
Safe and Secure Software
Ada 2005An Invitation to

Foreward / Contents / Introduction / Bibliography

Courtesy of

The GNAT Pro Company
John Barnes



iii

Foreword

The aim of this booklet is to show how the study of Ada in general and Ada 
2005 in particular, is helpful to everyone designing safe and secure software 
regardless of the programming language in which the software is eventually 
written. After all, successful implementers of safe and secure software write in 
the spirit of Ada in any language! 
Thank you John for showing this throughout your papers, rationales, books, and 
this booklet.
AdaCore dedicates this booklet  to all the designers and implementers of safe 
and secure software.
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Introduction

The aim of this booklet is to show how Ada 2005 addresses the needs of 
designers and implementers of safe and secure software. The discussion will 
also show that those aspects of Ada that  make it  ideal for safety-critical and 
security-critical application areas will also simplify the development of robust 
and reliable software in many other areas.

The world is becoming more and more concerned about  both safety and 
security. Moreover, software now pervades all aspects of the workings of 
society. Accordingly, it  is important that software which is concerned with 
systems for which safety or security are a major concern should be safe and 
secure.

There has been a long tradition of concern for safety going back to the 
development  of railroad signaling and more recently with aviation. Vital 
software systems such as those that control aircraft  navigation and landing have 
to meet well established certification and validation criteria.

More recently there has been growing concern with security in systems such 
as banking and communications generally. This has been heightened with 
concern for the activities of terrorists.

Safety and security are intertwined through communication. An interesting 
characterization of the difference is
▪ safety – the software must not harm the world,
▪ security – the world must not harm the software.

So a safety-critical system is one in which the program must  be correct, 
otherwise it  might  wrongly change some external device such as an aircraft flap 
or a railroad signal, with serious real-world consequences.

And a security-critical system is one in which it must not be possible for 
some incorrect or malicious input from the outside to violate the integrity of the 
system, for example by corrupting a password checking mechanism and stealing 
social security information.

The key to guarding against both problems is that  the software must  be 
correct in the aspects affecting the system's integrity. And by correct  we mean 
that it meets its specification. Of course if the specification is incomplete or 
itself incorrect  then the system will be vulnerable. Capturing requirements 
correctly is a hard problem and is the focus of much attention from the lean 
software development community.

One of the trends of the second half of the twentieth century was a universal 
concern with freedom. But there are two aspects of freedom. The ability of the 
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individual to do whatever they want conflicts with the right to be protected from 
the actions of others. Maybe A would like the freedom to smoke in a pub 
whereas B wants freedom from smoke in a pub. Concern with health in this 
example is changing the balance between these freedoms. Maybe the twenty-
first century will see further shifts from "freedom to" to "freedom from".

In terms of software, the languages Ada and C have very different  attitudes to 
freedom. Ada introduces restrictions and checks, with the goal of providing 
freedom from errors. On the other hand C gives the programmer more freedom, 
making it easier to make errors. 

One of the historical guidelines in C was "trust  the programmer". This would 
be fine were it  not for the fact  that  programmers, like all humans, are frail and 
fallible beings. Experience shows that whatever techniques are used it  is hard to 
write "correct" software. It is good advice therefore to use tools that can help by 
finding bugs and preventing bugs. Ada was specifically designed to help in this 
respect. There have been three versions of Ada – Ada 83, Ada 95 and now Ada 
2005.

The purpose of this booklet  is to illustrate the ways in which Ada 2005 can 
help in the construction of reliable software, by illustrating some aspects of its 
features. It  is hoped that  it  will be of interest  to programmers and managers at 
all levels.

It  must be stressed that the discussion is not  complete. Each chapter selects a 
particular topic under the banner of Safe X where Safe is just  a brief token to 
designate both safety and security. For the most critical software, use of the 
related SPARK language appears to be very beneficial, and this is outlined in 
Chapter 11.

A topic with which Ada has much synergy is lean software development  – 
there is not  enough space in this booklet  to expand on this concept but  the reader 
is encouraged to explore its good ideas elsewhere.

As the twenty-first century progresses we will see software becoming even 
more pervasive. It  would be nice to think that  software in automobiles for 
example was developed with the same care as that in airplanes. But that  is not 
so. My wife recently had an experience where her car displayed two warning 
icons. One said "stop at  once", the other said "drive immediately to your dealer". 
Another anecdotal motor story is that of a driver attempting to select  channel 5 
on the radio, only to see the car change into 5th gear! Luckily he did not  try 
Replay.

For a fuller description of Ada 2005, SPARK, and lean software development 
and papers on related topics please consult the bibliography.
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Syntax is often considered to be a rather boring mechanical detail. The argument 
being that  it is what you say that  matters but not  so much how it is said. That of 
course is not  true. Being clear and unambiguous are important aids to any 
communication in a civilized world. 

Similarly, a computer program is a communication between the writer and the 
reader, whether the reader be that awkward thing: the compiler, another team 
member, a reviewer or other human soul. Indeed, most communication 
regarding a program is between two people. Clear and unambiguous syntax is a 
great  help in aiding communication and, as we shall see, avoids a number of 
common errors. 

