
Safe and Secure Software
Ada 2005An Invitation to

Foreward / Contents / Introduction / Bibliography

Courtesy of

The GNAT Pro Company
John Barnes

iii

Foreword

The aim of this booklet is to show how the study of Ada in general and Ada
2005 in particular, is helpful to everyone designing safe and secure software
regardless of the programming language in which the software is eventually
written. After all, successful implementers of safe and secure software write in
the spirit of Ada in any language!
Thank you John for showing this throughout your papers, rationales, books, and
this booklet.
AdaCore dedicates this booklet to all the designers and implementers of safe
and secure software.

v

Contents

Introduction 1
1 Safe Syntax 3

Equality and assignment 3
Statement groups 5
Named notation 6

2 Safe Typing 9

Using distinct types 9
Enumerations and integers 11
Constraints and subtypes 13
Arrays and constraints 14
Real errors 17

3 Safe Pointers 19

References, pointers and addresses 19
Access types and strong typing 21
Access types and accessibility 23
References to subprograms 24
Nested subprograms as parameters 26

4 Safe Architecture 31

Package specifications and bodies 31
Private types 35
Generic contract model 37
Child units 38
Unit testing 39
Mutually dependent types 40

5 Safe Object-Oriented Programming 43

Object-Orientation versus Function-Orientation 43
Overriding indicators 47

vi

Dispatchless programming 48
Interfaces and multiple inheritance 49

6 Safe Object Construction 55

Variables and constants 55
Constant and variable views 57
Limited types 58
Controlled types 61

7 Safe Memory Management 65

Buffer overflow 65
Heap control 66
Storage pools 69
Restrictions 73

8 Safe Startup 75

Elaboration 75
Elaboration pragmas 77
Dynamic loading 78

9 Safe Communication 81

Representation of data 81
Validity of data 83
Communication with other languages 84
Streams 85
Object factories 87

10 Safe Concurrency 91

Operating systems and tasks 91
Protected objects 93
The rendezvous 98
Restrictions 101
Ravenscar 102
Timing and scheduling 102

Safe and Secure Software: An invitation to Ada 2005

vii

11 Certified Safe with SPARK 105

Contracts 105
Correctness by construction 106
The kernel language 109
Tool support 110
Examples 112
Certification 113

Conclusion 115
Bibliography 119

 Contents

1

Introduction

The aim of this booklet is to show how Ada 2005 addresses the needs of
designers and implementers of safe and secure software. The discussion will
also show that those aspects of Ada that make it ideal for safety-critical and
security-critical application areas will also simplify the development of robust
and reliable software in many other areas.

The world is becoming more and more concerned about both safety and
security. Moreover, software now pervades all aspects of the workings of
society. Accordingly, it is important that software which is concerned with
systems for which safety or security are a major concern should be safe and
secure.

There has been a long tradition of concern for safety going back to the
development of railroad signaling and more recently with aviation. Vital
software systems such as those that control aircraft navigation and landing have
to meet well established certification and validation criteria.

More recently there has been growing concern with security in systems such
as banking and communications generally. This has been heightened with
concern for the activities of terrorists.

Safety and security are intertwined through communication. An interesting
characterization of the difference is
▪ safety – the software must not harm the world,
▪ security – the world must not harm the software.

So a safety-critical system is one in which the program must be correct,
otherwise it might wrongly change some external device such as an aircraft flap
or a railroad signal, with serious real-world consequences.

And a security-critical system is one in which it must not be possible for
some incorrect or malicious input from the outside to violate the integrity of the
system, for example by corrupting a password checking mechanism and stealing
social security information.

The key to guarding against both problems is that the software must be
correct in the aspects affecting the system's integrity. And by correct we mean
that it meets its specification. Of course if the specification is incomplete or
itself incorrect then the system will be vulnerable. Capturing requirements
correctly is a hard problem and is the focus of much attention from the lean
software development community.

One of the trends of the second half of the twentieth century was a universal
concern with freedom. But there are two aspects of freedom. The ability of the

2

individual to do whatever they want conflicts with the right to be protected from
the actions of others. Maybe A would like the freedom to smoke in a pub
whereas B wants freedom from smoke in a pub. Concern with health in this
example is changing the balance between these freedoms. Maybe the twenty-
first century will see further shifts from "freedom to" to "freedom from".

In terms of software, the languages Ada and C have very different attitudes to
freedom. Ada introduces restrictions and checks, with the goal of providing
freedom from errors. On the other hand C gives the programmer more freedom,
making it easier to make errors.

One of the historical guidelines in C was "trust the programmer". This would
be fine were it not for the fact that programmers, like all humans, are frail and
fallible beings. Experience shows that whatever techniques are used it is hard to
write "correct" software. It is good advice therefore to use tools that can help by
finding bugs and preventing bugs. Ada was specifically designed to help in this
respect. There have been three versions of Ada – Ada 83, Ada 95 and now Ada
2005.

The purpose of this booklet is to illustrate the ways in which Ada 2005 can
help in the construction of reliable software, by illustrating some aspects of its
features. It is hoped that it will be of interest to programmers and managers at
all levels.

It must be stressed that the discussion is not complete. Each chapter selects a
particular topic under the banner of Safe X where Safe is just a brief token to
designate both safety and security. For the most critical software, use of the
related SPARK language appears to be very beneficial, and this is outlined in
Chapter 11.

A topic with which Ada has much synergy is lean software development –
there is not enough space in this booklet to expand on this concept but the reader
is encouraged to explore its good ideas elsewhere.

As the twenty-first century progresses we will see software becoming even
more pervasive. It would be nice to think that software in automobiles for
example was developed with the same care as that in airplanes. But that is not
so. My wife recently had an experience where her car displayed two warning
icons. One said "stop at once", the other said "drive immediately to your dealer".
Another anecdotal motor story is that of a driver attempting to select channel 5
on the radio, only to see the car change into 5th gear! Luckily he did not try
Replay.

For a fuller description of Ada 2005, SPARK, and lean software development
and papers on related topics please consult the bibliography.

Safe and Secure Software: An invitation to Ada 2005

119

Bibliography

The following two books are comprehensive descriptions of Ada 2005 and
SPARK respectively. Both contain CDs with appropriate supporting material.

John Barnes. Programming in Ada 2005. Addison-Wesley (2006).
John Barnes with Praxis Critical Systems. High Integrity Software – The
SPARK approach to Safety and Security. Addison-Wesley (2003).

The following award-winning book is a good introduction to lean software
development.

Peter Middleton, James Sutton. Lean Software Strategies: Proven
Techniques for Managers and Developers. Productivity Press (2005).

The following websites provide access to much useful information.
www.adacore.com – for AdaCore and its products.
www.ada-europe.org – for Ada-Europe, conferences and journal.
www.adaic.org – for the Ada Information Clearinghouse.
www.sparkada.com – for SPARK.

The following further documents and books are referenced in the text.
[1] Software Considerations in Airborne Systems and Equipment Certification,

DO-178B/ED-12B, RTCA_EUROCAE. (December 1992).
[2] Cyrille Comar and Pat Rogers. On Dynamic Plug-in Loading with Ada 95

and Ada 2005. AdaCore (2005). http://www.adacore.com/.
[3] ISO/IEC TR 24718:2004. Guide for the use of the Ada Ravenscar profile

in high integrity systems. (2004).
[4] Alan Burns and Andy Wellings. Concurrent and Real-Time programming

in Ada 2005. Cambridge University Press (2006).
[5] Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David

Cooper and Bill Everett. Engineering the Tokeneer Enclave Protection
Software. Published in ISSSE 06, the proceedings of the 1st IEEE
International Symposium on Secure Software Engineering. IEEE (March
2006). Also available from www.sparkada.com.

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Syntax
1

Courtesy of

The GNAT Pro Company
John Barnes

3

Syntax is often considered to be a rather boring mechanical detail. The argument
being that it is what you say that matters but not so much how it is said. That of
course is not true. Being clear and unambiguous are important aids to any
communication in a civilized world.

Similarly, a computer program is a communication between the writer and the
reader, whether the reader be that awkward thing: the compiler, another team
member, a reviewer or other human soul. Indeed, most communication
regarding a program is between two people. Clear and unambiguous syntax is a
great help in aiding communication and, as we shall see, avoids a number of
common errors.

An important aspect of good syntax design is that it is a worthwhile goal to
try to ensure that typical simple typing errors cause the program to become
illegal and thus fail to compile, rather than having an unintended meaning. Of
course it is hard to prevent the accidental typing of X rather than Y or + rather
than * but many structural risks can be prevented. Note incidentally that it is best
to avoid short identifiers for just this reason. If we have a financial program
about rates and times then using identifiers R and T is risky since we could
easily type the wrong identifier by mistake (the letters are next to each other on
the keyboard). But if the identifiers are Rate and Time then inadvertently typing
Tate or Rime will be caught by the compiler. This applies to any language of
course.

Equality and assignment

It is obvious that assignment and equality are different things. If we do an
assignment then we change the state of some variable. On the other hand,
equality is simply an operation to test some state. Changing state and testing
state are very different things and understanding the distinction is important.

Many programming languages have confused these fundamentally different
logical operations.

In the earliest days of Fortran one wrote

X = X + 1

But this is really rather peculiar. In mathematics x never equals x + 1. What the
Fortran statement means of course is "replace the current value of X by the old
value plus one". But why misuse the equals sign in this way when society has
been using the equals sign to mean equals for hundreds of years? (The equals
sign dates from around 1550 when it was introduced by the English
mathematician Robert Recorde.) The designers of Algol 60 recognized the
problem and used the combination of a colon followed by an equals sign to
mean assignment, thus

4

X := X + 1;

and this has the helpful consequence that the equals sign can unambiguously be
used to mean equality, as in

if X = 0 then ...

The C language (like Fortran) adopted = for assignment and as a consequence C
uses a double equals (==) to mean equality. This can cause much confusion.

Here is a fragment of a C program controlling the crossing gates on a railroad

if (the_signal == clear)

{

 open_gates(...);

 start_train(...);

}

The same program in Ada might be

if The_Signal = Clear then

 Open_Gates(...);

 Start_Train(...);

end if;

Now consider what happens if a programmer gets confused and accidentally
forgets one of the equals signs in C thus

if (the_signal = clear)

{

 open_gates(...);

 start_train(...);

}

This still compiles but instead of just testing the_signal it actually assigns the
value clear to the_signal. Moreover C unifies expressions (which have values)
with assignments (which change state). So the assignment also acts as an
expression and the result of the assignment is then used in the test. If the
encoding is such that clear is not zero then the result will be true and so the
gates are always opened, the_signal set to clear and the train started on its
perilous journey. Conversely, if clear is encoded as zero, the test fails, the gates
remain closed, and the train is blocked. In either case, things go badly wrong.

The pitfalls associated with the use of "=" for assignment and "==" for
equality, and allowing assignments as expressions, are well known in the C
community and have given rise to coding guidelines and analysis tools such as
lint. However it is preferable for such pitfalls to be avoided in the first place,
through appropriate language design and that is how Ada has approached this
issue

Safe and Secure Software: An invitation to Ada 2005

5

If the Ada programmer were to accidentally use an assignment in the test

if The_Signal := Clear then -- illegal

then the program will simply fail to compile and all will be well.

Statement groups

It is often necessary to group a sequence of statements together – for example
following a test using a keyword such as "if". There are two typical ways of
doing this

! by bracketing the group of statements so that they act as one (as in C),

! by closing the sequence with something matching the "if" (as in Ada).

These are also illustrated by the railroad example. The statements to open the
gates and to start the train both need to be obeyed if the condition is true.

In C we had

if (the_signal == clear)

{

 open_gates(...);

 start_train(...);

}

and now suppose we inadvertently add a semicolon at the end of the first line
(easily done). The program becomes

if (the_signal == clear) ;

{

 open_gates(...);

 start_train(...);

}

We now find that the condition is governing the null statement which is
implicitly present between the test and the newly inserted semicolon. We cannot
see it because a null statement is just nothing. So no matter what the state of the
signal, the gates are always opened and the train set going.

In Ada the corresponding error would result in

if The_Signal = Clear then ; -- illegal

 Open_Gates(...);

 Start_Train(...);

end if;

 Safe syntax

6

This is syntactically incorrect and so the error is safely caught by the compiler
and the train wreck cannot occur.

Named notation

Another feature of Ada which is of a syntactic nature and can detect many
unfortunate errors is the use of named associations in various situations. Dates
provide a good illustration, because the order of the components varies
according to local culture. Thus 12 January 2008 is written in Europe as
12/01/08 but in the US it is usually written as 01/12/08 (but not on the latest
customs forms) whereas the ISO standard gives the year first, so would be
08/01/12.

In C we might declare a structure for manipulating dates as follows:

struct date {

 int day, month, year;

 } ;

which corresponds to the following type declaration in Ada

type Date is

 record

 Day, Month, Year: Integer;

 end record;

In C we might write

struct date today = {1, 12, 8};

But without looking at the type declaration we do not know whether this means
1 December 2008, 12 January 2008 or even 8 December 2001.

In Ada we have the option of writing

Today: Date := (Day => 1, Month => 12, Year => 08);

which uses named associations. Now it will be crystal clear if we ever write the
values in the wrong order. (Note incidentally that Ada permits leading zeroes.).

We can also write the declaration as

Today: Date := (Month => 12, Day => 1, Year => 08);

which has the correct meaning and reveals the advantage that we do not need to
remember the order in which the fields are declared.

Named associations can be used in other contexts in Ada as well. We might
make similar errors with a function that has several parameters of the same type.

Safe and Secure Software: An invitation to Ada 2005

7

Suppose we have a function to compute the obesity index of a person. The two
parameters are the height and the weight which could be given as floating point
values in pounds and inches (or kilograms and centimeters if you are metric). So
we might have in C:

float index(float height, float weight) {

 ...

 return ... ;

}

or in Ada

function Index(Height, Weight: Float) return Float is

 ...

 return ... ;

end;

Now in the case of the author, the appropriate call of the index function in C
might be

my_index = index(68.0, 168.0);

But if by mistake the call were reversed

my_index = index(168.0, 68.0);

then we would have a very thin and very tall giant! (It's a curious coincidence
that both values end in 68.0 as well.)

Such an unhealthy disaster can be avoided in Ada by using named parameter
calls thus

My_Index := Index(Height => 68.0, Weight => 168.0);

Again we can give the parameters in whatever order we wish and no error will
occur if we forget the order in the declaration of the function.

Named notation is a very valuable feature of Ada. Its use is optional but it is
well worth using freely since not only does it help to prevent errors but it also
makes the program easier to understand.

 Safe syntax

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Typing
2

Courtesy of

The GNAT Pro Company
John Barnes

9

Safe typing is not about preventing heavy-handed use of the keyboard, although
it can detect errors made by typos!

Safe typing is about designing the type structure of the language in order to
prevent many common semantic errors. It is often known as strong typing.

Early languages such as Fortran and Algol treated all data as numeric types.
Of course, at the end of the day, everything is indeed held in the computer as a
numeric of some form, usually as an integer or floating point value and usually
encoded using a binary representation. Later languages, starting with Pascal,
began to recognize that there was merit in taking a more abstract view of the
objects being manipulated. Even if they were ultimately integers, there was
much benefit to be gained by treating colors as colors and not as integers by
using enumeration types (just called scalar types in Pascal).

Ada take this idea much further as we shall see, but other languages still treat
scalar types as just raw numeric types, and miss the critical idea of abstraction,
which is to distinguish semantic intent from machine representation. The Ada
approach provides more opportunities for detecting programming errors.

Using distinct types

Suppose we are monitoring some engineering production and checking for
faulty items. We might count the number of good ones and bad ones. We want to
stop production if the number of bad ones reaches some limit and perhaps also
stop when the number of good ones reaches some other limit. In C or C++ we
might have variables

int badcount, goodcount;
int b_limit, g_limit;

and then perhaps
badcount = badcount + 1;
...
if (badcount == b_limit) { ... };

and similarly for the good items. Since everything is really an integer, there is
nothing to prevent us writing by mistake

if (goodcount == b_limit) { ... }

where we really should have written g_limit. Maybe it was a cut and paste error
or a simple typo (g is next to b on a qwerty keyboard). Anyway, since they are
integers the compiler will be happy even if we are not.

We could do the same in any language. But Ada gives us the opportunity to
be more precise about what we are doing. We can write

10

type Goods is new Integer;
type Bads is new Integer;

These declarations introduce new types, which have all the properties of the
predefined type Integer (such as operations + and –) and indeed are
implemented in the same way, but are nevertheless distinct. We can now write

Good_Count, G_Limit: Goods;
Bad_Count, B_Limit: Bads;

and now we have quite distinct groups of entities for our manipulation; any
accidental mixing will be detected by the compiler and prevent the incorrect
program from running. So we can happily write

Bad_Count := Bad_Count + 1;

if Bad_Count = B_Limit then

but are prevented from writing
if Good_Count = B_Limit then -- illegal

since this is a type mismatch.
If we did indeed want to mix the types, perhaps to compare the bad items and

good items then we can do a type conversion (known as a cast in other
languages) to make the types compatible. Thus we can write

if Good_Count = Goods(B_Limit) then

Another example might be when computing the percentage of bad objects,
where we can convert both counts to the parent type Integer thus

100 * Integer(Bad_Count) / (Integer(Bad_Count)+Integer(Good_Count))

We can use the same technique to avoid accidental mixing of floating types.
Thus when dealing with weights and heights in the chapter on Safe Syntax,
rather then

My_Height, My_Weight: Float;

it would better to write
type Inches is new Float;
type Pounds is new Float;

My_Height: Inches := 68.0;
My_Weight: Pounds := 168.0;

and then confusion between the two would be detected by the compiler.

Safe and Secure Software: An invitation to Ada 2005

11

Enumerations and integers

In the chapter on Safe Syntax we discussed an example of a railroad crossing
which included a test

if (the_signal == clear) { ... };

if The_Signal = Clear then ... end if;

in C and Ada respectively. In C the variable the_signal and associated constants
such as clear might be declared thus

enum signal {
 danger,
 caution,
 clear
};

enum signal the_signal;

This convenient notation in fact is simply a shorthand for defining constants
danger, caution and clear of type int. And the variable the_signal is also of type
int.

As a consequence, nothing can prevent us from assigning a nonsensical value
such as 4 to the_signal. In particular, such a nonsensical value might arise from
the use of an uninitialized variable. Moreover, suppose other parts of the
program are concerned with chemistry and use states anion and cation; nothing
would prevent confusion between cation and caution. We might also be dealing
with girls' names such as betty and clare or weapons such as dagger and spear.
Nothing prevents confusion between dagger and danger or clare and clear.

In Ada we write
type Signal is (Danger, Caution, Clear);

The_Signal: Signal := Danger;

and no confusion can ever arise since an enumeration type in Ada truly is a
different type and not a shorthand for an integer type. If we did also have

type Ions is (Anion, Cation);
type Names is (Anne, Betty, Clare, ...);
type Weapons is (Arrow, Bow, Dagger, Spear);

then the compiler would prevent the compilation of a program that mixed these
things up. Moreover the compiler would prevent us from assigning to Clear or
Danger since these are literals and this would be as nonsensical as trying to
change the value of an integer literal such as 5 by writing

5 := 2 + 2;

 Safe typing

12

At the machine level the various enumeration types are indeed encoded as
integers and we can access the encodings if we really need to, by using the
attribute Pos thus

Danger_Code: Integer := Signal'Pos(Danger);

We can also specify our own encodings, as we shall see in the chapter on Safe
Communication.

Incidentally, a very important built-in type in Ada is the type Boolean, which
formally has the declaration

type Boolean is (False, True);

The result of a test such as The_Signal = Clear is of the type Boolean, and there
are operations such as and, or, not which operate on Boolean values. It is never
possible in Ada to treat an integer value as a Boolean or vice versa. In C it will
be recalled, tests yield integer values and zero is treated as false, and nonzero as
true. Again we see the danger in

if (the_signal == clear)
{
 ...
};

Omitting one equals turns the test into an assignment and because C permits an
assignment to act as an expression the syntax is acceptable. The error is further
compounded since the integer result is treated as a Boolean for the test. So
altogether C has several pitfalls illustrated by the one example
▪ using = for assignment,
▪ allowing assignments as expressions,
▪ treating integers as Booleans in conditional expressions.
Most of these flaws have been carried over into C++. None of these issues are
present in Ada.

Constraints and subtypes

It is often the case that we know that the value of a certain variable is always
going to be within some meaningful range. If so we should say so and thereby
make explicit in the program some assumption about the external world. Thus
My_Weight could never be negative and would hopefully never exceed 300
pounds. So we can declare

My_Weight: Float range 0.0 .. 300.0;

Safe and Secure Software: An invitation to Ada 2005

13

or if we had been methodical programmers and had previously declared a
floating type Pounds then

My_Weight: Pounds range 0.0 .. 300.0;

If by mistake the program generates a value outside this range and then attempts
to assign it to My_Weight thus

My_Weight := Compute_Weight(...);

then the exception Constraint_Error will be raised (or thrown) at run time. We
might handle (or catch) this exception in some other part of the program and
take remedial action. If we do not, the program will stop and the runtime system
will produce an error message indicating where the violation occurred. This all
happens automatically – appropriate checks are inserted into the compiled code.

This idea of subranges was first introduced in Pascal and improved in Ada. It
is not available in most other languages and we would have to program our own
checks all over the place but more likely we wouldn't bother, and any error
resulting from violating these bounds would be that much harder to detect.

