T L T —

Security-Hardening
Software Libraries with

Ada and SPARK

AdaCore

Security-Hardening Software
Libraries with Ada and SPARK

White Paper

Kyriakos Georgiou, Paul Butcher, Yannick Moy
June 4, 2021

Abstract

When it comes to providing software assurance, SPARK, a formally
provable subset of Ada, is the best weapon in the arsenal to ensure
the absence of data-flow and runtime errors. Furthermore, SPARK of-
fers mechanisms to prove key integrity properties and even complete
functional proof of requirements. Regardless of the apparent benefits
of using SPARK in safety-critical applications, there is still some reser-
vation in adopting the technology over traditional languages like C and
C++, which offer minimum software assurance. Instead, developers in
many cases rely on heavy testing approaches with the hope that all the
possible bugs will be captured before application deployment. Argu-
ments in favour of such problematic approaches include a perceived
steep-learning curve for adopting SPARK, and thus, an increase in pro-
duction cost, and the assumption that SPARK will significantly nega-
tively impact the execution time of an application. These are all per-
ceptions mainly formed due to a lack of understanding the technology.
This paper takes a quantitative approach, where SPARK is put under
test, and relevant metrics, such as performance and development time,
are recorded to demystify the impact of adopting SPARK and expose
any areas that the technology can be further improved. To achieve this
a relevant to the industry embedded benchmark suite written in C, the
EMBENCH, is converted to Ada and SPARK, to prove the absence of
runtime errors, which are well-known sources of security vulnerabilities.
Furthermore, we share our valuable experiences on best practices for
hardening software libraries using SPARK.

CONTENTS

Contents

1

2

Introduction

Ada and SPARK
21 Ada
22 SPARK.

2.2.1 SPARK Levels of Software Assurance

The EMBENCH Benchmark Suite

Benchmarks Conversion and Proof

4.1 The process of converting the Benchmarks
411 Supporting Ada and Sparkin EMBENCH

4.2 Achieving the Different SPARK Levels . .
4.2.1 Achieving Stone Level of SPARK .
4.2.2 Achieving Bronze Level of SPARK
4.2.3 Achieving Silver Level of SPARK .

Evaluation
5.1 Performance Evaluation.
5.2 Effort/Time and Technology Assessment

Conclusion and Future Work

11
13
14
14
15
17
20

29
29
31

33

1 Introduction

For many years, safety engineering has been the main focus of certification
around critical industries, such as aviation and rail systems. This is particu-
larly true for software. Software safety standards and guidelines, for example,
the DO-178 (B,C versions) for avionics, or the CENELEC EN 50128 for rail
systems, have been around for decades and went through a series of revi-
sions. These documents are well understood and admitted by the relevant
industries. In contrast, software security aspects did not accept the same
amount of attention within these industries. Partially, this is because some
of the possible software security vulnerabilities can be addressed through
the well established safety practices.

With the take-off of cyber-physical systems and the last decade’s Inter-
net of Things (IoT) evolution [5], it was made evident that security for such
systems is a major challenge [11, 7]. This is reasonable as now attackers
have a much bigger playground to explore and discover vulnerabilities that
can be maliciously exploited. Nowadays, it is not uncommon to come across
daily news referring to newly discovered software vulnerabilities that can
compromise the security of billions of embedded systems, including critical
ones, such as medical applications [10].

The tremendous increase in sophisticated cyber-security related attacks,
leaves no room for addressing security vulnerabilities as a byproduct or a side-
effect of certifying for safety. A clear understanding of the boundaries and
interactions between safety and security is needed. Aerospace is one sector
which has seen a recent immediate need for security assurance, particularly
where security threats have been identified as leading to safety hazards.
To address this, new security standards were introduced, such as the ED-
202A, titled "Airworthiness Security Process Specification" and the ED-203A,
titled “Airworthiness Security Methods and Considerations”. This group of
standards forms a set of objectives allocated to Security Assurance Levels
(SAL) which, when met, form an Acceptable Means of Compliance (AMC) by
EASA for aviation cyber-security airworthiness certification. The same is also
true of the DO-326A and DO-356A standards for the Federal Aviation Authority
(FAA) although, at the time of writing, the FAA has not issued rules nor an
Advisory Circular listing the standards as Acceptable Means of Compliance.

The role of software-language technologies in the security and safeness
of cyber-physical systems is paramount [3]. The language chosen to develop
a cyber-physical system is the starting point, and probably the most critical,
of building a security and assurance argument against relevant certification.
Thus, the Ada programming language has enjoyed wide acceptance in the
space of critical software during the last four decades. This is due to the

extensive language built-in safety features, [12], that eliminate a significant
number of software vulnerabilities, commonly found in other popular lan-
guages such as C and C++ [2]. SPARK technology, a formally provable subset
of Ada and a set of software verification tools, takes what Ada offers to the
next level. It allows to mathematically prove the correctness of information
flow, freedom from runtime errors, functional correctness, and the adher-
ence to security and safety policies [4]. Thus, SPARK is perhaps the only
language technology that exhibits all the essential characteristics for devel-
oping high integrity applications that can fulfil both the safety and security
requirements when certifying against the highest levels of the aerospace
software standards.

In this work, the SPARK technology is put under test to demonstrate that it
can be relatively easily adopted and that the massive benefits of its adoption
do not come with a significant negative impact on the performance of a
program. To showcase this a set of benchmarks from a relevant to the
industry C embedded benchmark suite, namely the EMBENCH suite [34], are
converted to SPARK with the aim of guaranteeing the Absence of Runtime
Errors (AoRTE). Runtime errors are a well-known source of security-related
vulnerabilities, with dozens of system security breaches related to them [1].
Thus, such runtime errors should be eliminated in the context of highly critical
systems to avoid potential exploitations that can lead to safety issues.

The work not only achieves the above goals but in the process, a plethora
of useful guidelines and best practices are offered to enable others in rapidly
adopting the technology for hardening software libraries.

The rest of the paper is organized as follows. Section 2 gives a quick
overview of the Ada and SPARK technologies, with a focus on their software
assurance by design philosophy. Section 4 introduces the EMBENCH bench-
mark suite, and it analyses all the steps and best practices for converting the
C benchmarks to SPARK and proving AoRTE. Our experimental evaluation is
presented in Section 5. Finally, Section 6 concludes the paper and outlines
opportunities for future work.

2 Ada and SPARK

Undoubtedly programming languages is one of the most active areas of
computer science. The number of new programming languages emerging
is astonishing. For example, in the last two decades, C#, Scala, Go, Rust,
TypeScript, Kotlin are some of the most notable languages introduced, all
aiming to fulfil the needs of rapid technological advancements in Information
Communication Technologies (ICT). Having a plethora of programming lan-
guages can be seen as troublesome for the software community. Software

4

2.1 Ada

developers are often required to master a new programming language to
fulfil the needs of a new project. Becoming proficient in a new programming
language often comes with a steep learning curve, and the investment in
doing so in the context of a company needs to be worthwhile.

Nevertheless, the bottom line is that the best tool should be used for
the task at hand. For example, Python, a high-level dynamically typed and
interpreted programming language, found wide acceptance due to its ease of
learning and its philosophy of enabling the rapid development of application
prototypes. When it comes to strict performance requirements, C and C++
will be chosen over Python since compiled code can typically outperform
interpreted code. The success and the longevity of a programming language
heavily depend on how well the language is serving its existential purpose,
and if there is a continuous significant demand for it.

2.1 Ada

The Ada programming language emerged in the mid-1970s, out of the needs
of the US Department of Defense (DOD) and the UK’s Ministry of Defence to
replace the large number of programming languages used in their embedded
systems with one that will cover all their needs. The main requirement was to
develop an embedded, real-time programming language suitable for safe and
modular programming. After Ada won the competition specifically set out by
the DOD for the creation of such language, the first official ANSI standard [20]
Ada version was released in 1983, generally known as Ada 83. Since then, Ada
has been through three major revision cycles resulting in the versions Ada 95,
Ada 2005, and Ada 2012, respectively. With these new ISO [41] standardised
revisions, Ada managed to evolve continuously and in many cases lead the
evolution of programming languages in adapting to the new requirements that
stemmed out of the rapid technological advancements of ICT during the last
40 years. Today Ada is a modern programming language suitable for large
scale applications that require adaptability, maintainability, portability and
performance. Some of the modern characteristics of the language include:

* Full Object Oriented Programming support.

« Concurrent programming features, including support for multicore.

« Hierarchical program composition/programming in the large support.
* Generic templates.

+ Encapsulation.

2.1 Ada

A new revision of the standard, expected as Ada 2022, is currently formed.
Among other developments, the new standard will support fine-grained par-
allelism that will significantly increase the ability of the language to exploit
multicore architectures.

While Ada’s evolution keeps the language to modern standards, it always
ensures to not diverge from its original purpose and design philosophy: to
provide a language that quarantines the maximal support when it comes to
the development of large scale reliable, secure and safe software. By design,
Ada is able to enforce detection, prevention and elimination of safety and
security bugs at an early stage of the software development life-cycle and
before they become part of the executable program. In fact, over the years,
the language has been enhanced with a plethora of state of the art safety
and security features that made it the best candidate when it comes to the
development of high-integrity software. Some of most the important features
are:

* Very strong typing. Data intended for one purpose will not be
accessed via inappropriate operations. For example, common errors
arising from treating pointers as integers are prevented. New types can
be introduced easily, with the benefit of preventing data usage errors.

* Extensive compile-time and run-time checks. The language
strong typing facilitates the detection of many common software errors
by either the compile- or run-time checks. These include mismatched
types range violations, parameter misuses and invalid references. Run-
time checks can capture a certain number of errors related to type and
memory conditions that can not be checked at compile time, such as
"dangling references" (a live pointer referencing an object that went out
of scope). Furthermore, run-time checks can capture errors such as [9]:

- Buffer overflow; indexing an array with an out-of-bounds value.

- Integer overflow/wraparound; computing an integer operation whose
result exceeds the maximum integer value or is less than the mini-
mum integer value.

- Assigning to a scalar variable a value outside the range of that
variable.

- Dereferencing a null pointer.
- Supplying malformed input as part of an input operation.
« Contract-based programming. Unlike most other languages, Ada

introduced contracts, such as post- and pre-conditions, as part of the
language’s standard syntax. Such contracts are vital for expressing

6

2.2 SPARK

software and verification requirements explicitly in the source code, to
allow for static analyzers or run-time checks to verify that the stated
requirements are met. Contracts are not a new concept. However, Ada’s
innovative approach to verify contracts both statically and dynamically
allows for a hybrid verification; formal verification can be applied to
critical application modules, and traditional testing techniques can be
utilized to gain a sufficient level of software assurance on the non-
critical parts of the application.