An important  aspect of good syntax design is that it is a worthwhile goal to 
try to ensure that  typical simple typing errors cause the program to become 
illegal and thus fail to compile, rather than having an unintended meaning. Of 
course it is hard to prevent the accidental typing of X rather than Y or + rather 
than * but  many structural risks can be prevented. Note incidentally that  it  is best 
to avoid short  identifiers for just  this reason. If we have a financial program 
about rates and times then using identifiers R and T  is risky since we could 
easily type the wrong identifier by mistake (the letters are next to each other on 
the keyboard). But  if the identifiers are Rate and Time  then inadvertently typing 
Tate or Rime will be caught  by the compiler. This applies to any language of 
course.

Equality and assignment

It  is obvious that  assignment and equality are different things. If we do an 
assignment then we change the state of some variable. On the other hand, 
equality is simply an operation to test  some state. Changing state and testing 
state are very different things and understanding the distinction is important. 

Many programming languages have confused these fundamentally different 
logical operations. 

In the earliest days of Fortran one wrote

X = X + 1

But this is really rather peculiar. In mathematics x never equals x + 1. What  the 
Fortran statement means of course is "replace the current value of X by the old 
value plus one". But why misuse the equals sign in this way when society has 
been using the equals sign to mean equals for hundreds of years? (The equals 
sign dates from around 1550 when it  was introduced by the English 
mathematician Robert Recorde.) The designers of Algol 60 recognized the 
problem and used the combination of a colon followed by an equals sign to 
mean assignment, thus
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X := X + 1;

and this has the helpful consequence that  the equals sign can unambiguously be 
used to mean equality, as in

if X = 0 then ...

The C language (like Fortran) adopted = for assignment and as a consequence C 
uses a double equals (==) to mean equality. This can cause much confusion.

Here is a fragment of a C program controlling the crossing gates on a railroad 

if (the_signal == clear)

{

   open_gates( ... );

   start_train( ... );

}

The same program in Ada might be

if The_Signal = Clear then

   Open_Gates( ... );

   Start_Train( ... );

end if;

Now consider what happens if a programmer gets confused and accidentally 
forgets one of the equals signs in C thus

if (the_signal = clear)

{

   open_gates( ... );

   start_train( ... );

}

This still compiles but  instead of just testing the_signal  it actually assigns the 
value clear to the_signal. Moreover C unifies expressions (which have values) 
with assignments (which change state). So the assignment also acts as an 
expression and the result  of the assignment is then used in the test. If the 
encoding is such that clear is not zero then the result  will be true and so the 
gates are always opened, the_signal  set to clear and the train started on its 
perilous journey. Conversely, if clear is encoded as zero, the test  fails, the gates 
remain closed, and the train is blocked. In either case, things go badly wrong.

The pitfalls associated with the use of "=" for assignment and "==" for 
equality, and allowing assignments as expressions, are well known in the C 
community and have given rise to coding guidelines and analysis tools such as 
lint. However it  is preferable for such pitfalls to be avoided in the first place, 
through appropriate language design and that is how Ada has approached this 
issue

Safe and Secure Software: An invitation to Ada 2005
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If the Ada programmer were to accidentally use an assignment in the test

if The_Signal := Clear then  -- illegal

then the program will simply fail to compile and all will be well.

Statement groups

It  is often necessary to group a sequence of statements together – for example 
following a test using a keyword such as "if". There are two typical ways of 
doing this 

! by bracketing the group of statements so that they act as one (as in C),

! by closing the sequence with something matching the "if" (as in Ada).

These are also illustrated by the railroad example. The statements to open the 
gates and to start the train both need to be obeyed if the condition is true.

In C we had

if (the_signal == clear)

{

   open_gates( ... );

   start_train( ... );

}

and now suppose we inadvertently add a semicolon at  the end of the first  line 
(easily done). The program becomes

if (the_signal == clear) ;

{

   open_gates( ... );

   start_train( ... );

}

We now find that the condition is governing the null statement  which is 
implicitly present between the test  and the newly inserted semicolon. We cannot 
see it because a null statement is just nothing. So no matter what the state of the 
signal, the gates are always opened and the train set going.

In Ada the corresponding error would result in

if The_Signal = Clear then ;   -- illegal

   Open_Gates( ... );

   Start_Train( ... );

end if;

  Safe syntax
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This is syntactically incorrect and so the error is safely caught by the compiler 
and the train wreck cannot occur.

Named notation

Another feature of Ada which is of a syntactic nature and can detect  many 
unfortunate errors is the use of named associations in various situations. Dates 
provide a good illustration, because the order of the components varies 
according to local culture. Thus 12 January 2008 is written in Europe as 
12/01/08 but in the US it  is usually written as 01/12/08 (but not on the latest 
customs forms) whereas the ISO standard gives the year first, so would be 
08/01/12.

In C we might declare a structure for manipulating dates as follows:

struct date {

   int day, month, year;

   } ;

which corresponds to the following type declaration in Ada

type Date is

   record

      Day, Month, Year: Integer; 

   end record;

In C we might write

struct date today = {1, 12, 8};

But without  looking at  the type declaration we do not  know whether this means 
1 December 2008, 12 January 2008 or even 8 December 2001.

