
19 S (Pointer) := X;
20 end Push;
21

22 procedure Pop(X : out Integer)
23 with Refined_Global => (In_Out => Pointer,
24 Input => S)
25 is
26 begin

27 X := S (Pointer);
28 Pointer := Pointer - 1;
29 end Pop;
30 end Stack_14;

Initialized by package body statements

This example introduces an abstract state at the specification and refines it at the body. The constituents of the abstract
state are initialized at the statements part of the body. The specifications of the SPARK 2005 and SPARK 2014 versions
of the code are as in the previous example and have thus not been included.

Body in SPARK 2005:

1 package body Stack_05
2 --# own State is Pointer, S; -- refinement of state
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8

9 S : Vector;
10 Pointer : Pointer_Range;
11

12 procedure Push(X : in Integer)
13 --# global in out Pointer, S;
14 is
15 begin
16 Pointer := Pointer + 1;
17 S(Pointer) := X;
18 end Push;
19

20 procedure Pop(X : out Integer)
21 --# global in out Pointer;
22 --# in S;
23 is
24 begin
25 X := S(Pointer);
26 Pointer := Pointer - 1;
27 end Pop;
28 begin -- initialized by package body statements
29 Pointer := 0;
30 S := Vector'(Index_Range => 0);
31 end Stack_05;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (State => (Pointer, S)) -- refinement of state
4 is
5 Stack_Size : constant := 100;
6 type Pointer_Range is range 0 .. Stack_Size;
7 subtype Index_Range is Pointer_Range range 1..Stack_Size;
8 type Vector is array(Index_Range) of Integer;
9

10 S : Vector;
11 Pointer : Pointer_Range;
12

13 procedure Push(X : in Integer)
14 with Refined_Global => (In_Out => (Pointer, S))
15 is
16 begin
17 Pointer := Pointer + 1;
18 S (Pointer) := X;
19 end Push;
20

21 procedure Pop(X : out Integer)
22 with Refined_Global => (In_Out => Pointer,
23 Input => S)
24 is
25 begin
26 X := S (Pointer);
27 Pointer := Pointer - 1;
28 end Pop;
29 begin
30 -- initialized by package body statements
31 Pointer := 0;
32 S := (Index_Range => 0);
33 end Stack_14;

Initialized by mixture of declaration and statements

This example introduces an abstract state at the specification and refines it at the body. Some of the constituents of the
abstract state are initialized during their declaration and the rest at the statements part of the body.

Specification in SPARK 2005:

1 package Stack_05
2 --# own Stack;
3 --# initializes Stack;
4 is
5 procedure Push(X : in Integer);
6 --# global in out Stack;
7

8 procedure Pop(X : out Integer);
9 --# global in out Stack;

10

11 end Stack_05;

Body in SPARK 2005:

1 package body Stack_05
2 --# own Stack is S, Pointer; -- state refinement
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8 S : Vector;
9

10 Pointer : Pointer_Range := 0;

11 -- initialization by elaboration of declaration
12

13 procedure Push(X : in Integer)
14 --# global in out S, Pointer;
15 is
16 begin
17 Pointer := Pointer + 1;
18 S(Pointer) := X;
19 end Push;
20

21 procedure Pop(X : out Integer)
22 --# global in S;
23 --# in out Pointer;
24 is
25 begin
26 X := S(Pointer);
27 Pointer := Pointer - 1;
28 end Pop;
29 begin -- initialization by body statements
30 S := Vector'(Index_Range => 0);
31 end Stack_05;

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => Stack,
4 Initializes => Stack
5 is
6 procedure Push(X : in Integer)
7 with Global => (In_Out => Stack);
8

9 procedure Pop(X : out Integer)
10 with Global => (In_Out => Stack);
11 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (Stack => (S, Pointer)) -- state refinement
4 is
5 Stack_Size : constant := 100;
6 type Pointer_Range is range 0 .. Stack_Size;
7 subtype Index_Range is Pointer_Range range 1..Stack_Size;
8 type Vector is array(Index_Range) of Integer;
9

10 S : Vector; -- left uninitialized
11 Pointer : Pointer_Range := 0;
12 -- initialization by elaboration of declaration
13

14 procedure Push(X : in Integer)
15 with Refined_Global => (In_Out => (S, Pointer))
16 is
17 begin
18 Pointer := Pointer + 1;
19 S (Pointer) := X;
20 end Push;

21

22 procedure Pop (X : out Integer)
23 with Refined_Global => (Input => S,
24 In_Out => Pointer)
25 is
26 begin
27 X := S (Pointer);
28 Pointer := Pointer - 1;
29 end Pop;
30 begin
31 -- partial initialization by body statements
32 S := (Index_Range => 0);
33 end Stack_14;

Initial condition

This example introduces a new SPARK 2014 feature that did not exist in SPARK 2005. On top of declaring an abstract
state and promising to initialize it, we also illustrate certain conditions that will be valid after initialization. There is a
verification condition to show that immediately after the elaboration of the package that the specified Initial_Condition
is True. Checks will be generated that have to be proven (or executed at run-time) to show that the initial condition is
True.

Specification in SPARK 2014:

1 package Stack_14
2 with SPARK_Mode,
3 Abstract_State => State,
4 Initializes => State,
5 Initial_Condition => Is_Empty -- Stating that Is_Empty holds
6 -- after initialization
7 is
8 function Is_Empty return Boolean
9 with Global => State;

10

11 function Is_Full return Boolean
12 with Global => State;
13

14 function Top return Integer
15 with Global => State,
16 Pre => not Is_Empty;
17

18 procedure Push (X: in Integer)
19 with Global => (In_Out => State),
20 Pre => not Is_Full,
21 Post => Top = X;
22

23 procedure Pop (X: out Integer)
24 with Global => (In_Out => State),
25 Pre => not Is_Empty;
26 end Stack_14;

Body in SPARK 2014:

1 package body Stack_14
2 with SPARK_Mode,
3 Refined_State => (State => (S,

4 Pointer)) -- State refinement
5 is
6 Max_Stack_Size : constant := 1024;
7 type Pointer_Range is range 0 .. Max_Stack_Size;
8 subtype Index_Range is Pointer_Range range 1 .. Max_Stack_Size;
9 type Vector is array (Index_Range) of Integer;

10

11 -- Declaration of constituents
12 S : Vector;
13 Pointer : Pointer_Range;
14

15 -- The subprogram contracts are refined in terms of the constituents.
16 -- Expression functions could be used where applicable
17

18 function Is_Empty return Boolean is (Pointer = 0)
19 with Refined_Global => Pointer;
20

21 function Is_Full return Boolean is (Pointer = Max_Stack_Size)
22 with Refined_Global => Pointer;
23

24 function Top return Integer is (S (Pointer))
25 with Refined_Global => (Pointer, S);
26

27 procedure Push(X: in Integer)
28 with Refined_Global => (In_Out => (Pointer, S))
29 is
30 begin
31 Pointer := Pointer + 1;
32 S (Pointer) := X;
33 end Push;
34

35 procedure Pop(X: out Integer)
36 with Refined_Global => (Input => S,
37 In_Out => Pointer)
38 is
39 begin
40 X := S (Pointer);
41 Pointer := Pointer - 1;
42 end Pop;
43 begin
44 -- Initialization - we promised to initialize the state
45 -- and that initially the stack will be empty
46 Pointer := 0; -- Is_Empty is True.
47 S := Vector'(Index_Range => 0);
48 end Stack_14;

Private, abstract state, refining onto state of private child

The following example shows a parent package Power that contains an own variable (a state abstraction). This state
abstraction is refined onto state abstractions of two private children Source_A and Source_B.

Specification of Parent in SPARK 2005:

1 -- Use of child packages to encapsulate state
2 package Power_05
3 --# own State;
4 --# initializes State;

5 is
6 procedure Read_Power(Level : out Integer);
7 --# global State;
8 --# derives Level from State;
9 end Power_05;

Body of Parent in SPARK 2005:

1 with Power_05.Source_A_05, Power_05.Source_B_05;
2

3 package body Power_05
4 --# own State is Power_05.Source_A_05.State,
5 --# Power_05.Source_B_05.State;
6 is
7

8 procedure Read_Power(Level : out Integer)
9 --# global Source_A_05.State, Source_B_05.State;

10 --# derives
11 --# Level
12 --# from
13 --# Source_A_05.State,
14 --# Source_B_05.State;
15 is
16 Level_A : Integer;
17 Level_B : Integer;
18 begin
19 Source_A_05.Read (Level_A);
20 Source_B_05.Read (Level_B);
21 Level := Level_A + Level_B;
22 end Read_Power;
23

24 end Power_05;

Specifications of Private Children in SPARK 2005:

1 --# inherit Power_05;
2 private package Power_05.Source_A_05
3 --# own State;
4 --# initializes State;
5 is
6 procedure Read (Level : out Integer);
7 --# global State;
8 --# derives Level from State;
9 end Power_05.Source_A_05;

1 --# inherit Power_05;
2 private package Power_05.Source_B_05
3 --# own State;
4 --# initializes State;
5 is
6 procedure Read (Level : out Integer);
7 --# global State;
8 --# derives Level from State;
9 end Power_05.Source_B_05;

Bodies of Private Children in SPARK 2005:

1 package body Power_05.Source_A_05
2 --# own State is S;
3 is
4 S : Integer := 0;
5

6 procedure Read (Level : out Integer)
7 --# global in S;
8 --# derives Level from S;
9 is

10 begin
11 Level := S;
12 end Read;
13 end Power_05.Source_A_05;

1 package body Power_05.Source_B_05
2 --# own State is S;
3 is
4 S : Integer := 0;
5

6 procedure Read (Level : out Integer)
7 --# global in S;
8 --# derives Level from S;
9 is

10 begin
11 Level := S;
12 end Read;
13 end Power_05.Source_B_05;

Specification of Parent in SPARK 2014:

1 -- Use of child packages to encapsulate state
2 package Power_14
3 with SPARK_Mode,
4 Abstract_State => State,
5 Initializes => State
6 is
7 procedure Read_Power(Level : out Integer)
8 with Global => State,
9 Depends => (Level => State);

10 end Power_14;

Body of Parent in SPARK 2014:

1 with Power_14.Source_A_14,
2 Power_14.Source_B_14;
3

4 package body Power_14
5 with SPARK_Mode,
6 Refined_State => (State => (Power_14.Source_A_14.State,
7 Power_14.Source_B_14.State))
8 is
9 procedure Read_Power(Level : out Integer)

10 with Refined_Global => (Source_A_14.State, Source_B_14.State),
11 Refined_Depends => (Level => (Source_A_14.State,
12 Source_B_14.State))
13 is
14 Level_A : Integer;
15 Level_B : Integer;

16 begin
17 Source_A_14.Read (Level_A);
18 Source_B_14.Read (Level_B);
19 Level := Level_A + Level_B;
20 end Read_Power;
21 end Power_14;

Specifications of Private Children in SPARK 2014:

1 private package Power_14.Source_A_14
2 with SPARK_Mode,
3 Abstract_State => (State with Part_Of =>Power_14.State),
4 Initializes => State
5 is
6 procedure Read (Level : out Integer)
7 with Global => State,
8 Depends => (Level => State);
9 end Power_14.Source_A_14;

1 private package Power_14.Source_B_14
2 with SPARK_Mode,
3 Abstract_State => (State with Part_Of => Power_14.State),
4 Initializes => State
5 is
6 procedure Read (Level : out Integer)
7 with Global => State,
8 Depends => (Level => State);
9 end Power_14.Source_B_14;

Bodies of Private Children in SPARK 2014:

1 package body Power_14.Source_A_14
2 with SPARK_Mode,
3 Refined_State => (State => S)
4 is
5 S : Integer := 0;
6

7 procedure Read (Level : out Integer)
8 with Refined_Global => (Input => S),
9 Refined_Depends => (Level => S)

10 is
11 begin
12 Level := S;
13 end Read;
14 end Power_14.Source_A_14;

1 package body Power_14.Source_B_14
2 with SPARK_Mode,
3 Refined_State => (State => S)
4 is
5 S : Integer := 0;
6

7 procedure Read (Level : out Integer)
8 with Refined_Global => (Input => S),
9 Refined_Depends => (Level => S)

10 is
11 begin

12 Level := S;
13 end Read;
14 end Power_14.Source_B_14;

Private, abstract state, refining onto concrete state of embedded package

This example is based around the packages from section Private, abstract state, refining onto concrete state of em-
bedded package, with the private child packages converted into embedded packages and the refinement onto concrete
visible state.