If we knew that every weight to be dealt with by the program was in a
restricted range, then rather than putting a constraint on every variable
declaration we can impose it on the type Pounds in the first place.

type Pounds is new Float range 0.0 .. 300.0;

On the other hand if some weights in the program are unrestricted and it is only
the weight of people that are known to lie in a restricted range then we can write

type Pounds is new Float;
subtype People_Pounds is Pounds range 0.0 .. 300.0;

My_Weight: People_Pounds;

We can also apply constraints and declare subtypes of integer types and
enumeration types. Thus when counting good items we would assume that the
number was never negative and perhaps that it would never exceed 1000. So we
might have

type Goods is new Integer range 0 .. 1000;

If we just wanted to ensure that it was never negative but did not wish to impose
an upper limit then we could write

type Goods is new Integer range 0 .. Integer'Last;

where Integer'Last gives the upper value of the type Integer. The restriction to
positive or nonnegative values is so common that the Ada language provides the
following built-in subtypes:

 Safe typing

14

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

The type Goods could then be declared as
type Goods is new Natural;

and this would just impose the lower limit of zero as required.
As an example of a constraint with an enumeration type we might have

type Day is (Monday, Tuesday, Wednesday, Thursday, Friday,
 Saturday, Sunday);
subtype Weekday is Day range Monday .. Friday;

and then we would be prevented from assigning Sunday to a variable of the
subtype Weekday.

Inserting constraints as in the above examples may seem to be tiresome but
makes the program clearer. Moreover, it enables the compiler and runtime
system to verify that the assumptions being expressed by the constraints are
indeed correct.

Arrays and constraints

An array is an indexable set of things. As a simple example, suppose we are
playing with a pair of dice and wish to record how many throws of each value
(from 2 to 12) have been obtained. Since there are 11 possible values, in C we
might write

int counters[11];

int throw;

and this will in fact declare 11 variables referred to as counters[0] to
counters[10] and a single integer variable throw.

If we wish to record the result of another throw then we might write:
throw = ... ;

counters[throw–2] = counters[throw–2] + 1;

Note the need to decrement the throw value by 2, since C arrays are always
zero-indexed (that is, have a lower bound of zero). Now suppose the counting
mechanism goes wrong (some joker produces a die with 7 spots perhaps or
maybe we are generating the throws using a random number generator and we
have not programmed it correctly) and a throw of 13 is generated. What
happens? The C program does not detect the error but simply computes where

Safe and Secure Software: An invitation to Ada 2005

15

counters[11] would be and adds one to that location. Most likely this will be the
location of the variable throw itself since it is declared after the array and it will
become 14! The program just goes hopelessly wrong.

This is an example of the infamous buffer overflow problem. It is at the heart
of many serious and hard-to-detect programming problems. It is ultimately the
loophole which permits viruses to attack systems such as Windows. This is
discussed further in Chapter 7 on Safe Memory Management.

Now consider the same program in Ada, we can write
Counters: array (2 .. 12) of Integer;

Throw: Integer;

and then
Throw := ... ;

Counters(Throw) := Counters(Throw) + 1;

And now if Throw has a rogue value such as 13 then since Ada has runtime
checks to ensure that we cannot read or write to a part of an array that does not
exist, the exception Constraint_Error is raised and the program is prevented
from running wild.

Note that Ada gives control over the lower bound of the array as well as the
upper bound. Array indices in Ada do not all start at zero. Lower bounds in real
programs are more often one than zero. Specifying the lower bound as 2 in the
above example means that the variable throw can be used directly in the index,
without the complication of deciding on and subtracting the appropriate offset as
in the C version.
The problem with the dice program was not so much that the upper bound of the
array was exceeded (that was the symptom) but rather that the value in Throw
was out of bounds. We can catch the mistake earlier by declaring a constraint on
Throw thus

Throw: Integer range 2 .. 12;

and now Constraint_Error is raised when we try to assign 13 to Throw. As a
consequence the compiler is able to deduce that Throw always has a value
appropriate to the range of the array, and no checks will actually be necessary
for accessing the array using Throw as an index. Indeed, placing a constraint on
variables used for indexing typically reduces the number of runtime checks
overall. Incidentally, we can reduce the double appearance of the range 2 .. 12
by writing

Throw: Integer range 2 .. 12;
Counters: array (Throw'Range) of Integer;

 Safe typing

16

or even more clearly:
subtype Dice_Range is Integer range 2 .. 12;
Throw: Dice_Range;
Counters: array (Dice_Range) of Integer;

The advantage of only writing the range once is that if we need to change the
program (perhaps adding a third die so that the range becomes 3 .. 18) then this
only has to be done in one place.

Range checks in Ada are of enormous practical benefit during testing and can
be turned off for a production program. Ada compilers are not unique in
applying runtime checks in programs. The Whetstone Algol 60 compiler dating
from 1962 did it. Ada (like Java) specifies the checks in the language definition
itself.

Perhaps it should also be mentioned that we can give names to array types as
well. If we had several sets of counter values then it would be better to write

type Counter_Array is array (Dice_Range) of Integer;
Counters: Counter_Array;
Old_Counters: Counter_Array;

and then if we wanted to copy all the elements of the array Counters into the
corresponding elements of the array Old_Counters then we simply write

Old_Counters := Counters;

Giving names to array types is not possible in many languages. The advantage
of naming types is that it introduces explicit abstractions, as when counting the
good and bad items. By telling the compiler more about what we are doing, we
provide it with more opportunities to check that our program makes sense.

Real errors

The title of this section is an example of those nasty puns so hated by the
software pioneer Christopher Strachey as mentioned in the Conclusion. This is
about accuracy in arithmetic and in particular with real as opposed to integer
types.

In floating point arithmetic (using types such as real in Pascal, float in C and
Float in Ada) the computation is done with the underlying floating point
hardware. Floating point numbers have a relative accuracy. A 32-bit word might
allocate 23 bits for the mantissa, one bit for the sign and 8 bits for the exponent.
This gives an accuracy of 23 binary digits or about 7 decimal digits.

So a large value such as 123456.7 is accurate to one decimal place, whereas a
very small value such as 0.01234567 is accurate to eight decimal places, but in

Safe and Secure Software: An invitation to Ada 2005

17

all cases the number of significant digits is always 7. So the accuracy is relative
to the magnitude of the number.

Relative accuracy works well most of the time but not always. Consider the
representation of an angle giving the bearing of a ship or rocket. Perhaps we
would like to hold the accuracy to a second of arc. Remember that there are 60
seconds in a minute, 60 minutes in a degree and 360 degrees in a whole circle.

If we hold the angle as a floating point number
float bearing;

then the accuracy at 360 degrees will be about 8 seconds which is not good
enough, whereas the accuracy at 1 degree will be about 1/45 second which is
unnecessary. We could of course hold the value as an integral number of
seconds by using an integer type

int bearingsecs;

This works but it means we have to remember to do our own scaling for input
and display purposes.

But the real trouble with floating point is that the accuracy of operations such
as addition and subtraction is affected by rounding errors. If we subtract two
nearly equal values then we get cancellation errors. And of course certain
numbers will not be held exactly. If we have a stepping motor which works in
1/10 degree steps then because 0.1 cannot be held exactly in binary the result of
adding 10 steps will not be exactly one degree at all. So even if the accuracy
required is quite coarse so that the notional accuracy is more than adequate the
cumulative effect of tiny computational errors can be unbounded.

Scaling everything to use integers is acceptable for simple applications but
when we have several types held as scaled integers and we have to operate on
several together we often get into problems and have to do our own scaling
(perhaps even by using raw machine operations such as shifting). This is all
prone to errors and difficult to maintain.

Ada is one of the few languages to provide fixed point arithmetic. This does
the scaling automatically for us. Thus for the stepping motor we might declare

type Angle is delta 0.1 range –360.0 .. 360.0;
for Angle'Small use 0.1;

and this will hold the values internally as scaled integers that represent multiples
of 0.1 but we can think about them as the abstract values they represent, that is
degrees and tenths of degrees. And all arithmetic operations will not suffer from
rounding errors.

In summary, Ada has two forms of real arithmetic

 Safe typing

18

▪ floating point, which provides relative accuracy,
▪ fixed point, which provides absolute accuracy.

Ada also supplies a specialized form of fixed point for decimal arithmetic,
which is the standard model for financial calculations.

The topic of this section is rather specialized but it does illustrate the breadth
of facilities in Ada and the care taken to encourage safety in numerical
calculations.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Pointers
3

Courtesy of

The GNAT Pro Company
John Barnes

19

Primitive man made a huge leap forward with the discovery of fire. Not only did
this allow him to keep warm and cook and thereby expand into more
challenging environments but it also enabled the creation of metal tools and thus
the bootstrap to an industrial society. But fire is dangerous when misused and
can cause tremendous havoc; observe that society has special standing
organizations just to deal with fires that are out of control.

Software similarly made a big leap forward in its capabilities when the notion
of pointers or references was introduced. But playing with pointers is like
playing with fire. Pointers can bring enormous benefits but if misused can bring
immediate disaster such as a blue screen, or allow a rampaging program to
destroy data, or create the loophole through which a virus can invade.

High integrity software typically limits drastically the use of pointers. The
access types of Ada have the semantics of pointers but in addition carry
numerous safeguards on their use, which makes them suitable for all but the
most demanding safety-critical programs.

References, pointers and addresses

Pointers introduce several opportunities for programming errors such as
▪ Type safety violations  –  creating an object of one type and then

accessing it (through a pointer) as though it were of some other type.
Or, more generally, using a pointer to access an object in a manner that
is inconsistent with some of the object's semantic properties (for
example, assigning to a constant or violating a range constraint).

▪ Dangling references – accessing an object through a pointer after the
object has been freed; either a local variable that has gone out of scope,
or a dynamically allocated object that has been explicitly freed through
some other pointer.

▪ Storage leakage – allocating an object that later becomes inaccessible
(and so is "garbage") but which is never freed.

Although the details are different, type safety violations and dangling references
may similarly arise if the language allows pointers to subprograms.

Historically, languages have taken different approaches to these problems.
Early languages such as Fortran, COBOL and Algol 60 did not have a notion of
pointers at the level of the user program. Programs in all languages use
addresses for basic operations such as calling a subprogram, but addresses in
these languages cannot be directly manipulated by the user.

C (and C++) permit pointers to both heap-allocated and declared (stack-
allocated) objects, and also to functions. Although these languages offer some
checks, it is basically the programmer's responsibility to use pointers correctly.

20

For example, since C treats an array as a pointer to its initial element, and allows
pointer arithmetic as the equivalent of array indexing, all the necessary low-
level ingredients are provided that can get programmers into trouble.

Java and other "pure" object-oriented languages do not expose pointers to the
application but rely on pointers and dynamic allocation as the basis of the
language semantics. Type checking is preserved, dangling references are
prevented (there is no explicit "free"), but to avoid storage leakage the language
requires that the implementation provide automatic storage reclamation
(garbage collection). This is a reasonable approach for certain kinds of
programs. It is still a questionable technology for real-time applications,
especially ones with safety-critical or security-critical requirements.

The history of Ada with respect to pointers is interesting. The original version
of the language, Ada 83, provided pointers only for dynamic allocation (thus no
pointers to declared objects, no pointers to subprograms) and also supplied an
explicit free operation known as Unchecked_Deallocation. This preserved type
safety, and avoided dangling references caused by pointers to out-of-scope local
variables, but introduced the possibility of dangling references through incorrect
uses of Unchecked_Deallocation.

The decision to include Unchecked_Deallocation was unavoidable, since the
only alternative – requiring implementations to supply Garbage Collection –
was not an appropriate option given Ada's intended domain of real-time and
high-integrity systems. However, the Ada philosophy is that if a feature defeats
checks that are normally performed, then its use must be explicit. And indeed, if
we are using Unchecked_Deallocation we need to "with" and then instantiate a
generic procedure. (The concepts of a with clause and generic instantiation are
explained in the next chapter.) This somewhat heavyweight syntax both prevents
accidental usage and makes our intent clear to whomever needs to read or
maintain our code.

Ada 95 extended the Ada 83 mechanism, allowing pointers to declared
objects and also to subprograms. Ada 2005 has taken things a bit further – for
example, making it easier to pass (pointers to) subprograms as runtime
parameters. How these were accomplished without sacrificing safety will be the
subject of this chapter.

A final note before going into further detail. Perhaps because pointers and
references have a hardware-level connotation, Ada uses the term access types.
This enforces the view that values of an access type give access to other objects
of some designated type (are like dynamic names for these objects) and should
not be thought of as simply machine addresses. Indeed, at the implementation
level, the representation of an access value might be different from a physical
pointer.

Safe and Secure Software: An invitation to Ada 2005

21

Access types and strong typing

We can declare a variable whose values give access to objects of type T by
Ref: access T;

If we do not give an initial value then a special value null is assumed. X can
refer to a normal declared object of type T (which must be marked aliased) by

Obj: aliased T;
...
Ref := Obj'Access;

The analogous C version is:
 t* ref;
 t obj;
 ref = &obj;

T might be a record type such as
type Date is
 record
 Day: Integer range 1 .. 31;
 Month: Integer range 1 .. 12;
 Year: Integer;
end record;

so we might have
Birthday: aliased Date := (Day => 10, Month => 12, Year => 1815);
AD: access Date := Birthday'Access;

and then to retrieve the individual components of the date referred to indirectly
by AD we can write for example

The_Day: Integer := AD.Day;

A variable such as AD can also refer to an object dynamically allocated on the
heap (called a storage pool in Ada). We can write

AD := new Date'(Day => 27, Month => 11, Year => 1852);

(The two dates are those of the birth and death of Ada, Countess of Lovelace
after whom the language is named.)

A common application of access types is to create linked lists – we might
declare

 Safe pointers

22

type Cell is
 record
 Next: access Cell;
 Value: Integer;
 end record;

and then we can create chains of objects of the type Cell linked together.
Sometimes it is convenient to give a name to an access type

type Date_Ptr is access all Date;

The "all" in the syntax indicates that this named type can refer to both objects on
the heap and also to those declared locally on the stack that are marked as
aliased.

Having to mark objects as aliased is a useful safeguard. It alerts the
programmer to the fact that the object might be referred to indirectly (good for
walkthrough reviews) and it also tells the compiler that the object should not be
optimized into a register where it would be difficult to access indirectly.

But the key point is that an access type always identifies the type of the
object that its values refer to and strong typing is enforced on assignments,
parameter passing, and all other uses. Moreover, an access value always has a
legitimate value (which could be null). At runtime, whenever we attempt to
access an object referred to by an object of the type Date_Ptr, there is a check to
ensure that the value is not null – the exception Constraint_Error is raised if this
check fails.

We can explicitly state that an access value cannot be null by declaring it as
follows

WD: not null access Date := Wedding_Day'Access;

and then of course it must be given an initial value which is not null. The
advantage of a so-called null exclusion is that we are guaranteed that an
exception cannot occur when accessing the indirect object.

Finally, note that an access value can denote a component of a composite
structure, provided the component type is marked as aliased. For example

A: array (1 .. 10) of aliased Integer := (1,2,3,4,5,6,7,8,9,10);
P: access Integer := A(4)'Access;

But we cannot perform any incremental operations on P such as P++ or P+1 to
make it refer to A(5) as can be done in C. This sort of thing in C is prone to
errors since nothing prevents us from pointing beyond either end of the array.

Safe and Secure Software: An invitation to Ada 2005

23

Access types and accessibility

We have just seen that the strong typing of Ada ensures that an access value can
never refer to an object of the wrong type. The other requirement our language
must satisfy is to ensure that the object referred to cannot cease to exist while
access objects still refer to it. This is achieved through the notion of
accessibility. Consider

package Data is
 type AI is access all Integer;
 Ref1: AI;
end Data;

with Data; use Data;

procedure P is
 K: aliased Integer;
 Ref2: AI;
begin
 Ref2 := K'Access; -- illegal

 Ref1 := Ref2;
 ...
end P;

This is clearly a very artificial example but illustrates the key points in a small
space. The package Data has an access type AI and an object of that type called
Ref1. The procedure P declares a local variable K and a local access variable
Ref2 also of the type AI and attempts to assign an access to K to the variable
Ref2. This is forbidden. It is not so much that the reference to Ref2 is dangerous
because both Ref2 and K will cease to exist when we return from a call of the
procedure P – the danger is that we might assign the value in Ref2 to the global
variable Ref1, which would then contain a reference to K that would be usable
after K had ceased to exist.

The basic rule is that the lifetime of the accessed object (such as K) must be at
least as long as the lifetime of the specified access type (in this case AI). Here it
is not and so the attempt to obtain a pointer to K is illegal.

The rules are phrased in terms of accessibility levels (how deeply nested the
declaration of something is) and are mostly static, that is to say checked by the
compiler; they incur no cost at run time. But the rules concerning parameters of
subprograms that are of anonymous access types are dynamic (that is, require
runtime checks). This gives more programming flexibility than would otherwise
be possible.

 Safe pointers

24

In this short introduction to Ada it is not feasible to go into further details.
Suffice it to say that the accessibility rules of Ada prevent dangling references,
which can be a source of many subtle and hard-to-diagnose errors in lax
languages.

References to subprograms

Ada permits references to procedures and functions to be manipulated in a
similar way to references to objects. Both strong typing and accessibility rules
apply. For example we can write

A_Func: access function (X: Float) return Float;

and A_Func is then an object that can only refer to functions that take an
argument of the type Float and return an argument of type Float (such as the
predefined function Sqrt).

So we can write
A_Func := Sqrt'Access;

and then
X: Float := A_Func(4.0); -- indirect call

and this will call Sqrt with argument 4.0 and hopefully produce 2.0.
Ada thoroughly checks that the parameters and result always match properly

and so we cannot call a function indirectly that has the wrong number or types
of parameters. The parameter list and result type constitute what is technically
called the profile of the function.

Thus consider the predefined function Arctan (the inverse tangent). It takes
two parameters

function Arctan(Y: Float; X: Float) return Float;

and returns the angle θ (in radians) such that tan θ = Y/X. If we attempt to write
A_Func := Arctan'Access; -- illegal
Z := A_Func(A); -- indirect call prevented

then the compiler rejects the code because the profile of Arctan does not match
that of A_Func. This is just as well because otherwise the function Arctan would
read two items from the runtime stack whereas the indirect call via A_Func
placed only one parameter on the stack. This would result in the computation
becoming meaningless.

Safe and Secure Software: An invitation to Ada 2005

25

Corresponding checks in Ada occur also across compilation unit boundaries
(compilation units are units that can be compiled separately, as explained in the
chapter on Safe Architecture). Equivalent mismatches are not prevented in C
and this is a common cause of serious errors.

More complex situations arise because a subprogram can have another
subprogram as a parameter. Thus we might have a function whose purpose is to
solve an equation Fn(x) = 0 where the function Fn is itself passed as a
parameter. Thus

function Solve(Trial: Float; Accuracy: Float;
 Fn: access function (X: Float) return Float)
 return Float;

The parameter Trial is the initial guess, the parameter Accuracy is the accuracy
required and the third parameter Fn identifies the equation to be solved.

As an example suppose we invest 1000 dollars today and 500 dollars in a
year's time: what would the interest rate have to be for the final value two years
from now to be exactly 2000 dollars? If the interest rate is x% then the Net Final
Value (Nfv) will be given by

 Nfv(x) = 1000 × (1 + x/100)2 + 500 × (1 + x/100)
We can answer the question by declaring the following function, which returns
0.0 when X is such that the net final value is precisely 2000.0.

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

We can then write:
Answer: Float :=
 Solve (Trial => 5.0, Accuracy => 0.01, Fn => Nfv_2000'Access);

We are guessing that the answer might be around 5%, we want the answer with
2 decimal figures of accuracy and of course Nfv'Access identifies the problem.
The reader is invited to estimate the interest rate – the answer is at the end of
this chapter. (Note that terms such as Net Final Value and Net Present Worth are
standard terms used by financial professionals.)

The point of this discussion is to emphasize that Ada checks the matching of
the parameters of the function parameter as well. Indeed, the nesting of profiles
can continue to any degree and Ada matches all levels thoroughly. Many
languages give up after one level.

 Safe pointers

26

Note that the parameter Fn was actually of an anonymous type. Access to
subprogram types can be named or anonymous just like access to object types.
They can also have a null exclusion. Thus we should really have written

A_Func: not null access function (X: Float) return Float := Sqrt'Access;

The advantage of using a null exclusion is that we are guaranteed that the value
of A_Func is not null when the function is called indirectly.

If it seems that having to initialize it, perhaps arbitrarily, to Sqrt'Access is
distasteful then we could always declare

function Default(X: Float) return Float is
begin
 Put("Value not set"); return 0.0;
end Default;
...
A_Func: not null access function (X: Float) return Float := Default'Access;

Similarly we should really add not null to the profile in Solve thus
function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float) return Float;

This ensures that that the actual function corresponding to Fn cannot be null.

