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Abstract. There is a strong link between software quality and software
reliability. By decreasing the probability of imperfection in the software,
we can augment its reliability guarantees. At one extreme, software with
one unknown bug is not reliable. At the other extreme, perfect software
is fully reliable. Formal verification with SPARK has been used for years
to get as close as possible to zero-defect software. We present the well-
established processes surrounding the use of SPARK at Altran UK, as
well as the deployment experiments performed at Thales to fine-tune the
gradual insertion of formal verification techniques in existing processes.
Experience of both long-term and new users helped us define adoption
and usage guidelines for SPARK based on five levels of increasing assur-
ance that map well with industrial needs in practice.

1 Introduction

Taken literally, reliable software is the notion that we can rely on software to
perform as intended. This is also how the international standard bodies and
academic experts define it, as phrased in IEC 60050 terms applied to software:
“reliability [is the] ability to perform as required, without failure, for a given time
interval, under given conditions”. Currently, almost no software is reliable in this
sense, because the intention is usually expressed in ambiguous natural language,
and the confidence that software behaves as intended is obtained by a combina-
tion of development discipline (to avoid introducing errors) and partial testing
of all the possible software behaviors (to detect errors that were introduced).
Hence, reliable software today is more an aspiration when building the software
than a quality of the software produced. However, a link between software quality
and reliability does exist, and it was clarified by researcher John Rushby [25]:
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“probability of (im)perfection [..] provides a bridge between correctness, which
is the goal of software verification (and especially formal verification), and the
probabilistic properties such as reliability that are the targets for system level
assurance.”

This interpretation of reliable software as probably perfect software has been
taken seriously in some companies like Altran UK, where specifications are rou-
tinely expressed with the precision of a formal language, and confidence is ob-
tained by a combination of classical techniques plus the guarantees provided
by the use of formal verification. Tools for formal verification of software have
reached a degree of automation and usability that makes them suitable for use
in commercial contexts across a large set of industries, from the well-established
- space, railway, aerospace & defense - to industries that more recently included
software as a critical component like automotive and medical. The main tool used
at Altran UK for formal specification, programming and formal verification of
software is SPARK [23], a subset of the Ada programming language targeted at
safety- and security-critical applications. The use of SPARK allows Altran UK
to provide assurance that software will not crash or behave erratically, and that
critical properties are satisfied, which it demonstrates by committing to these
properties with its customers.

While the benefits obtained by formal verification at Altran UK are clearly
desirable, it may be intimidating for companies without formal verification know-
how to start on this path. Knowing that others have replicated these benefits
in other contexts is an important argument to make. Here, we are describing
the experiments done at Thales, during the years 2016 and 2017, to assess the
costs and benefits of using formal verification of software using SPARK. With
little investment in training (2 days in one experiment, self-training only in
the other) and consulting (20 days in one experiment, online support only in the
other), either provided externally or through self-training, the operational teams
managed to specify intended behavior formally. The teams also proved critical
properties of their software. Specifically: in multiple case studies the code was
fully proved to be free of run-time errors (like buffer overflows and divisions
by zero); in a subset of these case studies the code was proved to implement
functional API specifications; while in another case study the code was proved
to follow a specified safety automaton.

In addition, the collaboration of AdaCore and Thales resulted in a set of
guidelines [1] that should be followed for an easier adoption of formal verification
in existing projects, codebases and processes. These guidelines are based on
five levels of assurance that can be achieved on software, in increasing order of
costs and benefits. These guidelines are a major result of this work, as there is
very little available guidance on the use of specific formal methods and tools in
industrial context. It could be used as an inspiration by other formal verification
platforms for software.

In section 2, we introduce the SPARK formal verification platform. In sec-
tion 3, we present the experience of Altran UK, a long-time user of formal ver-
ification with SPARK, and how it relates to traditional assurance levels (DAL



and SIL) considered in industry. In section 4, we present two studies carried at
Thales, a recent user of formal verification with SPARK, and how such adoption
can be facilitated by the use of suitable guidelines. We finish with related works
in section 5 and conclude.