Specification in SPARK 2005:

1 -- Use of embedded packages to encapsulate state
2 package Power_05
3 --# own State;
4 is
5 procedure Read_Power(Level : out Integer);
6 --# global State;
7 --# derives Level from State;
8 end Power_05;

Body in SPARK 2005:

1 package body Power_05
2 --# own State is Source_A.State,
3 --# Source_B.State;
4 is
5

6 -- Embedded package spec for Source_A
7 package Source_A
8 --# own State;
9 is

10 procedure Read (Level : out Integer);
11 --# global State;
12 --# derives Level from State;
13 end Source_A;
14

15 -- Embedded package spec for Source_B.
16 package Source_B
17 --# own State;
18 is
19 procedure Read (Level : out Integer);
20 --# global State;
21 --# derives Level from State;
22 end Source_B;
23

24 -- Embedded package body for Source_A
25 package body Source_A
26 is
27 State : Integer;
28

29 procedure Read (Level : out Integer)
30 is
31 begin
32 Level := State;
33 end Read;
34 end Source_A;

35

36 -- Embedded package body for Source_B
37 package body Source_B
38 is
39 State : Integer;
40

41 procedure Read (Level : out Integer)
42 is
43 begin
44 Level := State;
45 end Read;
46

47 end Source_B;
48

49 procedure Read_Power(Level : out Integer)
50 --# global Source_A.State, Source_B.State;
51 --# derives
52 --# Level
53 --# from
54 --# Source_A.State,
55 --# Source_B.State;
56 is
57 Level_A : Integer;
58 Level_B : Integer;
59 begin
60 Source_A. Read (Level_A);
61 Source_B.Read (Level_B);
62 Level := Level_A + Level_B;
63 end Read_Power;
64

65 end Power_05;

Specification in SPARK 2014:

1 -- Use of embedded packages to encapsulate state
2 package Power_14
3 with SPARK_Mode,
4 Abstract_State => State,
5 Initializes => State
6 is
7 procedure Read_Power(Level : out Integer)
8 with Global => State,
9 Depends => (Level => State);

10 end Power_14;

Body in SPARK 2014:

1 package body Power_14
2 with SPARK_Mode,
3 Refined_State => (State => (Source_A.State,
4 Source_B.State))
5 is
6 -- Embedded package spec for Source_A
7 package Source_A
8 with Initializes => State
9 is

10 State : Integer := 0;
11

12 procedure Read (Level : out Integer)
13 with Global => State,
14 Depends => (Level => State);
15 end Source_A;
16

17 -- Embedded package spec for Source_B.
18 package Source_B
19 with Initializes => State
20 is
21 State : Integer := 0;
22

23 procedure Read (Level : out Integer)
24 with Global => State,
25 Depends => (Level => State);
26 end Source_B;
27

28 -- Embedded package body for Source_A
29 package body Source_A is
30 procedure Read (Level : out Integer) is
31 begin
32 Level := State;
33 end Read;
34 end Source_A;
35

36 -- Embedded package body for Source_B
37 package body Source_B is
38 procedure Read (Level : out Integer) is
39 begin
40 Level := State;
41 end Read;
42 end Source_B;
43

44 procedure Read_Power(Level : out Integer)
45 with Refined_Global => (Source_A.State,
46 Source_B.State),
47 Refined_Depends => (Level => (Source_A.State,
48 Source_B.State))
49 is
50 Level_A : Integer;
51 Level_B : Integer;
52 begin
53 Source_A. Read (Level_A);
54 Source_B.Read (Level_B);
55 Level := Level_A + Level_B;
56 end Read_Power;
57 end Power_14;

Private, abstract state, refining onto mixture of the above

This example is based around the packages from sections Private, abstract state, refining onto state of private child
and Private, abstract state, refining onto concrete state of embedded package. Source_A is an embedded package,
while Source_B is a private child. In order to avoid repetition, the code of this example is not being presented.

A.3.3 External Variables

Basic Input and Output Device Drivers

The following example shows a main program - Copy - that reads all available data from a given input port, stores it
internally during the reading process in a stack and then outputs all the data read to an output port. The specifications
of the stack packages are not presented since they are identical to previous examples.

Specification of main program in SPARK 2005:

1 with Input_Port_05, Output_Port_05, Stacks_05;
2 --# inherit Input_Port_05, Output_Port_05, Stacks_05;
3 --# main_program;
4 procedure Copy_05
5 --# global in Input_Port_05.Input_State;
6 --# out Output_Port_05.Output_State;
7 --# derives Output_Port_05.Output_State from Input_Port_05.Input_State;
8 is
9 The_Stack : Stacks_05.Stack;

10 Value : Integer;
11 Done : Boolean;
12 Final_Value : constant Integer := 999;
13 begin
14 Stacks_05.Clear(The_Stack);
15 loop
16 Input_Port_05.Read_From_Port(Value);
17 Stacks_05.Push(The_Stack, Value);
18 Done := Value = Final_Value;
19 exit when Done;
20 end loop;
21 loop
22 Stacks_05.Pop(The_Stack, Value);
23 Output_Port_05.Write_To_Port(Value);
24 exit when Stacks_05.Is_Empty(The_Stack);
25 end loop;
26 end Copy_05;

Specification of input port in SPARK 2005:

1 package Input_Port_05
2 --# own in Input_State;
3 is
4 procedure Read_From_Port(Input_Value : out Integer);
5 --# global in Input_State;
6 --# derives Input_Value from Input_State;
7

8 end Input_Port_05;

Body of input port in SPARK 2005:

1 package body Input_Port_05
2 is
3

4 Input_State : Integer;
5 for Input_State'Address use
6 System.Storage_Elements.To_Address (16#ACECAE0#);
7 pragma Volatile (Input_State);
8

9 procedure Read_From_Port(Input_Value : out Integer)
10 is
11 begin

12 Input_Value := Input_State;
13 end Read_From_Port;
14

15 end Input_Port_05;

Specification of output port in SPARK 2005:

1 package Output_Port_05
2 --# own out Output_State;
3 is
4 procedure Write_To_Port(Output_Value : in Integer);
5 --# global out Output_State;
6 --# derives Output_State from Output_Value;
7 end Output_Port_05;

Body of output port in SPARK 2005:

1 package body Output_Port_05
2 is
3

4 Output_State : Integer;
5 for Output_State'Address use
6 System.Storage_Elements.To_Address (16#ACECAF0#);
7 pragma Volatile (Output_State);
8

9 procedure Write_To_Port(Output_Value : in Integer)
10 is
11 begin
12 Output_State := Output_Value;
13 end Write_To_Port;
14

15 end Output_Port_05;

Specification of main program in SPARK 2014:

1 with Input_Port_14,
2 Output_Port_14,
3 Stacks_14;
4 -- No need to specify that Copy_14 is a main program
5

6 procedure Copy_14
7 with SPARK_Mode,
8 Global => (Input => Input_Port_14.Input_State,
9 Output => Output_Port_14.Output_State),

10 Depends => (Output_Port_14.Output_State => Input_Port_14.Input_State)
11 is
12 The_Stack : Stacks_14.Stack;
13 Value : Integer;
14 Done : Boolean;
15 Final_Value : constant Integer := 999;
16 begin
17 Stacks_14.Clear(The_Stack);
18 loop
19 Input_Port_14.Read_From_Port(Value);
20 Stacks_14.Push(The_Stack, Value);
21 Done := Value = Final_Value;
22 exit when Done;
23 end loop;

24 loop
25 Stacks_14.Pop(The_Stack, Value);
26 Output_Port_14.Write_To_Port(Value);
27 exit when Stacks_14.Is_Empty(The_Stack);
28 end loop;
29 end Copy_14;

Specification of input port in SPARK 2014:

1 package Input_Port_14
2 with SPARK_Mode,
3 Abstract_State => (Input_State with External => Async_Writers)
4 is
5 procedure Read_From_Port(Input_Value : out Integer)
6 with Global => (Input => Input_State),
7 Depends => (Input_Value => Input_State);
8 end Input_Port_14;

Specification of output port in SPARK 2014:

1 package Output_Port_14
2 with SPARK_Mode,
3 Abstract_State => (Output_State with External => Async_Readers)
4 is
5 procedure Write_To_Port(Output_Value : in Integer)
6 with Global => (Output => Output_State),
7 Depends => (Output_State => Output_Value);
8 end Output_Port_14;

Body of input port in SPARK 2014:

This is as per SPARK 2005, but uses aspects instead of representation clauses and pragmas.

1 with System.Storage_Elements;
2

3 package body Input_Port_14
4 with SPARK_Mode,
5 Refined_State => (Input_State => Input_S)
6 is
7 Input_S : Integer
8 with Volatile,
9 Async_Writers,

10 Address => System.Storage_Elements.To_Address (16#ACECAE0#);
11

12 procedure Read_From_Port(Input_Value : out Integer)
13 with Refined_Global => (Input => Input_S),
14 Refined_Depends => (Input_Value => Input_S)
15 is
16 begin
17 Input_Value := Input_S;
18 end Read_From_Port;
19 end Input_Port_14;

Body of output port in SPARK 2014:

This is as per SPARK 2005, but uses aspects instead of representation clauses and pragmas.

1 with System.Storage_Elements;
2

3 package body Output_Port_14
4 with SPARK_Mode,
5 Refined_State => (Output_State => Output_S)
6 is
7 Output_S : Integer
8 with Volatile,
9 Async_Readers,

10 Address => System.Storage_Elements.To_Address (16#ACECAF0#);
11

12 procedure Write_To_Port(Output_Value : in Integer)
13 with Refined_Global => (Output => Output_S),
14 Refined_Depends => (Output_S => Output_Value)
15 is
16 begin
17 Output_S := Output_Value;
18 end Write_To_Port;
19 end Output_Port_14;

Input driver using ‘Tail in a contract

This example uses the Input_Port package from section Basic Input and Output Device Drivers and adds a contract
using the ‘Tail attribute. The example also use the Always_Valid attribute in order to allow proof to succeed (otherwise,
there is no guarantee in the proof context that the value read from the port is of the correct type).

SPARK 2014 does not have the attribute ‘Tail but, often, an equivalent proof can be achieved using assert pragmas.
Neither is there a direct equivalent of the Always_Valid attribute but the paragma Assume may be used to the same
effect.

Specification in SPARK 2005:

1 package Input_Port
2 --# own in Inputs : Integer;
3 is
4 procedure Read_From_Port(Input_Value : out Integer);
5 --# global in Inputs;
6 --# derives Input_Value from Inputs;
7 --# post (Inputs~ = 0 -> (Input_Value = Inputs'Tail (Inputs~))) and
8 --# (Inputs~ /= 0 -> (Input_Value = Inputs~));
9

10 end Input_Port;

Body in SPARK 2005:

1 package body Input_Port
2 is
3

4 Inputs : Integer;
5 for Inputs'Address use
6 System.Storage_Elements.To_Address (16#ACECAF0#);
7

8 --# assert Inputs'Always_Valid;
9 pragma Volatile (Inputs);

10

11 procedure Read_From_Port(Input_Value : out Integer)
12 is
13 begin
14 Input_Value := Inputs;

15 if Input_Value = 0 then
16 Input_Value := Inputs;
17 end if;
18 end Read_From_Port;
19

20 end Input_Port;

Specification in SPARK 2014:

1 package Input_Port_14
2 with SPARK_Mode,
3 Abstract_State => (Inputs with External => Async_Writers)
4 is
5 procedure Read_From_Port(Input_Value : out Integer)
6 with Global => Inputs,
7 Depends => (Input_Value => Inputs);
8 end Input_Port_14;

Body in SPARK 2014:

1 with System.Storage_Elements;
2

3 package body Input_Port_14
4 with SPARK_Mode,
5 Refined_State => (Inputs => Input_Port)
6 is
7 Input_Port : Integer
8 with Volatile,
9 Async_Writers,

10 Address => System.Storage_Elements.To_Address (16#ACECAF0#);
11

12 procedure Read_From_Port(Input_Value : out Integer)
13 with Refined_Global => Input_Port,
14 Refined_Depends => (Input_Value => Input_Port)
15 is
16 First_Read : Integer;
17 Second_Read : Integer;
18 begin
19 Second_Read := Input_Port; -- Ensure Second_Read is initialized
20 pragma Assume (Second_Read'Valid);
21 First_Read := Second_Read; -- but it is infact the First_Read.
22 if First_Read = 0 then
23 Second_Read := Input_Port; -- Now it is the Second_Read
24 pragma Assume (Second_Read'Valid);
25 Input_Value := Second_Read;
26 else
27 Input_Value := First_Read;
28 end if;
29 pragma Assert ((First_Read = 0 and then Input_Value = Second_Read)
30 or else (Input_Value = First_Read));
31 end Read_From_Port;
32 end Input_Port_14;

Output driver using ‘Append in a contract

This example uses the Output package from section Basic Input and Output Device Drivers and adds a contract using
the ‘Append attribute.

SPARK 2014 does not have the attribute ‘Append but, often, an equivalent proof can be achieved using assert pragmas.