Nested subprograms as parameters

We mentioned that accessibility rules also apply to access-to-subprogram
values. Suppose we had declared Solve so that the parameter Fn was of a named
type and that it and Solve are in some package

package Algorithms is
 type A_Function is not null access function (X: Float) return Float;

 function Solve(Trial: Float; Accuracy: Float; Fn: A_Function)
 return Float;
 ...
end Algorithms;

Suppose we now decide to express the interest example with the target value
passed as a parameter. We might try

with Algorithms; use Algorithms;
function Compute_Interest(Target: Float) return Float is

 function Nfv_T (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
 begin

Safe and Secure Software: An invitation to Ada 2005

27

 return 1000.0 * Factor**2 + 500.0 * Factor – Target;
 end Nfv_T;

begin
 return Solve(Trial => 5.0, Accuracy => 0.01, Fn => Nfv_T'Access);
 -- illegal
end Compute_Interest;

However, Nfv_T'Access is not allowed as the Fn parameter because it violates
the accessibility rules. The trouble is that the function Nfv_T is at an inner level
with respect to the type A_Function. (It has to be in order to get hold of the
parameter Target.) If Nfv_T'Access had been allowed then we could have
assigned this value to a global variable of the type A_Function so that when
Compute_Interest had returned we would have still had a reference to Nfv_T
even after it had ceased to be accessible. For example

Dodgy_Fn: A_Function := Default'Access; -- a global variable

function Compute_Interest(Target: Float) return Float is

 function Nfv_T(X: Float) return Float is
 ...
 end Nfv_T;

begin
 Dodgy_Fn := Nfv_T'Access; -- illegal
 ...
end Compute_Interest;

and now suppose that after a call of Compute_Interest we execute:
Answer := Dodgy_Fn(99.9); -- would have unpredictable results

The call of Dodgy_Fn would attempt to call Nfv_T but that is no longer possible
since it is local to Compute_Interest and would attempt to access the parameter
Target which no longer exists. The consequences would be unpredictable (a
meaningless result, or perhaps an exception would be raised) if Ada did not
prevent it. Note that using an anonymous type for the parameter as in the
previous section allows passing the nested function as a parameter, but the
accessibility checks prevent the assignment to Dogdy_Fn. A runtime check
would detect that Nfv_T is more deeply nested than the target access type
A_Function, and a Program_Error exception would be raised. So the solution is
just to change the package Algorithms thus

package Algorithms is
 function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
end Algorithms;

 Safe pointers

28

and the original function Compute_Interest is now exactly as before (except that
the comment -- illegal needs to be removed).

Those of a mischievous mind might suggest that the problem lies with
nesting Nfv_T inside Compute_Interest. It would indeed be possible to declare
Nfv_T at the outermost level so that no accessibility problem arises, but then the
value Target would have to be passed globally through some package – in the
style of Fortran Common blocks. We cannot add it as an additional parameter to
Nfv_T because the parameters of Nfv_T must match those of Fn. But passing
data globally in this way is in fact bad practice. It violates principles of
information hiding and abstraction and does not work at all in a multitasking
program. Note that the practice of nesting a function within another, where the
inner function uses non-local variables (such as Target) is often called a
"downward closure".

Downward closures, that is to say passing a pointer to a nested subprogram as
a runtime parameter, is a mechanism that is used in several parts of the Ada
predefined library, for applications such as iterating over a data structure.

The nesting of subprograms is a natural requirement for these applications
because of the need to pass non-local information. This is harder to do in flat
languages such as C, C++ and Java. Although type extensions can be used in
some languages to model subprogram nesting, this mechanism is less clear and
can be a problem for program maintenance.

Finally, some applications need to combine (invoke) algorithms in a nested
manner. Thus we might have other useful stuff in the package Algorithms

package Algorthms is

 function Solve(Trial: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
 function Integrate (Lo, Hi: Float; Accuracy: Float;
 Fn: not null access function (X: Float) return Float)
 return Float;
 type Vector is array (Positive range <>) of Float;

 procedure Minimize(V: in out Vector; Accuracy: Float;
 Fn: not null access function (V: Vector) return Float);

end Algorithms;

The function Integrate is similar to Solve. It computes the definite integral of the
function parameter, between the given limits. The procedure Minimize is a little
different. It finds those values of the elements of the array V which make the
value of the function parameter a minimum. We might have a situation where a
cost function is to be minimized and is itself the result of doing an integration
and that the values of V are used in the integration (this might seem rather

Safe and Secure Software: An invitation to Ada 2005

29

unlikely but the author spent the first few years of his programming life doing
just this sort of thing in the chemical industry).

The structure could be
with Algorithms; use Algorithms;
procedure Do_It is

 function Cost(V: Vector) return Float is

 function F(X: Float) return Float is
 Result: Float;
 begin
 ... -- compute Result using V as well as X
 return Result;
 end F;

 begin
 return Integrate(0.0, 1.0, 0.01, F'Access);
 end Cost;

 A: Vector(1 .. 10);
begin

 ... -- perhaps read in or set trial values for the vector A

 Minimize(A, 0.01, Cost'Access);

 ... -- output final values of the vector A.
end Do_It;

This all works like a dream in Ada 2005 – just as it did in Algol 60. In other
programming languages this is either difficult or requires the use of unsafe
constructs with potentially dangling references.

Further examples of the use of access to subprogram types will be found in
the chapter on Safe Communication.

Finally, the interest rate that turns the investment of 1000 dollars and 500
dollars into 2000 dollars in two years is about 18.6%. Nice rate if you can get it.

 Safe pointers

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Architecture
4

Courtesy of

The GNAT Pro Company
John Barnes

31

When speaking of buildings, a good architecture is one whose design gives the
required strength in a natural and unobtrusive manner and thereby provides a
safe environment for the people within. An elegant example is the Pantheon in
Rome whose spherical shape has enormous strength and provides an uncluttered
space. Many ancient cathedrals are not so successful, and need buttresses tacked
on the outside to prop up the walls. In 1624, Sir Henry Wooton summed the
matter up in his book, The Elements of Architecture, by saying "Well building
hath three conditions – commoditie, firmenes & delight". In modern terms, it
should work, be strong and be beautiful as well.

A good architecture in a program should similarly provide unobtrusive safety
for the detailed workings of the inner parts within a clean framework. It should
permit interaction where appropriate and prevent unrelated activities from
accidentally interfering with each other. And a good language should enable the
writing of programs with a good architecture.

There is perhaps an analogy with the architecture of office spaces. An
arrangement where everyone has an individual office can inhibit communication
and the flow of ideas. On the other hand, an open plan office often causes
problems because noise and other distractions interfere with productivity.

The structure of an Ada program is based primarily around the concept of a
package, which groups related entities together and provides a natural
framework for hiding implementation details from its clients.

Package specifications and bodies

Early languages such as Fortran have a flat structure with everything essentially
at the same level. As a consequence all data (other than that local to a
subroutine) is visible everywhere. This can be considered as rather like an open
plan office. The same flat structure appears in C, although C does provide a
degree of encapsulation by allowing programmer control over the external
visibility of functions and file-scope variables.

Other languages such as Algol and Pascal have a simple block structure,
rather like nested Russian dolls. This is a bit better but really is no more than
having an open plan office subdivided into more such offices. There are still big
problems of communication.

Consider the simple problem of a stack of numbers. The protocol we want to
have is that an item can be added to the stack by calling a procedure Push and
that the top item can be removed from the stack by calling a function Pop – and
perhaps also a procedure Clear to set the stack to an empty state. We do not
want any other means of manipulating the stack since we want this protocol to
be independent of the way we implement it.

32

Now consider the following implementation of a stack written in Pascal. The
stack is represented by an array of reals and there are three operations, Push and
Pop to add items and remove items respectively, and Clear to set it empty. We
also declare a constant max and give it a suitable value such as 100. This avoids
writing 100 in several places, which would be bad if we changed our minds later
on about the required size of the stack.

const max = 100;

var top : 0 .. max;
 a : array[1..max] of real;

procedure Clear;
begin
 top := 0
end;

procedure Push(x : real);
begin
 top := top + 1;
 a[top] := x
end;

function Pop : real;
begin
 top := top – 1;
 Pop:= a[top + 1]
end

The main trouble with this is that max, top and a have to be declared outside
Push, Pop and Clear so that they can all be accessed. And from any part of the
program from which we can call Push, Pop and Clear we can also change a and
top directly and so bypass the protocol and create an inconsistent stack.

This is a source of danger. If we want to monitor how many times the stack is
changed then adding monitoring statements to count the calls of Push, Pop and
Clear to do this is not adequate. Similarly, if we are reviewing a large program
and are looking for all places where the stack is changed then we have to track
all references to top and a as well as the calls of Push, Pop and Clear.

This problem applies to C as well as to Fortran and Pascal. These languages
to some extent overcome the problem by adding some form of separate
compilation facility. Those entities which are to be visible to other separately
compiled units can then be marked by special statements such as extern or by
using a header file. However, by its very nature separate compilation is itself flat
and unstructured. Furthermore, type checking in these languages is weaker
across compilation units than within a single file.

Safe and Secure Software: An invitation to Ada 2005

33

The technique in Ada is to use a package to encapsulate and hide the data
shared by Push, Pop and Clear so that only those subprograms can access it. A
package comes in two parts – its specification which describes its interface to
other units and its body, which describes how it is implemented. We can
paraphrase this by saying that the specification says what it does and the body
says how it does it. The specification would simply be

package Stack is
 procedure Clear;
 procedure Push(X: Float);
 function Pop return Float;
end Stack;

This just describes the interface to the outside world. So outside the package all
that is available are the three subprograms. The specification gives just enough
information for the external client to write calls to the subprograms and for the
compiler to compile the calls. The body could then be written as

package body Stack is

 Max: constant := 100;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

 procedure Clear is
 begin
 Top := 0;
 end Clear;

 procedure Push(X: Float) is
 begin
 Top := Top + 1;
 A(Top) := X;
 end Push;

 function Pop return Float is
 begin
 Top := Top – 1;
 return A(Top + 1);
 end Pop;

end Stack;

The body gives the full details of the subprograms and also declares the hidden
objects Max, Top and A. Note the initial value of zero for Top.

In order to make use of the entities declared in a package, the client code
must mention the package by means of a with clause thus

 Safe architecture

34

with Stack;
procedure Some_Client is
 F: Float;
begin
 Stack.Clear;
 Stack.Push(37.4);
 …
 F := Stack.Pop;
...
 Stack.Top := 5; -- illegal!
end Some_Client;

So now we know that the required protocol is enforced. The client cannot
accidentally or purposely interfere with the inner workings of the stack. Note in
particular that the direct assignment to Stack.Top is prevented since Top is not
visible to the client (it is not mentioned in the specification of the stack).

Observe carefully that there are three entities to consider: the specification of
the package, its body, and of course the client.

There are important rules concerning their compilation. The client cannot be
compiled without the specification being available and the body also cannot be
compiled without the specification being available. But there are no similar
constraints relating to the client and the body. If we decide to change the details
of the implementation and this does not require the specification to be changed
then the client does not have to be recompiled.

Packages and subprograms at the top level (that is, not nested inside other
packages or subprograms) can always be and usually are compiled separately.
They are often known as library units and said to be at the library level.

Note that the package Stack is mentioned each time an entity in it is used.
This ensures that the client code is very clear as to what it is doing. Sometimes
repeating the package name is tedious and so we can add a use clause thus

with Stack; use Stack;
procedure Client is
begin
 Clear;
 Push(37.4);
 ...
end Client;

Of course if there were two packages Stack1 and Stack2, both declaring a
procedure called Clear, and we try to "with" and "use" both of them then the
code would be ambiguous and the compiler would reject it. In such a case the
solution is to supply the desired package name explicitly, for example
Stack2.Clear.

Safe and Secure Software: An invitation to Ada 2005

35

In conclusion, the specification defines a contract between the client and the
package. The body promises to implement the specification and the client
promises to use the package as described by the specification. Finally the
compiler ensures that both sides stick to the contract. We will come back to
these thoughts in the last chapter when we look into the ideas behind the SPARK
toolset.

A vital point about Ada is that the strong type matching is enforced across
compilation unit boundaries. Exactly the same checking applies, whether the
program is just one compilation unit or consists of several units distributed
across various files.

Private types

Another feature of a package is that part of the specification can be hidden from
the client. This is done using a so-called private part. The above package Stack
only implements a single stack. It might be more useful to declare a package
that enabled us to declare many stacks – to do this we need to introduce the
concept of a stack type.

We might write
package Stacks is -- visible part
 type Stack is private; -- private type
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Float);
 procedure Pop(S: in out Stack; X: out Float);

private -- private part
 Max: constant := 100;
 type Vector is array (1 .. Max) of Float;
 type Stack is -- full type
 record
 A: Vector;
 Top: Integer range 0 .. Max := 0;
 end record;
end Stacks;

The body would then be
package body Stacks is

 procedure Clear(S: out Stack) is
 begin
 S.Top := 0;
 end Clear;

 Safe architecture

36

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S.Top := S.Top + 1;
 S.A(Top) := X;
 end Push;

 -- procedure Pop similarly

end Stacks;

The user can now declare lots of stacks and act on them individually thus
with Stacks; use Stacks;
procedure Main is
 This_One: Stack;
 That_One: Stack;
begin
 Clear(This_One); Clear(That_One);
 Push(This_One, 37.4);
 ...

The detailed information about the type Stack is given in the private part of the
package and, although visible to the human reader, is not directly accessible to
the code written by the client. So the specification is logically split into two
parts, the visible part (everything up to the keyword private) and the private
part.

If the private part alone is changed then the text of the client will not need
changing but the client code will need recompiling because the object code
might change even though the source code does not.

Any necessary recompilation is ensured by the compilation system and can
be performed automatically if desired. Note carefully that this is required by the
Ada language and is not simply a property of a particular implementation. It is
never left to the user to decide when recompilation is necessary and so there is
no risk of attempting to link together a set of inconsistent units – a big hazard in
languages that do not specify precisely the interaction between compiling,
binding and linking.

Finally, note the modes in, out and in out on the parameters. These refer to
the flow of information and are explained in Chapter 6 on Safe Object
Construction.

Generic contract model

Templates are an important feature of languages such as C++ (and now Java).
These correspond to generics in Ada and in fact C++ based its templates partly

Safe and Secure Software: An invitation to Ada 2005

37

on Ada generics. Ada generics are type-safe because of the so-called contract
model.

We can extend the stack example to enable us to declare stacks of any type
and any size (we can do the latter other ways as well). Consider

generic
 Max: Integer; -- formal generic parameters
 type Item is private;
package Generic_Stacks is
 type Stack is private;
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Item);
 procedure Pop(S: in out Stack; X: out Item);

private -- private part
 type Vector is array (1 .. Max) of Item;
 type Stack is
 record
 A: Vector;
 Top: Integer range 0 .. Max := 0;
 end record;
end Generic_Stacks;

with an appropriate body obtained simply by replacing Float by Item.
The generic package is just a template and in order to be used in a program it

has to be instantiated with appropriate actual parameters corresponding to the
two generic formal parameters Max and Item. The result of instantiating a
generic package is the declaration of an actual package. For example if we want
stacks of integers with maximum size 50, we write

package Integer_Stacks is
 new Generic_Stacks(Max => 50, Item => Integer);

This declares a package called Integer_Stacks which we can then use in the
normal way. The essence of the contract model is that if we provide parameters
that correctly match the generic specification then the package obtained from
the instantiation will compile and execute correctly.

Other languages do not have this desirable property. In C++, for instance,
some mismatches are caught by the linker rather than the compiler and others
are even left until execution and throw an exception.

There are extensive forms of generic parameters in Ada. Writing: type Item is
private; permits the actual type to be almost any type at all. Writing: type Item
is (<>); permits the actual type to be any integer type (such as Integer or
Long_Integer) or an enumeration type (such as Signal). Within the generic we

 Safe architecture

38

can then use all the properties common to all integer and enumeration types with
the certainty that the actual type will indeed provide these properties.

The generic contract model is very important. It enables the development of
flexible but safe general-purpose libraries. An important goal is that the Ada
user should not ever need to pore over the code of the generic body in order to
puzzle out what went wrong.

Child units

The overall architecture of an Ada system can have a hierarchical (tree-like)
structure of units, which provides both flexible information hiding and ease of
modification. Child units can be public or private. Given a package called
Parent we can declare a public child thus

package Parent.Child is ...

and a private child thus
private package Parent.Slave ...

Both have bodies and can have private parts as usual. The key difference is that
a public child essentially extends the specification of the parent (and is thus
visible to clients) whereas a private child extends the private part and body of
the parent (and thus is not visible to clients). The structure permits
grandchildren etc to any depth.

There are various rules concerning visibility. Children do not need an explicit
with clause for their parent (visibility is automatic). However, the parent body
can have a with clause for a child if it needs to use the functionality defined in
the child. But since the specification of the parent must be available before the
children are compiled (since the children share the name of the parent), the
parent specification cannot have a normal with clause for a child. More of this
later.

Another rule is that the visible part of a private child has visibility of the
private part of its parent (just as the body of the parent does). But for a public
child only its private part and its body (and not its visible part) has such
visibility of the parent.

A special form of with clause (the private with clause) is permitted on a
package specification; it only allows the private part to have visibility of the unit
concerned. This is useful, for example, where the private part of a public child
needs information provided by a private child. Thus we might have an
application package App and two children App.User_View and
App.Secret_Details thus

Safe and Secure Software: An invitation to Ada 2005

39

private package App.Secret_Details is
 type Inner is ...
 ... -- various operations on Inner etc
end App.Secret_Details;

private with App.Secret_Details;
package App.User_View is

 type Outer is private;
 ... -- various operations on Outer visible to the user

 -- type Inner is not visible here
private
 -- type Inner is visible here

 type Outer is
 record
 X: Secret_Details.Inner;
 ...
 end record;
 ...
end App.User_View;

A normal with clause for Secret_Details is not permitted on User_View because
this would allow the client to see information in the package Secret_Details via
the visible part of User_View. Ada carefully blocks all attempts to bypass the
strict visibility control.

Unit testing

One of the problems that confronts the testing of code is to ensure that the
testing does not upset the software being tested. There is an echo here of
Quantum Mechanics whereby when we make an observation of a particle such
as an electron, the very observation itself disturbs the state of the particle.

One problem with good software design is that we strive to hide detailed
information in order to produce good abstractions – by the use of private types
for example. But then when we test the system we often want to observe the
detailed behavior of this hidden material.

To take a trivial example we might want to know the value of Top for a
particular stack declared using the package Stacks (the one where Stack is a
private type). We have not provided a means of doing this. We could add a
function Size to the package Stacks but this would disturb the package and
require its recompilation and that of all the client code. And possibly we might
introduce errors into the package we were testing or (worse) might make errors
when we later removed the testing code.

 Safe architecture

40

Child units provide a convenient way of overcoming this difficulty. We can
write

package Stacks.Monitor is
 function Size(S: Stack) return Integer;
end Stacks.Monitor;

package body Stacks.Monitor is
 function Size(S: Stack) return Integer is
 begin
 return S.Top;
 end Size;
end Stacks.Monitor;

This works because the body of a child has visibility of the private part of its
parent. So we can now call the function Size at will for test purposes and when
we are satisfied that the software is correct we can delete the child package and
the parent package Stacks did not have to be disturbed at all.

Mutually dependent types

Many languages have the equivalent of private types especially in connection
with object-oriented programming. Basically, the intrinsic operations (methods)
belonging to a type are those declared in a package (or a class) along with the
type. Thus the intrinsic operations of the type Stack are Clear, Push and Pop.
The same structure in C++ would be written as

class Stack {
... /* details of stack structure */
public:
 void Clear();
 void Push(float);
 float Pop();
};

The C++ approach is convenient in that it only has one level of naming Stack
whereas in Ada we have both package name and type name, thus Stacks.Stack.
However, in practice the Ada style is not a burden especially if we apply use
clauses. (Moreover, Ada users have the option of using a different style by
giving the type some neutral name such as Object or Data so that they can then
write Stacks.Object or Stacks.Data.)

On the other hand if we have two types that wish to share private
information, it is very easy to write this in Ada. We can write

package Twins is
 type Dum is private;

Safe and Secure Software: An invitation to Ada 2005

41

 type Dee is private;
 ...
private
 ... -- shared private part
end Twins;

and the private part defines both Dum and Dee and so they have mutual access
to anything in the private part.

This is not so easy in other languages and involves constructs such as the
much-discussed friend mechanism in C++. In Ada there is no possibility of
getting it wrong or of breaking privacy in unexpected ways and the mechanism
is symmetric.

Other examples exhibit mutual recursion. Suppose we wish to study patterns
of points and lines where each point has three lines through it and each line has
three points on it. (This is not an arbitrary example. Two of the most
fundamental theorems of projective geometry, those of the geometers Pappus
and Desargues concern such structures.) We use access types. A simple approach
is a single package

package Points_and_Lines is
 type Point is private;
 type Line is private;
 ...
private
 type Point is
 record
 L, M, N: access Line;
 end record;
 type Line is
 record
 P, Q, R: access Point;
 end record;
end Points_and_Lines;

If we decided that each type deserved its own package then we could still define
their mutually recursive structure using a limited with clause. (Two packages
cannot have normal with clauses referring to each other because that creates a
circularity that makes their initialization impossible.) We can write

limited with Lines;
package Points is
 type Point is private;
 ...
private
 type Point is

 Safe architecture

42

 record
 L, N, N: access Lines.Line;
 end record;
end Points;

and similarly for the package Lines. A limited with clause gives a so-called
incomplete view of the types in the package concerned, which means roughly
that they can only be used to form access types.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Object Oriented Programming

5

Courtesy of

The GNAT Pro Company
John Barnes

43

OOP took programming by storm about twenty years ago. Its supreme merit is
said to be its flexibility. But flexibility is somewhat like freedom discussed in
the Introduction – the wrong kind of flexibility can be an opportunity that
permits dangerous errors to intrude.