In Ada we have the option of writing

Today: Date := (Day => 1, Month => 12, Year => 08);

which uses named associations. Now it will be crystal clear if we ever write the 
values in the wrong order. (Note incidentally that Ada permits leading zeroes.).

We can also write the declaration as

Today: Date := (Month => 12, Day => 1, Year => 08);

which has the correct  meaning and reveals the advantage that  we do not  need to 
remember the order in which the fields are declared.

Named associations can be used in other contexts in Ada as well. We might 
make similar errors with a function that  has several parameters of the same type. 

Safe and Secure Software: An invitation to Ada 2005
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Suppose we have a function to compute the obesity index of a person. The two 
parameters are the height and the weight  which could be given as floating point 
values in pounds and inches (or kilograms and centimeters if you are metric). So 
we might have in C:

float index(float height, float weight) {

   ...

   return ... ;

}

or in Ada

function Index(Height, Weight: Float) return Float is

   ...

   return ... ;

end;

Now in the case of the author, the appropriate call of the index function in C 
might be

my_index = index(68.0, 168.0);

But if by mistake the call were reversed

my_index = index(168.0, 68.0);

then we would have a very thin and very tall giant! (It's a curious coincidence 
that both values end in 68.0 as well.)

Such an unhealthy disaster can be avoided in Ada by using named parameter 
calls thus

My_Index := Index(Height => 68.0, Weight => 168.0);

Again we can give the parameters in whatever order we wish and no error will 
occur if we forget the order in the declaration of the function.

Named notation is a very valuable feature of Ada. Its use is optional but it  is 
well worth using freely since not  only does it  help to prevent errors but it  also 
makes the program easier to understand.

  Safe syntax
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Safe typing is not about  preventing heavy-handed use of the keyboard, although 
it can detect errors made by typos!

Safe typing is about designing the type structure of the language in order to 
prevent many common semantic errors. It is often known as strong typing.

Early languages such as Fortran and Algol treated all data as numeric types. 
Of course, at  the end of the day, everything is indeed held in the computer as a 
numeric of some form, usually as an integer or floating point  value and usually 
encoded using a binary representation. Later languages, starting with Pascal, 
began to recognize that there was merit  in taking a more abstract view of the 
objects being manipulated. Even if they were ultimately integers, there was 
much benefit to be gained by treating colors as colors and not as integers by 
using enumeration types (just called scalar types in Pascal).

Ada take this idea much further as we shall see, but  other languages still treat 
scalar types as just raw numeric types, and miss the critical idea of abstraction, 
which is to distinguish semantic intent from machine representation. The Ada 
approach provides more opportunities for detecting programming errors.

Using distinct types

Suppose we are monitoring some engineering production and checking for 
faulty items. We might count  the number of good ones and bad ones. We want to 
stop production if the number of bad ones reaches some limit  and perhaps also 
stop when the number of good ones reaches some other limit. In C or C++ we 
might have variables

int badcount, goodcount;
int b_limit, g_limit;

and then perhaps
badcount = badcount + 1;
...
if (badcount == b_limit) { ... };

and similarly for the good items. Since everything is really an integer, there is 
nothing to prevent us writing by mistake

if (goodcount == b_limit) { ... }

where we really should have written g_limit. Maybe it was a cut  and paste error 
or a simple typo (g is next to b on a qwerty keyboard). Anyway, since they are 
integers the compiler will be happy even if we are not.

We could do the same in any language. But  Ada gives us the opportunity to 
be more precise about what we are doing. We can write
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type Goods is new Integer;
type Bads is new Integer;

These declarations introduce new types, which have all the properties of the 
predefined type Integer (such as operations + and –) and indeed are 
implemented in the same way, but are nevertheless distinct. We can now write

Good_Count, G_Limit: Goods;
Bad_Count, B_Limit: Bads;

and now we have quite distinct  groups of entities for our manipulation; any 
accidental mixing will be detected by the compiler and prevent  the incorrect 
program from running. So we can happily write

Bad_Count := Bad_Count + 1;

if Bad_Count = B_Limit then

but are prevented from writing
if Good_Count = B_Limit then   -- illegal

since this is a type mismatch.
If we did indeed want to mix the types, perhaps to compare the bad items and 

good items then we can do a type conversion (known as a cast in other 
languages) to make the types compatible. Thus we can write

if Good_Count = Goods(B_Limit) then

Another example might be when computing the percentage of bad objects, 
where we can convert both counts to the parent type Integer thus

100 * Integer(Bad_Count) / (Integer(Bad_Count)+Integer(Good_Count))

We can use the same technique to avoid accidental mixing of floating types. 
Thus when dealing with weights and heights in the chapter on Safe Syntax, 
rather then

My_Height, My_Weight: Float;

it would better to write
type Inches is new Float;
type Pounds is new Float;

My_Height: Inches := 68.0;
My_Weight: Pounds := 168.0;

and then confusion between the two would be detected by the compiler.

Safe and Secure Software: An invitation to Ada 2005
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Enumerations and integers

In the chapter on Safe Syntax we discussed an example of a railroad crossing 
which included a test

if (the_signal == clear) { ... };

if The_Signal = Clear then ... end if;

in C and Ada respectively. In C the variable the_signal  and associated constants 
such as clear might be declared thus

enum signal {
   danger,
   caution,
   clear
};

enum signal the_signal;

This convenient notation in fact is simply a shorthand for defining constants 
danger, caution and clear of type int. And the variable the_signal is also of type 
int.