Specification in SPARK 2005:

1 package Output_Port
2 --# own out Outputs : Integer;
3 is
4 procedure Write_To_Port(Output_Value : in Integer);
5 --# global out Outputs;
6 --# derives Outputs from Output_Value;
7 --# post ((Output_Value = -1) ->
8 --# (Outputs =
9 --# Outputs'Append (Outputs'Append (Outputs~, 0), Output_Value)))

10 --# and
11 --# ((Output_Value /= -1) ->
12 --# (Outputs =
13 --# Outputs'Append (Outputs~, Output_Value)));
14 end Output_Port;

Body in SPARK 2005:

1 package body Output_Port
2 is
3

4 Outputs : Integer;
5 for Outputs'Address use System.Storage_Elements.To_Address (16#ACECAF10#);
6 pragma Volatile (Outputs);
7

8 procedure Write_To_Port(Output_Value : in Integer)
9 is

10 begin
11 if Output_Value = -1 then
12 Outputs := 0;
13 end if;
14

15 Outputs := Output_Value;
16 end Write_To_Port;
17

18 end Output_Port;

Specification in SPARK 2014:

1 package Output_Port_14
2 with SPARK_Mode,
3 Abstract_State => (Outputs with External => Async_Readers)
4 is
5 procedure Write_To_Port(Output_Value : in Integer)
6 with Global => (Output => Outputs),
7 Depends => (Outputs => Output_Value);
8 end Output_Port_14;

Body in SPARK 2014:

1 with System.Storage_Elements;
2

3 package body Output_Port_14
4 with SPARK_Mode,
5 Refined_State => (Outputs => Output_Port)
6 is

7 Output_Port : Integer
8 with Volatile,
9 Async_Readers,

10 Address => System.Storage_Elements.To_Address (16#ACECAF10#);
11

12 -- This is a simple subprogram that always updates the Output_Shadow with
13 -- the single value which is written to the output port.
14 procedure Write_It (Output_Value : in Integer; Output_Shadow : out Integer)
15 with Global => (Output => Output_Port),
16 Depends => ((Output_Port, Output_Shadow) => Output_Value),
17 Post => Output_Shadow = Output_Value
18 is
19 begin
20 Output_Shadow := Output_Value;
21 Output_Port := Output_Shadow;
22 end Write_It;
23

24

25 procedure Write_To_Port(Output_Value : in Integer)
26 with Refined_Global => (Output => Output_Port),
27 Refined_Depends => (Output_Port => Output_Value)
28 is
29 Out_1, Out_2 : Integer;
30 begin
31 if Output_Value = -1 then
32 Write_It (0, Out_1);
33 Write_It (Output_Value, Out_2);
34 else
35 Write_It (Output_Value, Out_1);
36 Out_2 := Out_1; -- Avoids flow error.
37 end if;
38

39 pragma Assert (if Output_Value = -1 then
40 Out_1 = 0 and Out_2 = Output_Value
41 else
42 Out_1 = Output_Value);
43 end Write_To_Port;
44 end Output_Port_14;

Refinement of external state - voting input switch

The following example presents an abstract view of the reading of 3 individual switches and the voting performed on
the values read.

Abstract Switch specification in SPARK 2005:

1 package Switch
2 --# own in State;
3 is
4

5 type Reading is (on, off, unknown);
6

7 function ReadValue return Reading;
8 --# global in State;
9

10 end Switch;

Component Switch specifications in SPARK 2005:

1 --# inherit Switch;
2 private package Switch.Val1
3 --# own in State;
4 is
5 function Read return Switch.Reading;
6 --# global in State;
7

8 end Switch.Val1;

1 --# inherit Switch;
2 private package Switch.Val2
3 --# own in State;
4 is
5 function Read return Switch.Reading;
6 --# global in State;
7

8 end Switch.Val2;

1 --# inherit Switch;
2 private package Switch.Val3
3 --# own in State;
4 is
5 function Read return Switch.Reading;
6 --# global in State;
7

8 end Switch.Val3;

Switch body in SPARK 2005:

1 with Switch.Val1;
2 with Switch.Val2;
3 with Switch.Val3;
4 package body Switch
5 --# own State is in Switch.Val1.State,
6 --# in Switch.Val2.State,
7 --# in Switch.Val3.State;
8 is
9

10 subtype Value is Integer range -1 .. 1;
11 subtype Score is Integer range -3 .. 3;
12 type ConvertToValueArray is array (Reading) of Value;
13 type ConvertToReadingArray is array (Score) of Reading;
14

15 ConvertToValue : constant ConvertToValueArray := ConvertToValueArray'(on => 1,
16 unknown => 0,
17 off => -1);
18 ConvertToReading : constant ConvertToReadingArray :=
19 ConvertToReadingArray'(-3 .. -2 => off,
20 -1 .. 1 => unknown,
21 2 ..3 => on);
22

23 function ReadValue return Reading
24 --# global in Val1.State;
25 --# in Val2.State;
26 --# in Val3.State;
27 is

28 A, B, C : Reading;
29 begin
30 A := Val1.Read;
31 B := Val2.Read;
32 C := Val3.Read;
33 return ConvertToReading (ConvertToValue (A) +
34 ConvertToValue (B) + ConvertToValue (C));
35 end ReadValue;
36

37 end Switch;

Abstract Switch specification in SPARK 2014:

1 package Switch
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers)
4 is
5 type Reading is (on, off, unknown);
6

7 function ReadValue return Reading
8 with Volatile_Function,
9 Global => (Input => State);

10 end Switch;

Component Switch specifications in SPARK 2014:

1 private package Switch.Val1
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers,
4 Part_Of => Switch.State)
5 is
6 function Read return Switch.Reading
7 with Volatile_Function,
8 Global => (Input => State);
9 end Switch.Val1;

1 private package Switch.Val2
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers,
4 Part_Of => Switch.State)
5 is
6 function Read return Switch.Reading
7 with Volatile_Function,
8 Global => (Input => State);
9 end Switch.Val2;

1 private package Switch.Val3
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers,
4 Part_Of => Switch.State)
5 is
6 function Read return Switch.Reading
7 with Volatile_Function,
8 Global => (Input => State);
9 end Switch.Val3;

Switch body in SPARK 2014:

1 with Switch.Val1,
2 Switch.Val2,
3 Switch.Val3;
4

5 package body Switch
6 -- State is refined onto three states, each of which has properties
7 -- Volatile and Input
8 with SPARK_Mode,
9 Refined_State => (State => (Switch.Val1.State,

10 Switch.Val2.State,
11 Switch.Val3.State))
12 is
13 subtype Value is Integer range -1 .. 1;
14 subtype Score is Integer range -3 .. 3;
15 type ConvertToValueArray is array (Reading) of Value;
16 type ConvertToReadingArray is array (Score) of Reading;
17

18 ConvertToValue : constant ConvertToValueArray :=
19 ConvertToValueArray'(on => 1,
20 unknown => 0,
21 off => -1);
22 ConvertToReading : constant ConvertToReadingArray :=
23 ConvertToReadingArray'(-3 .. -2 => off,
24 -1 .. 1 => unknown,
25 2 .. 3 => on);
26

27 function ReadValue return Reading
28 with Refined_Global => (Input => (Val1.State, Val2.State, Val3.State))
29 is
30 A, B, C : Reading;
31 begin
32 A := Val1.Read;
33 B := Val2.Read;
34 C := Val3.Read;
35 return ConvertToReading (ConvertToValue (A) +
36 ConvertToValue (B) + ConvertToValue (C));
37 end ReadValue;
38 end Switch;

Complex I/O Device

The following example illustrates a more complex I/O device: the device is fundamentally an output device but an
acknowledgement has to be read from it. In addition, a local register stores the last value written to avoid writes that
would just re-send the same value. The own variable is then refined into a normal variable, an input external variable
and an output external variable.

Specification in SPARK 2005:

1 package Device
2 --# own State;
3 --# initializes State;
4 is
5 procedure Write (X : in Integer);
6 --# global in out State;
7 --# derives State from State, X;
8 end Device;

Body in SPARK 2005:

1 package body Device
2 --# own State is OldX,
3 --# in StatusPort,
4 --# out Register;
5 -- refinement on to mix of external and ordinary variables
6 is
7 type Status_Port_Type is mod 2**32;
8

9 OldX : Integer := 0; -- only component that needs initialization
10 StatusPort : Status_Port_Type;
11 pragma Volatile (StatusPort);
12 -- address clause would be added here
13

14 Register : Integer;
15 pragma Volatile (Register);
16 -- address clause would be added here
17

18 procedure WriteReg (X : in Integer)
19 --# global out Register;
20 --# derives Register from X;
21 is
22 begin
23 Register := X;
24 end WriteReg;
25

26 procedure ReadAck (OK : out Boolean)
27 --# global in StatusPort;
28 --# derives OK from StatusPort;
29 is
30 RawValue : Status_Port_Type;
31 begin
32 RawValue := StatusPort; -- only assignment allowed here
33 OK := RawValue = 16#FFFF_FFFF#;
34 end ReadAck;
35

36 procedure Write (X : in Integer)
37 --# global in out OldX;
38 --# out Register;
39 --# in StatusPort;
40 --# derives OldX,Register from OldX, X &
41 --# null from StatusPort;
42 is
43 OK : Boolean;
44 begin
45 if X /= OldX then
46 OldX := X;
47 WriteReg (X);
48 loop
49 ReadAck (OK);
50 exit when OK;
51 end loop;
52 end if;
53 end Write;
54 end Device;

Specification in SPARK 2014:

1 package Device
2 with SPARK_Mode,
3 Abstract_State => (State with External => (Async_Readers,
4 Async_Writers)),
5 Initializes => State
6 is
7 procedure Write (X : in Integer)
8 with Global => (In_Out => State),
9 Depends => (State =>+ X);

10 end Device;

Body in SPARK 2014:

1 package body Device
2 with SPARK_Mode,
3 Refined_State => (State => (OldX,
4 StatusPort,
5 Register))
6 -- refinement on to mix of external and ordinary variables
7 is
8 type Status_Port_Type is mod 2**32;
9

10 OldX : Integer := 0; -- only component that needs initialization
11

12 StatusPort : Status_Port_Type
13 with Volatile,
14 Async_Writers;
15 -- address clause would be added here
16

17 Register : Integer
18 with Volatile,
19 Async_Readers;
20 -- address clause would be added here
21

22 procedure WriteReg (X : in Integer)
23 with Global => (Output => Register),
24 Depends => (Register => X)
25 is
26 begin
27 Register := X;
28 end WriteReg;
29

30 procedure ReadAck (OK : out Boolean)
31 with Global => (Input => StatusPort),
32 Depends => (OK => StatusPort)
33 is
34 RawValue : Status_Port_Type;
35 begin
36 RawValue := StatusPort; -- only assignment allowed here
37 OK := RawValue = 16#FFFF_FFFF#;
38 end ReadAck;
39

40 procedure Write (X : in Integer)
41 with Refined_Global => (Input => StatusPort,
42 Output => Register,
43 In_Out => OldX),
44 Refined_Depends => ((OldX,
45 Register) => (OldX,

46 X),
47 null => StatusPort)
48 is
49 OK : Boolean;
50 begin
51 if X /= OldX then
52 OldX := X;
53 WriteReg (X);
54 loop
55 ReadAck (OK);
56 exit when OK;
57 end loop;
58 end if;
59 end Write;
60 end Device;

Increasing values in input stream

The following example illustrates an input port from which values are read. According to its postcondition, procedure
Increases checks whether the first values read from the sequence are in ascending order. This example shows that
postconditions can refer to multiple individual elements of the input stream.

In SPARK 2014 we can use assert pragmas in the subprogram instead of specifying the action in the postcondition, as
was done in Input driver using ‘Tail in a contract. Another alternative, as shown in this example, is to use a formal
parameter of a private type to keep a trace of the values read.

Specification in SPARK 2005:

1 package Inc
2 --# own in Sensor : Integer;
3 is
4 procedure Increases (Result : out Boolean;
5 Valid : out Boolean);
6 --# global in Sensor;
7 --# post Valid -> (Result <-> Sensor'Tail (Sensor~) > Sensor~);
8

9 end Inc;

Body in SPARK 2005:

1 with System.Storage_Elements;
2 package body Inc
3 -- Cannot refine own variable Sensor as it has been given a concrete type.
4 is
5 Sensor : Integer;
6 for Sensor'Address use System.Storage_Elements.To_Address (16#DEADBEE0#);
7 pragma Volatile (Sensor);
8

9 procedure Read (V : out Integer;
10 Valid : out Boolean)
11 --# global in Sensor;
12 --# post (Valid -> V = Sensor~) and
13 --# (Sensor = Sensor'Tail (Sensor~));
14 is
15 Tmp : Integer;
16 begin
17 Tmp := Sensor;

18 if Tmp'Valid then
19 V := Tmp;
20 Valid := True;
21 --# check Sensor = Sensor'Tail (Sensor~);
22 else
23 V := 0;
24 Valid := False;
25 end if;
26 end Read;
27

28 procedure Increases (Result : out Boolean;
29 Valid : out Boolean)
30 is
31 A, B : Integer;
32 begin
33 Result := False;
34 Read (A, Valid);
35 if Valid then
36 Read (B, Valid);
37 if Valid then
38 Result := B > A;
39 end if;
40 end if;
41 end Increases;
42

43 end Inc;

Specification in SPARK 2014:

1 package Inc
2 with SPARK_Mode,
3 Abstract_State => (Sensor with External => Async_Writers)
4 is
5 -- Declare a private type which will keep a trace of the
6 -- values read.
7 type Increasing_Indicator is private;
8

9 -- Access (ghost) functions for the private type only intended for
10 -- use in pre and post conditions or other assertion expressions
11 function First (Indicator : Increasing_Indicator) return Integer
12 with Ghost;
13

14 function Second (Indicator : Increasing_Indicator) return Integer
15 with Ghost;
16

17 -- Used to check that the value returned by procedure Increases
18 -- is valid (Invalid values have not been read from the Sensor).
19 function Is_Valid (Indicator : Increasing_Indicator) return Boolean;
20

21 -- Use this function to determine whether the result of the procedure
22 -- Increases indicates an increasing value.
23 -- It can only be called if Is_Valid (Indicator)
24 function Is_Increasing (Indicator : Increasing_Indicator) return Boolean
25 with Pre => Is_Valid (Indicator);
26

27 procedure Increases (Result : out Increasing_Indicator)
28 with Global => Sensor,
29 Post => (if Is_Valid (Result) then Is_Increasing (Result)=

30 (Second (Result) > First (Result)));
31

32 private
33 type Increasing_Indicator is record
34 Valid : Boolean;
35 First, Second : Integer;
36 end record;
37 end Inc;

Body in SPARK 2014:

1 with System.Storage_Elements;
2

3 package body Inc
4 with SPARK_Mode,
5 Refined_State => (Sensor => S)
6 is
7 pragma Warnings (Off);
8 S : Integer
9 with Volatile,

10 Async_Writers,
11 Address => System.Storage_Elements.To_Address (16#DEADBEE0#);
12 pragma Warnings (On);
13

14 function First (Indicator : Increasing_Indicator) return Integer is
15 (Indicator.First);
16

17 function Second (Indicator : Increasing_Indicator) return Integer is
18 (Indicator.Second);
19

20 function Is_Valid (Indicator : Increasing_Indicator) return Boolean is
21 (Indicator.Valid);
22

23 function Is_Increasing (Indicator : Increasing_Indicator) return Boolean is
24 (Indicator.Second > Indicator.First);
25

26 pragma Warnings (Off);
27 procedure Read (V : out Integer;
28 Valid : out Boolean)
29 with Global => S,
30 Post => (if Valid then V'Valid)
31 is
32 Tmp : Integer;
33 begin
34 pragma Warnings (On);
35 Tmp := S;
36 pragma Warnings (Off);
37 if Tmp'Valid then
38 pragma Warnings (On);
39 V := Tmp;
40 Valid := True;
41 else
42 V := 0;
43 Valid := False;
44 end if;
45 end Read;
46

47 procedure Increases (Result : out Increasing_Indicator)

48 with Refined_Global => S
49 is
50 begin
51 Read (Result.First, Result.Valid);
52 if Result.Valid then
53 Read (Result.Second, Result.Valid);
54 else
55 Result.Second := 0;
56 end if;
57 end Increases;
58 end Inc;

A.3.4 Package Inheritance

SPARK 2014 does not have the SPARK 2005 concept of package inheritance. It has the same package visibility rules
as Ada 2012.