The key idea of OOP is that the objects dominate the programming and
subprograms (methods) that manipulate objects are properties of objects. The
other, older, view sometimes called Function-Oriented (or structured)
programming, is that programming is primarily about functional decomposition
and that it is the subprograms that dominate program organization, and that
objects are merely passive things being manipulated by them.

Both views have their place and fanatical devotion to just a strict object view
is often inappropriate.

Ada strikes an excellent balance and enables either approach to be taken
according to the needs of the application. Indeed Ada has incorporated the idea
of objects right from its inception in 1980 through the concept of packages
which encapsulate types and the operations upon them, and tasks that
encapsulate independent activities.

Object-Orientation versus Function-Orientation

We will look at two examples which can be used to illustrate various points.
They are chosen for their familiarity which avoids the need to explain particular
application areas. The examples concern geometrical objects (of which there are
lots of kinds) and people (of which there are only two kinds, male and female).

Consider the geometrical objects first. For simplicity we will consider just
flat objects in a plane. Every object has a position. In Ada we can declare a root
object which has properties common to all objects thus

type Object is tagged
 record
 X_Coord: Float;
 Y_Coord: Float;
 end record;

The word tagged distinguishes this type from a plain record type (such as Date
in Chapter 3) and indicates that it can be extended. Moreover, objects of this
type carry a tag with them at execution time and this tag identifies the type of
the object. We are going to declare various specific object types such as Circle,
Triangle, Square and so on in a moment and these will all have distinct values
for the tag.

We can declare various properties of geometrical objects such as area and
moment of inertia about the centre. Every object has such properties but they

44

vary according to shape. These properties can be defined by functions and they
are declared in the same package as the corresponding type. We can start with

package Geometry is
 type Object is abstract tagged
 record
 X_Coord, Y_Coord: Float;
 end record;

 function Area(Obj: Object) return Float is abstract;
 function Moment(Obj: Object) return Float is abstract;
end Geometry;

We have declared the type and the operations as abstract. We don't actually want
any objects of type Object and making it abstract prevents us from inadvertently
declaring any. We want real objects such as a Circle, which have properties such
as Area. If we did want to discuss a plain point without any areas then we
should declare a specific type Point for this. The functions Area and Moment
have been declared as abstract also. This ensures that when we declare a
genuine type such as Circle then we are forced to declare concrete functions
Area and Moment with appropriate code.

We can now declare the type Circle. It is best to use a child package for this
package Geometry.Circles is
 type Circle is new Object with
 record
 Radius: Float;
 end record;

 function Area(C: Circle) return Float;
 function Moment(C: Circle) return Float;
end;

with Ada.Numerics; use Ada.Numerics; -- to give access to π
package body Geometry.Circles is
 function Area(C: Circle) return Float is
 begin
 return π * C.Radius**2; -- uses Greek letter π
 end Area;

 function Moment(C: Circle) return Float is
 begin
 return 0.5 * C.Area * C.Radius**2;
 end Moment;
end Geometry.Circles;

Note that the code defining the Area and Moment is in the package body. We
recall from the chapter on Safe Architecture that this means that the code can be

Safe and Secure Software: An invitation to Ada 2005

45

changed and recompiled as necessary without forcing recompilation of the
description of the type itself and consequently all those programs that use it.

We could then declare other types such as Square (which has an extra
component giving the length of the side), Triangle (three components giving the
three sides) and so on without disturbing the existing abstract type Object and
the type Circle in any way.

The various types form a hierarchy rooted at Object and this set of types (a
class in Ada terminology) is denoted by Object'Class. Ada carefully
distinguishes between a specific type such as Circle and a class of types such as
Object'Class. This distinction avoids confusion that can occur in other
languages. If we subsequently define other types as extensions of the type Circle
then we can then usefully talk about the class Circle'Class.

The function Moment declared above illustrates the use of the prefixed
notation. We can write either of

C.Area -- prefixed notation
Area(C) -- functional notation

The prefixed notation emphasizes the object model, and indicates that we
consider the object C to be the predominant entity rather than the function Area.

Suppose now that we have declared various objects, perhaps
A_Circle: Circle := (1.0, 2.0, Radius => 4.5);
My_Square: Square := (0.0, 0.0, Side => 3.7);
The_Triangle: Triangle := (1.0, 0.5, A => 3.0, B => 4.0, C => 5.0);

By way of illustration, we have used named notation for components other than
the x and y coordinates which are common to all the types.

We might have a procedure to output the properties of a general object. We
might write

procedure Print(Obj: Object'Class) is
begin
 Put("Area is "); Put(Obj.Area); -- dispatching call of Area
 ... -- and so on
end Print;

and then
Print(A_Circle);
Print(My_Square);

The procedure Print can take any item in the class Object'Class. Within the
procedure, the call to Area is dynamically bound and calls the function Area
appropriate to the specific type of the parameter Obj. This always works safely

 Safe object-oriented
programming

46

since the language rules are such that every possible object in the class
Object'Class is of a specific type derived ultimately from Object and will have a
function Area. Note that the type Object itself was abstract and so no
geometrical object of that type can be declared – accordingly it does not matter
that the function Area for the type Object is abstract and has no code – it could
never be called anyway.

In a similar way we might have types concerning persons. Consider
package People is
 type Person is abstract tagged
 record
 Birthday: Date;
 Height: Inches;
 Weight: Pounds;
 end record;

 type Man is new Person with
 record
 Bearded: Boolean; -- whether he has a beard
 end record;

 type Woman is new Person with
 record
 Births: Integer; -- how many children she has borne
 end record;

 ... -- various operations
end People;

Since there is no possibility of any additional types of persons we could describe
them by using a variant record, which is more in the line of function-oriented
programming. Thus

type Gender is (Male, Female);

type Person (Sex: Gender) is
 record
 Birthday: Date;
 Height: Inches;
 Weight: Pounds;
 case Sex is
 when Male =>
 Bearded: Boolean;
 when Female =>
 Births: Integer;
 end case;
 end record;

Safe and Secure Software: An invitation to Ada 2005

47

and we might then declare various operations on this version of the type Person.
Each operation would have to have a case statement to take account of the two
sexes.

This might be considered rather old fashioned and inelegant. However, it has
its own considerable advantages.

If we need to add another operation in the Object-Oriented formulation then
the whole structure will need to be recompiled – each type will need to be
revisited in order to implement the new operation. If we need to add another
type (such as a Pentagon) then the existing structure can be left unchanged.

In the case of the Function-Oriented formulation, the situation is completely
reversed (basically we simply interchange the words type and operation).

If we need to add another type in the Function-Oriented formulation then the
whole structure will need to be recompiled – each operation will need to be
revisited to implement the new type (by adding another branch to its case
statement). If we need to add another operation then the existing structure can
be left unchanged.

The Object-Oriented approach has often been lauded as so much safer than
Function-Oriented programming because there are no case statements to
maintain. This certainly is true but sometimes the maintenance is harder if new
operations are added because they have to be added individually for every type.

Ada offers both approaches and both approaches are safe in Ada.

Overriding indicators

One of the dangers of Object-Oriented programming occurs with overriding
inherited operations. When we add a new type to a class we can add new
versions of all the appropriate operations. If we do not add a new operation then
that of the parent is inherited.

The danger is that we might attempt to add a new version but spell it
incorrectly

function Aera(C: Circle) return Float;

or get a parameter or result wrong
function Area(C: Circle) return Integer;

In both cases the existing function Area is not overridden but a totally new
operation added. And then when a class-wide operation dispatches to Area it
will call the inherited version rather than the one that failed to override it. Such

 Safe object-oriented
programming

48

bugs can be very difficult to find – the program compiles quietly and seems to
run but just produces curious answers.

(Actually, Ada has already provided a safeguard here because we declared
Area for Object as abstract and this is a further defensive measure. But if we had
a second generation or had not had the wisdom to make Area abstract then we
would be in trouble.)

In order to guard against such mistakes we can write for example
overriding
function Area(C: Circle) return Float;

and then if we make an error we will not get a new operation but instead the
program will fail to compile. On the other hand, if we did truly want to add a
new operation then we could assert that also by

not overriding
function Aera(C: Circle) return Float;

Such overriding indicators are always optional, largely for compatibility with
earlier versions of Ada.

Languages such as C++ and Java provide less assistance in this area and
consequently subtle errors can remain undetected for some time.

Dispatchless programming

In safety-critical programming, the dynamic selection of code is sometimes
forbidden. Safety is enhanced if we can prove that the flow of control follows a
strict pattern with, for example, no dead code. Traditionally this means that we
have to use a more function-oriented approach, with visible if statements and
case statements to select the appropriate flow path.

Although dynamic dispatching is at the heart of much of the power of Object-
Oriented programming, other object-oriented features (chiefly code reuse
through inheritance) are valuable. Thus we might value the ability to extend
types and thereby share much coding but declare specific named operations
where no dynamic behavior is required. We might also wish to use the prefixed
notation which has a number of advantages.

Ada has a facility known as pragma Restrictions which enables a programmer
to ensure that specific features of Ada are not used in a particular program. In
this case we write

pragma Restrictions(No_Dispatch);

Safe and Secure Software: An invitation to Ada 2005

49

and this ensures that no use is made of the construction X'Class which in turn
means that no dispatching calls are possible.

Note that this exactly matches the requirements of SPARK which we
mentioned in the Introduction is often used for critical software. SPARK permits
type extension but does not permit class-wide types and operations.

If we do specify the restriction No_Dispatch then the implementation is able
to reduce the code overheads typically associated with OOP. There is of course
no need to generate a dispatch table for each type. (A dispatch table is a look-up
table that contains the addresses of the various specific operations for the type.)
Moreover, there is also no need to store a tag in every record structure.

There are other less obvious benefits as well. In full OOP some of the
predefined operations such as equality are dispatching and so the code
overheads associated with them are also avoided. The net result is that the use of
the pragma minimizes the need for the justification of deactivated code (code
that is present in the executable and that can be traced back to specific
requirements, but which will never be executed) for level A certification.

Interfaces and multiple inheritance

Some have looked upon multiple inheritance as a Holy Grail – an objective
against which languages should be judged. This is not the place to digress on the
history of various techniques that have been used. Rather we will summarize the
key problems.

Suppose that we were able to inherit arbitrarily from two parent types. Recall
that fabulous book Flatland written by Edwin Abbott (the second edition was
published in 1884). It is a satire on class structure (in the sociological, not the
programming sense) and concerns a world in which people are flat geometrical
objects. The working classes are triangles, the middle classes are other
polygons. The aristocracy are circles. Curiously, all females are two-sided and
thus simply a line segment.

So using the two classes Objects and Persons introduced above, we could
conceive of representing the inhabitants of Flatland by a type derived from both
such as

type Flatlander is new Geometry.Object and People.Person;

The question now arises as to what are the properties inherited from the two
parent types? We might expect a Flatlander to have components X_Coord and
Y_Coord inherited from Object and also a Birthday inherited from Person,
although Height and Weight might be dubious for a two-dimensional person.
And certainly we would expect an operation such as Area to be inherited
because clearly a Flatlander has an area and indeed a moment of inertia.

 Safe object-oriented
programming

50

But we see potential problems in the general case. Suppose both parent types
have an operation with the same identifier. This would typically arise with
operations of a rather general nature such as Print, Make, Copy and so on.
Which one is inherited? Suppose both parents have components with the same
identifier. Which one do we get? These problems particularly arise if both
parents themselves have a common ancestor.

Some languages have provided multiple inheritance and devised somewhat
lengthy rules to overcome these difficulties (C++ and Eiffel for example).
Possibilities include using renaming, mentioning the parent name for ambiguous
entities, and giving precedence to the first parent type in the list. Sometimes the
solutions have the flavor of unification for its own sake – one person's
unification is often another person's confusion. The rules in C++ give plenty of
opportunities for the programmer to make mistakes.

The difficulties are basically twofold: inheriting components and inheriting
the implementation of operations from more than one parent. But there is
generally no problem with inheriting the specification of operations. This
solution was adopted by Java and has proved successful and is also the approach
used by Ada.

So the Ada rule is that we can inherit from more than one type thus
type T is new A and B and C with
 record
 ... -- additional components
 end record;

but only the first type in the list (A) can have components and concrete
operations. The other types must be what are known as interfaces which are
essentially abstract types without components and all of whose operations are
abstract or null procedures. (The first type could be an interface as well.)

We can reformulate the type Object as an interface as follows
package Geometry is
 type Object is interface;

 procedure Move(Obj: in out Object;
 New_X, New_Y: in Float) is abstract;
 function X_Coord(Obj: Object) return Float is abstract;
 function Y_Coord(Obj: Object) return Float is abstract;
 function Area(Obj: Object) return Float is abstract;
 function Moment(Obj: Object) return Float is abstract;
end Geometry;

Observe that the components have been deleted and replaced by further
operations. The procedure Move enables an object to be moved – that is it sets

Safe and Secure Software: An invitation to Ada 2005

51

both the x and y coordinates and the functions X_Coord and Y_Coord return its
current position.

Note that the prefixed notation means that we can still access the coordinates
by for example A_Circle.X_Coord and The_Triangle.Y_Coord just as when they
were visible components.

So now when we declare a concrete type Circle we have to provide
implementations of all these operations. Perhaps

package Geometry.Circles is
 type Circle is new Object with private; -- partial view

 procedure Move(C: in out Circle; New_X, New_Y: in Float);
 function X_Coord(C: Circle) return Float;
 function Y_Coord(C: Circle) return Float;
 function Area(C: Circle) return Float;
 function Moment(C: Circle) return Float;

 function Radius(C: Circle) return Float;
 function Make_Circle(X, Y, R: Float) return Circle;

private
 type Circle is new Object with -- full view
 record
 X_Coord, Y_Coord: Float;
 Radius: Float;
 end record;
end Geometry.Circles;

package body Geometry.Circles is
 procedure Move(C: in out Circle; New_X, New_Y: in Float) is
 begin
 C.X_Coord := New_X;
 C.Y_Coord := New_Y;
 end Move;

 function X_Coord(C: Circle) return Float is
 begin
 return C.X_Coord;
 end X_Coord;

 -- and similarly Y_Coord and Area and Moment as before
 -- also functions Radius and Make_Circle
end Geometry.Circles;

We have made the type Circle private so that all the components are hidden.
Nevertheless the partial view reveals that it is derived from the type Object and

 Safe object-oriented
programming

52

so must have all the properties of the type Object. Note how we also add
functions to create a circle and to access the radius component.

So the essence of programming with interfaces is that we have to implement
the properties promised. It is not so much multiple inheritance of existing
properties but multiple inheritance of contracts to be satisfied.

Returning now to Flatland, we can declare
package Flatland is
 type Flatlander is abstract new Person and Object with private;

 procedure Move(F: in out Flatlander; New_X, New_Y: in Float);
 function X_Coord(F: Flatlander) return Float;
 function Y_Coord(F: Flatlander) return Float;

private
 type Flatlander is abstract new Person and Object with
 record
 X_Coord, Y_Coord: Float := 0.0; -- at origin by default
 ... -- any new components we wish
 end record;
end;

and the type Flatlander will inherit the components Birthday etc of the type
Person, any operations of the type Person (we didn't show any above) and the
abstract operations of the type Object. However, it is convenient to declare the
coordinates as components since we need to do that eventually and we can then
override the inherited abstract operations Move, X_Coord and Y_Coord with
concrete ones. Note also that we have given the coordinates the default value of
zero so that any flatlander is by default at the origin.

The package body is
package body Flatland is
 procedure Move(F: in out Flatlander; New_X, New_Y: Float) is
 begin
 F.X_Coord := New_X;
 F.Y_Coord := New_Y;
 end Move;

 function X_Coord(F: Flatlander) return Float is
 begin
 return F.X_Coord;
 end X_Coord;

 -- and similarly Y_Coord
end Flatland;

Safe and Secure Software: An invitation to Ada 2005

53

Making Flatlander abstract means that we do not have to implement all the
operations such as Area just yet. And finally we could declare a type Square
suitable for Flatland (when originally written the book was published
anonymously and the author designated as A Square) as follows

package Flatland.Squares is
 type Square is new Flatlander with
 record
 Side: Float;
 end record;

 function Area(S: Square) return Float;
 function Moment(S: Square) return Float;
end Flatland.Squares;

package body Flatland.Squares is

 function Area(S: Square) is
 begin
 return S.Side**2;
 end Area;

 function Moment(S: Square) is
 begin
 return S.Area * S.Side**2 / 6.0;
 end Moment;

end Flatland.Squares.

and all the operations are thereby implemented. By way of illustration we have
made the extra component Side of the type Square directly visible but we could
have used a private type. So we can now declare Dr Abbott as

A_Square: Square := (Flatlander with Side => 3.00);

and he will have all the properties of a square and a person. Note the extension
aggregate which takes the default values for the private components and gives
the additional visible component explicitly.

There are other important properties of interfaces that can only be touched
upon in this overview. An interface can have a null procedure as an operation. A
null procedure behaves as if it has a null body – that is, it can be called but does
nothing. If two ancestors have the same operation then a null procedure
overrides an abstract operation with the same parameters and results. If two
ancestors have the same abstract operation with equivalent parameters and
results then these merge into a single operation to be implemented. If the
parameters and results are different then this results in overloading and both
operations have to be implemented. In summary the rules are designed to
minimize surprises and maximize the benefits of multiple inheritance.

 Safe object-oriented
programming

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Object Construction
6

Courtesy of

The GNAT Pro Company
John Barnes

55

This chapter covers a number of aspects of the control of objects. By objects
here we mean both small objects in the sense of simple constants and variables
of an elementary type such as Integer and big objects in the sense of Object-
Oriented Programming.

Ada provides good control and flexibility in this area. This control is in many
cases optional but the good programmer will use the features wherever possible
and the good manager will insist upon them being used wherever possible.

Variables and constants

As we have seen we can declare a variable or a constant by writing
Top: Integer; -- a variable
Max: constant Integer := 100; -- a constant

respectively. Top is a variable and we can assign new values to it whereas Max is
a constant and its value cannot be changed. Note that when we declare a
constant we have to give it a value since we cannot assign to it afterwards. A
variable can optionally be given an initial value as well.

The advantage of using a constant is that it cannot be changed accidentally. It
is not only a useful safeguard but it helps any person later reading the program
and informs them of its status. An important point is that the value of a constant
does not have to be static – that is computed at compile time. An example was in
the program for interest rates where we declared a constant called Factor

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

Each call of the function Nfv_2000 has a different value for X and so a different
value for Factor. But Factor is constant throughout each individual call.
Although this is a trivial example and it is clear that Factor is not changed
during execution of an individual call nevertheless we should get into the habit
of writing constant whenever possible.

Parameters of subprograms are another example of variables and constants.
Parameters may have three modes: in, in out, and out. If no mode is shown

then it is in by default. All parameters of functions must be of mode in.
A parameter of mode in is a constant whose value is given by the actual

parameter. Thus the parameter X of Nfv_2000 has mode in and so is a constant –

56

this means that we cannot assign to it and so are assured that its value will not
change. The actual parameter can be any expression of the type concerned.

Parameters of modes in out and out are variables. The actual parameter must
also be a variable. The difference concerns their initial value. A parameter of
mode in out is a variable whose initial value is given by that of the actual
parameter whereas a parameter of mode out has no initial value (unless the type
has a default value such as null in the case of an access type).

Examples of all three modes occur in the procedures Push and Pop in the
chapter on Safe Architecture

procedure Push(S: in out Stack; X: in Float);
procedure Pop(S: in out Stack; X: out Float);

The rules regarding actual parameters ensure that constancy is never violated.
Thus we could not pass a constant such as Factor to Pop since the relevant
parameter of Pop has mode out and this would enable Pop to change Factor.

The distinction between variables and constants also applies to access types
and objects. Thus if we have

type Int_Ptr is access all Integer;
K: aliased Integer;
KP: Int_Ptr := K'Access;
CKP: constant Int_Ptr := K'Access;

then the value of KP can be changed but the value of CKP cannot. This means
that CKP will always refer to K. However, although we cannot make CKP refer
to any other object we can use CKP to change the value in K by

CKP.all := 47; -- change value of K to 47

On the other hand we might have
type Const_Int_Ptr is access constant Integer;
J: aliased Integer;
JP: Const_Int_Ptr := J'Access;
CJP: constant Const_Int_Ptr := J'Access;

where the access type itself has constant. This means that we cannot change the
value of the object J referred to indirectly whether we use JP or CJP. Note that
JP can refer to different objects from time to time but CJP cannot. Of course,
the value of the object J can always be changed by a direct assignment to J.

Safe and Secure Software: An invitation to Ada 2005

57

Constant and variable views

Sometimes it is convenient to enable a client to read a variable but not to write
to it. In other words to give the client a constant view of a variable. This can be
done with a so-called deferred constant and the access types just described.

A deferred constant is one declared in the visible part of a package and for
which we do not give an initial value. The initial value must then be given in the
private part. Consider the following

package P is
 type Const_Int_Ptr is access constant Integer;
 The_Ptr: constant Const_Int_Ptr; -- deferred constant
private
 The_Variable: aliased Integer;
 The_Ptr: constant Const_Int_Ptr := The_Variable'Access;
 ...
end P;

The client can read the value of The_Variable indirectly through the object
The_Ptr of type Const_Int_Ptr by writing

K := The_Ptr.all; -- indirect read of The_Variable

But since the access type Const_Int_Ptr is declared as access constant the
value of the object referred to by The_Ptr cannot be changed by writing

The_Ptr.all := K; -- illegal, cannot change The_Variable indirectly

However, any subprogram declared in the package P can access The_Variable
directly and so write to it. This technique is particularly useful with tables where
the table is computed dynamically but we do not want the client to be able to
change it.