By-design Ada and its companion static analysis tools, such as Code-
Peer [15], can eliminate or reduce the risks related to a large number of the
MITRE Common Weakness Enumeration (CWE) documented cyber-security
vulnerabilities [28]. This is a well established and widely accepted by the
software community list of software and hardware weaknesses which can
compromise the resilience, reliability and the integrity of software. MITRE
listed software issues like using unsafe pointers or improper null termination
of strings can not exist in an Ada program, while issues like buffer overflow
or integer overflow can be dynamically captured by Ada's runtime-checks
and dealt with via exception handlers. A comprehensive list of the CWE's
prevented by Ada can be found at [8].

2.2 SPARK

Subsetting a programming language to facilitate the development of safe
and secure high-integrity applications is a well-established methodology.
Traditional languages like C and C++ are too large and complex, resulting
in too many error-prone features, or semantics that prevent analysability
[24]. Thus, the use of such languages is inappropriate for certifying software
against the highest-levels of assurance of safety standards and guidelines,
such as the DO-178C for avionics, or the CENELEC EN 50128 for rail systems.
MISRA-C and MISRA-C++ are successful examples of subsetting the C and
C++ languages, respectively. Their main objective is to restrict the use of
any language constructs that are either error-prone or a source of ambiguity.
Furthermore, they defined a large number of rules to allow vendors to provide
static analysis tools that can enforce some of them automatically.
Although, Ada by design eliminates a lot of the error-prone features that
exist in C and C++ and addresses a significant number of the CWE vulnera-
bilities, the full usage of the language may be inappropriate for certification
purposes or formal verification. Ada features, such as pointers or exceptions,
are hard to be analysed to provide sound verification through formal methods.
By subsetting Ada, the SPARK programming language emerged, to provide the
largest possible subset of Ada which is suitable for functional specification

7

2.2 SPARK

and static verification. Thus, SPARK already builds on a solid foundation for
providing software assurance since it inherits all the safety features of Ada,
such as strong typing. SPARK is not only a programming language but also
a verification toolset. This document refers on the latest version of SPARK,
known as SPARK 2014 [18], which is based on the latest version of Ada, Ada
2012. Currently the only available implementation of SPARK is provided by
Altran and AdaCore [19].

SPARK 2014 significantly benefits from the introduction of contract-based
programming in Ada 2012. Ada’s syntax for writing static verification state-
ments, called assertions, is also used by SPARK. These assertions are pro-
vided at the subprogram level to enable modular analysis and testing. Ada
offers a range of assertions, such as preconditions and postconditions, and
SPARK provides yet further assertions to allow expressing any semantics of
a program needed for formal verification. Assertions can be either proven
by formal verification tools to demonstrate that they always hold, or can be
executed to show that they hold for specific execution instants. Executable
semantics is a powerful tool as it allows for a hybrid formal verification and
test-based approach. In a sense, parts of the program can be formally verified
to prove certain properties, such as the absence of runtime errors, while for
other parts of the code, assertions can be tested dynamically to gain the
required level of assurance.

The following Ada features are simplified or excluded from the SPARK
language (as taken from [53]):

« Uses of access types and allocators must follow an ownership policy
[50], so that only one access object has read-write permission to some
allocated memory at any given time, or only read-only permission for
that allocated memory is granted to the possible multiple access ob-
jects.

- All expressions (including function calls) must be free of side-effects.
Functions with side-effects are more complex to treat logically and
may lead to non-deterministic evaluation due to conflicting side-effects
in sub-expressions of an enclosing expression. Functions with side-
effects should be written as procedures in SPARK.

« Aliasing of names is not permitted. Aliasing may lead to unexpected in-
terferences, in which the value denoted locally by a given name changes
as the result of an update to another locally named variable. Formal
verification of programs with aliasing is less precise and requires more
manual work.

« The backward goto statement is not permitted. Backward gotos can

8

2.2 SPARK

be used to create loops, which require a specific treatment in formal
verification, and thus should be precisely identified.

* The use of controlled types is not permitted. Controlled types lead to the
insertion of implicit calls by the compiler. Formal verification of implicit
calls makes it harder for users to interact with formal verification tools,
as there is no source code on which information can be reported.

 Handling of exceptions is not permitted. Exception handling gives raise
to numerous interprocedural control-flow paths. Formal verification of
programs with exception handlers requires tracking properties along
all those paths, which is not doable precisely without a lot of manual
work. But raising exceptions is allowed (see Raising Exceptions and
Other Error Signalling Mechanisms at [52]).

+ Unless explicitly specified as (possibly) nonreturning, subprograms
should always terminate when called on inputs satisfying the subpro-
gram precondition. While care is taken in GNATprove to reduce possi-
bilities of unsoundness resulting from nonreturning subprograms, it is
possible that axioms generated for nonreturning subprograms not spec-
ified as such may lead to unsoundness. See Nonreturning Procedures
at [51].

* Generic code is not analyzed directly. Doing so would require lengthy
contracts on generic parameters, and would restrict the kind of code
that can be analyzed, e.g. by forcing the variables read/written by a
generic subprogram parameter. Instead, instantiations of generic code
are analyzed in SPARK. See Analysis of Generics at [49].

These Ada features are omitted or restricted in SPARK either because it
is too hard to be supported by formal verification analysis or because they
introduce ambiguity in the execution of a program making it unsuitable for
formal verification.

The tools that are part of the Altran/AdaCore implementation of SPARK
are packed within the GNATprove formal verification tool [16] and are enabled
through three different usage modes [17]. The first mode of GNATprove, check
mode, checks that the part of the code to be formally verified in SPARK is
valid SPARK code. The remaining two modes enable two different kinds of
analysis:

« Flow analysis: checks the initialization of variables, looks at data
dependencies between inputs and outputs of subprograms, and detects
unused assignments and unmodified variables. This type of analysis is
typically fast.

* Proof: checks for the absence of runtime errors and verifies any as-
sertions that are expressing functional properties of the code. The
execution time of this analysis can vary greatly depending on factors
such as the number of provers used and the complexity of the code
analyzed.

2.2.1 SPARK Levels of Software Assurance

Adopting SPARK for a new project can seem like an intimidating task, espe-
cially when having no prior experience with the technology. The difficulty
of adopting SPARK depends on the scope of the analysis, such as a whole
project or units of a project, and the software assurance level required. Fortu-
nately, there are well-defined guidelines on the adoption of SPARK technology
that simplify the process. These guidelines are offered in the form of five
levels of SPARK, which are incremental in both the effort (and potentially
related costs) required to be fulfilled and the amount of software assurance
they provide. The five levels are:

1. Stone level - valid SPARK

2. Bronze level - initialization and correct data flow
3. Silver level - Absence of Run-Time Errors (AoRTE)
4. Gold level - proof of key integrity properties

5. Platinum level - full functional proof of requirements

For this work, we are aiming to reach up to the third level of SPARK. With
this level of SPARK, programs are guaranteed AoRTE, a major source of se-
curity vulnerabilities. This also eliminate the need for runtime checks. To
move at the highest levels of SPARK requires the precise intent and specifica-
tions of the application to be known, something not always feasible for code
that is not written from scratch or well documented; as is the case with the
EMBENCH benchmarks conversion.

3 The EMBENCH Benchmark Suite

EMBENCH, [34] is a recently formed free and open-source embedded bench-
mark suite, with the aim to provide benchmarks that reflect today’s embedded
Internet of Things (loT) applications needs. The initiative for establishing the
benchmark suite came from Prof. David A. Patterson [47], one of the principal

10

figures behind the RISC-V [48] processor. The main idea is to move away from
outdated, artificial benchmarks, such as the Dhrystone [26] and CoreMark
[27], which are no longer representative of modern embedded applications
and introduce a benchmark suite that will continuously evolve to keep up with
the new trends in embedded systems [46].

The EMBENCH benchmarks were largely sourced from the Bristol/Embe-
cosm Embedded Benchmark Suite (BEEBS) [23]. BEEBS was created as part
of a research project, namely, the Machine Guided Energy Efficient Compi-
lation (MAGEEC) project [44], supported by the Technology Strategy Board
of the UK government (currently re-branded as Innovate UK [40]). BEEBS
was created out of the need for a modern benchmark suite that is specially
designed for exploring both the relative energy consumption and perfor-
mance of embedded systems. Therefore, BEEBS supports a wide range of
embedded systems and algorithms. The current version of BEEBS, [22], in-
cludes 82 benchmarks. Two main criteria were used for the selection of the
benchmarks. The first one is their portability across different embedded ar-
chitectures. Thus, factors such as /0 and peripherals are excluded in favour
of portability. The second criterion is their relevance to today’s embedded sys-
tems. Furthermore, the benchmark suite is designed to be easily extensible to
support multiple architectures and new benchmarks. These characteristics
were also introduced in the EMBENCH benchmark suite but with an updated
and more robust build system and better mechanisms to standardise the way
of measuring and comparing performance and code size between different
setups and configurations, such as different compilers and architectures.

Currently, the EMBENCH includes 19 benchmarks, [33], carefully selected
to be a representative range of the application space that are typically found
in today’s loT. The suite’s build-system supports both native (x-86, Linux) and
cross compilation of the benchmarks, currently for RISC-V [48] and Arm's
Cortex-M4 [55] based development boards.

4 Benchmarks Conversion and Proof

For a fair performance comparison between C and Ada/SPARK, the underlying
algorithmic logic and the main program structure of the original EMBENCH
benchmarks had to be retained in their new correspondent Ada/SPARK ver-
sions. This limitation can significantly impact the effective use of the unique
features and capabilities of the two languages. For example, casting from
one scalar type to another scalar type of smaller range, or shifting signed
integers are things that you typically do not expect to be part of an Ada or
SPARK program. Furthermore, there is a limitation on which level of SPARK,
see Section 2, can be achieved on each benchmark that stems from the

1

Language Files | Blank | Comment | Code

C 23 | 2860 2165 | 11748
Ada/SPARK 26 | 1515 1750 | 5812
C/C++ Header 9| 280 333 | 1833
SUM 58 | 4655 4248 | 19393

Table 1: Statistics for the benchmarks’ source-code (retrieved by the cloc
Linux command line tool [25]).

direct translation of the C code to equivalent Ada and then SPARK code. The
original code was not developed with SPARK formal verification technology
in mind. This can make it challenging to preserve the original code’s logic and
structure while enabling the verification tools to perform at their optimum
level. Finally, in many cases, the lack of sufficient design documentation,
particularly in the form of comments within the benchmarks’ code, make it
challenging to apply SPARK contracts that capture the semantics of the code.
Thus, we are only able to achieve at best the silver level of SPARK, AoRTE,
which is the default level aimed for critical software.