As a consequence, nothing can prevent  us from assigning a nonsensical value 
such as 4 to the_signal. In particular, such a nonsensical value might  arise from 
the use of an uninitialized variable. Moreover, suppose other parts of the 
program are concerned with chemistry and use states anion and cation; nothing 
would prevent  confusion between cation and caution. We might also be dealing 
with girls' names such as betty and clare or weapons such as dagger and spear. 
Nothing prevents confusion between dagger and danger or clare and clear. 

In Ada we write
type Signal is (Danger, Caution, Clear);

The_Signal: Signal := Danger;

and no confusion can ever arise since an enumeration type in Ada truly is a 
different type and not a shorthand for an integer type. If we did also have

type Ions is (Anion, Cation);
type Names is (Anne, Betty, Clare, ... );
type Weapons is (Arrow, Bow, Dagger, Spear);

then the compiler would prevent the compilation of a program that  mixed these 
things up. Moreover the compiler would prevent us from assigning to Clear or 
Danger since these are literals and this would be as nonsensical as trying to 
change the value of an integer literal such as 5 by writing

5 := 2 + 2;

  Safe typing
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At the machine level the various enumeration types are indeed encoded as 
integers and we can access the encodings if we really need to, by using the 
attribute Pos thus

Danger_Code: Integer := Signal'Pos(Danger);

We can also specify our own encodings, as we shall see in the chapter on Safe 
Communication.

Incidentally, a very important built-in type in Ada is the type Boolean, which 
formally has the declaration

type Boolean is (False, True);

The result  of a test  such as The_Signal = Clear is of the type Boolean, and there 
are operations such as and, or, not which operate on Boolean  values. It  is never 
possible in Ada to treat  an integer value as a Boolean or vice versa. In C it  will 
be recalled, tests yield integer values and zero is treated as false, and nonzero as 
true. Again we see the danger in

if (the_signal == clear) 
{
 ... 
};

Omitting one equals turns the test  into an assignment and because C permits an 
assignment to act  as an expression the syntax is acceptable. The error is further 
compounded since the integer result is treated as a Boolean for the test. So 
altogether C has several pitfalls illustrated by the one example
▪ using = for assignment,
▪ allowing assignments as expressions,
▪ treating integers as Booleans in conditional expressions.
Most  of these flaws have been carried over into C++. None of these issues are 
present in Ada.

Constraints and subtypes

It  is often the case that  we know that the value of a certain variable is always 
going to be within some meaningful range. If so we should say so and thereby 
make explicit  in the program some assumption about  the external world. Thus 
My_Weight could never be negative and would hopefully never exceed 300 
pounds. So we can declare

My_Weight: Float range 0.0 .. 300.0;

Safe and Secure Software: An invitation to Ada 2005
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or if we had been methodical programmers and had previously declared a 
floating type Pounds then

My_Weight: Pounds range 0.0 .. 300.0;

If by mistake the program generates a value outside this range and then attempts 
to assign it to My_Weight thus

My_Weight := Compute_Weight( ... );

then the exception Constraint_Error will be raised (or thrown) at  run time. We 
might  handle (or catch) this exception in some other part  of the program and 
take remedial action. If we do not, the program will stop and the runtime system 
will produce an error message indicating where the violation occurred. This all 
happens automatically – appropriate checks are inserted into the compiled code.

This idea of subranges was first introduced in Pascal and improved in Ada. It 
is not available in most  other languages and we would have to program our own 
checks all over the place but more likely we wouldn't  bother, and any error 
resulting from violating these bounds would be that much harder to detect.

If we knew that  every weight to be dealt  with by the program was in a 
restricted range, then rather than putting a constraint on every variable 
declaration we can impose it on the type Pounds in the first place.

type Pounds is new Float range 0.0 .. 300.0;

On the other hand if some weights in the program are unrestricted and it is only 
the weight of people that are known to lie in a restricted range then we can write

type Pounds is new Float;
subtype People_Pounds is Pounds range 0.0 .. 300.0;

My_Weight: People_Pounds;

We can also apply constraints and declare subtypes of integer types and 
enumeration types. Thus when counting good items we would assume that the 
number was never negative and perhaps that  it  would never exceed 1000. So we 
might have

type Goods is new Integer range 0 .. 1000;

If we just  wanted to ensure that  it  was never negative but  did not  wish to impose 
an upper limit then we could write

type Goods is new Integer range 0 .. Integer'Last;

where Integer'Last gives the upper value of the type Integer. The restriction to 
positive or nonnegative values is so common that the Ada language provides the 
following built-in subtypes:

  Safe typing

 



14

subtype Natural is Integer range 0 .. Integer'Last;
subtype Positive is Integer range 1 .. Integer'Last;

The type Goods could then be declared as
type Goods is new Natural;

and this would just impose the lower limit of zero as required.
As an example of a constraint with an enumeration type we might have

type Day is (Monday, Tuesday, Wednesday, Thursday, Friday, 
      Saturday, Sunday);
subtype Weekday is Day range Monday .. Friday;

and then we would be prevented from assigning Sunday to a variable of the 
subtype Weekday.