The named access type is not really necessary since we can equally write
package P is
 The_Ptr: constant access constant Integer; -- deferred constant
private
 The_Variable: aliased Integer;
 The_Ptr: constant access constant Integer := The_Variable'Access;
 ...
end P;

Note the double use of constant in the declaration of The_Ptr. The first says
that The_Ptr is itself a constant. The second says that it cannot be used to
change the value of the object that it refers to.

 Safe object construction

58

Limited types

The types we have met so far (Integer, Float, Date, Circle and so on) have
various operations. Some are predefined, such as the equality operation to
compare two values (with =) and some also have user-defined operations, such
as Area in the case of the type Circle. The operation of assignment is also
available for all the types mentioned so far.

Sometimes assignment is undesirable. There are two main reasons why this
might be the case
▪ the type might represent some resource such as an access right and

copying could imply a violation of security,
▪ the type might be implemented as a linked data structure and copying

would simply copy the head of the structure and not all of it.
We can prevent assignment by declaring the type as limited. A good

illustration of the second problem occurs if we implement the stack using a
linked list. We might have

package Linked_Stacks is
 type Stack is limited private;
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Float);
 procedure Pop(S: in out Stack; X: out Float);

private
 type Cell is
 record
 Next: access Cell;
 Value: Float;
 end record;

 type Stack is access all Cell;
end Stacks;

The body might be
package body Stacks is

 procedure Clear(S: out Stack) is
 begin
 S := null;
 end Clear;

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S := new Cell'(S, X);
 end Push;

Safe and Secure Software: An invitation to Ada 2005

59

 procedure Pop(S: in out Stack; X: out Float) is
 begin
 X := S.Value;
 S := Stack(S.Next);
 end Pop;

end Stacks;

This uses the normal linked list style of implementation. Note that the type
Stack is declared as limited private so that assignment of a stack as in

This_One, That_One: Stack;
...
This_One := That_One; -- illegal, type Stack is limited

is prohibited. If assignment had been permitted then all that would have
happened is that This_One would end up pointing to the start of the list defining
the value of That_One. Calling Pop on This_One would simply move it down
the chain representing That_One. This sort of problem is known as aliasing – we
would have two ways of referring to the same entity and that is often very
unwise.

In this example there is no problem with declaring a stack, it is automatically
initialized to be null which represents an empty stack. However, sometimes we
need to create an object with a specific initial value (necessary if it is a
constant). We cannot do this by assigning in a general way as in

type T is limited ...
...
X: constant T := Y; -- illegal, cannot copy value in variable Y

because this involves copying which is forbidden since the type is limited.
Two techniques are possible. One involves aggregates and the other uses

functions. We will consider aggregates first. Suppose the type represents some
sort of key with components giving the date of issue and the internal code
number such as

type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;

The type is limited so that keys cannot be copied. (They are a bit visible but we
will come to that in a moment.) But we can write

K: Key := (Today, 27);

 Safe object construction

60

since, in the case of a limited type, this does not copy the value defined by the
aggregate as a whole but rather the individual components are given the values
Today and 27. In other words the value for K is built in situ.

It would be more realistic to make the type private and then of course we
could not use an aggregate because the components would not be individually
visible. Instead we can use a constructor function. Consider

package Key_Stuff is
 type Key is limited private;
 function Make_Key(...) return Key;
 ...
private
 type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;
end Key_Stuff;

package body Key_Stuff is

 function Make_Key(...) return Key is
 begin
 return New_Key: Key do
 New_Key.Issued := Today;
 New_Key.Code := ... ;
 end return;
 end Make_Key;
 ...
end Key_Stuff;

The external client (for whom the type is private) can now write
My_Key: Key := Make_Key(...); -- no copying involved

where we assume that the parameters of Make_Key are used to compute the
internal secret code.

It is worth carefully examining the function Make_Key. It has an extended
return statement which starts by declaring the return object New_Key. When the
result type is limited (as here) the return object is actually built in the final
destination of the result of the call (such as the object My_Key). This is similar
to the way in which the components of the aggregate were actually built in situ
in the earlier example. So again no copying is involved.

The net outcome is that Ada provides a way of creating initial values for
objects declared by clients and yet prevents the client from making copies. The

Safe and Secure Software: An invitation to Ada 2005

61

limited type mechanism gives the provider of resources such as the keys
considerable control over their use.

Controlled types

Ada provides a further mechanism for the safe management of objects through
the use of controlled types. This enables us to write special code to be executed
when
1) an object is created and,
2) when it ceases to exist and,
3) when it is copied if it is of a nonlimited type.

The mechanism is based on types called Controlled and Limited_Controlled
declared in a predefined package thus

package Ada.Finalization is
 type Controlled is abstract tagged private;
 procedure Initialize(Object: in out Controlled) is null;
 procedure Adjust(Object: in out Controlled) is null;
 procedure Finalize(Object: in out Controlled) is null;

 type Limited_Controlled is abstract tagged limited private;
 procedure Initialize(Object: in out Limited_Controlled) is null;
 procedure Finalize(Object: in out Limited_Controlled) is null;
private
 ...
end Ada.Finalization;

The central idea (for a nonlimited type) is that the user declares a type which is
derived from Controlled and then provides overriding declarations of the three
procedures Initialize, Adjust and Finalize. These procedures are called when an
object is created, when it is copied, and when it ceases to exist, respectively.
Note carefully that these calls are inserted automatically by the system and the
programmer does not have to write explicit calls. The same mechanism applies
to a limited type which has to be derived from Limited_Controlled but there is no
procedure Adjust since copying is not permitted. These operations are typically
used to provide complex initializations, deep copying of linked structures,
storage reclamation at the end of the lifetime of an object, and other
housekeeping activities that are specific to the type.

As an example, suppose we reconsider the stack and decide that we want to
use the linked mechanism (so there is effectively no upper bound to the capacity
of the stack) but wish to allow copying one stack to another. We can write

 Safe object construction

62

package Linked_Stacks is
 type Stack is private;
 procedure Clear(S: out Stack);
 procedure Push(S: in out Stack; X: in Float);
 procedure Pop(S: in out Stack; X: out Float);

private
 type Cell is
 record
 Next: access Cell;
 Value: Float;
 end record;

 type Stack is new Controlled with
 record
 Header: access Cell;
 end record;

 overriding
 procedure Adjust(S: in out Stack);
end Linked_Stacks;

The type Stack is now just private. The full type shows that it is actually a
tagged type derived from the type Controlled and has a component Header
which effectively is the stack in the previous formulation. In other words we
have introduced a wrapper. Note that the user cannot see that the type is
controlled and tagged. Since we want to make assignment work properly we
have to override the procedure Adjust. Note also that we have supplied the
overriding indicator so that the compiler can double check that Adjust does
indeed have the correct parameters.

The package body might be
package body Linked_Stacks is

 procedure Clear(S: out Stack) is
 begin
 S := (Controlled with Header => null);
 end Clear;

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S.Header := new Cell'(S.Header, X);
 end Push;

 procedure Pop(S: in out Stack; X: out Float) is
 begin
 X := S.Header.Value;

Safe and Secure Software: An invitation to Ada 2005

63

 S.Header := S.Header.Next;
 end Pop;

 function Clone(L: access Cell) return access Cell is
 begin
 if L = null then
 return null;
 else
 return new Cell'(Clone(L.Next), L.Value);
 end if;
 end Clone;

 procedure Adjust(S: in out Stack) is
 begin
 S.Header := Clone(S.Header);
 end Adjust;

end Linked_Stacks;

Assignment will now work properly. Suppose we write
This_One, That_One: Stack;
...
This_One := That_One; -- calls Adjust automatically

The raw assignment of That_One to This_One copies just the record containing
the component Header. The procedure Adjust is then called automatically with
This_One as parameter. Adjust calls the recursive function Clone which actually
makes the copy. This process is often called a deep copy. The result is that
This_One and That_One now contain the same elements but are otherwise
disjoint structures.

Another notable point is that the procedure Clear sets the parameter S to a
record whose header component is null; the structure is known as an extension
aggregate. The first part of the extension aggregate just gives the name of the
parent type (or the value of an object of that type) and the part after with gives
the values of the additional components, if any. The procedures Pop and Push
are straightforward.

The reader might wonder about reclamation of unused storage when Pop
removes an item and also when Clear sets a stack to empty. This will be
discussed in the next chapter when we consider memory management in
general.

Note that Initialize and Finalize are not overridden and thus inherit the null
procedure of the type Controlled. So nothing special happens when a stack is
declared – this is correct since we just get a record whose Header is null by
default and nothing else is required. Also nothing happens when an object of

 Safe object construction

64

type Stack ceases to exist on exit from a procedure and so on – this again raises
the issue of the reclamation of storage and will be addressed in the next chapter.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Memory Management
7

Courtesy of

The GNAT Pro Company
John Barnes

65

The memory of the computer provides a vital part of the framework in which
the program resides. The integrity of the memory contents is necessary for the
health of the program. There is perhaps an analogy with human memory. If the
memory is unreliable then the proper functioning of the person is seriously
impaired.

There are two main problems with managing computer memory. One is that
information can be lost by being improperly overwritten by other information.
The other is that the memory itself can become filled and irrecoverable, so that
no new information can be stored. This is the problem of memory leaks.

Memory leak is an insidious fault since it often does not show up for a long
time. There was an example of a chemical control program that seemed to run
flawlessly for several years. It was restarted every three months because of some
external constraints (a crane had to be moved which necessitated stopping the
plant). But the schedule for the crane changed and the program was then
allowed to run for longer – it crashed after four months. There was a memory
leak which slowly gnawed away at the free storage.

Buffer overflow

Buffer overflow is almost a generic term used to denote the violation of the
security of information. Buffer overflow enables information to be overwritten
or read mistakenly or maliciously.

This is a common fault with C and C++ programs and is typically caused by
the absence of checks in those languages regarding writing or reading outside
the bounds of an array. We illustrated this problem in the chapter on Safe Typing
when discussing the example of throwing a pair of dice.

This problem cannot normally arise in Ada because there are checks that an
array index does not lie outside the range of allowed values. These checks can
be suppressed if we are absolutely sure that the program is perfect, but this is
perhaps an unwise thing to do unless the program has been proved to be correct
by analysis tools such as the SPARK Examiner mentioned in Chapter 11.

Although the absence of range checks is the ultimate cause of buffer overflow
problems in C, it is exacerbated by other language features such as the choice of
indicating the end of a string with a zero byte. This means that programmers
have to test for this value (directly or indirectly) in many string manipulation
routines. It is easy to make mistakes in performing such tests and in any event
the zero value might be accidentally overwritten itself. These secondary
problems are often the key to loopholes which enable viruses to enter a system.

Another common way in which data can be accidentally destroyed is through
the use of incorrect pointers. Pointers in C are treated as addresses and

66

arithmetic can be performed on them. It is therefore easy for a pointer to have a
miscomputed value and so to point to the wrong thing. Writing through the
pointer then destroys some other data.

In the chapter on Safe Pointers we saw that Ada guards against this by
applying strong typing to all pointers, and through the accessibility rules which
ensure that objects do not vanish while being referenced by other objects.

Therefore, basic features of Ada guard against the accidental loss of data
through overwriting memory. The remainder of this chapter addresses the issue
of losing memory itself.

Heap control

Programming languages are typically implemented using three sorts of data
storage
▪ global data that exists throughout the life of the program and can thus be

allocated permanently (and often statically),
▪ data stored on a stack which grows and contracts as the flow of control

passes through various subprograms,
▪ data allocated in a heap and used and discarded in a manner not directly

tied to the flow of control.
Fortran global common is the primeval example of global static storage (this
relates to Fortran as it was in the early days of programming). But global static
storage exists in all languages. In Ada if we declared

package Calendar_Data is
 type Month is (Jan, Feb, Mar, ... , Nov, Dec);
 Days_In_Month: array (Month) of Integer :=
 (Jan => 31, Feb => 28, Mar => 31, Apr => 30,
 May => 31, Jun => 30, Jul => 31, Aug => 31,
 Sep => 30, Oct => 31, Nov => 30, Dec => 31);
end;

then storage for the array Days_In_Month would naturally be declared in fixed
global storage.

The stack is an important storage structure in all modern programming
languages. Note that we are here talking about the underlying stack used by the
implementation and not an object of the type Stack used for illustration in an
earlier chapter. The stack is used for parameter passing in subprogram calls
(actual parameters, the return address, saved registers, and so on) as well as for
local variables within a subprogram. In a multitasking program where several
threads of activity occur in parallel, each task has its own stack.

Safe and Secure Software: An invitation to Ada 2005

67

Now consider the function Nfv_2000 used in the program for interest rates in
the chapter on Safe Pointers

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv;

The object Factor will typically be stored in the stack. It will come into
existence when the function is called and will cease to exist when the function
returns. This is all managed safely and automatically by the call/return
mechanism. Note that although Factor is marked as a constant nevertheless it is
not static since each call of the function will provide a different value for it.
Moreover, the function might be called by two different tasks at the same time
in a multitasking program and so Factor certainly cannot be stored globally.

The values of any actual parameters such as X are also stored on the stack.
Now consider a more elaborate subprogram which declares a local array

whose size is not known until the program executes – consider for example a
function to return an arbitrary array in reverse order. In Ada we might write

function Rev(A: Vector) return Vector is
 Result: Vector(A'Range);
begin
 for K in A'Range loop
 Result(K) := A(A'First+A'Last–K);
 end loop;
 return Result;
end Rev;

where the type Vector is declared as
type Vector is array (Natural range <>) of Float;

This notation indicates that Vector is an array type but the bounds are not given
except that they must be within the subtype Natural (and so in the range 0 to
Integer'Last). When we declare an actual object of the type Vector we must
supply bounds. So we might have

L: Integer := ... ;
My_Vector, Your_Vector: Vector(1 .. L); -- L need not be static
...
Your_Vector := Rev(My_Vector);

In most programming languages we would be forced to place an object such as
the local variable Result on the heap rather than the stack because its size is not
known until the program executes. This is certainly not necessary because a

 Safe memory management

68

stack is flexible and storage for local variables can always be managed on a last-
in–last-out basis.

But the heap is often used because it requires a bit of thought to design and
manage dynamically sized data efficiently and without care the subroutine
calling mechanism can suffer a loss of performance. Implementations of Ada
always use the stack for local data – an efficient technique is to use both ends of
the stack, one end for return links and fixed local data and the other end for
dynamically sized local data. This enables the location of return addresses to be
computed more efficiently and yet keeps full flexibility. Furthermore, Ada
systems usually guard against the stack running out of storage and raise the
exception Storage_Error if it does (or rather if it is about to).

The above example illustrates a number of nice points about Ada. By contrast
it is quite tricky to write in C. This is because C has no proper abstraction for
arrays and so we cannot pass an array as a parameter but only a pointer to an
array. Moreover C cannot return a result which is anything other than a scalar
value and so cannot pass back the reversed array either. We could of course
simply declare a function that reverses the argument in situ and leave it to the
user to make a copy first. But doing the reverse in situ is tricky since we have to
take care not to destroy the values as we swap them. So perhaps it is best to pass
pointers to both the original array and the result as distinct parameters. The
other difficulty is that C does not know how long its arrays are and so we have
to pass the length of the array as well (or maybe the upper bound). This is yet
another hazard since it is all too easy to pass a length that does not correspond to
that of the array. So we might have

void rev(float *a, float *result, int length);
{
 for (k=0; k<length; k++)
 result[k] = a[length–k–1];
}
...
float my_vector[100], your_vector[100];
...
rev(my_vector, your_vector, 100);

Although this chapter is meant to be about storage management it is perhaps
worth pausing to list some of the risks and difficulties in the above C code.
▪ Arrays in C always have lower bound 0 and so if the application has a

different natural lower bound such as 1 then confusion can arise. Ada
allows any lower bound.

▪ The length of the array has to be passed separately, there is a risk of
getting the length wrong and confusing the length with the upper bound.
In Ada the attributes of the array are passed as part of the array itself.

Safe and Secure Software: An invitation to Ada 2005

69

▪ The address of the result array has to be passed separately. There is the
danger of confusing the two arrays which cannot happen in Ada because
the assignment clarifies which is which.

▪ The loop has to be written out explicitly whereas the Ada notation ties it
to the range of the array automatically.

However, we have strayed from the topic. The key point is that if we did declare
a local array in C++ whose size was not static as in

void f(int n, ...);
{ float a[] = new float [n];
...
}

then the array a will be placed in the heap and not on the stack. In C we would
have to use malloc which does explicitly reveal the use of the heap.

The general danger of using the heap is that storage might be deallocated
when it is still in use or left allocated when it is not needed. Because Ada allows
dynamically sized objects on the stack, the heap is basically only used when
allocators are invoked as mentioned in the chapter on Safe Pointers. This results
in better performance and less chance of memory leaks.

Storage pools

We now turn to the use of the heap in Ada. The proper term is storage pool. If
we do an allocation such as in the procedure Push discussed in the chapter on
Safe Object Construction thus

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S := new Cell'(S, X);
 end Push;

then the space for the new Cell will be taken from a storage pool. There is
always a standard storage pool but we can declare and manage our own storage
pools as well.

LISP was the first language to take storage management out of the hands of
the programmer, and to incorporate a garbage collector in order to reclaim
storage. This approach is used in a number of other languages including Python
and Java. The presence of a garbage collector simplifies programming
substantially, but has its own problems. For example, the garbage collector may
interrupt the execution of the program at unpredictable times, and is therefore
unusable in a real-time environment. A programmer of a real-time system must
retain fine control over memory and deallocation and must be able to reclaim

 Safe memory management

70

memory at some precise time rather than waiting for the garbage collector to do
it. As a consequence a garbage collector is not appropriate for a general purpose
language and especially to one used for low-level, real-time and safety-critical
applications.

Ada provides the user with a choice of mechanisms. Storage control can be
done
▪ by hand. That is by programming the release of storage on an individual

basis.
▪ by using storage pools. Individual items can be deleted from a specific

pool and the whole pool can be discarded when no longer required.
▪ by a garbage collector. This might not be available in all

implementations.
In order to return a lump of storage that is no longer used we call an

instantiation of a predefined generic function called Unchecked_Deallocation. In
order to do this we have to use a named access type so we will suppose that the
type Cell is declared by

type Cell;
type Cell_Ptr is access all Cell;

type Cell is
 record
 Next: Cell_Ptr;
 Value: Float;
 end record;

Note that we have an intrinsic circularity here which is broken by first giving an
incomplete declaration of the type Cell. We now write

procedure Free is new Unchecked_Deallocation(Cell, Cell_Ptr);

In order to deallocate storage we simply call the procedure Free with an access
value referring to the storage concerned. Thus the procedure Pop should now be
written as

procedure Pop(S: in out Stack; X: out Float) is
 Old_S: Stack := S;
begin
 X := S.Value;
 S := S.Next;
 Free(Old_S);
end Pop;

Note that we are here using the version of the type Stack that is limited private
and not the version that is controlled.

Safe and Secure Software: An invitation to Ada 2005

71

It might seem that the use of Free is risky. In general it might be that there
was another reference to the deallocated storage. But in this example the user's
view of the type is limited and so the user cannot have made a copy of the
structure. Moreover, the user cannot see the details of the type Stack and in
particular cannot see the types Cell and Cell_Ptr at all and therefore cannot call
Free. Thus once we have assured ourselves that Pop is correct then no trouble is
possible. Finally, the instantiation of Unchecked_Deallocation provides a cross-
check by requiring the use of named access types and thus checks that the
parameters match.

We must also change Clear as well. The easy way is to write
procedure Clear(S: in out Stack) is
 Junk: Float;
begin
 while S /= null loop
 Pop(S, Junk);
 end loop;
end Clear;

Although this technique ensures that storage is deallocated properly whenever
Pop and Clear are called, there is still the risk that the user might declare a stack
and leave its scope when it is not empty. Thus

procedure Do_Something ...
 A_Stack: Stack;
begin
 ... -- play with A_Stack
 ... -- is it empty as we leave?
end Do_Something;

If A_Stack were not null when Do_Something is left then the storage would be
lost. We cannot leave the onus on the user to take care not to lose storage so we
should make the stack a controlled type as illustrated at the end of the chapter on
Safe Object Construction. We can then declare our own procedure Finalize
perhaps simply as

overriding
procedure Finalize(S: in out Stack) is
begin
 Clear(S);
end Finalize;

Note the use of the overriding indicator just to ensure that we have not
misspelled Finalize or mistyped its formal parameters.

Ada also permits users to declare their own storage pools. This is
straightforward but would take too much space to explain in detail here. But the

 Safe memory management

72

general idea is that there is a predefined type Root_Storage_Pool (which itself is
a limited controlled type) and we can declare our own storage pool type by
deriving from it thus

type My_Pool_Type(Size: Storage_Count) is
 new Root_Storage_Pool with private;
overriding
procedure Allocate(...);
overriding
procedure Deallocate(...);
-- also overriding Initialize(...) and Finalize(...);

The procedure Allocate is automatically called when a new object is allocated by
an allocator and Deallocate is automatically called when an object is discarded
by calling Free. The user then writes appropriate code to manage the pool as
desired. Since a pool type is also controlled the procedures Initialize and Finalize
are automatically called when the whole pool is declared and finally goes out of
scope.