Table 1 shows some statistics taken from the folder that includes the
source code of the benchmarks, using the Linux cloc (count lines of code)
utility. From the 19 benchmarks included in EMBENC suite, 13 were initially
chosen and converted to Ada. The choice was made based on an initial
manual inspection of the code to select the ones that could be translated
to Ada while preserving as much as possible of the original structure and
algorithmic logic. Therefore, benchmarks that were too C-oriented, for ex-
ample heavily using macro functions, or exercising a significant amount of
library calls, were left out. Another criterion for selection was the level of
understanding we could get about the actual functionality and logic of the
benchmarks. Many of the benchmarks do not have sufficient documentation
about their functionality, or they are artificially auto-generated to exercise a
particular language construct and without any real algorithmic logic. The
conversion of the 13 initially selected benchmarks resulted in 26 Ada files,
as shown in table 1. This includes one specification file for each benchmark
(.ads) that mainly specifies subprograms (functions, procedures), types, and
the code bindings with the C code of the test harness of the benchmarks,
and one (.adb) file which provides the full body of the specified subprograms.
The total number of lines of code written in Ada/SPARK is 5812.

After converting the initially selected benchmarks to Ada another two
benchmarks were excluded, the statemate and the cubic benchmarks. The
first benchmark is auto-generated code which extensively tests branching.
To avoid the need of using a floating-point library, “#define float int”, was

12

4.1 The process of converting the Benchmarks

Benchmark | Level Of SPARK Nesjof §ubmodu|es L
Silver level

aha-mont64 Silver all
crc32 Silver all
edn Silver all
huffbench Silver all
matmult-int Silver all
nettle-aes Silver all
nsichneu Silver all

st Bronze 3/4

ud Bronze 0/1
minver Bronze 1/2
nbody Bronze 1/2

Table 2: EMBENCH benchmarks converted to SPARK and their achieved level
of SPARK.

added at the top of the original source code when the benchmark was ported
into the EMBENCH suite. This made the benchmark challenging to replicate
its behaviour into the strongly typed Ada. The second benchmark cubic
could be converted to Ada, however, it is not applicable for SPARK, as the
language does not yet support the “Long Long Float” type. The remaining 11
benchmarks used for this work are listed in Table 2. The table also shows
the level of SPARK achieved for each benchmark. In the case a benchmark is
not at Silver, the number of its sub-modules that reached Silver level is also
given.

4.1 The process of converting the Benchmarks

The Implementation Guidance for the Adoption of SPARK manual, [6], offers
excellent guidance on how to achieve the several levels of software assurance,
described in Section 2.2.1. These guidelines form the basis for this work.
The following subsections describe the stepwise process followed and the
several challenges and findings for each step. The purpose is not to give a
comprehensive manual as this is already done in [6], but rather to give enough
context for the reader to understand the process and share the practical
experiences of hardening software libraries with Ada and SPARK. Also, any
significant steps/findings not found in the [6], for example, when there is a
new SPARK feature, are highlighted. For this work SPARK PRO and GNAT PRO
versions 21.0w are used. The code development and proving was done within
the GNAT Studio that comes with GNAT PRO.

13

4.2 Achieving the Different SPARK Levels

4.1.1 Supporting Ada and Spark in EMBENCH

The EMBENCH suite is by design easily extensible to support multiple embed-
ded architectures and the addition of new benchmarks. However, this is the
first attempt to extend the suite to accommodate a new programming lan-
guage. As a first step the benchmark suite’s build-system was extended to en-
able the native (X86, Linux) and cross-compilation, for the STM32F4Discovery
development board, of Ada and SPARK with the GNAT compiler (version GNAT
Pro 21.0w) [35, 36]. C compilation with the GNAT compiler is also supported.
This is critical since to have a fair performance comparison between the two
versions of the benchmarks the same compiler has to be used. Command-
line switches can be used to control the selection of the language and target
platform for compilation. The source files of the benchmarks’ code converted
to Ada and SPARK are placed in the same directory with their corresponding
C versions. Only the benchmarks’ functions that are exercised by the test
harness of the benchmark suite for measuring performance are translated to
Ada and SPARK. These are then called through the C-written test harness of
each benchmark using appropriate interfacing mechanisms offered by Ada
[42]. This separation of the benchmark’s code and test-harness is vital for
the maintainability of the benchmark suite because any update in the test
harness will not affect the Ada/SPARK code.

4.2 Achieving the Different SPARK Levels

Applying SPARK to gain software assurance is a modular process. This
significantly reduces the effort of achieving the different levels of SPARK
assurance. The modularity is mainly two-fold:

1. Being able to apply the three modes of GNATprove at the line, region,
subprogram and module (file) level.

2. Each level of SPARK achieved ensures the conformance of all of its
lower SPARK levels.

It is highly recommended to take a bottom-up modular approach when
hardening software libraries with SPARK, such that before moving to a higher
level of SPARK all its lower levels are achieved. Besides, smaller parts of the
code, with the lowest amount of interaction, such as leaf-node subprograms
in the call-tree of a program, should be targeted first with a gradual move
towards the file level (see Section 4.2.3). This is also the approach found to
work best with this work.

14

4.2 Achieving the Different SPARK Levels

4.2.1 Achieving Stone Level of SPARK

This level aims to achieve valid SPARK code. For this level, the GNATprove
check mode is used, described in Section 2.2. This typically assumes that the
program at hand is already written in Ada. Our work is a bit more complicated
since we had to do a translation from C to Ada first. The biggest tasks and
challenges we faced for this stage are:

« Eliminating the use of pointer arithmetic: this was done by replacing
the pointer arithmetic with array indexing. Changes to eliminate the use
of pointer arithmetic were the most challenging and error-prone, thus
special care is needed to avoid introducing bugs or translating into a
wrong implementation; a bug-free Ada code that does not behave as
the original C code.

« Enforcing the strong typing rules of Ada: many of the benchmarks
included a large number of implicit casting. In the cases of casting
between compatible types, [13], explicit casting is used in Ada. One
benchmark, edn, is using as part of its underline algorithmic logic a cast
from long integer to short integer. Because this results in truncation, it
is not acceptable by SPARK. To accommodate this in SPARK an Ada
expression function, [14], was developed to implement the equivalent
casting. Within Ada an expression function is a function whose imple-
mentation can be given in a single expression, making it amenable to
static analysis. Figure 1a, shows the implementation of our expression
function in Ada 2012. Figure 1b, shows the same implementation but
with the declare feature that will be released with Ada 2022. This feature
can help to save execution time and makes the code more readable
and maintainable, as demonstrated in Figure 1.

+ Replacing C-macro functions with Ada’s expression functions, whenever
possible, or otherwise with Ada procedures.

« Rewriting functions with side effects into Ada procedures, using out
mode parameters.

* Introducing specifications for subprograms, functions and procedures.

« Some of the benchmarks use shifting of signed numbers, which is not
supported in Ada. To implement this we used the division by powers of
two.

* Introducing SPARK parameter modes: one of the main differences
between C and Ada/SPARK is the use of parameter modes. Ada is

15

a A wWwN

O N R WN

4.2 Achieving the Different SPARK Levels

function Long_To_Short (v : long) return short is
(if v mod ((long (short‘Last) + 1) * 2) < (long (short‘Last) + 1) then
short (v mod (long (short‘Last) + 1))
else
short (v mod (long (short‘Last) + 1) + long (short‘First)));

(a) Expression function implementing long int to short int casting in Ada 2012.

function Long_To_Short (v : long) return short is

(declare

short_max : constant long := long (short‘Last) + 1;
test_value : constant long := v mod (short_max * 2);
begin

(if test_value < short_max then
short (test_value)
else
short (test_value - 2 * short_max)));

(b) Expression function implementing long int to short int casting in Ada 2022. In the
future release of Ada 2022, declare region will be allowed in expression functions
which can help to save execution time and makes the code more readable and main-
tainable, as demonstrated in the above example. Note that the second version is not
a direct translation of the first one, but rather each version is a variant to achieve the
best possible performance with or with out the use of the declare region feature.

Figure 1: Implementations of long int to short int casting as expression func-
tion in SPARK, using Ada 2012, (a), and Ada 2022, (b).

Parameter Mode Usage
in Parameter can only be read, not written
out Parameter can be written to, then read
in out Parameter can be both read and written

Table 3: Ada’s parameter modes [17].

taking a different concept to the traditional mechanisms of parameter
passing by value or by reference. Instead, it utilizes keywords that
specify the direction of data flow for each parameter. This is part of
Ada'’s philosophy to avoid common issues with pointers and dynamic
memory-allocation (such as dangling pointers or memory leakage).
Furthermore, the explicit definition of the mode for each parameter
serves the documentation of the usage of a subprogram and allows the
compiler and flow analysis stage to warn in the case of misuse. The
possible parameter modes are shown in Table 3.

16

4.2 Achieving the Different SPARK Levels

4.2.2 Achieving Bronze Level of SPARK

This level guarantees the absence of several defects such as reads of uninitial-
ized variables, possible interference between parameters and global variables,
and unintended access to global variables. For this level, GNATprove’s flow
analysis mode is used, described in Section 2.2. The analysis does not require
any user annotations (contracts) and is always guaranteed to complete. The
user should be aware of the, stronger than Ada’s, initialization policy that
SPARK is enforcing to be able to understand and resolve issues reported
by flow analysis. This strongest policy facilitates a fast and scalable flow
analysis by GNATprove that ensures appropriate initialization of data. The
policy is documented in [29], and a quick intro of it is also available in the
“4.2.1 Strong Data Initialization Policy" section of [6].
The most important tasks performed or issues found at this stage are:

« Initialization and aliasing issues were dealt with by the approaches
described in [6]. Further, discussion about Initialization related issues
will take place in Section 4.2.3, where the new Relaxed_Initialization
feature of SPARK is demonstrated.

+ Although no contracts are needed for this analysis, Global contracts
are used to specify which global variables are read and/or written by
subprograms. This is a good practice as they serve as a documentation
of the intent of the programmer, and thus, increase the maintainability
of code. Furthermore, GNATprove checks this automatically and spots
any discrepancies between the implementation and the specifications
[6]. Further documentation and examples regarding Global contracts
and other types of useful contracts, such as the Depends contract, can
be found here [43]. One important note is that once you specified a
Global contract, it must be complete in the sense that all global variables
accessed by the subprogram have to be included with their valid mode.
Flow analysis will also warn in case of incomplete contracts. Examples
of Global contract usage can be seen in Figure 23, lines 9 and 16.

 The flow analysis will provide feedback over the correct use of each
subprogram parameter’s stated mode. This checks that each specified
parameter mode corresponds to the actual usage of that parameter
in the subprogram’s body; for example flow analysis will report errors
such as an uninitialized variable is using the in mode. Such errors
should be easy to fix following Table 5, which summarizes SPARK’s
valid parameter modes as a function of whether reads and writes are
done to the parameter [17].