Contracts with remote state

The following example illustrates indirect access to the state of one package by another via an intermediary. Raw_Data
stores some data, which has preprocessing performed on it by Processing and on which Calculate performs some
further processing (although the corresponding bodies are not given, Read_Calculated_Value in Calculate calls through
to Read_Processed_Data in Processing, which calls through to Read in Raw_Data).

Specifications in SPARK 2005:

1 package Raw_Data
2 --# own State;
3 --# Initializes State;
4 is
5

6 function Data_Is_Valid return Boolean;
7 --# global State;
8

9 function Get_Value return Integer;
10 --# global State;
11

12 procedure Read_Next;
13 --# global in out State;
14 --# derives State from State;
15

16

17 end Raw_Data;

1 with Raw_Data;
2 --# inherit Raw_Data;
3 package Processing
4 --# own State;
5 --# Initializes State;
6 is
7

8 procedure Get_Processed_Data (Value : out Integer);
9 --# global in Raw_Data.State;

10 --# in out State;
11 --# derives Value, State from State, Raw_Data.State;

12 --# pre Raw_Data.Data_Is_Valid (Raw_Data.State);
13

14 end Processing;

1 with Processing;
2 --# inherit Processing, Raw_Data;
3 package Calculate
4 is
5

6 procedure Read_Calculated_Value (Value : out Integer);
7 --# global in out Processing.State;
8 --# in Raw_Data.State;
9 --# derives Value, Processing.State from Processing.State, Raw_Data.State;

10 --# pre Raw_Data.Data_Is_Valid (Raw_Data.State);
11

12 end Calculate;

Specifications in SPARK 2014:

1 package Raw_Data
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers),
4 Initializes => State
5 is
6 function Data_Is_Valid return Boolean
7 with Volatile_Function,
8 Global => State;
9

10 function Get_Value return Integer
11 with Volatile_Function,
12 Global => State;
13

14 procedure Read_Next
15 with Global => (In_Out => State),
16 Depends => (State => State);
17 end Raw_Data;

1 with Raw_Data;
2

3 package Processing
4 with SPARK_Mode,
5 Abstract_State => State
6 is
7 procedure Get_Processed_Data (Value : out Integer)
8 with Global => (Input => Raw_Data.State,
9 In_Out => State),

10 Depends => ((Value,
11 State) => (State,
12 Raw_Data.State)),
13 Pre => Raw_Data.Data_Is_Valid;
14 end Processing;

1 with Processing,
2 Raw_Data;
3

4 package Calculate
5 with SPARK_Mode

6 is
7 procedure Read_Calculated_Value (Value : out Integer)
8 with Global => (In_Out => Processing.State,
9 Input => Raw_Data.State),

10 Depends => ((Value,
11 Processing.State) => (Processing.State,
12 Raw_Data.State)),
13 Pre => Raw_Data.Data_Is_Valid;
14 end Calculate;

Package nested inside package

See section Private, abstract state, refining onto concrete state of embedded package.

Package nested inside subprogram

This example is a modified version of that given in section Refinement of external state - voting input switch. It
illustrates the use of a package nested within a subprogram.

Abstract Switch specification in SPARK 2005:

1 package Switch
2 --# own in State;
3 is
4

5 type Reading is (on, off, unknown);
6

7 function ReadValue return Reading;
8 --# global in State;
9

10 end Switch;

Component Switch specifications in SPARK 2005:

As in Refinement of external state - voting input switch

Switch body in SPARK 2005:

1 with Switch.Val1;
2 with Switch.Val2;
3 with Switch.Val3;
4 package body Switch
5 --# own State is in Switch.Val1.State,
6 --# in Switch.Val2.State,
7 --# in Switch.Val3.State;
8 is
9

10 subtype Value is Integer range -1 .. 1;
11 subtype Score is Integer range -3 .. 3;
12

13

14 function ReadValue return Reading
15 --# global in Val1.State;
16 --# in Val2.State;
17 --# in Val3.State;
18 is

19 A, B, C : Reading;
20

21 -- Embedded package to provide the capability to synthesize three inputs
22 -- into one.
23 --# inherit Switch;
24 package Conversion
25 is
26

27 function Convert_To_Reading
28 (Val_A : Switch.Reading;
29 Val_B : Switch.Reading;
30 Val_C : Switch.Reading) return Switch.Reading;
31

32 end Conversion;
33

34 package body Conversion
35 is
36

37 type ConvertToValueArray is array (Switch.Reading) of Switch.Value;
38 type ConvertToReadingArray is array (Switch.Score) of Switch.Reading;
39 ConvertToValue : constant ConvertToValueArray := ConvertToValueArray'(Switch.

↪→on => 1,
40 Switch.

↪→unknown => 0,
41 Switch.off =>

↪→ -1);
42

43 ConvertToReading : constant ConvertToReadingArray :=
44 ConvertToReadingArray'(-3 .. -2 => Switch.off,
45 -1 .. 1 => Switch.

↪→unknown,
46 2 ..3 => Switch.on);
47

48 function Convert_To_Reading
49 (Val_A : Switch.Reading;
50 Val_B : Switch.Reading;
51 Val_C : Switch.Reading) return Switch.Reading
52 is
53 begin
54

55 return ConvertToReading (ConvertToValue (Val_A) +
56 ConvertToValue (Val_B) + ConvertToValue (Val_C));
57 end Convert_To_Reading;
58

59 end Conversion;
60

61 begin
62 A := Val1.Read;
63 B := Val2.Read;
64 C := Val3.Read;
65 return Conversion.Convert_To_Reading
66 (Val_A => A,
67 Val_B => B,
68 Val_C => C);
69 end ReadValue;
70

71 end Switch;

Abstract Switch specification in SPARK 2014:

1 package Switch
2 with SPARK_Mode,
3 Abstract_State => (State with External => Async_Writers)
4 is
5 type Reading is (on, off, unknown);
6

7 function ReadValue return Reading
8 with Volatile_Function,
9 Global => (Input => State);

10 end Switch;

Component Switch specification in SPARK 2014:

As in Refinement of external state - voting input switch

Switch body in SPARK 2014:

1 with Switch.Val1,
2 Switch.Val2,
3 Switch.Val3;
4

5 package body Switch
6 -- State is refined onto three states, each of which has properties
7 -- Volatile and Input.
8 with SPARK_Mode,
9 Refined_State => (State => (Switch.Val1.State,

10 Switch.Val2.State,
11 Switch.Val3.State))
12 is
13 subtype Value is Integer range -1 .. 1;
14 subtype Score is Integer range -3 .. 3;
15

16 function ReadValue return Reading
17 with Refined_Global => (Input => (Val1.State, Val2.State, Val3.State))
18 is
19 A, B, C : Reading;
20

21 -- Embedded package to provide the capability to synthesize three inputs
22 -- into one.
23 package Conversion is
24 function Convert_To_Reading
25 (Val_A : Switch.Reading;
26 Val_B : Switch.Reading;
27 Val_C : Switch.Reading) return Switch.Reading;
28 end Conversion;
29

30 package body Conversion is
31 type ConvertToValueArray is array (Switch.Reading) of Switch.Value;
32 type ConvertToReadingArray is array (Switch.Score) of Switch.Reading;
33 ConvertToValue : constant ConvertToValueArray :=
34 ConvertToValueArray'(Switch.on => 1,
35 Switch.unknown => 0,
36 Switch.off => -1);
37

38 ConvertToReading : constant ConvertToReadingArray :=
39 ConvertToReadingArray'(-3 .. -2 => Switch.off,
40 -1 .. 1 => Switch.unknown,

41 2 .. 3 => Switch.on);
42

43 function Convert_To_Reading
44 (Val_A : Switch.Reading;
45 Val_B : Switch.Reading;
46 Val_C : Switch.Reading) return Switch.Reading is
47 (ConvertToReading (ConvertToValue (Val_A) +
48 ConvertToValue (Val_B) +
49 ConvertToValue (Val_C)));
50 end Conversion;
51 begin -- begin statement of ReadValue function
52 A := Val1.Read;
53 B := Val2.Read;
54 C := Val3.Read;
55 return Conversion.Convert_To_Reading
56 (Val_A => A,
57 Val_B => B,
58 Val_C => C);
59 end ReadValue;
60 end Switch;

Circular dependence and elaboration order

SPARK 2005 avoided issues of circular dependence and elaboration order dependencies through a combination of
the inherit annotation and the restrictions that initialization expressions are constant, user defined subprograms cannot
be called in the sequence of statements of a package body and a package can only initialize variables declared in its
delarative part.

SPARK 2014 does not have the inherit annotation and only enforces the restriction that a package can only initialize
an object declared in its declarative region. Hence, in SPARK 2014 two package bodies that depend on each other’s
specification may be legal, as is calling a user defined suprogram.

Instead of the elaboration restrictions of SPARK 2005 a set of rules is applied in SPARK 2014 which determines
when elaboration order control pragmas such as Elaborate_Body or Elaborate_All are required. These rules ensure
the absence of elaboration order dependencies.

Examples of the features of SPARK 2014 elaboration order rules are given below. In the example described below
the partial elaboration order would be either of P_14 or Q_14 specifications first followed by P_14 body because of
the Elaborate_All on the specification of R_14 specification and the body of Q_14, then the elaboration of Q_14 body
or the specification of R_14 and the body of R_14 after the elaboration of Q_14. Elaboration order dependencies are
avoided by the (required) use of elaboration control pragmas.

Package Specifications in SPARK 2014:

1 package P_14
2 with SPARK_Mode,
3 Abstract_State => P_State,
4 Initializes => (P_State, Global_Var),
5 Elaborate_Body
6 is
7 Global_Var : Integer;
8

9 procedure Init (S : out Integer);
10 end P_14;

1 package Q_14
2 with SPARK_Mode,

3 Abstract_State => Q_State,
4 Initializes => Q_State
5 is
6 type T is new Integer;
7

8 procedure Init (S : out T);
9 end Q_14;

1 with P_14;
2 pragma Elaborate_All (P_14); -- Required because P_14.Global_Var
3 -- Is mentioned as input in the Initializes aspect
4 package R_14
5 with SPARK_Mode,
6 Abstract_State => State,
7 Initializes => (State => P_14.Global_Var)
8 is
9 procedure Op (X : in Positive)

10 with Global => (In_Out => State);
11 end R_14;

Package Bodies in SPARK 2014

1 with Q_14;
2

3 package body P_14
4 with SPARK_Mode,
5 Refined_State => (P_State => P_S)
6 is
7 P_S : Q_14.T; -- The use of type Q.T does not require
8 -- the body of Q to be elaborated.
9

10 procedure Init (S : out Integer) is
11 begin
12 S := 5;
13 end Init;
14 begin
15 -- Cannot call Q_14.Init here beacuse
16 -- this would require an Elaborate_All for Q_14
17 -- and would be detected as a circularity
18 Init (Global_Var);
19 P_S := Q_14.T (Global_Var);
20 end P_14;

1 with P_14;
2 pragma Elaborate_All (P_14); -- Required because the elaboration of the
3 -- body of Q_14 (indirectly) calls P_14.Init
4 package body Q_14
5 with SPARK_Mode,
6 Refined_State => (Q_State => Q_S)
7 is
8 Q_S : T;
9

10 procedure Init (S : out T) is
11 V : Integer;
12 begin
13 P_14.Init (V);
14 if V > 0 and then V <= Integer'Last - 5 then

15 S := T(V + 5);
16 else
17 S := 5;
18 end if;
19 end Init;
20 begin
21 Init (Q_S);
22 end Q_14;

1 with Q_14;
2 pragma Elaborate_All (Q_14); -- Required because Q_14.Init is called
3 -- in the elaboration of the body of R_14
4 use type Q_14.T;
5

6 package body R_14
7 with SPARK_Mode,
8 Refined_State => (State => R_S)
9 is

10 R_S : Q_14.T;
11 procedure Op (X : in Positive)
12 with Refined_Global => (In_Out => R_S)
13 is
14 begin
15 if R_S <= Q_14.T'Last - Q_14.T (X) then
16 R_S := R_S + Q_14.T (X);
17 else
18 R_S := 0;
19 end if;
20 end Op;
21 begin
22 Q_14.Init (R_S);
23 if P_14.Global_Var > 0
24 and then R_S <= Q_14.T'Last - Q_14.T (P_14.Global_Var)
25 then
26 R_S := R_S + Q_14.T (P_14.Global_Var);
27 else
28 R_S := Q_14.T (P_14.Global_Var);
29 end if;
30 end R_14;

A.4 Bodies and Proof

A.4.1 Assert, Assume, Check contracts

Assert (in loop) contract

The following example demonstrates how the SPARK 2005 assert annotation is used inside a loop as a loop invariant.
It cuts the loop and on each iteration of the loop the list of existing hypotheses for the path is cleared. A verification
condition is generated to prove that the assert expression is True, and the expression is the basis of the new hypotheses.