2 SPARK: Formal Verification Focused on Practical Use

For his PhD defense in 1969 on “A Program Verifier”, J. King submitted a
manuscript that started with these sentences [15]:

This research is a first step toward developing a “verifying compiler”.
Such a compiler, as well as doing the standard translation of a program
to machine executable form, attempts to prove that the program is “cor-
rect”. In order to do this a program must be annotated with propositions
in a mathematical notation which define the “correct” relations among
the program variables. The verifying compiler then checks for consistency
between the program and its propositions.

To most programmers, this may sound like a naive dream, whose illusory
nature is exemplified by C.A.R. Hoare’s call in 2003 for researchers to tackle the
“verifying compiler” as a Grand Challenge, more than thirty years later. Yet,
“verifying compilers” are available today. For example, the formal development
environments Coq and Isabelle/HOL have been used to create a compiler for
C [22] and a microkernel [19] which are guaranteed to be “correct” (related to a
set of requirements and assumptions).

The problem is that these “verifying compilers” are operating on proof lan-
guages that are reserved for experts. Since King’s PhD defense, there have been
numerous attempts at defining practical “verifying compilers” for programming
languages used in industry (first Pascal, then Ada, more recently Java and C#),
none of which has succeeded in gaining industrial adoption. It is difficult to prove
that a program is “correct”, and it will remain so for the foreseeable future. As
Rustan Leino, a prominent researcher in formal program verification, put it in
2010: “Program verification is unusable. But perhaps not useless.” [21]

Departing from this academic tradition, SPARK has been focused on prac-
tical formal verification from the start. SPARK has been adopted in numerous
large industrial projects and only critical parts of the software were proved “cor-
rect” with respect to full functional specification. SPARK was used to prove
specific properties of interest about the software, like the absence of all pos-
sible run-time errors (no division by zero, no buffer overflow, etc.) and some
user-specified safety or security properties.

SPARK is both a language and a toolset, supported by specific development
and verification processes. In this article, we are focusing on the latest genera-
tion of SPARK technology, called SPARK 2014 [10], in which the specification
language and the programming language have been unified as a subset of the
programming language Ada 2012. Constraints on both program data and control



can be specified using respectively type contracts (predicates and invariants) and
function contracts (preconditions and postconditions).

The concept of program contracts was invented by the researcher C.A.R.
Hoare in 1969 in the context of reasoning about programs. In the mid-1980s,
another researcher, Bertrand Meyer, introduced the modern function contract
and type invariant in the Eiffel programming language [24]. In its simplest for-
mulation, a function contract consists of two Boolean expressions: a precondition
to specify input constraints and a postcondition to specify output constraints.
Function contracts have subsequently been included in many other languages,
either as part of the language (such as CodeContracts for .NET [12] or contracts
for SPARK) or as an annotation language (such as JML for Java [5] or ACSL for
C [2]). Type invariants may come in two forms, depending on whether they can
be temporarily violated (type invariants in SPARK) or not (type predicates in
SPARK). Contracts can be executed as runtime assertions, interpreted as logic
formulas by analysis tools, or both.

This design choice has far-reaching consequences. First, specifying properties
of programs is similar to programming: there is no additional language to learn
and the tools available to the programmer also work on specifications. Second,
contracts are executable, which means that they can be tested and debugged like
code. Another important design choice was to allow SPARK and Ada code to
coexist in the same files. Hybrid verification is obtained by using proof on SPARK
code and test on Ada code. This is possible because contracts can be executed,
and because test and proof use the exact same semantics for contracts [4]. Other
formal program verification technologies like Frama-C for C programs have made
similar although not identical choices [20].