17

4.2 Achieving the Different SPARK Levels

Benchmark Issues Captured by Flow Analysis

1. “U” and “V" local variables of the “minver” procedure are
part of four unused assignments.

minver
2. Removing the unused assignments of “U”, “V" makes the
same variables and the “col” parameter unused.
The “uhi” local variable of the “montmul” function has an
aha-mont64

unused assignment.

Table 4: Issues discovered for benchmarks by flow analysis.

Parameter mode | Initial value read | Written on some path | Written on every path
in X
in out X X
in out X X
in out X
out X

Table 5: SPARK's valid parameter modes as a function of whether reads and
writes are done to the parameter [17].

* Flow analysis can also generate other valuable warnings such as dead
code, initializations that have no effect, unused assignments and state-
ments that have no effect. Such issues are indicators of possibly in-
complete or wrong implementation and should be investigated further
before addressing them. Table 4 lists all the issues captured by flow
analysis. After further investigation, we found that the minver had
possibly an incomplete or wrong implementation. The benchmark is im-
plementing a matrix inverse algorithm. When manually calculating the
determinant and the inverted matrix, for the matrix tested in the bench-
mark, it was found that our results did not match with the benchmark’s
actual output. This prompted us to investigate why the benchmark’s
testing mechanism, built-in to the benchmark suite, was accepting the
result of the original C code as correct. Looking at the test's expected
result that the actual result was checked against, we found that it was
also wrong and equal to the actual result. This demonstrates that test-
ing is inherently limited as a means of guaranteeing that a program is
conforming to its functional specifications. Thus, SPARK levels 4 and 5
should be used when aiming for ensuring functional correctness. The
issues found will be reported to the EMBENCH community.

Bronze level of SPARK was achieved for all the benchmarks.

18

O N OO WN

O O N o U RWN A

4.2 Achieving the Different SPARK Levels

MAX : constant Integer := 100;

subtype Index is Integer range 0 .. MAX-1;

subtype Custom_Float is Long_Float range 0.0 .. 100.0;
Type Custom_Float_Array is array (Index) of Custom_Float;
Seed : Natural range @ .. 8094;

procedure Init_Seed
with
Global => (Output => (Seed)),
Export => True,
Convention => C,
External_Name => "InitSeed";

procedure Initialize (Data : out Custom_Float_Array)
with

Global => (In_Out => (Seed)),
Relaxed_Initialization => Data,
Post => Data’'Initialized and then
(for all J in Index’'Range => Data (J) in 0.6 .. 100.0),
Export => True,
Convention => C,
External_Name => "Initialize";

(a) Part of the st benchmark’s specification file. Lines 1-5 demonstrate the use of
precise types to assist GNATprove to prove the AoRTE.

-- Initializes the seed used in the random number generator.
procedure Init_Seed is
begin
Seed := 0;
end Init_Seed;
-- Intializes the given array with random integers.
procedure Initialize (Data : out Custom_Float_Array) is
begin
for i in Index loop
Seed := ((Seed * 133) + 81) mod 8095;
Data (i) := Custom_Float (Long_Float (i) + Long_Float (Seed) / 8095.0);
pragma Loop_Invariant

(for all J in Index’'First .. i =>
Data (J) in 0.0 .. 100.0 and Data (j)'Initialized);
end loop;

end Initialize;

(b) Part of the st benchmark’s implementation file. The definitions of precise types
to assist GNATprove to prove the AORTE are derived out of the semantics of the
calculations that affect each variable, for example, Seed, Index and Data.

Figure 2: Part of the st benchmark’s code to demonstrate the use of precise
types.

19

4.2 Achieving the Different SPARK Levels

4.2.3 Achieving Silver Level of SPARK

This stage aims to guarantee the absence of runtime errors, and it is the min-
imum desirable level for critical software. This level is the most challenging
to achieve compared to the previous ones because a good understanding of
the semantics of the benchmarks’ code is required.

To guarantee AoRTE, it is crucial to understand what GNATprove aims to
achieve when applying the prove mode and what is the role of the user in
guiding this process:

* GNATprove's aim is to compute all possible values of variables to guar-
antee the AoRTE.

« User’s role is two-fold:

1. To provide extra information into the program, needed by GNAT-
prove’s formal verification to successfully complete a proof. Such
information must be embodied in precise-enough types and con-
tracts related to the semantics of the code by the user.

2. Tointeract with the GNATprove tool to assist with achieving its aim.
This interaction should be done again in a bottom-up, modular fash-
ion to make the proving process as simple as possible. Firstly, the
user should start the proving process by selecting subprograms
that are leaf-nodes in the call-tree of the program and then moving
upwards, each time focusing on the unproven programs with the
fewest calls. Secondly, the user should start by applying the least
costly level of analysis offered by GNATprove. Then, when more
information is provided into the program to support the proving
and the current level of the analysis does not seem adequate for
automatic proving, the user should gradually scale up the analysis
power used. This is a human-driven process where experience is
a significant factor in judging when a level of analysis is sufficient
or not. Experimenting is the best way to rapidly accumulate such
expertise. To support this process GNATprove offers four default
levels of proving, [38], where each higher proof-level is increas-
ing the precision of the analysis, mainly either by allowing more
provers to be used or more analysis time for the provers.

As expected, when running GNATprove’s prove mode for the first time on
the benchmarks that are already at the Bronze level of SPARK, it resulted in a
large number of possible runtime errors. These were mainly related to array
index out of bounds, arithmetic overflow, value out of range, and division by
zero. At this stage, the user has to play his role, as described above. This

20

4.2 Achieving the Different SPARK Levels

is a process that significantly gets easier as the user accumulates more
experience in assisting the GNATprove with the proving of AORTE.

The following steps proved to be sufficient to eliminate the majority of
unproven checks raised by the tool, for the majority of the benchmarks, applied
in the following given order and always following the bottom-up, modular
approach described earlier:

* The use of sufficiently precise types: this is essential information for
GNATprove, as it depends on the ranges of Scalar types to prove the
absence of several runtime errors such as overflows. At Bronze level, all
the benchmarks were still using standard scalar types such as Integer
and Float, giving no information about the range of the data manipu-
lated to the provers. This inevitably resulted in GNATprove giving an
overflow check message for the majority of the arithmetic operations.
Other related emitted errors can be array-index or divide-by-zero checks.
The majority of the standard types used had to be replaced with more
specific types or subtypes, with suitable ranges, as a first step of allow-
ing the provers to address these unproven checks. An example of this
is given in Figure 2a, lines number 1-5, where precise types are given
for the Seed, Index, and Data variables. These precise types are derived
through an understanding of the semantics of the code that affect
the values of these variables; see Init_Seed and Initialize subprograms
given in Figure 2b. Providing this kind of information, was sufficient to
eliminate the false alarms regarding overflows and array index out of
bounds for the Initialize procedure.

 The use of subprogram-level contracts that can further assist GNAT-
prove to prove the AoRTE: three kinds of contracts were sufficient to
eliminate the majority of false alarms, namely the precondition, post-
condition, and loop-invariant contracts. It is important to understand
that these contracts are mechanisms that provide information which
can be propagated by GNATprove along the flow of the program, both
backwards and forward, to allow the tool to prove certain properties
in the context of the program as a whole. For example, preconditions
and postconditions are acting as the communication points with the
outside world; they can communicate relevant properties to their callers.
Similarly, loop invariants can be used to prove AoRTE inside and after a
loop. More specifically:

- Preconditions specify in which context the program may be
called. They can also be used for defensive code. An example of
a precondition is given in Figure 3.

21

D0V oo NOo R WN

4.2 Achieving the Different SPARK Levels

function modulé64

(x : Unsigned_64;

y : Unsigned_64;

z : Unsigned_64)
return Unsigned_64

with
Global => null,
Pre => x < z,
Export => True,
Convention => C,
External_Name => "modul64";

Figure 3: The SPARK specification of modul64 function of the aha-mont64
benchmark demonstrates the use of a precondition to specify a property
that has to hold upon each function call. The property is specified in the
comments of the original code [31].

- Postconditions specify what can be guaranteed about the re-
sult of a subprogram. An example of a postcondition is given in
Figure 2a at line 18. The postcondition’s proof conveys the infor-
mation that after each call of Initialize, Data array is guaranteed to
be initialized.

- Loop invariants provide valuable information about the states
of variables that are updated within a loop to allow GNATprove
to prove the AoRTE within the loop. Examples of loop-invariant
usage can be seen in Listing 1 at lines 56 and 58, for the jpegdct
procedure of the edn benchmark. The loop invariant is true at
each iteration of the loop. More information about the use of loop
invariants can be found in the SPARK manual [39]. A short and
very comprehensive explanation on the value and usage of loop
invariants can be found here [39].

With the use of more precise types and the described three types of
contracts, the majority of unproven checks were eliminated for most of the
benchmarks. The rest of the section will discuss some less trivial cases and
how they were addressed.

Initialization check might fail:

As discussed in Section 4.2.2, SPARK has a stronger initialization policy
than Ada. The SPARK manual summarizes the consequences of the policy,
[29], in the following sentence:

“Hence, all inputs should be completely initialized at subprogram
entry, and all outputs should be completely initialized at subpro-
gram output. Similarly, all objects should be completely initialized

22

4.2 Achieving the Different SPARK Levels

when read (e.g. inside subprograms), at the exception of record
subcomponents (but not array subcomponents) provided the sub-
components that are read are initialized.”

This policy may be too strict in some cases. For example, it does not permit
partial initialization of composite objects through different subprograms,
resulting in the GNATprove issuing a related check. A new SPARK feature,
introduced in GNATprove (within the SPARK Community 2020 and SPARK
Pro 2021 releases) called Relaxed_Initialization, allows opting-out of the
strict initialization policy when the user considers appropriate for specific
objects and provides the mechanisms to enable the tool to prove that every
access to those objects is to initialized data. A complete description of this
feature can be found here [21].

Figure 4 demonstrates a possible use-case of the new Relaxed_Initialization
feature of SPARK, from the matmult_int benchmark. In this example the Res
matrix is being progressively initialized in the second nested loop, while
the initialized elements of the matrix are read in the innermost nested loop,
see Figure 4b lines 14 and 23, respectively. GNATprove will emit an Initial-
ization check might fail message due to the SPARK initialization policy. To
relax the initialization policy for the Res matrix we denote it with the Re-
laxed_Initialization aspect, see Figure 4a line 5. The Initialized attribute is
then used within a loop invariant for each loop to express which elements of
the Res matrix are initialized at that point of the loop, and enable GNATprove
to verify that every access to the Res is on initialized data, see Figure 4b
lines 5,10 and 16.