In order to create a pool we then declare a pool object in the usual way. And
finally we can link a particular access type to use the pool.

Cell_Ptr_Pool: My_Pool_Type(1000); -- pool size is 1000
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

An important advantage of declaring our own pools is that the risk of
fragmentation can be minimized by keeping different types in different pools.
Moreover, we can write our own storage allocation mechanisms and even do
some storage compaction if we so wish. A further point is that if the access type
concerned is declared locally then the pool can be local as well and will
automatically be discarded so that there can be no possibility of storage being
lost.

Finally, there is a safeguard against misuse of Unchecked_Deallocation and
that is that since it is a predefined library unit, any unit we write that calls it will
have

with Unchecked_Deallocation;

written boldly at the start of the text. This will then be clearly visible to anyone
reviewing the program and especially to our Manager.

Restrictions

There is a general mechanism for ensuring that we do not use certain features of
the language and that is the pragma Restrictions. Thus if we write

Safe and Secure Software: An invitation to Ada 2005

73

pragma Restrictions(No_Dependence => Unchecked_Deallocation);

then we are asserting that the program does not use Unchecked_Deallocation at
all – the compiler will reject the program if this is not true.

There are over forty such restrictions in Ada 2005 which can be used to give
assurance about various aspects of the program. Many are rather specialized and
relate to multitasking programs. Others which concern storage generally and are
thus relevant to this chapter are

pragma Restrictions(No_Allocators);
pragma Restrictions(No_Implicit_Heap_Allocations);

The first completely prevents the use of the allocator new as in new Cell'(...)
and thus all explicit use of the heap. Just occasionally some implementations
might use the heap temporarily for objects in certain awkward circumstances.
This is rare and can be prevented by the second pragma.

 Safe memory management

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Startup
8

Courtesy of

The GNAT Pro Company
John Barnes

75

We can carefully write a program so that it behaves properly when running, but
it is all to no avail if it will not start properly.

The motor car that will not start is no good even if when going it behaves like
a Rolls-Royce.

In the case of a computer program, the key things are to ensure that data is
initialized properly and this often means to ensure that its various components
are initialized in the correct order.

Elaboration

A program typically consists of a number of library packages P, Q, R and so on,
plus a main subprogram M. The general idea is that when the program is started
the various packages are elaborated, after which the main subprogram is called.
The elaboration of a package consists of the creation of the various entities
declared at the top level in the package – but not entities declared within
subprograms in the package because these are created when the subprograms are
called.

Thus consider again the package Stack in the chapter on Safe Architecture. In
outline it was

package Stack is
 procedure Clear;
 procedure Push(X: Float);
 function Pop return Float;
end Stack;

package body Stack is

 Max: constant := 100;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

 ... -- procedures Clear and Push and function Pop

end Stack;

The elaboration of the specification of the package does nothing in this case
because there are no objects declared in it. The elaboration of the body of the
package notionally causes the space for the integer Top and the array A to be set
aside. In this particular case the size of the array is known before the program
executes because it is given by the constant Max which happens to have a static
value and so the storage can be effectively set aside even before the program is
loaded.

76

But Max need not have had a static value – it might have been given the result
of some function call thus

 Max: constant := Some_Function;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

and then the space required for A would be computed as part of the elaboration
of the package body. If we had been careless and declared Max as a variable and
forgotten to give it an initial value thus

 Max: Integer;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

then the size of the array would be given by the value that Max happened to
have. If Max were negative then the attempt to declare the array would raise
Constraint_Error and if Max were too large than it might raise Storage_Error.

It should also be noted that we gave an initial value of zero to the variable
Top so that the user did not have to call the procedure Clear before calling Push
or Pop.

Alternatively we can give the package body an explicit initialization part so
that it becomes

package body Stack is

 Max: constant := 100;
 Top: Integer range 0 .. Max;
 A: array (1 .. Max) of Float;

 ... -- procedures Clear and Push and function Pop

begin -- initialization part
 Top := 0;
end Stack;

The initialization part can contain any statements at all. It is executed as part of
the elaboration of the package body and so before any of the subprograms in the
package can be called by code outside the package.

Readers might feel that it is surely always best to give all variables an initial
value anyway just in case. In the example given here the value zero is indeed a
sensible initial value and corresponds to a call of Clear. In some situations there
is no obvious initial value and giving a value just in case is not always wise
because it can actually obscure real errors. We will come back to this briefly
when we discuss SPARK in the final chapter.

Safe and Secure Software: An invitation to Ada 2005

77

In the case of numeric variables, the consequences of using a value that has
not been set are not disastrous. But the consequence of using an access value or
some other implicit address which has not been set could be. In the case of
access types in Ada these either have a default value of null or must be
initialized as we have seen.

A related kind of potential error concerns "access before elaboration". This
means attempting to use something before it has been properly elaborated.
Consider

package P is
 function F return Integer;
 X: Integer := F; -- raises Program_Error
end;

where the body of F is of course in the body of the package P. We cannot
successfully call F to give an initial value to X before the body has been
elaborated. So in this case the exception Program_Error is raised. The same sort
of error in C could have unpredictable effects.

Elaboration pragmas

Within a single compilation unit the rule is that declarations are elaborated in
the order in which they appear in the text.

In the case of a program linked from several different units, a unit is always
elaborated after all those on which it depends. Thus a body is elaborated after
the corresponding specification, the specification of a child is elaborated after
the specification of its parent and any unit is elaborated after the specifications
of all those mentioned in a (nonlimited) with clause.

However, this only partially dictates the order and is sometimes not enough to
ensure the correct behavior of the program. We can extend the example above as
follows

package P is
 function F return Integer;
end P;

package body P is
 function F return Integer is ...
end P;

with P;
package Q is
 X: Integer := P.F;
end;

 Safe startup

78

It is important that the body of P has been elaborated before the specification of
Q is elaborated because this elaboration requires that the body of F itself (and
everything on which this body might in turn depend) be already elaborated. But
the above rules do not ensure this and Program_Error might be raised at
runtime.

We can force the required order of elaboration by inserting a pragma in the
context clause for Q thus

with P;
pragma Elaborate_All (P);
package Q is
 X: Integer := P.F;
end;

Note that the All in Elaborate_All indicates the transitive nature of the pragma.
Its effect is that at runtime the elaboration code for package P (and all the
packages on which it depends) will be executed before the elaboration code for
Q.

There is also a pragma Elaborate_Body which can be given with a
specification and indicates that its body must be elaborated immediately after
the specification.

Dynamic loading

A related topic concerns dynamic loading. Some languages are designed to
create a single coherent program that is fully assembled before being run. Ada,
C and Pascal are like that. The operating system may swap lumps of the
program in and out of memory using paging algorithms but that is an
implementation detail.

Other languages are designed to be much more dynamic and enable new code
to be compiled, loaded and executed while the program is running. Cobol and
Java are like that.

An approach used with programs written in languages such as C is to use
dynamic linked libraries (DLLs) whereby an indirect call is used to invoke the
new code. But this is not safe since there is no checking that the parameters of
the new code match those of the old calling sequence.

One approach that can be used with Ada is to use the dispatching mechanism
as the hook to dynamic linking. The point about dispatching is that it enables
existing compiled code containing a class (such as Geometry.Object'Class) to
call operations (such as Area) of further types (such as Pentagon, Hexagon and
so on) without the central code having to be recompiled. This was briefly

Safe and Secure Software: An invitation to Ada 2005

79

mentioned in the chapter on Safe Object-Oriented Programming. Moreover the
mechanism is completely type safe.

A good example of how dynamic linking can be added within this framework
is given in [2].

 Safe startup

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Communication
9

Courtesy of

The GNAT Pro Company
John Barnes

81

A program that doesn't communicate with the outside world in some way is
useless although very safe. Such a program might almost be in solitary
confinement. A prisoner in solitary confinement is safe in the sense that he
cannot hurt other people but he is equally of no use to society either.

So for a program to be useful it must communicate. And if the program is
written in a safe way so that it does not have internal dangers, it is largely futile
if its communication with the world is unsafe. So safety in communication is
important since it is here that the program truly has a useful effect.

It is perhaps worth recalling from the introduction that we characterized the
difference between safety-critical and security-critical systems as that the former
is where the program must not harm the world whereas the latter is where the
world must not harm the program. So communication is the ultimate lynchpin of
both safety and security.

Representation of data

An important aspect of communication concerns the mapping between the
abstract software and the actual hardware. Most languages leave this sort of
thing to individual implementations. But Ada gives the user quite specific
control over many aspects of data representation.

For example we might decide that we want data in a record to be laid out in a
particular manner – perhaps to match that of an existing file structure. Suppose
the record is the type Key in the chapter on Safe Object Construction

type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;

where the type Date is
type Date is
 record
 Day: Integer range 1 .. 31;
 Month: Integer range 1 .. 12;
 Year: Integer;
 end record;

We will assume that we are using a 32-bit machine with four bytes to a word.
The day and month easily fit into one byte each and the year needs at most 16
bits so the whole date can be neatly packed into a single word. We can express
this by

82

for Date use
 record
 Day at 0 range 0 .. 7;
 Month at 1 range 0 .. 7;
 Year at 2 range 0 .. 15;
 end record;

In the case of the type Key, the required structure is simply two words and
almost inevitably the implementation will use the representation we require. But
we can ensure this by writing

for Key use
 record
 Issued at 0 range 0 .. 31;
 Code at 1 range 0 .. 31;
 end record;

As another example consider the type Signal of the chapter on Safe Typing. It
was

type Signal is (Danger, Caution, Clear);

Unless we say otherwise, the compiler will encode this type using 0 for Danger,
1 for Caution and 2 for Clear. But in a real application the value of the signal
might enter the program encoded as 1 for Danger, 2 for Caution and 4 for Clear.
We can instruct the program to use this encoding by writing

for Signal use (Danger => 1, Caution => 2, Clear => 4);

Furthermore, if the value of The_Signal is autonomously loaded into the
program at a particular hardware location as a single byte then we can direct the
compiler to ensure that the type is indeed held as such and that the variable is
located appropriately by for example

for Signal'Size use 8;

for The_Signal'Address use 16#0ACE#;

The latter locates the variable at the hexadecimal address 0ACE.

Validity of data

An important part of all programming is to ensure that data received from the
outside world is valid. In most case we can simply program various checks
using normal programming techniques. But sometimes this is awkward.

The type Signal is a case in point. We have instructed the compiler to hold the
value as an enumeration type with a certain representation. If by some

Safe and Secure Software: An invitation to Ada 2005

83

misfortune a value turns up which does not have a recognized pattern (perhaps
two bits are set because of a transient in the external device) then we cannot
express a test of that in the normal way because that would take us outside the
domain of definition of the type Signal. Instead we can write

if not The_Signal'Valid then ...

Another approach is to use Unchecked_Conversion. We can read the value in,
perhaps as a byte, check it and then if it is acceptable, convert it to the type
Signal. First we need the type Byte and the conversion routine

type Byte is range 0 .. 255;
for Byte'Size use 8;

function Byte_To_Signal is new Unchecked_Conversion(Byte, Signal);

and then
Raw_Signal: Byte;
for Raw_Signal'Address use 16#0ACE#;
The_Signal: Signal;
...
case Raw_Signal is
 when 1 | 2 | 4 =>
 -- raw value OK, convert it
 The_Signal := Byte_To_Signal(Raw_Signal);
 ... -- process valid value
 when others =>
 ... -- raw value invalid
 ... -- take corrective action
end case;

The idea of course is that since the type Byte is simply an integer type we can do
normal arithmetic on the value in order to check it. The corrective action might
include logging the particular invalid value and so on.

The reader should note a flaw in the above if the value truly is loaded
autonomously. Between checking and the conversion, a new value might arrive.
So it should be copied into a local variable before being tested and processed.

Communication with other languages

Many modern large systems are written in a mixture of languages each
appropriate to the part of the system concerned. The safety-critical control
routines and security-critical input routines might be written in Ada (perhaps in
SPARK), the GUI interface might be written in C++, some complex

 Safe communication

84

mathematical analysis might be written in Fortran, some device drivers might be
in C and so on.

Many languages have some facilities for interworking with other languages
(C++ with C for example) but these are often loosely defined. Ada is perhaps
unique in providing well-defined mechanisms within the language standard for
interfacing to programs in other languages in general. Ada provides specific
facilities for communication with programs and data in C, C++, Fortran and
COBOL. In particular, Ada recognizes the representation of types in these other
languages such as the arrangement of matrices in Fortran and strings in C so that
communication retains type safety.

In a mixed language situation it is thus a good idea to use Ada as the central
language so that communication with other languages has the benefit of the type
checking provided by the Ada conversion routines.

The general means of communication uses pragmas. Thus suppose we have a
C routine called next_byte and we wish to call it from our Ada program as the
function Next_Byte. We simply write

function Next_Byte return Byte;
pragma Import(C, Next_Byte);

The pragma indicates that the calling convention is C and also tells the compiler
that there is no Ada body for this function. The pragma can supply a different
external name and link name if necessary.

Similarly, if we wish the external C program to call the Ada procedure Action
then we can make the name of the Ada procedure available externally by writing

procedure Action(D: in Data);
pragma Export(C, Action);

Access-to-subprogram types are important for communication with other
languages especially when programming interactive systems. For example,
suppose we want the procedure Action to be called by the GUI when the mouse
is clicked. Suppose that there is a C routine mouse_click that takes the address
of the code to be called when the mouse is clicked. We can do this by writing

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data);
pragma Convention(C, Action);
...
Set_Click(Action'Access);

Safe and Secure Software: An invitation to Ada 2005

85

In this case we have not made the name of the procedure Action visible to the C
program because it is called indirectly but we do have to ensure that it uses the
C calling convention.

Streams

A potential difficulty occurs when we transmit values of different types to and
from the external world. Output is straightforward because we know the type of
the value being transmitted and can use the appropriate format. But input is a
problem because typically we do not know what is coming. If a file is uniform
and all values are of the same type then we simply have to ensure that we have
connected to the correct file. The real difficulty arises when values of different
types are involved in the same file. Ada has a number of different filing
mechanisms, some are for homogeneous files such as files of all integers or text
files; for heterogeneous files we use a stream file.

As a very simple example suppose a file is to have a mixture of values of
types Integer, Float and Signal. All types have special attributes 'Read and 'Write
for use with streams. On output we simply write

S: Stream_Access := Stream(The_File);
...
Integer'Write(S, An_Integer);
Float'Write(S, A_Float);
Signal'Write(S, A_Signal);

and this results in a mixture of values of different types on The_File. In the
space available we cannot give the full details but S identifies the stream
associated with the file.

On input we simply do the reverse
Integer'Read(S, An_Integer);
Float'Read(S, A_Float);
Signal'Read(S, A_Signal);

If we do the calls in the wrong order then the exception Data_Error will be
raised because Ada checks that the item being read is of the correct format.

If we do not know the order in which things are to be read then we need to
create a class to cover all the different types involved. In this simple case we
might declare a root type

type Root is abstract tagged null record;

to act as a sort of wrapper and then a series of individual types to encapsulate
the real data thus

 Safe communication

86

type S_Integer is new Root with
 record
 Value: Integer;
 end record;

type S_Float is new Root with
 record
 Value: Float;
 end record;
...

and so on. On output we write
Root'Class'Output(S, (Root with An_Integer));
Root'Class'Output(S, (Root with A_Float));
Root'Class'Output(S, (Root with A_Signal));

Note that the same procedure is used for all the calls. It first outputs the value of
the tag of the specific type and then calls (by dispatching) the appropriate Write
attribute.

For input we might write
Next_Item: Root'Class := Root'Class'Input(S);
...
Process(Next_Item);

The procedure Root'Class'Input reads the tag from the stream and then
dispatches to the Read attribute to read the item and finally assigns it as the
initial value of the object Next_Item. We can then call some other procedure
such as Process by dispatching to do whatever we want. We might assign the
value to a particular variable according to its type.

To do this we first declare the abstract procedure for the root type thus
procedure Process(X: in Root) is abstract;

and then specific procedures such as
overriding
procedure Process(X: S_Integer) is
begin
 An_Integer := X.Value; -- extract value from wrapper
end Process;

The procedure Process could of course do anything we like with the value
concerned.

Safe and Secure Software: An invitation to Ada 2005

87

This has been a somewhat artificial example. The purpose of it has been to
illustrate that Ada can process items of various types in a way that preserves the
security of the type model.

Object factories

We have just seen how the predefined stream mechanism enables us to
manipulate values whose types are not known until they are input in some way.
The underlying mechanism of reading a tag and then creating an object of the
appropriate type is also available to the user in Ada 2005.

Suppose we are manipulating the geometrical objects discussed in the chapter
on Safe Object-Oriented Programming. These are of various types such as
Circle, Square, Triangle and so on and are all derived from the root type
Geometry.Object. We might wish to read values of these objects from a
keyboard. For a circle we would expect the values of its two coordinates
followed by the radius. For a triangle we would expect the two coordinates plus
the values of the three sides and so on. We could declare functions Get_Object
to read these values such as

function Get_Object return Circle is
begin
 return C: Circle do
 Get(C.X_Coord); Get(C.Y_Coord); Get(C.Radius);
 end return;
end Get_Object;

The internal calls of Get are calls of predefined procedures to read simple values
from the keyboard. The user will have to type some code to indicate which type
of object is being supplied. Perhaps the values for a circle could be preceded
with the string "Circle"; we will also suppose that we have written a simple
function Get_String to read and return such a string.

So now all we have to do is to read the code string, and then call the
appropriate procedure Get_Object to create an object of the correct type. The
key to this is to use a predefined generic function which, given a tag, returns an
object of the corresponding type. In essence it is

generic
 type T(<>) is abstract tagged limited private;
 with function Constructor return T is abstract;
function Generic_Dispatching_Constructor(The_Tag: Tag) return T'Class;

This generic function has two generic parameters, the first identifies the class of
types concerned (such as Geometry.Object from which the types Circle, Square

 Safe communication

88

and Triangle are derived) and a dispatching operation to make objects of the
specific types (such as functions Get_Object).

We can now instantiate this generic function to give a constructor function for
geometrical objects

function Make_Object is
 new Generic_Dispatching_Constructor(Object, Get_Object);

A call of Make_Object takes the tag of the specific type concerned, then
dispatches to the appropriate function Get_Object and finally returns the value
created.

We might decide to declare an access variable to refer to the newly created
object thus

Object_Ptr: access Object'Class;

If the tag value is in a variable Object_Tag (of the type Tag which is defined in
the predefined language package Ada.Tags – the generic constructor function is
also in this package), then we call Make_Object thus

Object_Ptr := new Object'(Make_Object(Object_Tag));

and now we have made the new object (perhaps a circle) with the values of its
coordinates and radius which were read from the keyboard.

We are not quite finished since we have to convert the string "Circle" which
identifies the type concerned into the tag value used for dispatching. A simple
way to do this is to write

for Circle'External_Tag use "Circle";
for Triangle'External_Tag use "Triangle";

and then we can read and convert the external string into the internal tag value
by

Object_Tag: Tag := Internal_Tag(Get_String);

There is of course no need to declare the variable Object_Tag since we can
combine the operations into one single statement thus.

Object_Ptr := new Object'(Make_Object(Internal_Tag(Get_String));

Finally, it should be noted that the above discussion has been slightly simplified.
The actual constructor has an auxiliary parameter which we have ignored.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Safe Concurrency
10

Courtesy of

The GNAT Pro Company
John Barnes

89

In real life many activities happen in parallel. Human beings do thing in parallel
with considerable ease. Females seem to do this better than males – perhaps
because they have to rock the baby while cooking the food and keeping the tiger
out of the cave. The male typically just concentrates on one thing at a time such
as catching that rabbit for dinner – or trying to find a bigger cave or perhaps
even inventing a wheel.

Computers traditionally only do one thing at a time, and the operating system
makes it look as if several things are going on in parallel. This is not quite so
true these days, since many computers do truly have multiple processors but it
still does apply to the vast majority of small computers including those used in
process control.

Operating systems and tasks

Operating systems vary enormously in the amount of parallel activity that they
permit. Operating systems supporting POSIX provide the programmer with
multiple threads of control. These various threads of control can flow through
the program quite independently and so support parallel activities.

On some hardware there will only be one processor, which will be allocated
to the different threads according to some scheduling algorithm. One approach
is simply to give the processor to each thread in turn for a small amount of time;
more sophisticated approaches are to use priorities or deadlines to ensure that
the processor is used effectively.

Some hardware might have multiple processors in which case several threads
can truly be active in parallel. Again a scheduler will allocate the processors in a
hopefully effective way to the active threads of control.

In a programming language the parallel activities are generally called threads
or tasks. Here we will use the latter which is the Ada term. Languages take very
different approaches to tasking. Some languages have intrinsic facilities for
tasking built into the language itself. Others provide simple access to the
underlying primitives of the operating system. Yet others ignore the subject
completely.

Ada and Java are languages with intrinsic tasking facilities. C and C++ have
no built-in support for tasking, so programmers using these languages need to
rely on third-party libraries and make direct calls to operating system services.

There are at least three advantages of having tasking within the language
itself
▪ Built-in syntactic constructions make it much easier to write correct

programs because the language can prevent a number of errors from

90

being made. It is essentially the old story about abstraction. By hiding
low-level details certain errors are prevented.

▪ Portability is difficult if operating system facilities are used directly
because they vary widely from system to system.

▪ General operating systems do not provide the range of timing and
related facilities needed by many real-time applications.