Inserting constraints as in the above examples may seem to be tiresome but 
makes the program clearer. Moreover, it enables the compiler and runtime 
system to verify that the assumptions being expressed by the constraints are 
indeed correct.

Arrays and constraints

An array is an indexable set of things. As a simple example, suppose we are 
playing with a pair of dice and wish to record how many throws of each value 
(from 2 to 12) have been obtained. Since there are 11 possible values, in C we 
might write 

int counters[11];

int throw;

and this will in fact declare 11 variables referred to as counters[0] to 
counters[10] and a single integer variable throw.

If we wish to record the result of another throw then we might write:
throw = ... ;

counters[throw–2] = counters[throw–2] + 1;

Note the need to decrement  the throw value by 2, since C arrays are always 
zero-indexed (that is, have a lower bound of zero). Now suppose the counting 
mechanism goes wrong (some joker produces a die with 7 spots perhaps or 
maybe we are generating the throws using a random number generator and we 
have not  programmed it correctly) and a throw of 13 is generated. What 
happens? The C program does not detect the error but simply computes where 

Safe and Secure Software: An invitation to Ada 2005
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counters[11] would be and adds one to that location. Most likely this will be the 
location of the variable throw itself since it is declared after the array and it  will 
become 14! The program just goes hopelessly wrong.

This is an example of the infamous buffer overflow problem. It  is at  the heart 
of many serious and hard-to-detect programming problems. It  is ultimately the 
loophole which permits viruses to attack systems such as Windows. This is 
discussed further in Chapter 7 on Safe Memory Management.

Now consider the same program in Ada, we can write
Counters: array (2 .. 12) of Integer;

Throw: Integer;

and then
Throw := ... ;

Counters(Throw) := Counters(Throw) + 1;

And now if Throw has a rogue value such as 13 then since Ada has runtime 
checks to ensure that we cannot read or write to a part  of an array that  does not 
exist, the exception Constraint_Error is raised and the program is prevented 
from running wild.

Note that Ada gives control over the lower bound of the array as well as the 
upper bound. Array indices in Ada do not  all start at zero. Lower bounds in real 
programs are more often one than zero. Specifying the lower bound as 2 in the 
above example means that  the variable throw can be used directly in the index, 
without  the complication of deciding on and subtracting the appropriate offset as 
in the C version.
The problem with the dice program was not so much that the upper bound of the 
array was exceeded (that was the symptom) but  rather that the value in Throw 
was out of bounds. We can catch the mistake earlier by declaring a constraint on 
Throw thus

Throw: Integer range 2 .. 12;

and now Constraint_Error is raised when we try to assign 13 to Throw. As a 
consequence the compiler is able to deduce that Throw always has a value 
appropriate to the range of the array, and no checks will actually be necessary 
for accessing the array using Throw as an index. Indeed, placing a constraint on 
variables used for indexing typically reduces the number of runtime checks 
overall. Incidentally, we can reduce the double appearance of the range 2 .. 12 
by writing

Throw: Integer range 2 .. 12;
Counters: array (Throw'Range) of Integer;
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or even more clearly:
subtype Dice_Range is Integer range 2 .. 12;
Throw: Dice_Range;
Counters: array (Dice_Range) of Integer;

The advantage of only writing the range once is that  if we need to change the 
program (perhaps adding a third die so that  the range becomes 3 .. 18) then this 
only has to be done in one place.

Range checks in Ada are of enormous practical benefit during testing and can 
be turned off for a production program. Ada compilers are not  unique in 
applying runtime checks in programs. The Whetstone Algol 60 compiler dating 
from 1962 did it. Ada (like Java) specifies the checks in the language definition 
itself.

Perhaps it  should also be mentioned that  we can give names to array types as 
well. If we had several sets of counter values then it would be better to write

type Counter_Array is array (Dice_Range) of Integer;
Counters: Counter_Array;
Old_Counters: Counter_Array;

and then if we wanted to copy all the elements of the array Counters into the 
corresponding elements of the array Old_Counters then we simply write

Old_Counters := Counters;

Giving names to array types is not possible in many languages. The advantage 
of naming types is that it  introduces explicit abstractions, as when counting the 
good and bad items. By telling the compiler more about what we are doing, we 
provide it with more opportunities to check that our program makes sense.

Real errors

The title of this section is an example of those nasty puns so hated by the 
software pioneer Christopher Strachey as mentioned in the Conclusion. This is 
about accuracy in arithmetic and in particular with real as opposed to integer 
types.

In floating point arithmetic (using types such as real in Pascal, float in C and 
Float in Ada) the computation is done with the underlying floating point 
hardware. Floating point numbers have a relative accuracy. A 32-bit  word might 
allocate 23 bits for the mantissa, one bit for the sign and 8 bits for the exponent. 
This gives an accuracy of 23 binary digits or about 7 decimal digits. 

So a large value such as 123456.7 is accurate to one decimal place, whereas a 
very small value such as 0.01234567 is accurate to eight decimal places, but in 
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all cases the number of significant digits is always 7. So the accuracy is relative 
to the magnitude of the number.