SPARK toolset focuses on automation and usability. Generation of implicit
specifications lowers the cost of writing specifications, and generation of loop
invariants, use of multiple state-of-the-art automatic provers, possible generation
of counterexamples when proof fails, combination of static analysis and proof, all
lower the cost of proof by reducing the time and effort required to prove that the
code respects its contracts. Usability is similar to other tools in the developer’s
toolbox, mostly because formal verification can be performed by developers while
they are developing, using their personal computers, thanks to the modularity
and parallelization of the analysis.

We identify five levels of assurance that can be achieved with SPARK, which
are - in increasing order:

1. Stone level - valid SPARK
2. Bronze level - initialization and correct data flow
3. Silver level - absence of run-time errors (AoRTE)
4. Gold level - proof of key properties
5. Platinum level - full functional correctness

At Stone level, strict SPARK rules are enforced on the code, having the
effect of ensuring that a strong semantic coding standard is followed, which
leads to better code quality and maintainability. At Bronze level, the SPARK



code is guaranteed to be free from a number of defects like reads of uninitialized
variables. At Silver level, the SPARK code is guaranteed to be free of run-time
errors. At Gold level, the SPARK code is guaranteed to respect key integrity
properties. At Platinum level, the SPARK code is guaranteed to implement a
complete specification of intended behavior. Note that each level builds on the
previous one, so that at Platinum level the guarantees given by all the lower
levels are also achieved.

3 The Practice of Formal Verification

Altran UK has a special relationship with the SPARK technology, being the
heir of both PVL and then Praxis, the companies which have developed SPARK
since 1987 [7]. Along the years, Altran has used SPARK both directly and in
partnership with our customers - through training, support and consulting - in a
number of project domains which range across air traffic management, airborne
systems, avionics, railway control & protection, security and defense systems.

SPARK is used at Altran as an efficient means to both get as close as possible
to zero-defect software and as a means to address the objectives of the relevant
standards. This technical strategy has been subject to careful evaluation of costs
and benefits, in order to apply formal verification where it brings more value to
the business. At Altran UK, SPARK fits within an overall software development
philosophy known as Correctness By Construction [9]. The key principles of this
approach are:

– to use techniques that prevent the introduction of errors (e.g. language sub-
sets);

– to maximize the ability to detect defects early (e.g. through the use of formal
techniques);

– to generate assurance evidence as you progress.

The detail of how SPARK is applied varies from project to project, depending
on factors which include the required integrity level, applicable standards, and
the overall verification strategy for the system (in which SPARK will play a part
amongst other techniques and tools). Together, these considerations will lead
to a set of verification objectives for SPARK, which will be documented in the
technical plan at the start of a project (and which in turn support the assurance
case either implicitly or explicitly if it is a formal deliverable).

In spite of these variations, one can identify certain typical ways in which
SPARK is applied on projects which have been shown to deliver high value in
relation to the effort required. The table in Figure 1 summarizes Altran’s expe-
rience of how best to apply the different assurance levels possible with SPARK
vs. the relative design integrity level of the software under development. Stone
level is not represented as it is more an intermediate level during adoption of
SPARK than a target assurance level.

The way to understand this table is as both a summary of experience on
industrial projects at Altran UK and as a starting point for how Altran UK



Software Integrity Level SPARK Verification Objective

DAL SIL Bronze Silver Gold Platinum

A 4

B 3

C 2

D 1

E 0

Fig. 1. Technical Planning Guidelines for the Application of SPARK. The filled cells
denote the three most common categories of application.

approaches new projects. Every project at Altran will tailor its own approach.
However, one would expect new projects to fall within the typical region(s) indi-
cated in the table; any which did not would require justification in the planning
phase.

We have chosen to represent the software integrity level using two commonly
understood scales: DAL (Design Assurance Level) is the terminology from DO-
178 and SIL (Software Integrity Level) is the terminology used in DEFSTAN
00-55, IEC 61508, EN 50128 et al. The correspondence between DAL and SIL
is necessarily informal because different standards define the levels according to
different criteria. Note also that while DAL-E is defined by DO-178 its counter-
part “SIL-0” is an informal but widely used term taken here to mean software
below SIL-1 but which is still well-engineered.