SPARK 2014 has a specific pragma for defining a loop invariant, pragma Loop_Invariant which is more sophisticated
than the SPARK 2005 assert annotation and often requires less conditions in the invariant expression than in SPARK
2005. As in SPARK 2005 a default loop invariant will be used if one is not provided which, often, may be sufficient
to prove absence of run-time exceptions. Like all SPARK 2014 assertion expressions the loop invariant is executable.

Note in the example below the SPARK 2014 version proves absence of run-time exceptions without an explicit loop
invariant being provided.

Specification in SPARK 2005:

1 package Assert_Loop_05
2 is
3 subtype Index is Integer range 1 .. 10;
4 type A_Type is Array (Index) of Integer;
5

6 function Value_present (A: A_Type; X : Integer) return Boolean;
7 --# return for some M in Index => (A (M) = X);
8 end Assert_Loop_05;

Body in SPARK 2005:

1 package body Assert_Loop_05
2 is
3 function Value_Present (A: A_Type; X : Integer) return Boolean
4 is
5 I : Index := Index'First;
6 begin
7 while A (I) /= X and I < Index'Last loop
8 --# assert I < Index'Last and
9 --# (for all M in Index range Index'First .. I => (A (M) /= X));

10 I := I + 1;
11 end loop;
12 return A (I) = X;
13 end Value_Present;
14 end Assert_Loop_05;

Specification in SPARK 2014:

1 package Assert_Loop_14
2 with SPARK_Mode
3 is
4 subtype Index is Integer range 1 .. 10;
5 type A_Type is Array (Index) of Integer;
6

7 function Value_present (A : A_Type; X : Integer) return Boolean
8 with Post => Value_present'Result = (for some M in Index => A (M) = X);
9 end Assert_Loop_14;

Body in SPARK 2014:

1 package body Assert_Loop_14
2 with SPARK_Mode
3 is
4 function Value_Present (A : A_Type; X : Integer) return Boolean is
5 I : Index := Index'First;
6 begin
7 while A (I) /= X and I < Index'Last loop
8 pragma Loop_Invariant
9 (I < Index'Last

10 and (for all M in Index'First .. I => A (M) /= X));
11 I := I + 1;
12 end loop;
13

14 return A (I) = X;

15 end Value_Present;
16 end Assert_Loop_14;

Assert (no loop) contract

While not in a loop, the SPARK 2005 assert annotation maps to pragma Assert_And_Cut in SPARK 2014. Both the
assert annotation and pragma assert clear the list of hypotheses on the path, generate a verification condition to prove
the assertion expression and use the assertion expression as the basis of the new hypotheses.

Assume contract

The following example illustrates use of an Assume annotation. The assumed expression does not generate a verifi-
cation condition and is not proved (although it is executed in SPARK 2014 if assertion expressions are not ignored at
run-time).

In this example, the Assume annotation is effectively being used to implement the SPARK 2005 Always_Valid at-
tribute.

Specification for Assume annotation in SPARK 2005:

1 package Input_Port
2 --# own in Inputs;
3 is
4 procedure Read_From_Port(Input_Value : out Integer);
5 --# global in Inputs;
6 --# derives Input_Value from Inputs;
7

8 end Input_Port;

Body for Assume annotation in SPARK 2005:

1 with System.Storage_Elements;
2 package body Input_Port
3 is
4

5 Inputs : Integer;
6 for Inputs'Address use System.Storage_Elements.To_Address (16#CAFE0#);
7 pragma Volatile (Inputs);
8

9 procedure Read_From_Port(Input_Value : out Integer)
10 is
11 begin
12 --# assume Inputs in Integer;
13 Input_Value := Inputs;
14 end Read_From_Port;
15

16 end Input_Port;

Specification for Assume annotation in SPARK 2014:

1 package Input_Port
2 with SPARK_Mode,
3 Abstract_State => (State_Inputs with External => Async_Writers)
4 is
5 procedure Read_From_Port(Input_Value : out Integer)

6 with Global => (Input => State_Inputs),
7 Depends => (Input_Value => State_Inputs);
8 end Input_Port;

Body for Assume annotation in SPARK 2014:

1 with System.Storage_Elements;
2

3 package body Input_Port
4 with SPARK_Mode,
5 Refined_State => (State_Inputs => Inputs)
6 is
7 Inputs : Integer
8 with Volatile,
9 Async_Writers,

10 Address => System.Storage_Elements.To_Address (16#CAFE0#);
11

12 procedure Read_From_Port(Input_Value : out Integer)
13 with Refined_Global => (Input => Inputs),
14 Refined_Depends => (Input_Value => Inputs)
15 is
16 begin
17 Input_Value := Inputs;
18 pragma Assume(Input_Value in Integer);
19 end Read_From_Port;
20 end Input_Port;

Check contract

The SPARK 2005 check annotation is replaced by pragma assert in SPARK 2014. This annotation generates a veri-
fication condition to prove the checked expression and adds the expression as a new hypothesis to the list of existing
hypotheses.

Specification for Check annotation in SPARK 2005:

1 package Check_05
2 is
3 subtype Small is Integer range 1 .. 10;
4 subtype Big is Integer range 1 .. 21;
5

6 procedure Compare(A, B : in Small; C : in out Big);
7 end Check_05;

Body for Check annotation in SPARK 2005:

1 package body Check_05
2 is
3 procedure Compare(A, B : in Small; C : in out Big)
4 is
5 begin
6 if (A + B >= C) then
7 C := A;
8 C := C + B;
9 C := C + 1;

10 end if;
11 --# check A + B < C;

12 end Compare;
13 end Check_05;

Specification for Check annotation in SPARK 2014:

1 package Check_14
2 with SPARK_Mode
3 is
4 subtype Small is Integer range 1 .. 10;
5 subtype Big is Integer range 1 .. 21;
6

7 procedure Compare (A, B : in Small; C : in out Big);
8 end Check_14;

Body for Check annotation in SPARK 2014:

1 package body Check_14
2 with SPARK_Mode
3 is
4 procedure Compare(A, B : in Small; C : in out Big) is
5 begin
6 if A + B >= C then
7 C := A;
8 C := C + B;
9 C := C + 1;

10 end if;
11 pragma Assert (A + B < C);
12 end Compare;
13 end Check_14;

A.4.2 Assert used to control path explosion

This capability is in general not needed with the SPARK 2014 toolset where path explosion is handled automatically.
In the rare cases where this is needed you can use pragma Assert_And_Cut.

A.5 Other Contracts and Annotations

A.5.1 Always_Valid assertion

See section Input driver using ‘Tail in a contract for use of an assertion involving the Always_Valid attribute.

A.5.2 Rule declaration annotation

See section Proof types and proof functions.

A.5.3 Proof types and proof functions

The following example gives pre- and postconditions on operations that act upon the concrete representation of an ab-
stract own variable. This means that proof functions and proof types are needed to state those pre- and postconditions.
In addition, it gives an example of the use of a rule declaration annotation - in the body of procedure Initialize - to
introduce a rule related to the components of a constant record value.

SPARK 2014 does not have a direct equivalent of proof types and proof functions. State abstractions cannot have
a type and all functions in SPARK 2014 are Ada functions. Functions may be defined to be ghost functions which
means that they can only be called within an assertion expression such as a pre or postcondition. Assertion expressions
may be executed or ignored at run-time and if they are ignored Ghost functions behave much like SPARK 2005 proof
functions.

Rule declaration annotations for structured constants are not required in SPARK 2014.

The SPARK 2005 version of the example given below will require user defined proof rules to discharge the proofs
because refined definitions of some of the proof functions cannot be provided as they would have different formal pa-
rameters. The SPARK 2014 version does not suffer from this problem as functions called within assertion expressions
may have global items.

Specification in SPARK 2005:

1 package Stack
2 --# own State : Abstract_Stack;
3 is
4 -- It is not possible to specify that the stack will be
5 -- initialized to empty except by having an initialization
6 -- subprogram called during program execution (as opposed to
7 -- package elaboration).
8

9 -- Proof functions to indicate whether or not the Stack is empty
10 -- and whether or not it is full.
11 --# type Abstract_Stack is abstract;
12

13 --# function Max_Stack_Size return Natural;
14

15 -- Proof function to give the number of elements on the stack.
16 --# function Count(Input : Abstract_Stack) return Natural;
17

18 -- Proof function returns the Nth entry on the stack.
19 -- Stack_Entry (Count (State)) is the top of stack
20 --# function Stack_Entry (N : Natural; S : Abstract_Stack) return Integer;
21 --# pre N in 1 .. Count (S);
22 -- A refined version of this function cannot be written because
23 -- the abstract view has a formal parameter of type Abstract_Stack
24 -- whereas the refined view would not have this parameter but use
25 -- a global. A user defined proof rule would be required to define
26 -- this function. Alternatively, it could be written as an Ada
27 -- function where the the global and formal parameter views would
28 -- be available. However, the function would then be callable and
29 -- generate implementation code.
30

31 --# function Is_Empty(Input : Abstract_Stack) return Boolean;
32 --# return Count (Input) = 0;
33

34 --# function Is_Full(Input : Abstract_Stack) return Boolean;
35 --# return Count (Input) = Max_Stack_Size;
36

37 -- The precondition requires the stack is not full when a value, X,
38 -- is pushed onto it.
39 -- The postcondition indicates that the count of the stack will be
40 -- incremented after a push and therefore the stack will be non-empty.
41 -- The item X is now the top of the stack.
42 procedure Push(X : in Integer);
43 --# global in out State;
44 --# pre not Is_Full(State);

45 --# post Count (State) = Count (State~) + 1 and
46 --# Count (State) <= Max_Stack_Size and
47 --# Stack_Entry (Count (State), State) = X;
48

49 -- The precondition requires the stack is not empty when we
50 -- pull a value from it.
51 -- The postcondition indicates the stack count is decremented.
52 procedure Pop (X : out Integer);
53 --# global in out State;
54 --# pre not Is_Empty (State);
55 --# post Count (State) = Count (State~) - 1;
56

57 -- Procedure that swaps the first two elements in a stack.
58 procedure Swap2;
59 --# global in out State;
60 --# pre Count(State) >= 2;
61 --# post Count(State) = Count(State~) and
62 --# Stack_Entry (Count (State), State) =
63 --# Stack_Entry (Count (State) - 1, State~) and
64 --# Stack_Entry (Count (State) - 1, State) =
65 --# Stack_Entry (Count (State), State~);
66

67 -- Initializes the Stack.
68 procedure Initialize;
69 --# global out State;
70 --# post Is_Empty (State);
71 end Stack;

Body in SPARK 2005:

1 package body Stack
2 --# own State is My_Stack;
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8

9 type Stack_Type is record
10 S : Vector;
11 Pointer : Pointer_Range;
12 end record;
13

14 Initial_Stack : constant Stack_Type :=
15 Stack_Type'(S => Vector'(others => 0),
16 Pointer => 0);
17

18 My_Stack : Stack_Type;
19

20 procedure Push(X : in Integer)
21 --# global in out My_Stack;
22 --# pre My_Stack.Pointer < Stack_Size;
23 is
24 begin
25 My_Stack.Pointer := My_Stack.Pointer + 1;
26 My_Stack.S(My_Stack.Pointer) := X;
27 end Push;
28

29 procedure Pop (X : out Integer)
30 --# global in out My_Stack;
31 --# pre My_Stack.Pointer >= 1;
32 is
33 begin
34 X := My_Stack.S (My_Stack.Pointer);
35 My_Stack.Pointer := My_Stack.Pointer - 1;
36 end Pop;
37

38 procedure Swap2
39 --# global in out My_Stack;
40 --# post My_Stack.Pointer = My_Stack~.Pointer;
41 is
42 Temp : Integer;
43 begin
44 Temp := My_Stack.S (1);
45 My_Stack.S (1) := My_Stack.S (2);
46 My_Stack.S (2) := Temp;
47 end Swap2;
48

49 procedure Initialize
50 --# global out My_Stack;
51 --# post My_Stack.Pointer = 0;
52 is
53 --# for Initial_Stack declare Rule;
54 begin
55 My_Stack := Initial_Stack;
56 end Initialize;
57 end Stack;

Specification in SPARK 2014

1 package Stack
2 with SPARK_Mode,
3 Abstract_State => State,
4 Initializes => State,
5 Initial_Condition => Is_Empty
6 is
7 -- In SPARK 2014 we can specify an initial condition for the
8 -- elaboration of a package and so initialization may be done
9 -- during the elaboration of the package Stack, rendering the need

10 -- for an initialization procedure unnecessary.
11

12 -- Abstract states do not have types in SPARK 2014 they can only
13 -- be directly referenced in Global and Depends aspects.
14