Relative accuracy works well most of the time but not  always. Consider the 
representation of an angle giving the bearing of a ship or rocket. Perhaps we 
would like to hold the accuracy to a second of arc. Remember that  there are 60 
seconds in a minute, 60 minutes in a degree and 360 degrees in a whole circle. 

If we hold the angle as a floating point number
float bearing;

then the accuracy at  360 degrees will be about  8 seconds which is not  good 
enough, whereas the accuracy at  1 degree will be about  1/45 second which is 
unnecessary. We could of course hold the value as an integral number of 
seconds by using an integer type

int bearingsecs;

This works but  it means we have to remember to do our own scaling for input 
and display purposes.

But  the real trouble with floating point is that  the accuracy of operations such 
as addition and subtraction is affected by rounding errors. If we subtract two 
nearly equal values then we get cancellation errors. And of course certain 
numbers will not be held exactly. If we have a stepping motor which works in 
1/10 degree steps then because 0.1 cannot be held exactly in binary the result of 
adding 10 steps will not be exactly one degree at  all. So even if the accuracy 
required is quite coarse so that  the notional accuracy is more than adequate the 
cumulative effect of tiny computational errors can be unbounded.

Scaling everything to use integers is acceptable for simple applications but 
when we have several types held as scaled integers and we have to operate on 
several together we often get  into problems and have to do our own scaling 
(perhaps even by using raw machine operations such as shifting). This is all 
prone to errors and difficult to maintain.

Ada is one of the few languages to provide fixed point arithmetic. This does 
the scaling automatically for us. Thus for the stepping motor we might declare

type Angle is delta 0.1 range –360.0 .. 360.0; 
for Angle'Small use 0.1;

and this will hold the values internally as scaled integers that represent multiples 
of 0.1 but  we can think about them as the abstract values they represent, that  is 
degrees and tenths of degrees. And all arithmetic operations will not suffer from 
rounding errors.

In summary, Ada has two forms of real arithmetic

  Safe typing
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▪ floating point, which provides relative accuracy,
▪ fixed point, which provides absolute accuracy.

Ada also supplies a specialized form of fixed point  for decimal arithmetic, 
which is the standard model for financial calculations. 

The topic of this section is rather specialized but it  does illustrate the breadth 
of facilities in Ada and the care taken to encourage safety in numerical 
calculations.
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Primitive man made a huge leap forward with the discovery of fire. Not only did 
this allow him to keep warm and cook and thereby expand into more 
challenging environments but  it  also enabled the creation of metal tools and thus 
the bootstrap to an industrial society. But  fire is dangerous when misused and 
can cause tremendous havoc; observe that society has special standing 
organizations just to deal with fires that are out of control.

Software similarly made a big leap forward in its capabilities when the notion 
of pointers or references was introduced. But playing with pointers is like 
playing with fire. Pointers can bring enormous benefits but  if misused can bring 
immediate disaster such as a blue screen, or allow a rampaging program to 
destroy data, or create the loophole through which a virus can invade.

High integrity software typically limits drastically the use of pointers. The 
access types of Ada have the semantics of pointers but  in addition carry 
numerous safeguards on their use, which makes them suitable for all but the 
most demanding safety-critical programs.

References, pointers and addresses

Pointers introduce several opportunities for programming errors such as
▪ Type safety violations  –  creating an object  of one type and then 

accessing it (through a pointer) as though it  were of some other type. 
Or, more generally, using a pointer to access an object in a manner that 
is inconsistent  with some of the object's semantic properties (for 
example, assigning to a constant or violating a range constraint).

▪ Dangling references – accessing an object through a pointer after the 
object  has been freed; either a local variable that has gone out of scope, 
or a dynamically allocated object  that has been explicitly freed through 
some other pointer.

▪ Storage leakage – allocating an object  that  later becomes inaccessible 
(and so is "garbage") but which is never freed.

Although the details are different, type safety violations and dangling references 
may similarly arise if the language allows pointers to subprograms.

Historically, languages have taken different  approaches to these problems. 
Early languages such as Fortran, COBOL and Algol 60 did not  have a notion of 
pointers at  the level of the user program. Programs in all languages use 
addresses for basic operations such as calling a subprogram, but  addresses in 
these languages cannot be directly manipulated by the user.

C (and C++) permit pointers to both heap-allocated and declared (stack-
allocated) objects, and also to functions. Although these languages offer some 
checks, it is basically the programmer's responsibility to use pointers correctly. 



20

For example, since C treats an array as a pointer to its initial element, and allows 
pointer arithmetic as the equivalent  of array indexing, all the necessary low-
level ingredients are provided that can get programmers into trouble.

Java and other "pure" object-oriented languages do not expose pointers to the 
application but rely on pointers and dynamic allocation as the basis of the 
language semantics. Type checking is preserved, dangling references are 
prevented (there is no explicit  "free"), but to avoid storage leakage the language 
requires that  the implementation provide automatic storage reclamation 
(garbage collection). This is a reasonable approach for certain kinds of 
programs. It  is still a questionable technology for real-time applications, 
especially ones with safety-critical or security-critical requirements.

The history of Ada with respect to pointers is interesting. The original version 
of the language, Ada 83, provided pointers only for dynamic allocation (thus no 
pointers to declared objects, no pointers to subprograms) and also supplied an 
explicit  free operation known as Unchecked_Deallocation. This preserved type 
safety, and avoided dangling references caused by pointers to out-of-scope local 
variables, but introduced the possibility of dangling references through incorrect 
uses of Unchecked_Deallocation.