Experience shows that projects can be grouped into three broad categories,
shown by the three filled regions in the table. Category 1, shown in black, rep-
resents our practice at the highest levels of integrity SIL-3 and SIL-4. Within
this category, Silver (AoRTE proof) is considered the “default level”, but may
be increased to Gold or even Platinum depending on whether key properties
and functional correctness respectively are verified by other means. Targeting
Platinum (full functional proof) becomes less likely for a SIL-3 system where
verification by testing could more easily be argued to be sufficient.

Category 2, shown in gray, captures our practice at medium levels of integrity
SIL-1 and SIL-2. Silver is still the default level, and it is very unlikely that
Platinum would be employed on systems below SIL-3. However, proof of key
properties (Gold), should still be strongly considered. There may be some key
property where proof represents a very efficient means of verification, i.e. it is
relatively easy to prove and relatively difficult to verify by any other means. The
nature of such properties will vary from system to system, but could include even
one key safety property (“the lift will not move when the doors are open”) or
security property (“the account details cannot be accessed when the user is not
logged in”). While testing can provide some level of confidence in such properties
it can never provide a complete guarantee for any realistically-sized system, due
to the impossibility of covering all possible states and input combinations.

Category 3, shown in light gray, represents the lowest levels of integrity, so-
called SIL-0. Even here, Silver is the default objective, but this could be weakened



to Bronze if there is enough confidence that AoRTE was being sufficiently-well
assured by other means or mitigation.

The table shows that - for all but SIL-0 software - SPARK code will as a
minimum be checked for AoRTE. Note that this level of verification implicitly
means that all SPARK code has also been shown to be free of references to
uninitialized variables and basic data flow errors. Experience shows that the
presence of this kind of flaw - which can have far-reaching consequences - can
be immensely difficult to detect by other forms of verification [16].

A key part of the software engineering process which maximizes the benefit
of SPARK is a careful delineation of the “SPARK boundary” i.e. choosing which
parts of the application software will be written in SPARK. Although the ben-
efits of SPARK would push towards maximizing the proportion of the software
written in SPARK, other factors are likely to affect this engineering decision.
For example, there may be pre-existing libraries to support the user interface
or other external communication protocols that one wishes to use and which
are qualified by alternative means. It is not unusual even to use different levels
of SPARK verification within the same application. For example, SHOLIS [9]
used this approach with SIL-4 parts of the application attaining full functional
proof (Platinum level) while in lower-integrity functions (SIL-2) they verified
only up to AoRTE (Silver level). The non-interference between different sections
of the code was assured by the use of information flow analysis: a contract was
attached to each subprogram specifying which global data items it could access
in accordance with its SIL and the SPARK tools were used to check that the
implementation respected these contracts. More generally, consideration has to
be given to the assumptions that are made to support the verification objectives
- how these are satisfied or mitigated by other activities in the overall V&V
strategy [14].

The use of SPARK within the Correctness By Construction framework as
described above has been demonstrated to produce software with very low defect
density when compared to other high-integrity processes [9]. Although the above
approach is the standard approach within Altran UK, the company has continued
to explore new ways in which benefits can be gained from the use of SPARK, in
particular the possibility of so-called “hybrid” approaches to verification, where
a mixture of static and dynamic verification techniques are used to exploit the
SPARK contracts.

The hybrid approach that Altran is currently pioneering, called ConTestor,
uses SPARK verification at Silver level i.e. assurance of AoRTE using proof.
In addition, SPARK contracts are used to add a functional specification to the
code. Rather than verifying these contracts by proof using the SPARK tools (as
per the standard Platinum approach), they are verified dynamically by testing.
To perform these tests a fully-integrated version of the code is compiled with the
run-time checks enabled for the functional contracts. Test cases for the integrated
code are generated using constrained-random test generation and if no exceptions
are raised during execution then the code has passed this functional test. The
contracts effectively provide a test oracle i.e. an independent calculation of the



expected outcome for each test case. However, rather than having to manually
calculate the expected outcomes per test case, the contracts are written once
and provide an implicit definition of the expected outcome for all possible test
cases.