The user should only use the above approach in cases where maximum
confidence over the initialization of a specific object is needed, as it requires
more effort to verify data initialization from both the user and the tool. An
alternative and easier to implement solution of resolving the initialization
check of the Figure 4 example is to initialize the entire Res matrix at the
begin of the subprogram using “Res := (others => 0);". However, in this
case, the latter solution had a significant performance penalty. Besides,
when applying this approach, extra caution is needed to ensure that the
alternated initialization is not just for the sake of verification, but also it
preserves the original semantics of the code. Alternatively, the user can
use the “pragma Annotate” to accept the check message. There are several
ways to eliminate initialization checks, which exhibit different pros and cons.
These are described with examples in the “4.2 Initialization Checks” section
of [6].

Further tips for proving:
The ability of using SPARK to achieve the several levels of assurance comes

23

4.2 Achieving the Different SPARK Levels

1 procedure Multiply (A : Input_Matrix; B : Input_Matrix; Res : out Matrix)
2 with

3 Global => null,

4 Export => True,

5 Relaxed_Initialization => Res,

6 Convention => C,

7 External_Name => "Multiply";

(a) The specification of the Multiply function, demonstrating the use of Re-
laxed_Initialization feature on the Res matrix.

procedure Multiply (A : Input_Matrix; B : Input_Matrix;

;
2 Res : out Matrix) is

3 begin

4 for Outer in Index loop

5 pragma Loop_Invariant

6 (for all J in @ .. Outer - 1 =>

7 (for all K in Index =>

8 Res (J, K)'Initialized));

9 for Inner in Index loop

10 pragma Loop_Invariant

1 (for all J in @ .. Outer =>

12 (for all K in @ .. Inner - 1 =>

13 Res (J, K)'Initialized));

14 Res (Outer, Inner) := 0;

15 for I in Index loop

16 pragma Loop_Invariant

17 (for all J in @ .. Outer =>

18 (for all K in @ .. Inner =>

19 Res (J, K)’'Initialized) and then

20 Res (Outer, Inner) <=

21 Random_Range_Long_Int'Last**2 * Long_Integer (I));
22 Res (Outer, Inner) :=

23 Res (Outer, Inner) + A (Outer, I) * B (I, Inner);
24 end loop;

25 end loop;

26 end loop;

27 end Multiply;

(b) The implementation of the Multiply procedure, demonstrating the use of the Ini-
tialized attribute in loop invariants to enable GNATprove to prove that every access
to Res matrix is to initialized data.

Figure 4. An example of the new Relaxed_Initialization feature of SPARK on
the Multiply procedure of the matmult_int benchmark.

24

4.2 Achieving the Different SPARK Levels

partially from reading the manuals and partially from accumulating practical
experience. The following list is a collection of useful techniques built up
over the duration of this exercise:

- Using a loop invariant to stop GNATProve from unrolling a loop: depend-
ing on the number of iterations (currently the threshold is 20) GNAT-
prove may try to unroll a loop as it can help with the proving. In cases of
loops with large bodies or many levels of nested loops unrolling might
result in complex formulas that provers can not prove or extend the
analysis time and memory usage significantly. This was the case for
the example in Figure 4, before the introduction of loop invariants. Loop
invariants prevent the unrolling of a loop by the GNATprove’s analysis.
Thus, a good mechanism to stop unrolling when it seems reasonable
is to use a “pragma Loop_Invariant (true)” which has no other effect
except disallowing the unrolling of a loop.

- Breaking down composite objects: when both reads and writes are
exercised on a composite type within a loop, it can be very challenging
for GNATprove to cope with the analysis of the values flowing in each
element of the composite type. For example, in the Listing 1 line four,
the “tx”, with x between 0-11, scalar variables are used. Instead of
these scalars, the original C benchmark was using an array “t” of size
12. The use of an array, in this case, makes the proof impractical, as
the prover has to unfold all updates to the array to discover the value
flowing in a particular array cell. Therefore, the replacement of the
array in a flat sequence of 12 scalar variables allowed the CodePeer
static analysis tool of GNATprove to assist the formal verification tools
(provers) with the completion of the proof. Knowing when to apply such
an approach depends on the context and the level of experience of the
user. A good indication of when to break down the use of composite
types is when they are used for both read and write operations in the
context of a complex algorithm. Writing SPARK from scratch rather
than directly translating C code to SPARK should avoid such issues.

- Breaking down large floating-point expressions: in some cases break-
ing down large floating-point expressions to smaller equivalent ones
helps the prover reason over the intermediate outcomes and enables
further verification. An example of this can be seen in Figure 5b, at
lines 12 and 13. The original code was using a single expression to
implement the same calculations: “diffs := diffs + (Data (i)
- Mean) * (Data (i) - Mean);". Breaking down the calculation to
smaller intermediate steps and introducing precise types for the vari-
ables that store the intermediate results, such as Long_Float_Temp

25

4.2 Achieving the Different SPARK Levels

introduced at line 6 of our example, helps GNATprove with the proving
of AoRTE.

- Manual proof using SPARK lemmas: several arithmetic properties in-
volving multiplication, division and modulo operations, such as the
monotonicity of floating-point multiplication, are difficult to be proven
automatically in some cases. A lot of these properties can be man-
ually proven by simply calling the appropriate SPARK Lemmas from
the SPARK Lemma Library [54]. An example of using the library can
be found here [45]. Furthermore, the user can create custom lemmas
to prove any properties not covered in the SPARK Lemma Library. An
example can be seen at line 6 of Figure 5a where a custom lemma is
introduced and used at line 18 of Figure 5b. This lemma expresses
additional properties about the possible range of the return value of
the Sgrt library function, based on the range of the type of the param-
eter used when calling the function. Thus, this extra property allows
GNATprove to verify the AORTE for line 19 of Figure 5b.

— The use of executable assertions: this is one of the most powerful
features offered by Ada2012. The user can specify contracts, such as
preconditions, postconditions and loop invariants, and then execute
them to examine that they hold under specific instances of the program.
This is very useful feedback in the process of proving AORTE.

Automatic proving may not always be achievable due to limitations of the
heuristic techniques used in automatic provers. These limitations are usually
related to non-linear integer arithmetic (such as division and modulo) and
floating-point arithmetic. More advanced steps can be taken to investigate
unproven checks as described in the How to Investigate Unproved Checks
section of the SPARK user’s guide [37].

Applying all the techniques described in this section was sufficient to
prove complete AoRTE for 7 out of the 11 benchmarks, and for five out of
the nine total number of subprograms for the four remaining benchmarks
(see Table 2). The remaining three subprograms from the st, ud and nbody
benchmarks, for which Silver level of SPARK was not achieved, include either
division operations and/or floating-point arithmetic. Thus, for these subpro-
grams, a deeper understanding of their code is needed. This was difficult
to achieve in the absence of sufficient documentation. Moreover, possible
extensive code modifications to make these subprograms more amenable
to static analysis and formal verification will make them less relevant for
performance comparisons against their original C versions. In the case of
the minver benchmark, which implements a matrix inversion algorithm, when
the original benchmark’s results were tested manually, they were found to be

26

O NN WN

o

W N oUW N

N 2 4o o o o o, oo
O VW Yoo hdWNIO W

4.2 Achieving the Different SPARK Levels

subtype Custom_Float is Long_Float range 6.0 .. 100.0;
subtype Custom_Float_Var is

Long_Float range 0.0 .. (Custom_Float’'Last**2);
Type Custom_Float_Array is array (Index) of Custom_Float;

procedure Lemma_Sqrt_Extra_Properties (X : Custom_Float_Var)
with
Global => null,
Post => (if X in Custom_Float_Var
then Sqrt (X) in 8.0 .. Custom_Float'Last);

(a) Part of the st benchmark specification.

procedure Calc_Var_Stddev (Data : Custom_Float_Array;
Mean : Custom_Float;
Var : out Custom_Float_Var;
Stddev : out Custom_Float)
is
subtype Long_Float_Temp is Long_Float range 0.0 .. Custom_Float’Last**2;
Temp : Long_Float_Temp;
diffs : Long_Float range
0.0 .. Long_Float_Temp'Last * Long_Float (MAX) := 0.0;
begin
for i in Index loop
Temp := (Data (i) - Mean) * (Data (i) - Mean);
diffs := diffs + Temp;
pragma Loop_Invariant
(Diffs in 0.0 .. Custom_Float’'Last**2 * Long_Float (I+1));
end loop;
Var := diffs / Long_Float (MAX);
Lemma_Sqrt_Extra_Properties(var);
Stddev := Sqrt (Var);
end Calc_Var_Stddev;

(b) The implementation of the Calc_Var_Stddev from the st.

Figure 5: An example of breaking up a floating-point expression to simpler
ones to assist GNATprove with verifying AoRTE on the Calc_Var_Stddev pro-
cedure of the st benchmark. Also, the example demonstrates the use of a
user-defined lemma to express the possible range of the return value of the
Sgrt function at line 19.

27

4.2 Achieving the Different SPARK Levels

wrong, meaning that the implementation contains functional errors. The flow
analysis also indicated a possible incorrect or wrong implementation as it
detected several unused assignments in the original code (see Section 4.2.2).
Thus, we did not proceed to verify this benchmark further.

-- JPEG Discrete Cosine Transform

W N OU A WN

procedure jpegdct (d : in out Short_Array;

r : Short_Array) is

t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t16, t11 : long;
1 : Integer range © .. 64 := 0;
k : Integer range 1 .. 8 := 1;
m : Integer range © .. 3 := 0;
n : Shift_Range := 13;
p : Integer range 1 .. 8 := 8;
begin
for j in @ .. 1 loop
k :=k +7 % j;
m:=m+3* j;
n:=n+3=*j,;
pi=p-7%*7;
1:=1-64*3;
for i in 1 .. 8 loop
t@ := long (d (1)) + long (d (1 + (k * 7)));
t1 := long (d (1 + k)) + long (d (1 + (k *6)));
t2 :=1long (d (1 + (k * 2))) + long (d (1 + (k * 5)));
t3 :=1long (d (1 + (k * 3))) + long (d (1 + (k * 4)));
t4 := 1long (d (1 + (k * 3))) - long (d (1 + (k * 4)));
t5 := long (d (1 + (k * 2))) - long (d (1 + (k * 5)));
t6 := long (d (1 + k)) - long (d (1 + (k *6)));
t7 := long (d (1)) - long (d (1 + (k * 7)));
t8 := tO + t3;
t9 := t0 - t3;
t10 = t1 + t2;
t11 = t1 - t2;

d (1) := Long_To_Short ((t8 + t108) / long (2%xm));
d (1 + (4 *k)) := Long_To_Short ((t8 - t10)
/ long (2**m));
t8 := long (Long_To_Short (t11 + t9)) * long (r (10));
d (1 + (2 * k)) := Long_To_Short (t8 +
long (Long_To_Short ((t9 * long (r (9))) /
long (2%#n))));
d (1 + (6 * k)) := Long_To_Short (t8 +
long (Long_To_Short ((t11 =*
long (r (11))) / long (2 * n))));

t0 := long (Long_To_Short (t4 + t7)) * long (r (2));
t1 := long (Long_To_Short (t5 + t6)) * long (r (0));
12 := t4 + t6;

t3 = t5 + t7;

t8 := long (Long_To_Short (t2 + t3)) * long (r (8));
t2 := long (Long_To_Short (t2)) * long (r (1)) + t8;
t3 := long (Long_To_Short (t3)) * long (r (3)) + t8;

d (1 + (7 * k)) := Right_Shift_Short_Constraint
(Long_To_Short (t4 * long (r (4)) + t0 + t2), n);

d (1 + (5 * k)) := Right_Shift_Short_Constraint
(Long_To_Short (t5 * long (r (6)) + t1 + t3), n);

d (1 + (3 * k)) := Right_Shift_Short_Constraint
(Long_To_Short (t6 * long (r (5)) + t1 + t2), n);

d (1 + (1 * k)) := Right_Shift_Short_Constraint
(Long_To_Short (t7 * long (r (7)) + t@ + t3), n);

1 :=1+p;

pragma Loop_Invariant (1 = 1'Loop_Entry + p * i);

28

57
58

60
61
62
63

end loop;
pragma Loop_Invariant
(n = n'Loop_Entry + 3 * j and m = m'Loop_Entry + 3 * j
and k = k’Loop_Entry + 7 * j and p = p’'Loop_Entry - 7 * j
and 1 = 1’'Loop_Entry + p * 8);
end loop;
end jpegdct;

Listing 1: The SPARK implementation of jpegdct procedure of the edn
benchmark.