The operations typically required in a tasking program are
▪ Tasks must be prevented from violating the integrity of data if several

tasks need access to the data concurrently.
▪ Tasks need to communicate with each other in order to transfer data

between them.
▪ Tasks need to be controlled in order to meet specific timing

requirements.
▪ Tasks need to be scheduled in order to use resources efficiently and to

meet their overall deadlines.
This chapter will briefly look at these topics and illustrate how Ada addresses

them in a reliable manner. This is a design challenge, since programs with
tasking are much harder to write correctly than ordinary sequential programs.
But first we introduce the simple idea of an Ada task and the overall program
structure.

An Ada program can have many tasks running in parallel. A task is written in
two parts rather like a package. It has a specification which describes the
interface it presents to other tasks and a body which contains the code saying
what it actually does. In simple cases the specification simply names the task so
we might have

task A; -- task specification

task body A is -- task body
begin
 ... -- statements saying what the task does
end A;

Sometimes it is convenient to have several similar tasks in which case we can
introduce a task type

task type Worker;

task body Worker is ...

We can then declare several tasks by declaring objects in the usual way
Tom, Dick, Harry: Worker;

Safe and Secure Software: An invitation to Ada 2005

91

This creates three tasks called Tom, Dick and Harry. We can also declare arrays
of tasks and have task components inside records and so on. Tasks can be
declared wherever other objects can be declared such as in a package or in a
subprogram or even within another task. Not surprisingly, task types are limited
types, since assigning one task to another is not a meaningful operation.

The main subprogram of a complete program is invoked by the so-called
environment task and it is this environment task that elaborates library
packages, as described in the chapter on Safe Startup. An overall program with
library packages A, B and C and main subprogram Main can therefore be
thought of as

task Environment_Task;

task body Environment_Task is
 ... -- declarations of library packages A, B, C
 ... -- and main subprogram Main
begin
 ... -- call of main subprogram Main
end;

A task becomes active simply by being declared. It finishes by reaching the end
of the task body. An important rule is that a local task declared within a
subprogram or another task must finish before the enclosing unit can itself be
left and the enclosing unit will be suspended until the local task terminates. This
rule prevents dangling references to data that no longer exists.

Protected objects

Suppose that the three tasks Tom, Dick and Harry are using a stack as some sort
of temporary storage device. From time to time one of them pushes an item onto
the stack and from time to time one of them (perhaps the same one, perhaps a
different one) pops an item off the stack.

The three tasks run in parallel and the runtime system gives the processor to
each in turn according to some algorithm. Perhaps they each get 10 ms in turn.

Suppose the stack they are using is as declared in the chapter on Safe
Architecture. Suppose that Harry is calling Push when his time slot expires and
control then passes to Tom who calls Pop. To be precise, suppose Harry loses the
processor just after he has executed the statement to increment Top in

procedure Push(X: Float) is
begin
 Top := Top + 1; -- Harry loses processor just after this
 A(Top) := X;
end Push;

 Safe concurrency

92

At this point Top has been incremented but the new value X has not been
assigned to the component of the array. When Tom calls Pop, he gets the old and
possibly meaningless value in the array component that was about to be
overwritten by the new value. When Harry gets the processor back (and
assuming no other stack activity occurs meanwhile) he will write the value X
into a component of the array that is a part of the stack that is not in use. In other
words the value X is lost.

A worse situation can occur if the processor is switched part way through a
statement. Thus Harry might lose the processor just after he has picked up Top
into a register but before he replaces Top with the new value. Suppose Dick now
comes along and also does a Push thereby adding 1 to the old value of Top.
When Harry resumes he will replace the value that Dick computed by the same
value. In other words the two calls of Push add just 1 to Top rather than 2 as
expected.

This unwanted behavior is overcome in Ada by using a protected object for
the stack. We write

protected Stack is
 procedure Clear;
 procedure Push(X: in Float);
 procedure Pop(X: out Float);
private
 Max: constant := 100;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;
end Stack;

protected body Stack is

 procedure Clear is
 begin
 Top := 0;
 end Clear;

 procedure Push(X: in Float) is
 begin
 Top := Top + 1;
 A(Top) := X;
 end Push;

 procedure Pop(X: out Float) is
 begin
 X := A(Top);
 Top := Top – 1;
 end Pop;

end Stack;

Safe and Secure Software: An invitation to Ada 2005

93

Note that package has been changed to protected, the data which was in the
body now appears in the private part of this new construct, and for reasons
explained below the function Pop has been changed into a procedure Pop.

The three procedures Clear, Push and Pop are called protected operations
and are invoked in the same way as procedures. Their behavior is that only one
task can access the operations of the object at a time. If a task such as Tom
attempts to call the procedure Pop while Harry is executing Push then Tom is
forced to wait until Harry returns from Push. This is all done automatically with
no effort on the part of the programmer. So any inconsistency problems are
avoided.

Behind the scenes the protected object has a lock, and a task attempting to
access an operation of the object has to acquire the lock first. If another task
already has the lock then the first one has to wait until that other task has
finished with the protected operation of the object that it was using and so
relinquishes the lock.

We can modify this example to show how we might cope with an attempt to
push an item on the stack when it is full. In the package formulation this would
raise Constraint_Error on the attempt to assign the value Max+1 to Top. As it is
written the same thing would happen and the lock would be automatically
relinquished, because the exception terminates the call of the protected
procedure.

But we can do much better. We can modify the protected object to use
barriers as follows

protected Stack is
 procedure Clear;
 entry Push(X: in Float);
 entry Pop(X: out Float);
private
 Max: constant := 100;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;
end Stack;

protected body Stack is

 procedure Clear is
 begin
 Top := 0;
 end Clear;

 entry Push(X: in Float) when Top < Max is
 begin
 Top := Top + 1;

 Safe concurrency

94

 A(Top) := X;
 end Push;

 entry Pop(X: out Float) when Top > 0 is
 begin
 X := A(Top);
 Top := Top – 1;
 end Pop;

end Stack;

The operations Push and Pop are now entries rather than procedures, and they
have Boolean barrier expressions such as Top < Max. The effect of a barrier is to
prevent the body of the entry from being executed if the barrier is False. Note
that his does not prevent the entry from being called. All that happens is that the
calling task is suspended until the barrier becomes True. So if Harry tries to call
Push when the stack is full then he has to wait until some other task (Tom or
Dick) calls Pop and removes the top item. Harry will then automatically proceed.
The user does not have to program anything special.

Note that entries, like protected procedures, are also called in the same way
as normal procedures, thus

Stack.Push(Z);

In summary, the protected object mechanism provided by Ada gives a structured
mechanism for arranging mutually-exclusive access to a shared data object. A
protected object declares its protected operations (procedures, functions, or
entries) in the visible part of its specification, and the protected components in
its private part. The body of the protected object contains the implementation of
the protected operations. A protected procedure and a protected entry have
"read/write" access to the protected components – that is, they can reference
and/or assign to them – whereas a protected function only has read access. This
restriction enables an optimization whereby multiple tasks may simultaneously
read a protected object (through protected function calls) but only one task at a
time is allowed to write to it. (This is sometimes called "Concurrent Read,
Exclusive Write".) The prohibition against protected functions assigning to
protected components is why we had to express Pop as a procedure rather than a
function in the first protected object version of Stack above.

Note also that, just as we can declare a task type as a template for task
objects, we can likewise declare a protected type as a template for protected
objects. And like task types, protected types are limited.

It is instructive to consider how we might program this example using lower
level primitives. The historic basic primitives are the operations P (acquire) and
V (release) acting on objects called semaphores. The effect of P(sem) is to
acquire the lock associated with sem, if the lock is available, and otherwise to

Safe and Secure Software: An invitation to Ada 2005

95

suspend the calling task on a queue associated with sem. The effect of V(sem) is
to release the lock associated with sem and to awaken one of the tasks (if any)
suspended on the queue of sem.
The idea is that we put pairs of calls of P and V around the operations for which
we wish to ensure mutually exclusive access. Thus, using the same Ada syntax,
Push would become

 procedure Push(X: in Float) is
 begin
 P(Stack_Lock); -- secure the lock
 Top := Top + 1;
 A(Top) := X;
 V(Stack_Lock); -- release the lock
 end Push;

with similar pairs of calls around the body of Clear and Pop. This is essentially
a Do-It-Yourself operation or assembly type coding for tasking. The
opportunities for errors are many
▪ We might omit one of a P and V pair thus creating an imbalance.
▪ We might forget them altogether around one group of statements that

should be protected.
▪ We might use the wrong semaphore name.
▪ We might inadvertently bypass a closing V.

The last problem would arise if, in the model without barriers, Push was
called when the stack was full. This causes Constraint_Error to be raised. If we
omit to provide a local exception handler to call V then the system will be
permanently locked.

None of these difficulties can arise when using Ada protected objects because
all this low-level mechanism is done automatically. Although, with care,
semaphores can be used successfully in simple situations, it is very difficult to
use them correctly in more complicated situations such as the example with
barriers. Not only is it difficult to program correctly with semaphores but it is
extremely difficult to prove that a program is correct.

Those familiar with Java will appreciate that the mechanisms of synchronized
operations and wait/notify are rather low-level and error-prone. The programmer
must be aware of the details of thread notification, which are handled
automatically by Ada protected objects.

 Safe concurrency

96

The rendezvous

The other important communication requirement between tasks is for one task to
convey information (data) to another. This is done in Ada with a mechanism
known as a rendezvous. The two tasks that communicate have a client–server
relationship. The client that requests some service needs to know the identity of
the server task, but the server task who provides it will accept a request from
any client.

The general pattern of the server is
task Server is
 entry Some_Service(Formal: in out Data);
end;

task body Server is
begin
 ...
 accept Some_Service(Formal: in out Data) is
 ... -- statements providing the service
 end Some_Service;
 ...
end Server;

The specification of the server indicates that it has an entry Some_Service. This
is called by a client task in the same way as calling an entry of a protected
object. The difference is that the code to be obeyed is given by an accept
statement and that is only executed when the server task reaches the accept
statement. Until that happens the calling task is suspended. When the server
reaches the accept statement, it executes it using any parameters supplied by the
client. The client remains suspended until the accept statement is finished and
after any out or in out parameters have been updated.

The body of a client might look like
task body Client is
 Actual: Data;
begin
 ...
 Server.Some_Service(Actual);
 ...
end Client;

Each entry has an associated queue. If a task calls an entry of a server and the
server is not waiting at an accept statement for that entry, then the caller is
queued. On the other hand, if the server reaches an accept statement and there
are no tasks waiting on the associated entry queue, then the server is suspended.
An accept statement can appear anywhere, for example within a branch of a

Safe and Secure Software: An invitation to Ada 2005

97

conditional (if) statement, or within a loop, and so the mechanism is very
flexible.

The rendezvous is a high level abstract mechanism (like the protected object)
and as such is relatively easy to use correctly. The corresponding queuing
mechanisms programmed at a low level are hard to write correctly.

Here is an example of how the rendezvous can be used to enable a service to
be provided without the client waiting. The idea is that the client gives the
server an entry to be called when a job is done. First we declare a mailbox type

task type Mailbox is
 entry Deposit(X: in Item);
 entry Collect(X: out Item);
end;

task body Mailbox is
 Local: Item;
begin
 accept Deposit(X: in Item) do
 Local := X;
 end;
 accept Collect(X: out Item) do
 X := Local;
 end;
end Mailbox;

A task of this type acts as a simple mailbox. An item can be deposited and
collected later. The client passes the identity of a mailbox to the server so that
the server can deposit the item in the mailbox from which the user can collect it
later. We need an access type

type Mailbox_Ref is access Mailbox;

The tasks Server and Client now take the following form
task Server is
 entry Request(Ref: Mailbox_Ref; X: Item);
end;

task body Server is
 Reply: Mailbox_Ref;
 Job: Item;
begin
 loop
 accept Request(Ref: Mailbox_Ref; X: Item) do
 Reply := Ref;
 Job := X;
 end;

 Safe concurrency

98

 ... -- work on job
 Reply.Deposit(Job);
 end loop;
end Server;

task Client;

task body Client is
 My_Box: Mailbox_Ref := new Mailbox; -- create mailbox task
 My_Item: Item;
begin
 Server.Request(My_Box, My_Item);
 ... -- do something whilst waiting
 My_Box.Collect(My_Item);
end Client;

In practice the client might poll the mailbox from time to time to see if the item
is ready. This is easily done using a conditional entry call which takes the form

select
 My_Box.Collect(My_Item);
 -- item collected successfully
else
 -- not ready yet
end select;

It is important to realize that the mailbox agent task serves several purposes. It
decouples the deposit and collect operations so that the server can get on with
the next job. Moreover, it means that the server need know nothing about the
client; calling the client directly would require the client to be of a particular
task type and this would be most impractical. The mailbox agent task enables us
to factor out the only property required of the client, namely the existence of the
entry Deposit.

Restrictions

The pragma Restrictions which can be used to ensure that we do not use certain
features of the language in a particular program was mentioned in the chapters
on Safe Object-Oriented Programming and Safe Memory Management.

Many of the restrictions in Ada 2005 relate to tasking. The tasking features in
Ada are very comprehensive and provide a whole range of facilities necessary to
meet the programming needs of a variety of real-time applications. But some
applications are quite simple and do not need many of these facilities. Here are
some samples of the sort of restrictions that can be applied.

Safe and Secure Software: An invitation to Ada 2005

99

No_Task_Hierarchy
No_Task_Termination
Max_Entry_Queue_Length => n

The restriction No_Task_Hierarchy prevents tasks from being declared inside
other tasks or inside subprograms – all tasks are therefore inside library-level
packages. No_Task_Termination means that all tasks run for ever – this is
common in many control applications where each task essentially has an endless
loop doing some repetitive action. And the restriction on entry queues places a
limit on the number of tasks that can be queued on a single entry at any time.

The advantage of giving appropriate restrictions are twofold
▪ It might enable a somewhat simpler runtime system to be used. This

could be smaller and faster and thus more appropriate for some time-
and space-critical embedded applications.

▪ It might enable various properties of the application to be proved
correct, concerning matters such as determinism, absence of deadlock,
and ability to meet deadlines. This might be vital for certain safety-
critical applications.

There are many other tasking restrictions and most of these concern tasking
facilities that we have not described.

Ravenscar

A particularly important group of restrictions is imposed by the Ravenscar
profile. In order to ensure that a program conforms to this profile we write

pragma Profile(Ravenscar);

in the program. Use of any of the excluded features (summarized below) would
then cause a compile-time error.

The key purpose of the Ravenscar profile is to restrict the use of tasking
facilities so that the effect of the program is predictable. (The profile was
defined by the International Real-Time Ada Workshops which met twice at the
remote village of Ravenscar on the coast of Yorkshire in North-East England.)

The profile is simply defined to be equivalent to a number of restrictions plus
a few other related pragmas concerning matters such as scheduling. The
restrictions include those mentioned earlier so there are no task hierarchies, all
tasks run for ever, and entry queues have a limit size of one (that is, there can be
only one task blocked at a time on a given entry).

 Safe concurrency

100

The combined effect of the restrictions is that it is possible to make
statements about the ability of a particular program to meet stringent
requirements for the purposes of certification.

No other programming language offers the reliability of Ada as constrained
by the Ravenscar profile. A description of the principles and use of the profile in
high integrity systems will be found in an ISO/IEC Technical Report [3].

Timing and scheduling

No survey of Ada tasking, however brief, would be complete without a few
words about timing and scheduling.

There are statements to enable a program to be synchronized with a clock.
We can delay a program for a specific amount of time (this is referred to as a
relative delay) or until a specific time thus

delay 2*Minutes;
delay until Next_Time;

assuming suitable declarations for Minutes and for Next_Time. Small relative
delays might be useful for interactive use, whereas a delay until a particular time
can be used to program periodic events. Time itself can be measured either by a
real-time clock (which is guaranteed to have a certain accuracy) or by the local
wall clock which might be subjected to changes such as occur because of
Daylight Savings. In Ada, it is even possible to take account of time zones and
leap seconds.

Ada also provides a number of standard timers whose expiry can be used to
trigger actions defined by a protected procedure (a handler). There are three
kinds of timers, one enables the monitoring of the CPU time used by an
individual task, one concerns the CPU budget for a group of tasks, and the third
concerns time as measured by the real-time clock. The handler is attached to a
timing event by a call of a procedure such as Set_Handler.

This is illustrated by the following amusing example concerning the boiling
of an egg. We declare a protected object Egg thus

protected Egg is
 procedure Boil(For_Time: in Time_Span);
private
 procedure Is_Done(Event: in out Timing_Event);
 Egg_Done: Timing_Event;
end Egg;

protected body Egg is

Safe and Secure Software: An invitation to Ada 2005

101

 procedure Boil(For_Time: in Time_Span) is
 begin
 Put_Egg_In_Water;
 Set_Handler(Egg_Done, For_Time, Is_Done'Access);
 end Boil;

 procedure Is_Done(Event: in out Timing_Event) is
 begin
 Ring_The_Pinger;
 end Is_Done;

end Egg;

The consumer can then write
Egg.Boil(Minutes(4));
-- now read newspaper whilst waiting for egg

and the pinger will ring when the egg is ready.
A number of different scheduling policies are provided in Ada 2005. These

can be applied to all tasks in a program or just to those in certain priority ranges
by the use of pragmas. The policies are
FIFO_Within_Priorities – Within each priority level to which it applies tasks are

dealt with on a first-in–first-out basis. Moreover, a task may preempt a
task of a lower priority.

Non_Preemptive_FIFO_Within_Priorities  – Within each priority level to which it
applies tasks run to completion or until they are blocked or execute a
delay statement. A task cannot be preempted by one of higher priority.
This sort of policy is widely used in high integrity applications.

Round_Robin_Within_Priorities  – Within each priority level to which it applies
tasks are timesliced with an interval that can be specified. This is a very
traditional policy widely used since the earliest days of concurrent
programming.

EDF_Across_Priorities – This provides Earliest Deadline First dispatching. The
general idea is that within a range of priority levels, each task has a
deadline and that with the earliest deadline is processed. This is a new
policy and has mathematically provable advantages with respect to
processor utilization.

Ada also has comprehensive facilities concerning the setting and changing of
task priorities and the so-called ceiling priorities of protected objects. These
avoid problems of priority inversion as described in [4].

 Safe concurrency

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Certified Safe with SPARK

11

Courtesy of

The GNAT Pro Company
John Barnes

103

For some applications, especially those that are safety-critical or security-
critical, it is essential that the program be correct, and that correctness be
established rigorously through some formal procedure. For the most severe
safety-critical applications the consequence of an error can be loss of life or
damage to the environment. Similarly, for the most severe security-critical
applications the consequence of an error may be equally catastrophic such as
loss of national security, commercial reputation or just plain theft.

Applications are graded into different levels according to the risk. For
avionics applications the DO-178B standard [1] defines the following
level E none: no problem; e.g. entertainment system fails? – could be a benefit!
level D minor: some inconvenience; e.g. automatic lavatory system fails.
level C major: some injuries; e.g. bumpy landing, cuts and bruises.
level B hazardous: some dead; e.g. nasty landing with fire.
level A catastrophic: aircraft crashes, all dead; e.g. control system fails.
As an aside, note that although a failure of the entertainment system in general
is level E, if the failure is such that the pilot is unable to switch it off (perhaps in
order to announce something unpleasant) then that failure is at level D.

For the most demanding applications, which require certification by an
appropriate authority, it is not enough for a program to be correct. The program
also has to be shown to be correct and that is much more difficult.

This chapter gives a very brief introduction to SPARK. This is a language
based on a subset of Ada which was specifically designed for the writing of high
integrity systems. Although technically just a subset of Ada with additional
information provided through Ada comments, it is helpful to consider SPARK as
a language in its own right which, for convenience, uses a standard Ada
compiler, but which is amenable to a more formal treatment than the full Ada
language. Analysis of a SPARK program is carried out by a suite of tools of
which the most important are the Examiner, Simplifier, and Proof Checker.

We start by considering the important concept of correctness and contracts.

Contracts

What do we mean by correct software? Perhaps a general definition is: software
that does what the user had in mind. And "had in mind" might literally mean just
that for a simple one-off program written to do an ad-hoc calculation; for a large
avionics application, it might mean the text of some written contract between
the ultimate client and the software developer.

This idea of a software contract is not new. If we look at the programming
libraries developed in the early 1960s, particularly in mathematical areas and

104

perhaps written in Algol 60 (a language favored for the publication of such
material in respected journals such as the Communications of the ACM and the
Computer Journal), we find that the manuals tell us what parameters are
required, what constraints apply on their range and so on. In essence there is a
contract between the writer of the subroutine and the user. The user promises to
hand over suitable parameters and the subroutine promises to produce the
correct answer.

The decomposition of a program into various component parts is very
familiar and the essence of the programming process is to define what these
parts do and therefore what the interfaces are between them. This enables the
parts to be developed independently of each other. If we write each part
correctly (so that it satisfies its side of the contract implied by its interface) and
if we have defined the interfaces correctly, then we are assured that when we put
the parts together to create the complete system, it will work correctly.

Bitter experience shows that life is not quite like that. Two things go wrong:
on the one hand the interface definitions are not usually complete (there are
holes in the contracts) and on the other hand, the individual components are not
correct or are used incorrectly (the contracts are violated). And of course the
contracts might not say what we meant to say anyway.

Correctness by construction

SPARK encourages the development of programs in an orderly manner with the
aim that the program should be correct by virtue of the techniques used in its
construction. This "correctness by construction" approach is in marked contrast
to other approaches that aim to generate as much code as quickly as possible in
order to have something to demonstrate.