4 The Adoption of Formal Verification

Contary to Altran UK, Thales has no established use of formal verification,
but different units in Thales have been experimenting since 2015 with formal
verification of programs using SPARK and Frama-C. The two case studies in
this section describe the experiments with SPARK in the context of two different
units working respectively in the domains of air defense systems software and
cryptography.

4.1 First Study: Define an Adoption Strategy

One trait of established industrial software development processes is their inertia
in accepting new practices which could be considered as too disrupting, either
by lack of understanding and know-how or, mostly for early adopters, because of
the difficulty to assess costs and benefits. In the latter case, the upfront adoption
effort is hiding the longer term process optimisation opportunities. In order to get
a first idea of the possibilities SPARK-based formal verification could provide
at Thales, a study was carried throughout 2016 with the aim of producing a
first set of deployment guidelines supported by real life experiments on actual
software applications.

As formal verification with SPARK is not a widespread technology in the
software industry, a prerequisite is to picture the range of its capabilities with a
simple to remember concept. This led to the definition of the five levels of assur-
ance previously introduced. As part of this study, AdaCore and Thales wrote a
guidance document [1] describing how SPARK could be adopted at these differ-
ent levels. This is further conditioned by the phase of the software development
lifecycle, which has a significant impact on the definition of activities to be per-
formed when deploying SPARK.

Given the current state of progress of some ongoing software development
projects, four case studies were identified as potential targets for SPARK de-
ployment experiments, from teams working on air defense systems software.

The first case study meant to assess the effort for transitioning from Ada to
SPARK code (Stone level) using a mature software application about to be
ported onto a new execution platform. As porting the application on a new
platform using a different compiler may introduce a different behavior in case
of errors such as references to uninitialized variables, reaching the Bronze level
seemed a desirable aim. A significant refactoring effort was required in order to
cope with constructs excluded from the SPARK subset of the Ada language,



the most prominent one being pointers. Thales engineers started using success-
fully the refactoring solutions described in the guidance document, but did not
manage to complete refactoring in the expected time frame (5 person-days), due
to the size of the chosen code base (around 300 klocs). This is expected to be
completed in the coming year.

The second case study focused on programmer proficiency. In that case study a
small subprogram of less than 10 lines of code was given to an experienced Ada
programmer with the goal of performing validation activities, both using the
usual unitary test approach, and a contract-based approach. Based on current
tools, it took less than one hour for the experienced software test engineer to set
up a working test environment for the subprogram. On the other hand, writing
relevant contracts on that same subprogram to formally prove properties took an
order of magnitude more time for the same engineer. Interestingly, the amount
of code to implement a contract was in that case as long and complex as the
code to prove. As a consequence, there is no intention to invest in Gold level
verification on numerical computations in the near future. The lesson is that one
should start with the lowest levels of assurance and work upwards, as practiced
in the subsequent case studies.

The third case study was designed to complement test result artifacts on au-
tomatically generated code. A large amount of the unit’s software application
source code relating to data binary serialization and deserialization is automat-
ically generated. The code generator compiles data models described through a
domain specific language into Ada code. Up to now the test strategy for the code
generator was mostly based on a limited set of regression tests and the confidence
acquired over time as this technology was deployed across many projects over
the last fifteen years. However, a hard to trigger weakness was lying dormant,
which was cleaned up using a Gold level approach. With the support of SPARK
experts, a first stage was to correct and refactor the code (2 kloc for the runtime
and 21 kloc of generated code) to pass Stone, Bronze and Silver levels. For code
written by savvy programmers making a moderate use of specialized language
features such levels are easy targets, in this case less than half a person-day for
a few hundreds lines of code. Reaching Gold level to prove one property related
to buffer overflows required a larger effort, two person-days in that case, in order
to refactor the code for proof, interact with automatic provers through interme-
diate assertions and provide the required loop invariants. Given the extra level
of confidence regarding the robustness these changes provide, Thales plans to
deploy them in the next release of the code generator.