5 Evaluation

This section deals with the performance evaluation, the time needed for the
completion of the SPARK related tasks, and some issues found and improved
within the SPARK technology. Furthermore, we highlight from which future
enhancements SPARK technology will potentially benefit the most, based on
our experience.

5.1 Performance Evaluation

The performance evaluation was done on an STM32F4DISCOVERY devel-
opment board [30]. The board is equipped with a 32-bit ARM Cortex-M4
with FPU core, 1-Mbyte Flash memory, 192-Kbyte RAM, and it can run at a
maximum frequency of 168MHz. The ARM Cortex-M4 and the RISK-V 32-bit
processors are the two embedded processors currently supported in the
EMBENCH benchmark suite due to their popularity in the embedded industry.
The benchmarks, both in C and SPARK, were compiled with the GNAT Pro
21.0w compiler using the -02 optimization flag and with link-time optimiza-
tions enabled. The link-time optimizations were essential to allow a fairer
comparison between the C and the SPARK versions, as the SPARK code for
each benchmark is separated from its test harness source file while the C
benchmarks’ code lives in the same file as their test-harness. Thus, inlining
of the benchmark code was feasible in the C versions and not in the SPARK
versions. By enabling link-time optimizations, inlining was also enabled for
the SPARK code similarly to the C code. Furthermore, Ada’s runtime checks
where disabled, using the -gnaptp flag, to make the performance comparison
fair with C. Nevertheless, subprograms proven at SPARK Silver level come
with an AoRTE guarantee, and thus runtime checks can be safely disabled.
This is desirable when certifying at the highest levels of software assurance
of safety standards, such as the DO-178C for avionics, or the CENELEC EN
50128 for rail systems. This is equally applicable when certifying against

29

5.1 Performance Evaluation

Benchmark | Level of SPARK | SPARK vs C (Performance)
aha-mont64 Silver -24.07%
crc32 Silver 0.00%
edn Silver 8.56%
huffbench Silver 2.54%
matmult-int Silver 4.27%
nettle-aes Silver 10.91%
nsichneu Silver 7.55%
st Bronze -16.70%

ud Bronze 9.49%
minver Bronze -0.66%
nbody Bronze 38.83%

Table 6: Performance comparison of the C and SPARK versions of each
benchmark. Note that a positive percentage represents the percentage in-
crease in execution time for a benchmark written in SPARK when comparing
to the execution time of its corresponding C version.

security critical standards and guidelines such as ED-202A/ED-203A and
D0-326A/D0-356A for aviation.

For execution time measurements, EMBENCH already offers a built-in
mechanism which is used for both C and SPARK. This utilizes the on-board
timers of the STM32F4DISCOVERY board which provide accurate and repeat-
able measurements. More about the EMBENCH test harness and usage can
be found in the benchmark’s suite documentation [32].

Table 6 and Figure 6 shows the performance comparison for the C and
SPARK version of benchmarks. Note that even though the minver original
benchmark is found to be functionally incorrect, (see Section 4.2.2), the
SPARK level implementation matches that behaviour. Thus, performance
comparison is still valid. For the majority of the benchmarks, there is no
significant sacrifice in performance when moving from C to SPARK, with the
nbody being an outlier. This is because there were no significant intrusive
modifications needed to the code to support SPARK proves. Considering the
significant added value in terms of software assurance gained by the use
of the SPARK technology, there is no doubt that it is a worthwhile transition.
The results are now passed to the compiler team of AdaCore which investi-
gates the causes behind any significant performance differences for the two
languages and will look for further optimization opportunities.

30

5.2 Effort/Time and Technology Assessment

SPARK vs C (Performance)

B C Execution Time (ms) [Ada Execution Time (ms)

5,000
4,000
3,000
2,000
1,000

0

&x Vv Q X &) > > O 5
& L S & & & € i M 0°&
<® F & ¥ & <€ <
& N L N <
3

Benchmark

Figure 6: Performance comparison of the C and SPARK versions of each
benchmark.

5.2 Effort/Time and Technology Assessment

One of the aims of this work is to evaluate the effort needed in achieving the
absence of runtime errors with the SPARK technology. The completion of
this work lasted around 35 working days. The level of experience with the
Ada and SPARK technologies was around four months, although the engineer
that carried out the work had an overall programming experience of about 15
years. Taking this into account and that silver level of SPARK was achieved
within this time frame for the majority of the benchmarks, 7 out of 11, and
for most of the functions for the remaining benchmarks, it is fair to say that
SPARK technology is easily accessible and its adoption can yield significant
benefits for hardening software libraries for security in a short time.

As discussed in Section 4, the main technical tasks involved in the com-
pletion of this work were:

1. Enabling the EMBENCH build-infrastructure to support Ada/SPARK.

2. supporting the STM32F4DISCOVERY for Ada/SPARK and C using the
GNAT compiler (version GNAT Pro 21.0w).

3. Converting C to Ada.
4. Achieving the several levels of SPARK.

31

5.2 Effort/Time and Technology Assessment

The biggest challenges and the most time spent was on the two last tasks.
The main reasons for this are:

« Conversion from C to strongly typed Ada is hard when there is no suffi-
cient intuition about the original code’s intent.

* In many cases, unconventional ways of coding were adopted in the C
code, for example, shift operations on signed numbers.

+ Keeping the same implementation logic between C and Ada/SPARK for
the sake of performance comparison reduces the ability to apply the
SPARK technology to the highest levels of assurance (levels 3, 4 and
5) since the original code was not designed with formal verification in
mind.

+ A clear understanding of the code semantics is needed to achieve the
silver level of SPARK. In our case, applying the silver level of SPARK,
which guarantees the absence of runtime errors, was limited by the
lack of proper documentation of the functional specifications for some
benchmarks.

When writing a SPARK program from scratch and having clear functional
specifications up-front, reaching Silver level should be relatively easier than
what we experienced in this work. Furthermore, as engineers keep accumu-
lating experience with the SPARK technology, the time and cost saved in the
long term on certifying code against safety and security standards can be
significantly lower compared to alternative approaches, such as software
testing [4].

Although the Altran/Adacore implementation of SPARK 2014 significantly
made the use of SPARK more accessible to developers without background
knowledge in formal verification, there are still areas within the technology
that could benefit from further improvement. The primary limitations identi-
fied from this work are associated with proving code that involves non-linear
integer arithmetic (such as division and modulo) and floating-point arithmetic.
In fact, these limitations do not stem from the SPARK technology itself but
from the fact that prover technology, utilized by SPARK, has fundamental lim-
itations in dealing with non-linear arithmetic and floating-point. Nevertheless,
more can be done from the SPARK side of things to enable the provers to
perform better with floating-point. Thus, work scheduled in the context of
W3.5 will create SPARK floating-point mathematical libraries that will improve
the floating-point proving capabilities of SPARK.

Finally, this work identified a few improvements and issues within the
SPARK technology. For example, the EMBENCH benchmarks were some of

32

the early adopters of the “Relaxed_Initialization” new feature of SPARK. At the
early stages of releasing this feature, a related bug was captured and fixed
by the benchmarks. Also, the SPARK lemmas documentation was added to
GNAT Studio, as it significantly assisted the proving of some of the floating-
point benchmarks via the use of lemmas. A list of further improvements has
been documented within AdaCore that will be used to evolve the technology
further.

6 Conclusion and Future Work

The hardening of existing code-bases is expected to become a common-
place security exercise due to the rise of industry mandated cyber-security
standards and guidelines. This is especially predicted within aerospace with
the recent adoption by EASA of the ED-202A/ED-203A security set as the
currently only “Acceptable Means of Compliance” for aviation cyber-security
airworthiness certification. The same is also true of the DO-326A set by the
FAA. Under the new guidelines, security risk assessments will need to be
performed on existing systems. It is expected that many of these activities
will result in the identification of threat conditions, and in particular, the identi-
fication of situations where a security-related compromise of a system asset
has a direct impact on safety. For each of these circumstances, it is not unrea-
sonable to predict that a threat scenario analysis will identify the exposure of
software vulnerabilities as a high “level of threat”. This is particularly easy to
argue where history has shown that an exposed vulnerability can be exploited
for malicious intent. It may be that existing security measures mitigate the
risk of the threat scenario occurring to an acceptable level; however, when
this is not the case, additional measures need to be taken.

This is where SPARK can play an integral role when designing a new
security architecture (or when security hardening an existing architecture).
Identification of the security scope (the assets, perimeter and environment),
performing a security risk assessment (identifying the threat conditions,
threat scenarios, existing security measures) and performing a level of threat
evaluation will ultimately lead to the identification of security-critical software
components. With new systems, SPARK is the obvious choice for the devel-
opment of critical security components. However, this report also shows
that existing systems can benefit from the application of a SPARK hardening
approach. Elevation of a security component, to SPARK silver level or higher,
provides strong evidence to support a security effectiveness assurance argu-
ment; especially when arguing over the effectiveness of security measures
against threat scenarios relating to application security vulnerabilities.