The decision to include Unchecked_Deallocation was unavoidable, since the 
only alternative – requiring implementations to supply Garbage Collection – 
was not  an appropriate option given Ada's intended domain of real-time and 
high-integrity systems. However, the Ada philosophy is that if a feature defeats 
checks that are normally performed, then its use must be explicit. And indeed, if 
we are using Unchecked_Deallocation we need to "with" and then instantiate a 
generic procedure. (The concepts of a with clause and generic instantiation are 
explained in the next chapter.) This somewhat heavyweight syntax both prevents 
accidental usage and makes our intent  clear to whomever needs to read or 
maintain our code. 

Ada 95 extended the Ada 83 mechanism, allowing pointers to declared 
objects and also to subprograms. Ada 2005 has taken things a bit  further – for 
example, making it easier to pass (pointers to) subprograms as runtime 
parameters. How these were accomplished without sacrificing safety will be the 
subject of this chapter.

A final note before going into further detail. Perhaps because pointers and 
references have a hardware-level connotation, Ada uses the term access types. 
This enforces the view that values of an access type give access to other objects 
of some designated type (are like dynamic names for these objects) and should 
not be thought of as simply machine addresses. Indeed, at  the implementation 
level, the representation of an access value might  be different from a physical 
pointer.
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Access types and strong typing

We can declare a variable whose values give access to objects of type T by
Ref: access T;

If we do not give an initial value then a special value null is assumed. X can 
refer to a normal declared object of type T (which must be marked aliased) by

Obj: aliased T;
...
Ref := Obj'Access;

The analogous C version is:
        t* ref;
        t obj;
        ref = &obj;

T might be a record type such as
type Date is
   record
      Day: Integer range 1 .. 31;
      Month: Integer range 1 .. 12;
      Year: Integer;
end record;

so we might have
Birthday: aliased Date := (Day => 10, Month => 12, Year => 1815);
AD: access Date := Birthday'Access;

and then to retrieve the individual components of the date referred to indirectly 
by AD we can write for example

The_Day: Integer := AD.Day;

A variable such as AD can also refer to an object dynamically allocated on the 
heap (called a storage pool in Ada). We can write

AD := new Date'(Day => 27, Month => 11, Year => 1852);

(The two dates are those of the birth and death of Ada, Countess of Lovelace 
after whom the language is named.)

A common application of access types is to create linked lists – we might 
declare

  Safe pointers
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type Cell is
   record
      Next: access Cell;
      Value: Integer;
   end record;

and then we can create chains of objects of the type Cell linked together.
Sometimes it is convenient to give a name to an access type

type Date_Ptr is access all Date;

The "all" in the syntax indicates that this named type can refer to both objects on 
the heap and also to those declared locally on the stack that  are marked as 
aliased.

Having to mark objects as aliased is a useful safeguard. It alerts the 
programmer to the fact that the object  might  be referred to indirectly (good for 
walkthrough reviews) and it  also tells the compiler that  the object should not  be 
optimized into a register where it would be difficult to access indirectly.

But  the key point is that  an access type always identifies the type of the 
object  that its values refer to and strong typing is enforced on assignments, 
parameter passing, and all other uses. Moreover, an access value always has a 
legitimate value (which could be null). At  runtime, whenever we attempt  to 
access an object referred to by an object of the type Date_Ptr, there is a check to 
ensure that the value is not null – the exception Constraint_Error is raised if this 
check fails.

We can explicitly state that  an access value cannot be null by declaring it  as 
follows 

WD: not null access Date := Wedding_Day'Access;

and then of course it  must be given an initial value which is not null. The 
advantage of a so-called null exclusion is that  we are guaranteed that  an 
exception cannot occur when accessing the indirect object.

Finally, note that  an access value can denote a component of a composite 
structure, provided the component type is marked as aliased. For example

A: array (1 .. 10) of aliased Integer := (1,2,3,4,5,6,7,8,9,10);
P: access Integer := A(4)'Access;

But we cannot  perform any incremental operations on P such as P++ or P+1 to 
make it  refer to A(5) as can be done in C. This sort  of thing in C is prone to 
errors since nothing prevents us from pointing beyond either end of the array.
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Access types and accessibility

We have just seen that the strong typing of Ada ensures that  an access value can 
never refer to an object  of the wrong type. The other requirement our language 
must satisfy is to ensure that the object referred to cannot cease to exist  while 
access objects still refer to it. This is achieved through the notion of 
accessibility. Consider

package Data is
   type AI is access all Integer;
   Ref1: AI;
end Data;

with Data; use Data;

procedure P is
   K: aliased Integer;
   Ref2: AI;
begin
   Ref2 := K'Access;  -- illegal
   
   Ref1 := Ref2;
   ...
end P;

This is clearly a very artificial example but illustrates the key points in a small 
space. The package Data has an access type AI and an object of that  type called 
Ref1. The procedure P declares a local variable K and a local access variable 
Ref2  also of the type AI and attempts to assign an access to K to the variable 
Ref2. This is forbidden. It is not  so much that the reference to Ref2 is dangerous 
because both Ref2 and K will cease to exist  when we return from a call of the 
procedure P – the danger is that  we might  assign the value in Ref2 to the global 
variable Ref1, which would then contain a reference to K that would be usable 
after K had ceased to exist.