The fourth case study targeted the proof of safety properties in a context where
safety standards apply. Safety properties are usually written as “nothing bad will
ever happen” and, since their scope is usually on a large part of the code, need to
be specified at the highest level of the code, almost at the entry point. Inside a 70
kloc control commands project, Thales and AdaCore engineers identified a few
units (7 kloc) defining a set of high level automata where those properties could



be specified. As a first step, the engineers reached the Stone, Bronze, and Silver
levels on this code in less than a person-day. Then, contracts were added on
subprograms implementing the automata, mostly to express the effect of calling
each automaton, also in less than a person-day. Automatic proof was obtained
without much difficulty after that, with no need for intermediate assertions, loop
invariants or specific proof switches. The lessons learned here are that SPARK is
expressive enough for typical safety automata properties, and powerful enough
for automatic proof of such properties.

Lessons learned - From an adoption point of view, Thales concluded from this
first study that formal verification as implemented by SPARK 2014 and its
associated toolset can be considered as a toolbox providing various opportunities
for subsetting and tailoring. This flexibility gives the possibility to fine-tune the
gradual insertion of formal verification techniques in existing processes, while
mitigating risks both on their efficiency from a cost and planning point of view
and their ability to output software with a defect density under control.

4.2 Second Study: Implement and Refine the Adoption Strategy

In the field of high-security applications, which is particularly important for
Thales, testing represents a considerable part of the software development pro-
cess. In addition to unit tests, other principles are implemented such as enforcing
coding rules, peer code reviews and qualimetry surveys with many tools checking
that those principles are strictly followed. One solution to lighten and improve
this process, to produce software of improved quality, is the use of more suitable
tools, such as formal verification tools to replace part of the tests. Indeed, formal
proofs allow a comprehensive checking of proved parts, unlike testing that can
only guarantee a partial checking of the software.

After an internship in 2015 comparing some available environments for formal
verification (eCv [8], Frama-C [18], SPARK), another six-months internship in
2017 was dedicated to the study of the benefits of the Ada language and particu-
larly the SPARK language for the security software developed at Thales. During
this internship, Thales evaluated the various advantages of Ada and SPARK,
by implementing the Adacore and Thales adoption guidance on two proofs of
concept in the field of cryptography.

The first case study was porting from C to Ada, then to SPARK, part of a
cryptographic library which is used as an abstraction layer between a lower level
cryptographic library (also in C) and client applications. This case study followed
the guidance document produced in the previously mentioned first study, to
convert an application from Ada to SPARK.

The preliminary stage consisted of porting the C library code to valid Ada
code. Porting API (.h files) was facilitated by g++ switch “–fdump-ada-spec”
which produced comprehensive Ada specifications (.ads files) as well as Ada body
skeletons (.adb files) generated automatically with the gnatstub tool. The body
code was completed manually without difficulties as most C idioms are available



with Ada. Interfacing with the C low-level cryptographic library was essential
and was supported natively by Ada. This small step brought simpler code with
pointer-related defensive code eliminated thanks to the use of handy Ada array
attributes and built-in Ada compiler verification.

Firstly, Stone level was reached by transforming the Ada code to be valid
SPARK code. It mostly consisted in suppression of pointers (or at least encap-
sulating them in a non-SPARK unit) and transformation of functions with side
effects into procedures (or at least encapsulating them in wrappers within a
non-SPARK unit). Thus, it was possible to make a first analysis of the code
with SPARK tools. This first step didn’t require major changes in the code but
it pinpointed parts of the code with potential security vulnerabilities (pointer
casts and side effects in particular).