There is strong evidence from a number of years of use of SPARK in
application areas such as avionics, banking, and railway signaling that indeed,
not only is the program more likely to be correct, but the overall cost of
development is actually less in total after all the testing and integration phases
are taken into account.

We will now look in a little more detail at the two problem areas introduced
above, first giving complete interface definitions, and secondly ensuring that the
code correctly implements the interface.

Ideally, the definition of the interfaces between the software components
should hide all irrelevant detail but expose all relevant detail. Alternatively we
might say that an interface definition should be both complete and correct.

As a simple example of an interface definition consider the interface to a
subprogram. As just mentioned, the interface should describe the full contract

Safe and Secure Software: An invitation to Ada 2005

105

between the user and the implementer. The details of how the subprogram is
implemented should not concern us. In order that these two concerns be clearly
distinguished it is helpful to use a programming language in which they are
lexically distinct. Some languages present subprograms (functions or methods)
as one lump, with the interface physically bound to the implementation. This is
a nuisance: not only does it make checking the interface less straightforward
since the compiler wants the whole code, but it also encourages the developer to
hack the code at the same time as writing the interface and this confuses the
logic of the development process.

Ada has a structure separating interface (the specification) from the
implementation (the body). This applies both to individual subprograms and to
groups of entities encapsulated into packages and this is a key reason why Ada
forms such a good base for SPARK.

SPARK requires additional information to be provided and this is done through
the mechanism of annotations which conveniently take the form of Ada
comments. A key purpose of these annotations is to increase the amount of
information about the interface without providing unnecessary information
about the implementation. In fact SPARK allows the information to be added at
various levels of detail as appropriate to the needs of the application.

Consider the information given by the following Ada specification
procedure Add(X: in Integer);

Frankly, it tells us very little. It just says that there is a procedure called Add and
that it takes a single parameter of type Integer whose formal name is X. This is
enough to enable the compiler to generate code to call the procedure. But it says
nothing about what the procedure does. It might do anything at all. It certainly
doesn't have to add anything nor does it have to use the value of X. It could for
example subtract two unrelated global variables and print the result to some file.
But now consider what happens when we add the lowest level of annotation.
The specification might become

procedure Add(X: in Integer);
--# global in out Total;

This states that the only global variable that the procedure can access is that
called Total. Moreover the mode information tells us that the initial value of
Total must be used (in) and that a new value will be produced (out). The SPARK
rules also say more about the parameter X. Although in Ada a parameter need
not be used at all, nevertheless an in parameter must be used in SPARK.

So now we know rather a lot. We know that a call of Add will produce a new
value of Total and that it will use the initial value of Total and the value of X. We
also know that Add cannot affect anything else. It certainly cannot print
anything or have any other unspecified side effect.

 Certified safe with SPARK

106

Of course, the information regarding the interface is not complete since
nowhere does it require that addition be performed in order to obtain the new
value of Total. In order to do this we can add optional annotations which
concern proof and obtain

procedure Add(X: in Integer);
--# global in out Total;
--# post Total = Total~ + X;

The annotation commencing post is called a postcondition and explicitly says
that the final value of Total is the result of adding its initial value (distinguished
by ~) to that of X. So now the specification is complete.

It is also possible to provide preconditions. Thus we might require X to be
positive and we could express this by

--# pre X > 0;

An important aspect of the annotations is that they are all checked statically by
the SPARK Examiner and other tools and not when the program executes.

It is especially important to note that the pre- and postconditions are checked
before the program executes. If they were only checked when the program
executes then it would be a bit like bolting the door after the horse has bolted
(which reveals a nasty pun caused by overloading in English!). We don't really
want to be told that the conditions are violated as the program runs. For
example, we might have a precondition for landing an aircraft

procedure Touchdown(...);
--# pre Undercarriage_Down;

It is pretty unhelpful to be told that the undercarriage is not down as the plane
lands; we really want to be assured that the program has been analysed to show
that the situation will not arise.

This thought leads into the other problem with programming – ensuring that
the implementation correctly implements the interface contract. This is often
called debugging. Generally there are four ways in which bugs are found
(1) By the compiler. These are usually easy to fix because the compiler tells

us exactly what is wrong.
(2) At runtime by a language check. This applies in languages which carry

out checks that, for example, ensure that we do not write outside an
array. Typically we obtain an error message saying what structure was
violated and whereabouts in the program this happened.

(3) By testing. This means running various examples and poring over the
(un)expected results and wondering where it all went wrong.

Safe and Secure Software: An invitation to Ada 2005

107

(4) By the program crashing. This often destroys much of the evidence as
well so can be very tedious.

Type 1 should really be extended to mean "before the program is executed".
Thus it includes program walkthroughs and similar review techniques and it
includes the use of analysis tools such as those provided for SPARK.

Clearly these four ways represent a progression of difficulty. Errors are easier
to locate and correct if they are detected early. Good programming tools are
those which move bugs from one category to a lower numbered category. Thus
good programming languages are those which provide facilities enabling one to
protect oneself against errors that are hard to find. Ada is a particularly good
programming language because of its strong typing and runtime checks. For
example, the correct use of enumeration types makes hard bugs of type 3 into
easy bugs of type 1 as we saw in the chapter on Safe Typing.

A major goal of SPARK is to strengthen interface definitions (the contracts)
and so to move all errors to a low category and ideally to type 1 so that they are
all found before the program executes. Thus the global annotations do this
because they prevent us writing a program that accidentally changes the wrong
global variables. Similarly, detecting the violation of pre- and postconditions
results in a type 1 error. However, in order to check that such violation cannot
happen requires mathematical proof; this is not always straightforward but the
SPARK tools automate much of the proof process.

The kernel language

Ada is a very comprehensive language and the use of some features makes total
program analysis difficult. Accordingly, the subset of Ada supported by SPARK
omits certain features. These mostly concern dynamic behavior. For example,
there are no access types, no dynamic dispatching, generally no exceptions, all
storage is static and hence all arrays must have static bounds (but subprogram
parameters can be dynamic) and there is no recursion.

Tasking of course is very dynamic and although SPARK does not support full
Ada tasking it does support the Ravenscar profile mentioned in the chapter on
Safe Concurrency.

Another restriction that helps analysis is that every entity has to have a name.
And each name should uniquely identify one entity. Hence all types and
subtypes have to be named and overloading is generally prohibited. But the
traditional block structure is supported so that local names are not restricted.
Moreover, tagged types are permitted, although class wide types are not.

The idea of state is crucial to analysis and there is a strong distinction
between procedures whose purpose is to change state and functions whose

 Certified safe with SPARK

108

purpose is simply to observe state. This echoes the difference between
statements and expressions mentioned in the chapter on Safe Syntax. Functions
in SPARK are not permitted to have any side effects at all.

The resulting kernel has proved to be sufficiently expressive for the needs of
critical applications which would not want to use features such as dynamic
storage.

Tool support

There are three main SPARK tools, the Examiner, the Simplifier and the Proof
Checker.

The Examiner is vital. It has two basic functions
• It checks conformance of the code to the rules of the kernel language.
• It checks consistency between the code and the embedded annotations

by flow analysis.
The Examiner performs these checks largely by analyzing the interfaces
between components and ensuring that the details on either side do indeed
conform to the specifications of the interfaces. The interfaces are of course the
specifications of packages and subprograms and the annotations say more about
these interfaces and thereby improve the quality of the contract between the
implementation of the component and its users.

Incidentally, the Examiner is itself written in SPARK and has been applied to
itself. There is therefore considerable confidence in the correctness of the
Examiner.

The core annotations ensure that a program cannot have certain errors related
to the flow of information. Thus the Examiner detects the use of uninitialized
variables and the overwriting of values before they are used. This means that
care should be taken not to give junk initial values to variables "just in case" as
mentioned in the chapter on Safe Startup because that would hinder the
detection of flow errors.

However, the core annotations do not address the issue of dynamic behavior.
In order to do this a number of proof annotations can be inserted such as the pre-
and postconditions we saw earlier which enable dynamic behavior to be
analysed prior to execution. The general idea is that these annotations enable the
Examiner to generate conjectures (potential theorems) which then have to be
proved in order to verify that the program is correct with respect to the
annotations. These proof annotations address
• pre- and postconditions of subprograms,
• assertions such as loop invariants and type assertions,

Safe and Secure Software: An invitation to Ada 2005

109

• declarations of proof functions and proof types.
The generated conjectures are known as verification conditions. These can then
be verified by human reasoning, which is usually tedious and unreliable, or by
using other tools such as the Simplifier and the Proof Checker.

Even without proof annotations, the Examiner can generate conjectures
corresponding to the runtime checks of Ada such as range checks. As we saw in
the chapter on Safe Typing, these are checks automatically inserted to ensure
that a variable is not assigned a value outside the range permitted by its
declaration or that no attempt is made to read or write outside the bounds of an
array. The proof of these conjectures shows that the checks would not be
violated and therefore that the program is free of runtime errors that would raise
exceptions.

Note that the use of proof is not necessary. SPARK and its tools can be used at
various levels. For some applications it might be appropriate just to apply the
core annotations because these alone enable flow analysis to be performed. But
for other applications it might be cost-effective to use the proof annotations as
well. Indeed, different levels of analysis can be applied to different parts of a
complete program.

There are a number of advantages in using a distinct tool such as the
Examiner rather than simply a front-end processor which then passes its output
to a compiler. One general advantage is that it encourages the early use of a V &
V (Verification and Validation) approach. Thus it is possible to write pieces of
SPARK complete with annotations and to have them processed by the Examiner
even before they can be compiled. For example, a package specification can be
examined even though its private part might not yet be written; such an
incomplete package specification cannot of course be compiled.

There is a temptation to take an existing piece of Ada code and then to add
the annotations (often referred to as "Sparking the Ada"). This is to be
discouraged because it typically leads to extensive annotations indicative of an
unnecessarily complex structure. Although in principle it might then be possible
to rearrange the code to reduce the complexity, it is often the case that such
good intentions are overridden by the desire to preserve as much as possible of
the existing code.

The proper approach is to treat the annotations as part of the design process
and to use them to assist in arriving at a design which minimizes complexity
before the effort of detailed coding takes one down an irreversible path.

 Certified safe with SPARK

110

Examples

As a simple example here is a version of the stack with full core annotations
(but not proof annotations)

package Stacks is

 type Stack is private;

 function Is_Empty(S: Stack) return Boolean;
 function Is_Full(S: Stack) return Boolean;

 procedure Clear(S: out Stack);
 --# derives S from ;

 procedure Push(S: in out Stack; X: in Float);
 --# derives S from S, X;

 procedure Pop(S: in out Stack; X: out Float);
 --# derives S, X from S;

private
 Max: constant := 100;
 type Top_Range is range 0 .. Max;
 subtype Index_Range is Top_Range range 1 .. Max;
 type Vector is array Index_Range of Float;
 type Stack is
 record
 A: Vector;
 Top: Top_Range;
 end record;
end Stacks;

We have added functions Is Full and Is Empty which just read the state of the
stack. They have no annotations at all.

Derives annotations have been added to the various procedure specifications;
these are not mandatory but can improve flow analysis. Their purpose is to say
which outputs depend upon which inputs – in this simple example they can in
fact be deduced from the parameter modes. However, redundancy is one key to
reliability and if they are inconsistent with the modes then that will be detected
by the Examiner and perhaps thereby reveal an error in the specification.

The declarations in the private part have been changed to give names to all
the subtypes involved.

At this level there are no changes to the package body at all – no annotations
are required. This emphasizes that SPARK is largely about improving the quality
of the description of the interfaces.

Safe and Secure Software: An invitation to Ada 2005

111

A difference from the earlier examples is that we have not given an initial
value of 0 for Top but require that Clear be called first. When the Examiner
looks at the client code it will perform flow analysis to ensure that Push and
Pop are not called until Clear has been called; this analysis will be performed
without executing the program. If the Examiner cannot deduce this then it will
report that the program has a potential flow error. On the other hand if it can
actually deduce that Push or Pop are called before Clear then it will report that
the program is definitely in error.

In this brief overview it is not feasible to give serious examples of the proof
process but the following trivial example will illustrate the ideas. Consider

procedure Exchange(X, Y: in out Float);
--# derives X from Y &
--# Y from X;
--# post X = Y~ and Y = X~;

which shows the specification of a procedure whose purpose is to interchange
the values of the two parameters. The body might be

procedure Exchange(X, Y: in out Float) is
 T: Float;
begin
 T := X; X := Y; Y := T;
end Exchange;

Analysis by the Examiner generates a verification condition which has to be
shown to the true. In this particular example this is trivial and is done
automatically by the Simplifier. In more elaborate situations the Simplifier will
not be able to complete a proof in which case the Proof Checker is then used.
This is an interactive program which, under human guidance, will hopefully be
able to find a valid proof.

Certification

As earlier chapters have shown, Ada is an excellent language for writing reliable
software. Ada allows programmers to catch errors early in the development
process. Even more errors can be detected by using SPARK without having to
rely on testing – a difficult and error-prone process in itself, yet an indispensable
part of the software process.

For the highest level of safety-critical and security-critical applications it is
not enough for a program to be correct. It also has to be shown to be correct.
This is usually called certification and is performed according to the methods of
a relevant certification agency. Examples of such agencies in the US are the
FAA for safety-critical applications and the NSA for security-critical

 Certified safe with SPARK

112

applications. SPARK is of great value in developing programs to be certified as
safe or secure as appropriate.

It might be thought that using SPARK adds to development costs. However, a
recent study concerning a security system for the NSA [5] showed that using
SPARK proved cheaper than conventional development methods. This again is
perhaps surprising because SPARK clearly requires effort for the writing of
annotations. But again that effort is well spent and reduces time needed for
correcting errors. In the particular application concerned it is claimed that no
errors were ever introduced anyway because of the careful way in which the
program was constructed.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

Safe and Secure Software
Ada 2005An Invitation to

Conclusion

Courtesy of

The GNAT Pro Company
John Barnes

113

It is hoped that this booklet will have proved interesting. It has covered a
number of aspects of writing reliable software and hopefully has shown that Ada
is a good language and source of inspiration to use for programs that matter. We
conclude with some background notes on the development of languages.

The balance between hardware and software is interesting. Hardware has
evolved in an amazing way in the last half century. The hardware of today bears
no resemblance whatever to the hardware of 1960. By contrast, software has
progressed but little. The languages of today are in many ways little different to
those of 1960. I suspect that the ultimate problem is that we know little about
software although we probably think we know rather a lot. Moreover, society
has made huge investments in badly written software and finds it hard to move
forward at all. But hardware changes so rapidly that it inevitably gets discarded.
And of course it is very easy for anyone to learn to write a bit of software but
massive know-how is required to build any hardware.

Mainstream languages have two main origins, Algol 60 and CPL. These are
the ancestors of the languages mentioned most in this booklet. Another group of
languages, Fortran, COBOL and PL/I, live on but seem to be somewhat isolated.

Algol 60 was perhaps the most important step forward ever made. (There was
a lesser known precursor called Algol 58 from which the US military language
Jovial was derived but that is a minor detail.) Algol gave the feeling that writing
software was more than just coding.

Algol made two big steps. It recognized that assignment was not equality by
using := for assignment. It also introduced English words for control purposes
and thereby eliminated most of the gotos, jumps and labels that made early
Fortran and autocode programs so hard to understand. This second point is
worth looking at in some detail.

Consider first the following two statements in Algol 60
if X > 0 then
 Action(...);
Otherstuff(...);

The effect is that if X is indeed greater than zero then the subroutine Action is
called. Whether Action is called or not we then always go on to call Otherstuff.
The interesting thing is that the conditional only governs the first statement
following then. If we need to govern several statements such as call subroutines
This and That then we have to combine the two statements into a single
compound statement thus

if X > 0 then
begin
 This(...);
 That(...);

114

end;
Otherstuff(...);

There are two dangers here. One is simply that we might forget to insert begin
and end. It would still compile of course but That would always get called
whatever the value of X. But a bigger hazard is the danger of stray semicolons.
Algol 60 was perhaps the first language to use semicolons to terminate or
separate statements. Now consider what happens if a programmer inadvertently
adds a semicolon immediately after then. We get

if X > 0 then ;
begin
 This(...);
 That(...);
end;
Otherstuff(...);

Unfortunately, in Algol 60 the semicolon is deemed to be separating a null
statement from the compound statement (a null statement does nothing – it is
invisible too!) And so the conditional does nothing and the subroutines This and
That are always called. There were other related problems in Algol 60
concerning the syntax of loops.

The designers of Algol 68 recognized this problem and introduced a
bracketed form thus

if X > 0 then
 This(...);
 That(...);
fi;
Otherstuff(...);

Other similar structures were used for loops with do being matched by od and
case being matched by esac. This structure completely solves the problem. It is
now crystal clear that the conditional governs the two statements. Moreover,
adding a spurious semicolon after then is a syntax error and so is instantly
detected by the compiler. Of course many thought that the reversed words fi, od
and esac indicated that the language was bizarre and not to be taken seriously.

Whatever the reason, the designers of Pascal ignored this sensible approach
and continued to use the flawed structure of Algol 60. Eventually however they
did realize their error when it came to Modula 2 but this was long after Ada.

Ada was probably the first successful language to use the bracketed structure
but it does sensibly avoid the peculiar backward words. Thus in Ada we write

if X > 0 then
 This(...);
 That(...);

Safe and Secure Software: An invitation to Ada 2005

115

115

end if;
Otherstuff(...);

Many other languages have taken this safe route including even the macro
language in the elegant Microsoft Word for DOS and Visual Basic which is the
corresponding macro language for Word for Windows.

The other important background language was CPL. It was devised in about
1962 as the language to be used by two powerful new computers at Cambridge
and London universities.

CPL (like Algol 60) used := for assignment and = for equality. Here is a small
fragment of CPL

§ let t, s, n = 1, 0, 1
 let x be real
 Read[x]
 t, s, n := tx/n, s + t, n + 1
 repeat until t << 1
 Write[s] §|

An interesting feature of CPL is that it used = rather than := when setting initial
values on the grounds that no change was involved. CPL had many novel
features such as parallel assignments and list processing. However, CPL was
never implemented but remained an academic design.

CPL used essentially the same structure as Algol 60 for grouping statements.
Thus we would have written

if X > 0 then do
 § This(...)
 That(...) §|
Otherstuff(...)

Note that the items grouped together are surrounded by the strange brackets §
and §| (actually the closing bracket was the section sign with the vertical bar
through it but this word processor does not allow me to do that so I have put
them side by side).

Although CPL was never implemented, the simple language BCPL (Basic
CPL) was a simple successor devised at Cambridge. The major difference was
that whereas CPL was a strongly typed language, BCPL really had no types at
all and arrays were just treated as arithmetic on addresses. BCPL is the origin of
the buffer overflow problem which plagues the world today.

From BCPL came B and then C, C++ and so on. BCPL used := for
assignment but somewhere along the way someone missed the point and C
ended up with = for assignment. Having hijacked = for assignment C uses a

 Conclusion

116

double equals (==) to mean equality and this gives rise to a number of problems
as we saw in the chapter on Safe Syntax.

C inherited the same compound statement style from CPL but replaced the
strange brackets by the braces { and }and thus in C we write

if (x > 0)
{
 this(...);
 that(...);
};
otherstuff(...);

There is little of the original CPL left in C. In fact the only thing really left is the
brackets.

And finally, we conclude by noting that the use of the equals sign for
assignment is an example of the use of puns so hated by the late Christopher
Strachey. Strachey was one of the designers of CPL. At a NATO lecture many
years ago he said "The way in which people are taught to program is
abominable. They are over and over again taught to make puns; to do shifts
when they mean multiplying; to confuse bit patterns and numbers and generally
to say one thing when they mean something quite different. I think we will not
make it possible to have a subject of software engineering until we can have
some proper professional standards about how to write programs; and this has
to be done by teaching people right at the beginning how to write programs
properly. I'm sure that one of the first things to do about this is to say what you
mean, and not to say something quite different.".

That about sums it up. We need to learn to say what we mean. Ada enables us
to say what we mean clearly and that ultimately is its strength.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	00_safe_secure_ada_2005_introduction.pdf
	front_foreward.pdf
	Pages from SafeSecureAda2005-final-2008-03-05.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-2.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-3.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-4.pdf
	back.pdf

	01_safe_secure_ada_2005_safe_syntax_b.pdf
	02_safe_secure_ada_2005_safe_typing.pdf
	front_2.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-7.pdf
	back.pdf

	03_safe_secure_ada_2005_safe_pointers.pdf
	front_3.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-8.pdf
	back.pdf

	04_safe_secure_ada_2005_safe_architecture.pdf
	front_4.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-9.pdf
	back.pdf

	05_safe_secure_ada_2005_safe_object_oriented_programming.pdf
	front_5.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	06_safe_secure_ada_2005_safe_object_construction.pdf
	front_6.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	07_safe_secure_ada_2005_safe_memory_management.pdf
	front_7.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	08_safe_secure_ada_2005_safe_startup.pdf
	front_8.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	09_safe_secure_ada_2005_safe_communication1.pdf
	front_9.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	10_safe_secure_ada_2005_safe_concurrency.pdf
	front_10.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	11_safe_secure_ada_2005_certified_safe_with_spark.pdf
	front_11.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

	12_safe_secure_ada_2005__conclusion.pdf
	front_conclusion.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-5.pdf
	back.pdf