By design, SPARK aims to eradicate all security bugs, flaws, errors, faults,

33

REFERENCES

holes, or weaknesses in software architecture regardless of if threat actors
can exploit them. When proven to have achieved silver level or higher, the guar-
anteed AoRTE is a powerful countermeasure against cyber-attacks. This work
demonstrated that the effort of adopting SPARK is not as hard as perceived
since in an arguably short time, a relevant to the industry set of benchmarks
from the EMBENCH benchmark suite were converted from C to SPARK and
AoRTE was achieved in most of the cases, (see Table 2). If the complete
functional specifications were available for the remaining, not fully proven
benchmarks, the complete set of benchmarks could have achieved the silver
level of SPARK. The SPARK technology was also able to identify a faulty
benchmark, namely the minver, where its implementation was incomplete
and producing the wrong results. Furthermore, as demonstrated in Section 5.1
the adoption of the SPARK technology did not significantly compromise the
C-enabled performance. This and the significant security benefit of AORTE
make SPARK a default choice when it comes to the hardening of software
libraries. Finally, in Section 4, we demonstrated the steps and best practices
for adopting SPARK and highlighted the use of new features. These, and the
provided references to external documentation, can be used as up-to-date
guidelines for the easy adoption of the SPARK technology.

Future work will be focused on opportunities for hardening software li-
braries that are crucial for today’s cyber-physical systems . Examples of
such libraries can be network-protocols libraries and a high-assurance math
libraries.

Acknowledgments

This research is part of the "High-Integrity Complex Large Software and
Electronic Systems” (HICLASS) project that is supported by the Aerospace
Technology Institute (ATI) Programme, a joint Government and industry invest-
ment to maintain and grow the UK’s competitive position in civil aerospace
design and manufacture, under grant agreement No. 113213. The programme,
delivered through a partnership between the ATI, Department for Business,
Energy & Industrial Strategy (BEIS), and Innovate UK, addresses technology,
capability, and supply chain challenges.

References

[11 M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Chap-

34

REFERENCES

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

ter — C Language Issues for Application Security. Pearson Educa-
tion, 2006. I1SBN: 9780132701938. URL: https : / /www . informit .
com/articles/article.aspx?p=686170&seqNum=6. (accessed:
27.06.2020).

Paul E. Black et al. Source Code Security Analysis Tool Functional Spec-
ification Version 1.1. NIST — Special Publication 500-268 v1.1. Feb. 2011.

URL: https://www.nist.gov/publications/nist-sp-500-268-
source-code-security-analysis-tool-function-specification-
version-11. (accessed: 27.06.2020).

ISO/IEC TR 24772:2013 - Information technology — Programming lan-
guages — Guidance to avoiding vulnerabilities in programming languages
through language selection and use. 2013. URL: https://www. iso.
org/standard/61457 .html. (accessed: 24.06.2020).

Peter C. Chapin and John W. McCormick. Building High Integrity Appli-
cations with SPARK. Cambridge University Press, 2015. 1SBN: 9781107040731.

Philip Sparks. The route to a trillion devices — The outlook for IoT in-
vestment to 2035. ARM — White Paper. June 2017. URL: https://
community .arm.com/iot/b/internet-of-things/posts/
white-paper-the-route-to-a-trillion-devices. (accessed:
24.06.2020).

AdaCore and Thales. Implementation Guidance for the Adoption of
SPARK. 2018. URL: https://www.adacore.com/uploads/books/
pdf/ePDF-ImplementationGuidanceSPARK. pdf.

Rasim Alguliyev, Yadigar Imamverdiyev, and Lyudmila Sukhostat. “Cyber-
physical systems and their security issues”. In: Computers in Indus-
try 100 (2018), pp. 212-223. 1sSN: 0166-3615. poI: https : / / doi .
org/10.1016/j .compind . 2018 .04 .017. URL: http :/ /www.
sciencedirect.com/science/article/pii/S0166361517304244.

Roderick Chapman and Yannick Moy. AdaCore Technologies for Cyber
Security. 2018. Chap. Appendix A — CWE Mapping, pp. 73-78. URL:
https ://www.adacore.com/uploads/books /pdf /AdaCore -
Tech-Cyber-Security-web.pdf.

“Ada: Meeting Tomorrow'’s Software Challenges Today - A White Paper
by AdaCore”. In: (2019). URL: https://www.adacore.com/uploads/
techPapers/Ada-Meeting-Tomorrows-Software-Challenges-
Today . pdf.

35

https://www.informit.com/articles/article.aspx?p=686170&seqNum=6
https://www.informit.com/articles/article.aspx?p=686170&seqNum=6
https://www.nist.gov/publications/nist-sp-500-268-source-code-security-analysis-tool-function-specification-version-11
https://www.nist.gov/publications/nist-sp-500-268-source-code-security-analysis-tool-function-specification-version-11
https://www.nist.gov/publications/nist-sp-500-268-source-code-security-analysis-tool-function-specification-version-11
https://www.iso.org/standard/61457.html
https://www.iso.org/standard/61457.html
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://www.adacore.com/uploads/books/pdf/ePDF-ImplementationGuidanceSPARK.pdf
https://www.adacore.com/uploads/books/pdf/ePDF-ImplementationGuidanceSPARK.pdf
https://doi.org/https://doi.org/10.1016/j.compind.2018.04.017
https://doi.org/https://doi.org/10.1016/j.compind.2018.04.017
http://www.sciencedirect.com/science/article/pii/S0166361517304244
http://www.sciencedirect.com/science/article/pii/S0166361517304244
https://www.adacore.com/uploads/books/pdf/AdaCore-Tech-Cyber-Security-web.pdf
https://www.adacore.com/uploads/books/pdf/AdaCore-Tech-Cyber-Security-web.pdf
https://www.adacore.com/uploads/techPapers/Ada-Meeting-Tomorrows-Software-Challenges-Today.pdf
https://www.adacore.com/uploads/techPapers/Ada-Meeting-Tomorrows-Software-Challenges-Today.pdf
https://www.adacore.com/uploads/techPapers/Ada-Meeting-Tomorrows-Software-Challenges-Today.pdf

REFERENCES

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

Dor Zusman Ben Seri Gregory Vishnepolsky. Urgent/11 — Critical vul-
nerabilities to remotely compromise VxWorks, the most popular RTOS.
ARMIS - White Paper. 2019. URL: https : / /info . armis . com/
rs/645-PDC-047 / images /Urgent11%5C%20Technical%5C%
20White%5C%20Paper .pdf. (accessed: 24.06.2020).

N. Neshenko et al. “Demystifying loT Security: An Exhaustive Survey
on loT Vulnerabilities and a First Empirical Look on Internet-Scale loT
Exploitations”. In: [IEEE Communications Surveys Tutorials 21.3 (2019),
pp. 2702-2733.

ISO/IEC TR 24772-2:2020 - Programming languages — Guidance to avoid-
ing vulnerabilities in programming languages — Part 2: Ada. 2020. URL:
https : //www . iso . org/ standard /71092 . html. (accessed:
24.06.2020).

Ada 2012 Reference Manual - 4.6 Type Conversions. URL: http://www.
ada-auth.org/standards/rm12_w_tc1/html/RM-4-6.html.
(accessed: 17.06.2020).

Ada Expression Functions. URL: https://docs.adacore.com/spark2014-
docs/html/ug/en/source/specification_features.html#
expression-functions. (accessed: 16.06.2020).

AdaCore. CodePeer: Comprehensive Static Analysis Toolsuite for Ada.
URL:https://www.adacore.com/codepeer/.(accessed:12.06.2020).

AdaCore. Formal Verification with GNATprove. URL: https : / /docs .
adacore.com/spark2014-docs/html/ug/en/gnatprove.html.
(accessed: 14.06.2020).

AdaCore. Intro To SPARK. URL: https : / / learn . adacore . com/
courses/intro-to-spark/index.html. (accessed: 14.06.2020).

AdaCore. SPARK 2014 Reference Manual. URL: http://docs.adacore.
com/spark2014-docs/html/1rm/. (accessed: 14.06.2020).

AdaCore. SPARK 2014 User’s Guide. URL: https ://docs . adacore.
com/spark2014-docs/html/ug/. (accessed: 14.06.2020).

American National Standards Institute. URL: https : / /www . ansi .
org/default. (accessed: 10.06.2020).

Aspect Relaxed_Initialization and Attribute Initialized. URL: http : / /
docs.adacore.com/live/wave/spark2014/html/spark2014_
ug/en/source/specification_features.html#aspect-relaxed-
initialization-and-attribute-initialized. (accessed:20.06.2020).

BEEBS Code Repository. URL: https://github.com/mageec/beebs.
(accessed: 10.06.2020).

36

https://info.armis.com/rs/645-PDC-047/images/Urgent11%5C%20Technical%5C%20White%5C%20Paper.pdf
https://info.armis.com/rs/645-PDC-047/images/Urgent11%5C%20Technical%5C%20White%5C%20Paper.pdf
https://info.armis.com/rs/645-PDC-047/images/Urgent11%5C%20Technical%5C%20White%5C%20Paper.pdf
https://www.iso.org/standard/71092.html
http://www.ada-auth.org/standards/rm12_w_tc1/html/RM-4-6.html
http://www.ada-auth.org/standards/rm12_w_tc1/html/RM-4-6.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/specification_features.html#expression-functions
https://docs.adacore.com/spark2014-docs/html/ug/en/source/specification_features.html#expression-functions
https://docs.adacore.com/spark2014-docs/html/ug/en/source/specification_features.html#expression-functions
https://www.adacore.com/codepeer/
https://docs.adacore.com/spark2014-docs/html/ug/en/gnatprove.html
https://docs.adacore.com/spark2014-docs/html/ug/en/gnatprove.html
https://learn.adacore.com/courses/intro-to-spark/index.html
https://learn.adacore.com/courses/intro-to-spark/index.html
http://docs.adacore.com/spark2014-docs/html/lrm/
http://docs.adacore.com/spark2014-docs/html/lrm/
https://docs.adacore.com/spark2014-docs/html/ug/
https://docs.adacore.com/spark2014-docs/html/ug/
https://www.ansi.org/default
https://www.ansi.org/default
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#aspect-relaxed-initialization-and-attribute-initialized
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#aspect-relaxed-initialization-and-attribute-initialized
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#aspect-relaxed-initialization-and-attribute-initialized
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/specification_features.html#aspect-relaxed-initialization-and-attribute-initialized
https://github.com/mageec/beebs

REFERENCES

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

BEEBS: Bristol/Embecosm Embedded Benchmark Suite. URL: http://
beebs.eu/. (accessed: 10.06.2020).

Ben Brosgol. When less is more: Programming language technology
for safety. URL: http : //vita.mil - embedded . com/articles/
when-programming-language-technology-safety/. (accessed:
12.06.2020).

CLOC - CountLines of Code. URL: http://cloc.sourceforge.net/.
(accessed: 15.06.2020).

EEMBC - Embedded Microprocessor Benchmark Consortium. Dhrys-
tone Benchmark. URL: https://www.eembc.org/techlit/datasheets/
ECLDhrystoneWhitePaper2.pdf. (accessed: 12.06.2020).