15 -- Proof functions are actual functions but they may have the
16 -- convention Ghost meaning that they can only be called from
17 -- assertion expressions, e.g., pre and postconditions
18 function Max_Stack_Size return Natural
19 with Ghost;
20

21 -- Returns the number of elements on the stack
22 function Count return Natural
23 with Global => (Input => State),
24 Ghost;
25

26 -- Returns the Nth entry on the stack. Stack_Entry (Count) is the

27 -- top of stack
28 function Stack_Entry (N : Natural) return Integer
29 with Global => (Input => State),
30 Pre => N in 1 .. Count,
31 Ghost;
32 -- A body (refined) version of this function can (must) be
33 -- provided in the body of the package.
34

35 function Is_Empty return Boolean is (Count = 0)
36 with Global => State,
37 Ghost;
38

39 function Is_Full return Boolean is (Count = Max_Stack_Size)
40 with Global => State,
41 Ghost;
42

43 -- The precondition requires the stack is not full when a value,
44 -- X, is pushed onto it. Functions with global items (Is_Full
45 -- with global State in this case) can be called in an assertion
46 -- expression such as the precondition here. The postcondition
47 -- indicates that the count of the stack will be incremented after
48 -- a push and therefore the stack will be non-empty. The item X
49 -- is now the top of the stack.
50 procedure Push (X : in Integer)
51 with Global => (In_Out => State),
52 Pre => not Is_Full,
53 Post => Count = Count'Old + 1 and
54 Count <= Max_Stack_Size and
55 Stack_Entry (Count) = X;
56

57 -- The precondition requires the stack is not empty when we pull a
58 -- value from it. The postcondition indicates the stack count is
59 -- decremented.
60 procedure Pop (X : out Integer)
61 with Global => (In_Out => State),
62 Pre => not Is_Empty,
63 Post => Count = Count'Old - 1;
64

65 -- Procedure that swaps the top two elements in a stack.
66 procedure Swap2
67 with Global => (In_Out => State),
68 Pre => Count >= 2,
69 Post => Count = Count'Old and
70 Stack_Entry (Count) = Stack_Entry (Count - 1)'Old and
71 Stack_Entry (Count - 1) = Stack_Entry (Count)'Old;
72 end Stack;

Body in SPARK 2014:

1 package body Stack
2 with SPARK_Mode,
3 Refined_State => (State => My_Stack)
4 is
5 Stack_Size : constant := 100;
6 type Pointer_Range is range 0 .. Stack_Size;
7 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
8 type Vector is array(Index_Range) of Integer;
9

10 type Stack_Type is record
11 S : Vector;
12 Pointer : Pointer_Range;
13 end record;
14

15 Initial_Stack : constant Stack_Type :=
16 Stack_Type'(S => Vector'(others => 0),
17 Pointer => 0);
18 My_Stack : Stack_Type;
19

20 function Max_Stack_Size return Natural is (Stack_Size);
21

22 function Count return Natural is (Natural (My_Stack.Pointer))
23 with Refined_Global => My_Stack;
24

25 function Stack_Entry (N : Natural) return Integer is
26 (My_Stack.S (Index_Range (N)))
27 with Refined_Global => My_Stack;
28

29

30 procedure Push(X : in Integer)
31 with Refined_Global => (In_Out => My_Stack)
32 is
33 begin
34 My_Stack.Pointer := My_Stack.Pointer + 1;
35 My_Stack.S(My_Stack.Pointer) := X;
36 end Push;
37

38 procedure Pop (X : out Integer)
39 with Refined_Global => (In_Out => My_Stack)
40 is
41 begin
42 X := My_Stack.S (My_Stack.Pointer);
43 My_Stack.Pointer := My_Stack.Pointer - 1;
44 end Pop;
45

46 procedure Swap2
47 with Refined_Global => (In_Out => My_Stack)
48 is
49 Temp : Integer;
50 begin
51 Temp := My_Stack.S (My_Stack.Pointer);
52 My_Stack.S (My_Stack.Pointer) := My_Stack.S (My_Stack.Pointer - 1);
53 My_Stack.S (My_Stack.Pointer - 1) := Temp;
54 end Swap2;
55 begin
56 My_Stack := Initial_Stack;
57 end Stack;

A.5.4 Using an External Prover

One may wish to use an external prover such as Isabelle, with rules defining a ghost function written in the prover
input language. This can be done in SPARK 2014 by denoting the ghost function as an Import in lieu of providing a
body for it. Of course such ghost functions cannot be executed.

Specification in SPARK 2014 using an external prover:

1 package Stack_External_Prover
2 with SPARK_Mode,
3 Abstract_State => State,
4 Initializes => State,
5 Initial_Condition => Is_Empty
6 is
7 -- A Ghost function may be an Import which means that no body is
8 -- given in the SPARK 2014 code and the proof has to be discharged
9 -- by an external prover. Of course, such functions are not

10 -- executable.
11 function Max_Stack_Size return Natural
12 with Global => null,
13 Ghost,
14 Import;
15

16 -- Returns the number of elements on the stack
17 function Count return Natural
18 with Global => (Input => State),
19 Ghost,
20 Import;
21

22 -- Returns the Nth entry on the stack. Stack_Entry (Count) is the
23 -- top of stack
24 function Stack_Entry (N : Natural) return Integer
25 with Global => (Input => State),
26 Ghost,
27 Import;
28

29 function Is_Empty return Boolean
30 with Global => State,
31 Ghost,
32 Import;
33

34 function Is_Full return Boolean
35 with Global => State,
36 Ghost,
37 Import;
38

39 procedure Push (X : in Integer)
40 with Global => (In_Out => State),
41 Pre => not Is_Full,
42 Post => Count = Count'Old + 1 and Count <= Max_Stack_Size and
43 Stack_Entry (Count) = X;
44

45 procedure Pop (X : out Integer)
46 with Global => (In_Out => State),
47 Pre => not Is_Empty,
48 Post => Count = Count'Old - 1;
49

50 procedure Swap2
51 with Global => (In_Out => State),
52 Pre => Count >= 2,
53 Post => Count = Count'Old and
54 Stack_Entry (Count) = Stack_Entry (Count - 1)'Old and
55 Stack_Entry (Count - 1) = Stack_Entry (Count)'Old;
56 end Stack_External_Prover;

A.5.5 Quoting an Own Variable in a Contract

Sometimes it is necessary to reference an own variable (a state abstraction) in a contract. In SPARK 2005 this was
achieved by declaring the own variable with a type, either concrete or abstract. As seen in Proof types and proof
functions. Once the own variable has a type it can be used in a SPARK 2005 proof context.

A state abstraction in SPARK 2014 does not have a type. Instead, an Ada type to represent the abstract state is declared.
A function which has the state abstraction as a global item is then declared which returns an object of the type. This
function may have the same name as the state abstraction (the name is overloaded). References which appear to be the
abstract state in an assertion expression are in fact calls to the overloaded function.

An example of this technique is given in the following example which is a version of the stack example given in Proof
types and proof functions but with the post conditions extended to express the functional properties of the stack.

The extension requires the quoting of the own variable/state abstraction in the postcondition in order to state that the
contents of the stack other than the top entries are not changed.

Specification in SPARK 2005:

1 package Stack_Functional_Spec
2 --# own State : Abstract_Stack;
3 is
4 -- It is not possible to specify that the stack will be
5 -- initialized to empty except by having an initialization
6 -- subprogram called during program execution (as opposed to
7 -- package elaboration).
8

9 -- Proof functions to indicate whether or not the Stack is empty
10 -- and whether or not it is full.
11 --# type Abstract_Stack is abstract;
12

13 --# function Max_Stack_Size return Natural;
14

15 -- Proof function to give the number of elements on the stack.
16 --# function Count(Input : Abstract_Stack) return Natural;
17

18 -- Proof function returns the Nth entry on the stack.
19 -- Stack_Entry (Count (State)) is the top of stack
20 --# function Stack_Entry (S : Abstract_Stack; N : Natural) return Integer;
21 --# pre N in 1 .. Count (S);
22 -- A refined version of this function cannot be written because
23 -- the abstract view has a formal parameter of type Abstract_Stack
24 -- whereas the refined view would not have this parameter but use
25 -- a global. A user defined proof rule would be required to
26 -- define this function. Alternatively, it could be written as an
27 -- Ada function where the the global and formal parameter views
28 -- would be available. However, the function would then be
29 -- callable and generate implementation code.
30

31 --# function Is_Empty(Input : Abstract_Stack) return Boolean;
32 --# return Count (Input) = 0;
33

34 --# function Is_Full(Input : Abstract_Stack) return Boolean;
35 --# return Count (Input) = Max_Stack_Size;
36

37 -- The precondition requires the stack is not full when a value, X,
38 -- is pushed onto it.
39 -- Functions with global items (Is_Full with global State in this case)
40 -- can be called in an assertion expression such as the precondition here.

41 -- The postcondition indicates that the count of the stack will be
42 -- incremented after a push and therefore the stack will be non-empty.
43 -- The item X is now the top of the stack and the contents of the rest of
44 -- the stack are unchanged.
45 procedure Push(X : in Integer);
46 --# global in out State;
47 --# pre not Is_Full(State);
48 --# post Count (State) = Count (State~) + 1 and
49 --# Count (State) <= Max_Stack_Size and
50 --# Stack_Entry (State, Count (State)) = X and
51 --# (for all I in Natural range 1 .. Count (State~) =>
52 --# (Stack_Entry (State, I) = Stack_Entry (State~, I)));
53

54 -- The precondition requires the stack is not empty when we
55 -- pull a value from it.
56 -- The postcondition indicates that the X = the old top of stack,
57 -- the stack count is decremented, and the contents of the stack excluding
58 -- the old top of stack are unchanged.
59 procedure Pop (X : out Integer);
60 --# global in out State;
61 --# pre not Is_Empty (State);
62 --# post Count (State) = Count (State~) - 1 and
63 --# X = Stack_Entry (State~, Count (State~)) and
64 --# (for all I in Natural range 1 .. Count (State) =>
65 --# (Stack_Entry (State, I) = Stack_Entry (State~, I)));
66

67 -- The precondition requires that the stack has at least 2 entries
68 -- (Count >= 2).
69 -- The postcondition states that the top two elements of the stack are
70 -- transposed but the remainder of the stack is unchanged.
71 procedure Swap2;
72 --# global in out State;
73 --# pre Count(State) >= 2;
74 --# post Count(State) = Count(State~) and
75 --# Stack_Entry (State, Count (State)) =
76 --# Stack_Entry (State~, Count (State) - 1) and
77 --# Stack_Entry (State, Count (State) - 1) =
78 --# Stack_Entry (State~, Count (State)) and
79 --# (for all I in Natural range 1 .. Count (State) =>
80 --# (Stack_Entry (State, I) = Stack_Entry (State~, I)));
81

82 -- Initializes the Stack.
83 procedure Initialize;
84 --# global out State;
85 --# post Is_Empty (State);
86 end Stack_Functional_Spec;

Body in SPARK 2005:

1 package body Stack_Functional_Spec
2 --# own State is My_Stack;
3 is
4 Stack_Size : constant := 100;
5 type Pointer_Range is range 0 .. Stack_Size;
6 subtype Index_Range is Pointer_Range range 1..Stack_Size;
7 type Vector is array(Index_Range) of Integer;
8

9 type Stack_Type is

10 record
11 S : Vector;
12 Pointer : Pointer_Range;
13 end record;
14

15 Initial_Stack : constant Stack_Type :=
16 Stack_Type'(S => Vector'(others => 0),
17 Pointer => 0);
18

19 My_Stack : Stack_Type;
20

21 procedure Push(X : in Integer)
22 --# global in out My_Stack;
23 --# pre My_Stack.Pointer < Stack_Size;
24 is
25 begin
26 My_Stack.Pointer := My_Stack.Pointer + 1;
27 My_Stack.S(My_Stack.Pointer) := X;
28 end Push;
29

30 procedure Pop (X : out Integer)
31 --# global in out My_Stack;
32 --# pre My_Stack.Pointer >= 1;
33 is
34 begin
35 X := My_Stack.S (My_Stack.Pointer);
36 My_Stack.Pointer := My_Stack.Pointer - 1;
37 end Pop;
38

39 procedure Swap2
40 --# global in out My_Stack;
41 --# post My_Stack.Pointer = My_Stack~.Pointer;
42 is
43 Temp : Integer;
44 begin
45 Temp := My_Stack.S (1);
46 My_Stack.S (1) := My_Stack.S (2);
47 My_Stack.S (2) := Temp;
48 end Swap2;
49

50 procedure Initialize
51 --# global out My_Stack;
52 --# post My_Stack.Pointer = 0;
53 is
54 --# for Initial_Stack declare Rule;
55 begin
56 My_Stack := Initial_Stack;
57 end Initialize;
58

59 end Stack_Functional_Spec;

Specification in SPARK 2014

1 pragma Unevaluated_Use_Of_Old(Allow);
2 package Stack_Functional_Spec
3 with SPARK_Mode,
4 Abstract_State => State,
5 Initializes => State,

6 Initial_Condition => Is_Empty
7 is
8 -- Abstract states do not have types in SPARK 2014 but to provide
9 -- functional specifications it is sometimes necessary to refer to

10 -- the abstract state in an assertion expression such as a post
11 -- condition. To do this in SPARK 2014 an Ada type declaration is
12 -- required to represent the type of the abstract state, then a
13 -- function applied to the abstract state (as a global) can be
14 -- written which returns an object of the declared type.
15 type Stack_Type is private;
16