In a second stage, Bronze level was reached, analyzing the code for data flow
and variable initialization. Data flow (Global) and information flow (Depends)
contracts were added in the code to specify precisely the intended behavior. The
analysis detected unused inputs which could then be removed, which is useful
for maintenance, as well as partially initialized data structures, which is useful
for debugging.

In a third stage, Silver level was reached, ensuring absence of run-time errors
in the code (AoRTE). Preconditions were added in the code, mostly to link the
right algorithm with the right variant of a discriminated structure.

In a fourth stage, Gold level was reached, verifying the functional behavior
of the code. Preconditions and postconditions were added in the code to specify
key security requirements: cleanup of security-sensitive working variables, cor-
rectness of output value, and consistency between parameters. At this level, all
the existing defensive code had been replaced by contracts. By achieving com-
plete proof of these specifications, the propagation of error codes from low level
subprograms to high level ones was no longer necessary.

The second case study was about producing an API similar to the API ported
from C during the first proof of concept, this time based on a low level cryp-
tographic library in Ada, which was also later proved with SPARK. The whole
process from Stone level to Gold level was followed again. New technical issues
arised: the need for loop invariants, contracts on type hierarchies for subpro-
grams supporting dispatching, visibility of global variables in contracts of high
level subprograms, and non-provable Ada code. Though loop invariants are the
basis of formal proof, they are considered as tricky. Many unproved properties
came mostly from weak preconditions or weak postconditions of subprograms
called inside a loop, which were not obvious to understand. Object Oriented Pro-
gramming brings another layer of complexity, with specific rules for inheriting
subprograms and contracts over these subprograms. Global variables mentioned
in data flow contracts propagate to the upper levels of the call tree, where they
are not visible anymore, which required costly workarounds. A better solution
would have been to hide this particular effect in a low-level non-SPARK package
body, or to use the data abstraction feature available in SPARK. Finally, some



idiomatic Ada code did not lead to automatic proofs in SPARK. It seemed to
be a good thing as it led to changes for simpler and more readable code.

Lessons learned - Thales learned a few lessons from this second study. First, the
adoption guidance document was really helpful: it eased the implementation of
SPARK during the second internship. As a result, it was also refined for future
uses inside and outside Thales. Secondly, as stated in the guidance document,
Users should refrain from changing the program for the benefit of only getting
fewer messages from the tool, a principle that could be phrased as “do not please
the tools”. Of course, it is sometimes adequate to change the program in a way
that will cause some messages about unproved properties to disappear, provided
this favors code quality, readability or maintenance. Otherwise, tools provide
ways to silence messages, that should be used instead of changing the program.
Thirdly, reaching Gold Level is more easily achievable when clear and meaningful
software specifications are available. Finally, not all code can be proved but
non-provable parts that are well identified can undergo peer code reviews. For
instance, 90% of the code was automatically provable in the second case study.

5 Related Works

Formal methods have long been considered as a means of compliance to satisfy
verification objectives in critical software development for some certification do-
mains, for example in railway (EN 50128) and industrial processes (IEC 61508).
The avionics standard DO-178C in 2012 has more recently recognized formal
methods as a means of compliance on a par with the dominant technique of
testing. Other certification standards in the domains of automotive (ISO 26262),
nuclear (IEC 60880) and space (ECSS-QST-80C) also recognize some uses of for-
mal methods as verification techniques.

The adequateness of formal methods for certification was thoroughly investi-
gated by John Rushby in his report for the NASA in 1993 on “Formal Methods
and the Certification of Critical Systems” [26]. Although Rushby’s report talks
about “formal methods”, this mostly corresponds to what we call today “theo-
rem proving”: model checking techniques are mentioned en passant, and nothing
is said about abstract interpretation techniques, which did not have then the
recognition that they do today. More recently, Graf and Garavel studied exten-
sively the use of formal methods for developing critical systems, and they cover
in particular the impact of formal methods on development and verification pro-
cesses [13]. More specific guidance exists in certain application domains, such as
in avionics [3].