CoreMark — An EEMBC benchmark. URL: https://www.eembc.org/
coremark/. (accessed: 12.06.2020).

The MITRE Corporation. Common Weakness Enumeration (CWE) - A
community-Developed List of Software & Hardware Weakness Types.
URL: http://cwe.mitre.org/index.html. (accessed: 12.06.2020).

Data Initialization Policy. URL: http ://docs .adacore.com/1live/
wave/spark2014/html/spark2014_ug/en/source/language_
restrictions.html#data-initialization-policy. (accessed:
20.06.2020).

Discovery kit with STM32F407VG MCU. URL: https://www.st.com/
resource/en/user_manual/dm00039084-discovery-kit-with-
stm32f407vg-mcu-stmicroelectronics.pdf.(accessed: 21.06.2020).

EMBENCH aha_mont64 Benchmark. URL: https : / / github . com/
embench/embench-iot/blob/master/src/aha-mont64/mont64.
c. (accessed: 19.06.2020).

EMBENCH user guide.URL: https://github.com/embench/embench-
iot/blob/master/doc/README .md. (accessed: 21.06.2020).

EMBENCH-IoT Code Repository. URL: https://github.com/mageec/
beebs. (accessed: 10.06.2020).

Free and Open Source Silicon Foundation. Embench: A Modern Em-
bedded Benchmark Suite. URL: https://embench.org/. (accessed:
10.06.2020).

GNAT User’s Guide for Native Platforms. URL: http://docs.adacore.
com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html.
(accessed: 15.06.2020).

37

http://beebs.eu/
http://beebs.eu/
http://vita.mil-embedded.com/articles/when-programming-language-technology-safety/
http://vita.mil-embedded.com/articles/when-programming-language-technology-safety/
http://cloc.sourceforge.net/
https://www.eembc.org/techlit/datasheets/ECLDhrystoneWhitePaper2.pdf
https://www.eembc.org/techlit/datasheets/ECLDhrystoneWhitePaper2.pdf
https://www.eembc.org/coremark/
https://www.eembc.org/coremark/
http://cwe.mitre.org/index.html
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#data-initialization-policy
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#data-initialization-policy
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#data-initialization-policy
https://www.st.com/resource/en/user_manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00039084-discovery-kit-with-stm32f407vg-mcu-stmicroelectronics.pdf
https://github.com/embench/embench-iot/blob/master/src/aha-mont64/mont64.c
https://github.com/embench/embench-iot/blob/master/src/aha-mont64/mont64.c
https://github.com/embench/embench-iot/blob/master/src/aha-mont64/mont64.c
https://github.com/embench/embench-iot/blob/master/doc/README.md
https://github.com/embench/embench-iot/blob/master/doc/README.md
https://github.com/mageec/beebs
https://github.com/mageec/beebs
https://embench.org/
http://docs.adacore.com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html
http://docs.adacore.com/live/wave/gnat_ugn/html/gnat_ugn/gnat_ugn.html

REFERENCES

[36] GNAT User’s Guide Supplement for Cross Platforms. URL: http : / /
docs . adacore.com/live/wave/gnat_ugx/html/gnat_ugx/
gnat_ugx.html. (accessed: 15.06.2020).

[37] How to Investigate Unproved Checks. URL: http : / /docs . adacore.
com/spark2014-docs/html/ug/en/source/how_to_investigate_
unproved_checks.html. (accessed: 20.06.2020).

[38] HowtoRun GNATprove.URL: https://docs.adacore.com/spark2014-
docs/html/ug/en/source/how_to_run_gnatprove.html. (ac-
cessed: 19.06.2020).

[39] How to write loop invaritants. URL: https : //docs . adacore . com/
spark2014-docs/html/ug/en/source/how_to_write_loop_
invariants.html. (accessed: 19.06.2020).

[40] Innovate UK.URL: https://www.gov.uk/government/organisations/
innovate-uk. (accessed: 10.06.2020).

[41] International Organization for Standardization. URL: https : / / www .
iso.org/home.html. (accessed: 10.06.2020).

[42] Introduction to Ada - Interfacing with C. URL: https://learn.adacore.
com/courses/intro-to-ada/chapters/interfacing_with_c.
html. (accessed: 15.06.2020).

[43] Introduction to SPARK - Global Contracts. URL: https://learn.adacore.
com/courses/intro-to-spark/chapters/02_Flow_Analysis.
html?highlight =global%20@aspect#global - contracts. (ac-
cessed: 17.06.2020).

[44] MAGEEC: MAchine Guided Energy Efficient Compilation. URL: http://
mageec.org/. (accessed: 10.06.2020).

[45] Manual Proof Using SPARK Lemma Library. URL: https://docs.adacore.
com/spark2014-docs/html/ug/gnatprove_by_example/manual_
proof.html#manual-proof-using-spark-lemma-library. (ac-
cessed: 20.06.2020).

[46] Rick Merritt. Embedded Benchmark Calls for Support. URL: https://
www .eetimes.com/embedded-benchmark-calls-for-support/
#. (accessed: 10.06.2020).

[47] Prof. David A. Patterson personal Webpage. URL: https://www2 .eecs.
berkeley.edu/Faculty/Homepages/patterson.html. (accessed:
10.06.2020).

[48] RISC-V: The Free and Open RISC Instruction Set Architecture. URL: https :
//riscv.org/. (accessed: 10.06.2020).

38

http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx.html
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx.html
http://docs.adacore.com/live/wave/gnat_ugx/html/gnat_ugx/gnat_ugx.html
http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_investigate_unproved_checks.html
http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_investigate_unproved_checks.html
http://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_investigate_unproved_checks.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_run_gnatprove.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_run_gnatprove.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_write_loop_invariants.html
https://www.gov.uk/government/organisations/innovate-uk
https://www.gov.uk/government/organisations/innovate-uk
https://www.iso.org/home.html
https://www.iso.org/home.html
https://learn.adacore.com/courses/intro-to-ada/chapters/interfacing_with_c.html
https://learn.adacore.com/courses/intro-to-ada/chapters/interfacing_with_c.html
https://learn.adacore.com/courses/intro-to-ada/chapters/interfacing_with_c.html
https://learn.adacore.com/courses/intro-to-spark/chapters/02_Flow_Analysis.html?highlight=global%20aspect#global-contracts
https://learn.adacore.com/courses/intro-to-spark/chapters/02_Flow_Analysis.html?highlight=global%20aspect#global-contracts
https://learn.adacore.com/courses/intro-to-spark/chapters/02_Flow_Analysis.html?highlight=global%20aspect#global-contracts
http://mageec.org/
http://mageec.org/
https://docs.adacore.com/spark2014-docs/html/ug/gnatprove_by_example/manual_proof.html#manual-proof-using-spark-lemma-library
https://docs.adacore.com/spark2014-docs/html/ug/gnatprove_by_example/manual_proof.html#manual-proof-using-spark-lemma-library
https://docs.adacore.com/spark2014-docs/html/ug/gnatprove_by_example/manual_proof.html#manual-proof-using-spark-lemma-library
https://www.eetimes.com/embedded-benchmark-calls-for-support/#
https://www.eetimes.com/embedded-benchmark-calls-for-support/#
https://www.eetimes.com/embedded-benchmark-calls-for-support/#
https://www2.eecs.berkeley.edu/Faculty/Homepages/patterson.html
https://www2.eecs.berkeley.edu/Faculty/Homepages/patterson.html
https://riscv.org/
https://riscv.org/

REFERENCES

[49]

[50]

[51]

[52]

[53]

[54]

[55]

SPARK 2014 - Analysis of Generics. URL: http : / /docs . adacore .
com/live/wave/spark2014/html/spark2014_ug/en/source/
language _restrictions . html#analysis- of - generics. (ac-
cessed: 23.06.2020).

SPARK 2014 — Memory Ownership Policy. URL: http://docs.adacore.
com/live/wave/spark2014/html/spark2614_ug/en/source/

language_restrictions.html#memory-ownership-policy.(ac-

cessed: 23.06.2020).

SPARK 2014 — Nonreturning Procedures. URL: http://docs.adacore.
com/live/wave/spark2014/html/spark2014_ug/en/source/
language_restrictions.html#nonreturning-procedures. (ac-
cessed: 23.06.2020).

SPARK 2014 - Raising Exceptions and Other Error Signalling Mecha-
nisms. URL: http://docs.adacore.com/live/wave/spark20614/
html / spark2014 _ug / en / source / language _restrictions .
html# raising - exceptions-and-other-error-signaling-
mechanisms. (accessed: 23.06.2020).

SPARK 2014 Language Restrictions — Excluded Ada Features. URL: http:
//docs.adacore.com/live/wave/spark2014/html/spark2014_
ug/en/source/language_restrictions.html#excluded-ada-
features. (accessed: 23.06.2020).

SPARK Lemma Library. URL:https://docs.adacore.com/spark2014-
docs/html/ug/en/source/spark_1libraries . html#spark -
lemma-1library. (accessed: 20.06.2020).

The Arm Cortex-M4 Processor. URL: https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m4. (accessed: 10.06.2020).

39

http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#analysis-of-generics
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#analysis-of-generics
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#analysis-of-generics
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#memory-ownership-policy
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#memory-ownership-policy
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#memory-ownership-policy
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#nonreturning-procedures
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#nonreturning-procedures
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#nonreturning-procedures
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#raising-exceptions-and-other-error-signaling-mechanisms
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#raising-exceptions-and-other-error-signaling-mechanisms
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#raising-exceptions-and-other-error-signaling-mechanisms
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#raising-exceptions-and-other-error-signaling-mechanisms
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#excluded-ada-features
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#excluded-ada-features
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#excluded-ada-features
http://docs.adacore.com/live/wave/spark2014/html/spark2014_ug/en/source/language_restrictions.html#excluded-ada-features
https://docs.adacore.com/spark2014-docs/html/ug/en/source/spark_libraries.html#spark-lemma-library
https://docs.adacore.com/spark2014-docs/html/ug/en/source/spark_libraries.html#spark-lemma-library
https://docs.adacore.com/spark2014-docs/html/ug/en/source/spark_libraries.html#spark-lemma-library
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4

	Security-Hardening-Software.pdf
	Introduction
	Ada and SPARK
	Ada
	SPARK
	SPARK Levels of Software Assurance

	The EMBENCH Benchmark Suite
	Benchmarks Conversion and Proof
	The process of converting the Benchmarks
	Supporting Ada and Spark in EMBENCH

	Achieving the Different SPARK Levels
	Achieving Stone Level of SPARK
	Achieving Bronze Level of SPARK
	Achieving Silver Level of SPARK

	Evaluation
	Performance Evaluation
	Effort/Time and Technology Assessment

	Conclusion and Future Work