17 -- The Abstract_State name may be overloaded by the function which
18 -- represents it in assertion expressions.
19 function State return Stack_Type
20 with Global => State;
21

22 function Max_Stack_Size return Natural
23 with Ghost;
24

25 -- Returns the number of elements on the stack
26 -- A function may have a formal parameter (or return a value)
27 -- of the abstract state.
28 function Count (S : Stack_Type) return Natural
29 with Ghost;
30

31 -- Returns the Nth entry on the stack.
32 -- Stack_Entry (S, Count (S)) is the top of stack
33 function Stack_Entry (S : Stack_Type; N : Natural) return Integer
34 with Pre => N in 1 .. Count (S),
35 Ghost;
36

37 -- The ghost function Count can be called in the function
38 -- expression because Is_Empty is also a ghost function.
39 function Is_Empty return Boolean is (Count (State) = 0)
40 with Global => State,
41 Ghost;
42

43 function Is_Full return Boolean is (Count(State) = Max_Stack_Size)
44 with Global => State,
45 Ghost;
46

47 -- The precondition requires the stack is not full when a value, X,
48 -- is pushed onto it.
49 -- Functions with global items (Is_Full with global State in this case)
50 -- can be called in an assertion expression such as the precondition here.
51 -- The postcondition indicates that the count of the stack will be
52 -- incremented after a push and therefore the stack will be non-empty.
53 -- The item X is now the top of the stack and the contents of the rest of
54 -- the stack are unchanged.
55 procedure Push (X : in Integer)
56 with Global => (In_Out => State),
57 Pre => not Is_Full,
58 Post => Count (State) = Count (State'Old) + 1 and
59 Count (State) <= Max_Stack_Size and
60 Stack_Entry (State, Count (State)) = X and
61 (for all I in 1 .. Count (State'Old) =>
62 Stack_Entry (State, I) = Stack_Entry (State'Old, I));
63

64 -- The precondition requires the stack is not empty when we
65 -- pull a value from it.
66 -- The postcondition indicates that the X = the old top of stack,
67 -- the stack count is decremented, and the contents of the stack excluding
68 -- the old top of stack are unchanged.
69 procedure Pop (X : out Integer)
70 with Global => (In_Out => State),
71 Pre => not Is_Empty,
72 Post => Count (State) = Count (State'Old) - 1 and
73 X = Stack_Entry (State'Old, Count (State'Old)) and
74 (for all I in 1 .. Count (State) =>
75 Stack_Entry (State, I) = Stack_Entry (State'Old, I));
76

77 -- The precondition requires that the stack has at least 2 entries
78 -- (Count >= 2).
79 -- The postcondition states that the top two elements of the stack are
80 -- transposed but the remainder of the stack is unchanged.
81 procedure Swap2
82 with Global => (In_Out => State),
83 Pre => Count (State) >= 2,
84 Post => Count(State) = Count (State'Old) and
85 Stack_Entry (State, Count (State)) =
86 Stack_Entry (State'Old, Count (State) - 1) and
87 Stack_Entry (State, Count (State) - 1) =
88 Stack_Entry (State'Old, Count (State)) and
89 (for all I in 1 .. Count (State) - 2 =>
90 Stack_Entry (State, I) = Stack_Entry (State'Old, I));
91

92 private
93 -- The full type declarion used to represent the abstract state.
94 Stack_Size : constant := 100;
95 type Pointer_Range is range 0 .. Stack_Size;
96 subtype Index_Range is Pointer_Range range 1 .. Stack_Size;
97 type Vector is array(Index_Range) of Integer;
98

99 type Stack_Type is record
100 S : Vector;
101 Pointer : Pointer_Range;
102 end record;
103 end Stack_Functional_Spec;

Body in SPARK 2014:

1 package body Stack_Functional_Spec
2 with SPARK_Mode,
3 Refined_State => (State => My_Stack)
4 is
5 Initial_Stack : constant Stack_Type :=
6 Stack_Type'(S => Vector'(others => 0),
7 Pointer => 0);
8

9 -- In this example the type used to represent the state
10 -- abstraction and the actual type used in the implementation are
11 -- the same, but they need not be. For instance S and Pointer
12 -- could have been declared as distinct objects rather than
13 -- composed into a record. Where the type representing the
14 -- abstract state and the implementation of that state are
15 -- different the function representing the abstract state has to

16 -- convert implementation representation into the abstract
17 -- representation. For instance, if S and Pointer were distinct
18 -- objects the function State would have to return (S => S,
19 -- Pointer => Pointer).
20 My_Stack : Stack_Type;
21

22 -- No conversion necessary as the abstract and implementation type
23 -- is the same.
24 function State return Stack_Type is (My_Stack)
25 with Refined_Global => My_Stack;
26

27 function Max_Stack_Size return Natural is (Stack_Size);
28

29 function Count (S : Stack_Type) return Natural is (Natural (S.Pointer));
30

31 function Stack_Entry (S : Stack_Type; N : Natural) return Integer is
32 (S.S (Index_Range (N)));
33

34 procedure Push(X : in Integer)
35 with Refined_Global => (In_Out => My_Stack)
36 is
37 begin
38 My_Stack.Pointer := My_Stack.Pointer + 1;
39 My_Stack.S(My_Stack.Pointer) := X;
40 end Push;
41

42 procedure Pop (X : out Integer)
43 with Refined_Global => (In_Out => My_Stack)
44 is
45 begin
46 X := My_Stack.S (My_Stack.Pointer);
47 My_Stack.Pointer := My_Stack.Pointer - 1;
48 end Pop;
49

50 procedure Swap2
51 with Refined_Global => (In_Out => My_Stack)
52 is
53 Temp : Integer;
54 begin
55 Temp := My_Stack.S (My_Stack.Pointer);
56 My_Stack.S (My_Stack.Pointer) := My_Stack.S (My_Stack.Pointer - 1);
57 My_Stack.S (My_Stack.Pointer - 1) := Temp;
58 end Swap2;
59 begin
60 My_Stack := Initial_Stack;
61 end Stack_Functional_Spec;

A.5.6 Main_Program annotation

This annotation isn’t needed. Currently any parameterless procedure declared at library-level is considered as a poten-
tial main program and analyzed as such.

A.6 Update Expressions

SPARK 2005 has update expressions for updating records and arrays. They can only be used in SPARK 2005 proof
contexts.

The equivalent in SPARK 2014 is the ‘Update attribute. This can be used in any Ada expression.

Specification in SPARK 2005:

1 package Update_Examples
2 is
3 type Rec is record
4 X, Y : Integer;
5 end record;
6

7 type Index is range 1 ..3;
8

9 type Arr is array (Index) of Integer;
10

11 type Arr_2D is array (Index, Index) of Integer;
12

13 type Nested_Rec is record
14 A : Integer;
15 B : Rec;
16 C : Arr;
17 D : Arr_2D;
18 end record;
19

20 type Nested_Arr is array (Index) of Nested_Rec;
21

22 -- Simple record update
23 procedure P1 (R : in out Rec);
24 --# post R = R~ [X => 1];
25

26 -- Simple 1D array update
27 procedure P2 (A : in out Arr);
28 --# post A = A~ [1 => 2];
29

30 -- 2D array update
31 procedure P3 (A2D : in out Arr_2D);
32 --# post A2D = A2D~ [1, 1 => 1;
33 --# 2, 2 => 2;
34 --# 3, 3 => 3];
35

36 -- Nested record update
37 procedure P4 (NR : in out Nested_Rec);
38 --# post NR = NR~ [A => 1;
39 --# B => NR~.B [X => 1];
40 --# C => NR~.C [1 => 5]];
41

42 -- Nested array update
43 procedure P5 (NA : in out Nested_Arr);
44 --# post NA = NA~ [1 => NA~ (1) [A => 1;
45 --# D => NA~ (1).D [2, 2 => 0]];
46 --# 2 => NA~ (2) [B => NA~ (2).B [X => 2]];
47 --# 3 => NA~ (3) [C => NA~ (3).C [1 => 5]]];
48 end Update_Examples;

Specification in SPARK 2014

1 package Update_Examples
2 with SPARK_Mode
3 is
4 type Rec is record
5 X, Y : Integer;
6 end record;
7

8 type Arr is array (1 .. 3) of Integer;
9

10 type Arr_2D is array (1 .. 3, 1 .. 3) of Integer;
11

12 type Nested_Rec is record
13 A : Integer;
14 B : Rec;
15 C : Arr;
16 D : Arr_2D;
17 end record;
18

19 type Nested_Arr is array (1 .. 3) of Nested_Rec;
20

21 -- Simple record update
22 procedure P1 (R : in out Rec)
23 with Post => R = R'Old'Update (X => 1);
24 -- this is equivalent to:
25 -- R = (X => 1,
26 -- Y => R'Old.Y)
27

28 -- Simple 1D array update
29 procedure P2 (A : in out Arr)
30 with Post => A = A'Old'Update (1 => 2);
31 -- this is equivalent to:
32 -- A = (1 => 2,
33 -- 2 => A'Old (2),
34 -- 3 => A'Old (3));
35

36 -- 2D array update
37 procedure P3 (A2D : in out Arr_2D)
38 with Post => A2D = A2D'Old'Update ((1, 1) => 1,
39 (2, 2) => 2,
40 (3, 3) => 3);
41 -- this is equivalent to:
42 -- A2D = (1 => (1 => 1,
43 -- 2 => A2D'Old (1, 2),
44 -- 3 => A2D'Old (1, 3)),
45 -- 2 => (2 => 2,
46 -- 1 => A2D'Old (2, 1),
47 -- 3 => A2D'Old (2, 3)),
48 -- 3 => (3 => 3,
49 -- 1 => A2D'Old (3, 1),
50 -- 2 => A2D'Old (3, 2)));
51

52 -- Nested record update
53 procedure P4 (NR : in out Nested_Rec)
54 with Post => NR = NR'Old'Update (A => 1,
55 B => NR'Old.B'Update (X => 1),
56 C => NR'Old.C'Update (1 => 5));
57 -- this is equivalent to:

58 -- NR = (A => 1,
59 -- B.X => 1,
60 -- B.Y => NR'Old.B.Y,
61 -- C (1) => 5,
62 -- C (2) => NR'Old.C (2),
63 -- C (3) => NR'Old.C (3),
64 -- D => NR'Old.D)
65

66 -- Nested array update
67 procedure P5 (NA : in out Nested_Arr)
68 with Post =>
69 NA = NA'Old'Update (1 => NA'Old (1)'Update
70 (A => 1,
71 D => NA'Old (1).D'Update ((2, 2) => 0)),
72 2 => NA'Old (2)'Update
73 (B => NA'Old (2).B'Update (X => 2)),
74 3 => NA'Old (3)'Update
75 (C => NA'Old (3).C'Update (1 => 5)));
76 -- this is equivalent to:
77 -- NA = (1 => (A => 1,
78 -- B => NA'Old (1).B,
79 -- C => NA'Old (1).C,
80 -- D => NA'Old (1).D),
81 -- 2 => (B.X => 2,
82 -- B.Y => NA'Old (2).B.Y,
83 -- A => NA'Old (2).A,
84 -- C => NA'Old (2).C,
85 -- D => NA'Old (2).D),
86 -- 3 => (C => (1 => 5,
87 -- 2 => NA'Old (3).C (2),
88 -- 3 => NA'Old (3).C (3)),
89 -- A => NA'Old (3).A,
90 -- B => NA'Old (3).B,
91 -- D => NA'Old (3).D));
92

93 end Update_Examples;

A.7 Value of Variable on Entry to a Loop

In SPARK 2005 the entry value of a for loop variable variable, X, can be referenced using the notation X%. This
notation is required frequently when the variable is referenced in a proof context within the loop. Often it is needed
to state that the value of X is not changed within the loop by stating X = X%. This notation is restricted to a variable
which defines the lower or upper range of a for loop.

SPARK 2014 has a more general scheme whereby the loop entry value of any variable can be denoted within any sort
of loop using the ‘Loop_Entry attribute. However, its main use is not for showing that the value of a for loop variable
has not changed as the SPARK 2014 tools are able to determine this automatically. Rather it is used instead of ~ in
loops because the attribute ‘Old is only permitted in postconditions (including Contract_Cases).