There is on the contrary very little guidance on the use of specific formal
methods and tools. This is somewhat remediated by the availability of tool spe-
cific user guides and publicly available experience reports [28]. Company-specific
guidance is developed to carry-over the experience gained from project to project,
in the companies using formal methods, but such guidance is kept confidential.
Indeed, the experience gathered through previous projects is considered as a



business advantage over the competition, and the guidance having been devel-
oped in the specific business context of the company, the information related
to formal methods usage is very tied to other confidential information. In their
dual role of SPARK tools providers and practitioners, Praxis and then Altran
have always been keen on publicizing best practices and lessons learned with
formal verification on industrial projects [17,6,7]. The publication of the guid-
ance co-developed between AdaCore and Thales [1] on SPARK adoption follows
this lead, which was possible because it was written since the start with the tool
provider. This is similar to the joint effort by tool provider CEA, certifier Bureau
Veritas and user Sirehna to publish guidelines on the use of Frama-C [11].

Formal methods have been divided between heavyweight and lightweight
ones, with the former being the original formal methods and the latter also be-
ing called the disappearing formal methods [27]. SPARK is a case of lightweight
or disappearing formal methods, in which the user does not directly manipulate
the underlying formalism, but instead interacts with tools through multiple in-
terfaces. Formal methods and tools are usually placed at some point in between
the heavyweight and lightweight extreme points. With the notion of software as-
surance levels, we have shown that a given tool can be placed at multiple places
along this axis, and that a project can move between these places using the same
tool.

In particular, it is likely that other formal verification platforms for software
such as Atelier B and Frama-C could similarly define their own software assur-
ance levels. For example, the plugin structure of Frama-C could be used to define
levels in terms of plugin usage [18].

6 Conclusion

Formal program verification with SPARK has been used for years at companies
like Altran UK to get as close as possible to zero-defect software. Altran UK has
developed software engineering processes to maximize the costs-benefit ratio of
using SPARK. In particular, it has defined a mapping between levels of use of
SPARK and software assurance targets (SIL/DAL), which is used by all projects
at Altran UK. Altran UK is now investing in its use of SPARK for the future, by
investigating innovative ways to generate tests from contracts, to combine tests
and proofs and to analyze code generated from Simulink.

Other companies like Thales are starting to use SPARK to obtain similar
benefits. We have presented in this article the lessons learned at Thales on var-
ious deployment experiments at different levels of use of SPARK. As for every
promising but complex technology, the success of its deployment is conditioned
by the pace at which adopters can climb the learning curve and identify relevant
insertion points and strategies into established development processes. While
AdaCore expertise was essential in the success of these experiments, Thales has
identified typical use cases where the methodology used could be replicated with-
out external help. Thales is now aiming at clarifying how SPARK can be adapted
to its internal processes. The guidance document written as a result of Thales



experiments is being used to support adoption of SPARK in other teams inside
Thales and is available for other companies to start on this path.

We have benefited in multiple ways from the definition of the five software
assurance levels that can be achieved with SPARK. First, the five levels clarify
the verification objectives that can be achieved with formal verification: not only
they provide simple and easy-to-remember names for communicating between
stakeholders, they also make it explicit that upper levels build on the lower levels,
and they provide at each level a clear identification of the costs and benefits.
Secondly, the five levels make it easier to plan for progressive adoption of higher
levels of software assurance, with lower levels requiring less effort than higher
levels, and each level providing already very valuable benefits. These results could
be translated to other formal methods that similarly provide different depths of
use that could be translated to assurance levels.
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11. Lucas Duboc, Sébastien Flanc, Florent Kirchner, Hélène Marteau, Virgile Prévosto,
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