Specification in SPARK 2005:

1 package Loop_Entry
2 is
3

4 subtype ElementType is Natural range 0..1000;
5 subtype IndexType is Positive range 1..100;

6 type ArrayType is array (IndexType) of ElementType;
7

8 procedure Clear (A: in out ArrayType; L,U: in IndexType);
9 --# derives A from A, L, U;

10 --# post (for all N in IndexType range L..U => (A(N) = 0)) and
11 --# (for all N in IndexType => ((N<L or N>U) -> A(N) = A~(N)));
12

13 end Loop_Entry;

Body in SPARK 2005:

1 package body Loop_Entry
2 is
3

4 procedure Clear (A: in out ArrayType; L,U: in IndexType)
5 is
6 begin
7 for I in IndexType range L..U loop
8 A(I) := 0;
9 --# assert (for all N in IndexType range L..I => (A(N) = 0)) and

10 --# (for all N in IndexType => ((N<L or N>I) -> A(N) = A~(N))) and
11 --# U = U% and L <= I;
12 -- Note U = U% is required to show that the vaule of U does not change
13 -- within the loop.
14 end loop;
15 end Clear;
16

17 end Loop_Entry;

Specification in SPARK 2014:

1 pragma SPARK_Mode (On);
2 package Loop_Entry
3 is
4

5 subtype ElementType is Natural range 0..1000;
6 subtype IndexType is Positive range 1..100;
7 type ArrayType is array (IndexType) of ElementType;
8

9 procedure Clear (A: in out ArrayType; L,U: in IndexType)
10 with Depends => (A => (A, L, U)),
11 Post => (for all N in L..U => A(N) = 0) and
12 (for all N in IndexType =>
13 (if N<L or N>U then A(N) = A'Old(N)));
14

15 end Loop_Entry;

Body in SPARK 2014:

1 pragma SPARK_Mode (On);
2 package body Loop_Entry
3 is
4

5 procedure Clear (A: in out ArrayType; L,U: in IndexType)
6 is
7 begin
8 for I in IndexType range L..U loop
9 A(I) := 0;

10 pragma Loop_Invariant ((for all N in L..I => (A(N) = 0)) and
11 (for all N in IndexType =>
12 (if N < L or N > I then A(N) = A'Loop_Entry(N))));
13 -- Note it is not necessary to show that the vaule of U does not change
14 -- within the loop.
15 -- However 'Loop_Entry must be used rather than 'Old.
16 end loop;
17 end Clear;
18

19 end Loop_Entry;

APPENDIX

B

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

B.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document ‘free’ in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of ‘copyleft’, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

B.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The ‘Document’, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as ‘you’. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A ‘Modified Version’ of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

257

The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being those of Invariant Sec-
tions, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not ‘Transparent’ is called ‘Opaque’.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, La-
TeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, ‘Title Page’ means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The ‘publisher’ means any person or entity that distributes copies of the Document to the public.

A section ‘Entitled XYZ’ means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ‘Acknowledgements’, ‘Dedications’, ‘Endorsements’, or ‘History’.) To ‘Preserve the
Title’ of such a section when you modify the Document means that it remains a section ‘Entitled XYZ’ according to
this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

B.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

B.4 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

B.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

• Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

• List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

• State on the Title page the name of the publisher of the Modified Version, as the publisher.

• Preserve all the copyright notices of the Document.

• Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

• Include, immediately after the copyright notices, a license notice giving the public permission to use the Modi-
fied Version under the terms of this License, in the form shown in the Addendum below.

• Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Docu-
ment’s license notice.

• Include an unaltered copy of this License.

• Preserve the section Entitled ‘History’, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
‘History’ in the Document, create one stating the title, year, authors, and publisher of the Document as given on
its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

• Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the ‘History’ section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

• For any section Entitled ‘Acknowledgements’ or ‘Dedications’, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

• Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

• Delete any section Entitled ‘Endorsements’. Such a section may not be included in the Modified Version.

• Do not retitle any existing section to be Entitled ‘Endorsements’ or to conflict in title with any Invariant Section.

• Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ‘Endorsements’, provided it contains nothing but endorsements of your Modified Ver-
sion by various parties – for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

B.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ‘History’ in the various original documents, forming
one section Entitled ‘History’; likewise combine any sections Entitled ‘Acknowledgements’, and any sections Entitled
‘Dedications’. You must delete all sections Entitled ‘Endorsements’.

B.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

B.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an ‘aggregate’ if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

B.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ‘Acknowledgements’, ‘Dedications’, or ‘History’, the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

B.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

B.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License ‘or any later version’ applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

B.12 RELICENSING

‘Massive Multiauthor Collaboration Site’ (or ‘MMC Site’) means any World Wide Web server that publishes copy-
rightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can
edit is an example of such a server. A ‘Massive Multiauthor Collaboration’ (or ‘MMC’) contained in the site means
any set of copyrightable works thus published on the MMC site.

‘CC-BY-SA’ means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Cor-
poration, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future
copyleft versions of that license published by that same organization.

‘Incorporate’ means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is ‘eligible for relicensing’ if it is licensed under this License, and if all works that were first published under
this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1)
had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

B.13 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled 'GNU
Free Documentation License'.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ‘with ... Texts.’ line with this:

http://www.gnu.org/copyleft/

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alterna-
tives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

	Introduction
	Structure of Introduction
	How to Read and Interpret this Manual
	Method of Description
	Formal Analysis
	Further Details on Formal Verification

	Executable Contracts and Mathematical Numbers
	The Advantages of Executable Contracts
	Mathematical Numbers and Arithmetic
	Libraries for Specification and Proof

	Dynamic Semantics of SPARK 2014 Programs
	Main Program
	SPARK 2014 Strategic Requirements
	Explaining the Strategic Requirements
	Principal Language Restrictions
	Combining Formal Verification and Testing
	Demarcating the Boundary between Formally Verified and Tested Code
	Checks to be Performed at the Boundary
	Conditions that Apply to the Tested Code

	Adding Code for Specification and Verification
	Synthesis of SPARK 2014 Aspects
	In and Out of SPARK 2014
	External State

	Lexical Elements
	Character Set
	Lexical Elements, Separators, and Delimiters
	Identifiers
	Numeric Literals
	Character Literals
	String Literals
	Comments
	Pragmas
	Reserved Words

	Declarations and Types
	Declarations
	Types and Subtypes
	Type Declarations
	Subtype Declarations
	Classification of Operations
	Subtype Predicates

	Objects and Named Numbers
	Object Declarations
	Number Declarations

	Derived Types and Classes
	Scalar Types
	Array Types
	Discriminants
	Record Types
	Tagged Types and Type Extensions
	Type Extensions
	Dispatching Operations of Tagged Types
	Abstract Types and Subprograms
	Interface Types

	Access Types
	Declarative Parts

	Names and Expressions
	Names
	Indexed Components
	Slices
	Selected Components
	Attributes
	User-Defined References
	User-Defined Indexing

	Literals
	Aggregates
	Expressions
	Update Expressions
	Record Update Expressions
	Array Update Expressions
	Multi-dimensional Array Update Expressions

	Operators and Expression Evaluation
	Type Conversions
	Qualified Expressions
	Allocators
	Static Expressions and Static Subtypes

	Statements
	Simple and Compound Statements - Sequences of Statements
	Assignment Statements
	If Statements
	Case Statements
	Loop Statements
	User-Defined Iterator Types
	Generalized Loop Iteration
	Loop Invariants, Variants and Entry Values
	Attribute Loop_Entry

	Block Statements
	Exit Statements
	Goto Statements
	Proof Pragmas

	Subprograms
	Subprogram Declarations
	Preconditions and Postconditions
	Subprogram Contracts
	Contract Cases
	Global Aspects
	Depends Aspects
	Class-Wide Global and Depends Aspects
	Extensions_Visible Aspects

	Formal Parameter Modes
	Subprogram Bodies
	Conformance Rules
	Inline Expansion of Subprograms

	Subprogram Calls
	Parameter Associations
	Anti-Aliasing

	Return Statements
	Nonreturning Procedures

	Overloading of Operators
	Null Procedures
	Expression Functions
	Ghost Entities
	Relaxed Initialization

	Packages
	Package Specifications and Declarations
	Abstraction of State
	External State
	External State - Variables and Types
	Abstract_State Aspects
	Initializes Aspects
	Initial_Condition Aspects

	Package Bodies
	State Refinement
	Refined_State Aspects
	Initialization Issues
	Refined_Global Aspects
	Refined_Depends Aspects
	Abstract_State, Package Hierarchy and Part_Of
	Refined Postcondition Aspects
	Refined External States

	Private Types and Private Extensions
	Private Operations
	Type Invariants
	Default_Initial_Condition Aspects

	Deferred Constants
	Limited Types
	Assignment and Finalization
	Elaboration Issues
	Use of Initial_Condition and Initializes Aspects

	Visibility Rules
	Declarative Region
	Scope of Declarations
	Visibility
	Overriding Indicators

	Use Clauses
	Renaming Declarations
	Object Renaming Declarations
	Exception Renaming Declarations
	Package Renaming Declarations
	Subprogram Renaming Declarations
	Generic Renaming Declarations

	The Context of Overload Resolution

	Tasks and Synchronization
	Program Structure and Compilation Issues
	Separate Compilation
	Compilation Units - Library Units
	Context Clauses - With Clauses
	Abstract Views

	Subunits of Compilation Units
	The Compilation Process
	Pragmas and Program Units
	Environment-Level Visibility Rules

	Program Execution
	Elaboration Control

	Exceptions
	Exception Declarations
	Exception Handlers
	Raise Statements
	Exception Handling
	The Package Exceptions
	Pragmas Assert and Assertion_Policy

	Generic Units
	Generic Instantiation

	Representation Issues
	Operational and Representation Aspects
	Packed Types
	Operational and Representation Attributes
	Enumeration Representation Clauses
	Record Layout
	Change of Representation
	The Package System
	Machine Code Insertions
	Unchecked Type Conversions
	Data Validity

	Unchecked Access Value Creation
	Storage Management
	Pragma Restrictions and Pragma Profile
	Streams
	Freezing Rules

	Predefined Language Environment (Annex A)
	The Package Standard (A.1)
	The Package Ada (A.2)
	Character Handling (A.3)
	The Packages Characters, Wide_Characters, and Wide_Wide_Characters (A.3.1)
	The Package Characters.Handling (A.3.2)
	The Package Characters.Latin_1 (A.3.3)
	The Package Characters.Conversions (A.3.4)
	The Package Wide_Characters.Handling (A.3.5)
	The Package Wide_Wide_Characters.Handling (A.3.6)

	String Handling (A.4)
	The Package Strings (A.4.1)
	The Package Strings.Maps (A.4.2)
	Fixed-Length String Handling (A.4.3)
	Bounded-Length String Handling (A.4.4)
	Unbounded-Length String Handling (A.4.5)
	String-Handling Sets and Mappings (A.4.6)
	Wide_String Handling (A.4.7)
	Wide_Wide_String Handling (A.4.8)
	String Hashing (A.4.9)
	String Comparison (A.4.10)
	String Encoding (A.4.11)

	The Numerics Packages (A.5)
	Elementary Functions (A.5.1)
	Random Number Generation (A.5.2)

	Input-Output (A.6)
	External Files and File Objects (A.7)
	Sequential and Direct Files (A.8)
	The Generic Package Sequential_IO (A.8.1)
	File Management (A.8.2)
	Sequential Input-Output Operations (A.8.3)
	The Generic Package Direct_IO (A.8.4)
	Direct Input-Output Operations (A.8.5)

	The Generic Package Storage_IO (A.9)
	Text Input-Output (A.10)
	The Package Text_IO (A.10.1)
	Text File Management (A.10.2)
	Default Input, Output and Error Files (A.10.3)
	Specification of Line and Page Lengths (A.10.4)
	Operations on Columns, Lines and Pages (A.10.5)
	Get and Put Procedures (A.10.6)
	Input-Output of Characters and Strings (A.10.7)
	Input-Output for Integer Types (A.10.8)
	Input-Output for Real Types (A.10.9)
	Input-Output for Enumeration Types (A.10.10)
	Input-Output for Bounded Strings (A.10.11)
	Input-Output of Unbounded Strings (A.10.12)

	Wide Text Input-Output and Wide Wide Text Input-Output (A.11)
	Stream Input-Output (A.12)
	Exceptions in Input-Output (A.13)
	File Sharing (A.14)
	The Package Command_Line (A.15)
	The Package Directories (A.16)
	The Package Environment_Variables (A.17)
	Containers (A.18)
	The Package Locales (A.19)
	Interface to Other Languages (Annex B)
	Systems Programming (Annex C)
	Pragma Discard_Names (C.5)
	Shared Variable Control (C.6)

	Real-Time Systems (Annex D)
	Distributed Systems (Annex E)
	Information Systems (Annex F)
	Numerics (Annex G)
	High Integrity Systems (Annex H)

	Language-Defined Aspects and Attributes (Annex K)
	Language-Defined Aspects
	Language-Defined Attributes
	GNAT Implementation-Defined Attributes

	Language-Defined Pragmas (Annex L)
	Ada Language-Defined Pragmas
	SPARK 2014 Language-Defined Pragmas
	GNAT Implementation-Defined Pragmas

	Glossary
	SPARK 2005 to SPARK 2014 Mapping Specification
	SPARK 2005 Features and SPARK 2014 Alternatives
	Subprogram patterns
	Global and Derives
	Pre/Post/Return contracts
	Attributes of unconstrained out parameter in precondition
	Data Abstraction, Refinement and Initialization

	Package patterns
	Abstract Data Types (ADTs)
	Visible type
	Private type
	Private type with pre/post contracts
	Private/Public child visibility

	Abstract State Machines (ASMs)
	Visible, concrete state
	Private, concrete state
	Private, abstract state, refining onto concrete states in body
	Initial condition
	Private, abstract state, refining onto state of private child
	Private, abstract state, refining onto concrete state of embedded package
	Private, abstract state, refining onto mixture of the above

	External Variables
	Basic Input and Output Device Drivers
	Input driver using `Tail in a contract
	Output driver using `Append in a contract
	Refinement of external state - voting input switch
	Complex I/O Device
	Increasing values in input stream

	Package Inheritance
	Contracts with remote state
	Package nested inside package
	Package nested inside subprogram
	Circular dependence and elaboration order

	Bodies and Proof
	Assert, Assume, Check contracts
	Assert (in loop) contract
	Assert (no loop) contract
	Assume contract
	Check contract

	Assert used to control path explosion

	Other Contracts and Annotations
	Always_Valid assertion
	Rule declaration annotation
	Proof types and proof functions
	Using an External Prover
	Quoting an Own Variable in a Contract
	Main_Program annotation

	Update Expressions
	Value of Variable on Entry to a Loop

	GNU Free Documentation License
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE
	RELICENSING
	ADDENDUM: How to use this License for your documents