The basic rule is that  the lifetime of the accessed object  (such as K) must be at 
least as long as the lifetime of the specified access type (in this case AI). Here it 
is not and so the attempt to obtain a pointer to K is illegal. 

The rules are phrased in terms of accessibility levels (how deeply nested the 
declaration of something is) and are mostly static, that  is to say checked by the 
compiler; they incur no cost at run time. But the rules concerning parameters of 
subprograms that are of anonymous access types are dynamic (that  is, require 
runtime checks). This gives more programming flexibility than would otherwise 
be possible.

  Safe pointers

 



24

In this short introduction to Ada it is not  feasible to go into further details. 
Suffice it to say that the accessibility rules of Ada prevent  dangling references, 
which can be a source of many subtle and hard-to-diagnose errors in lax 
languages.

References to subprograms

Ada permits references to procedures and functions to be manipulated in a 
similar way to references to objects. Both strong typing and accessibility rules 
apply. For example we can write

A_Func: access function (X: Float) return Float;

and A_Func  is then an object that can only refer to functions that  take an 
argument of the type Float and return an argument of type Float (such as the 
predefined function Sqrt).

So we can write
A_Func := Sqrt'Access;   

and then
X: Float := A_Func(4.0);   -- indirect call

and this will call Sqrt with argument 4.0 and hopefully produce 2.0.
Ada thoroughly checks that the parameters and result always match properly 

and so we cannot call a function indirectly that has the wrong number or types 
of parameters. The parameter list  and result  type constitute what is technically 
called the profile of the function.

Thus consider the predefined function Arctan (the inverse tangent). It  takes 
two parameters

function Arctan(Y: Float; X: Float) return Float;

and returns the angle θ (in radians) such that tan θ = Y/X. If we attempt to write
A_Func := Arctan'Access;  -- illegal
Z := A_Func(A);    -- indirect call prevented

then the compiler rejects the code because the profile of Arctan does not match 
that of A_Func. This is just  as well because otherwise the function Arctan would 
read two items from the runtime stack whereas the indirect call via A_Func 
placed only one parameter on the stack. This would result  in the computation 
becoming meaningless.
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Corresponding checks in Ada occur also across compilation unit boundaries 
(compilation units are units that  can be compiled separately, as explained in the 
chapter on Safe Architecture). Equivalent mismatches are not prevented in C 
and this is a common cause of serious errors.

More complex situations arise because a subprogram can have another 
subprogram as a parameter. Thus we might have a function whose purpose is to 
solve an equation Fn(x) = 0 where the function Fn is itself passed as a 
parameter. Thus

function Solve(Trial: Float; Accuracy: Float; 
             Fn: access function (X: Float) return Float)
                                                                                              return Float;

The parameter Trial is the initial guess, the parameter Accuracy is the accuracy 
required and the third parameter Fn identifies the equation to be solved. 

As an example suppose we invest 1000 dollars today and 500 dollars in a 
year's time: what would the interest rate have to be for the final value two years 
from now to be exactly 2000 dollars? If the interest  rate is x% then the Net  Final 
Value (Nfv) will be given by

 Nfv(x) = 1000 × (1 + x/100)2 + 500 × (1 + x/100)
We can answer the question by declaring the following function, which returns 
0.0 when X is such that the net final value is precisely 2000.0.

function Nfv_2000 (X: Float) return Float is
   Factor: constant Float := 1.0 + X/100.0;
begin 
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

We can then write:
Answer: Float := 
        Solve (Trial => 5.0, Accuracy => 0.01, Fn => Nfv_2000'Access);

We are guessing that  the answer might  be around 5%, we want the answer with 
2 decimal figures of accuracy and of course Nfv'Access identifies the problem. 
The reader is invited to estimate the interest rate – the answer is at the end of 
this chapter. (Note that  terms such as Net Final Value and Net Present  Worth are 
standard terms used by financial professionals.)

The point of this discussion is to emphasize that  Ada checks the matching of 
the parameters of the function parameter as well. Indeed, the nesting of profiles 
can continue to any degree and Ada matches all levels thoroughly. Many 
languages give up after one level.
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Note that the parameter Fn was actually of an anonymous type. Access to 
subprogram types can be named or anonymous just like access to object  types. 
They can also have a null exclusion. Thus we should really have written

A_Func: not null access function (X: Float) return Float := Sqrt'Access;

The advantage of using a null exclusion is that we are guaranteed that  the value 
of A_Func is not null when the function is called indirectly.

If it  seems that  having to initialize it, perhaps arbitrarily, to Sqrt'Access is 
distasteful then we could always declare

function Default(X: Float) return Float is
begin
   Put("Value not set");  return 0.0;
end Default;
...
A_Func: not null access function (X: Float) return Float := Default'Access;

Similarly we should really add not null to the profile in Solve thus
function Solve(Trial: Float; Accuracy: Float; 
       Fn: not null access function (X: Float) return Float) return Float;

This ensures that that the actual function corresponding to Fn cannot be null.

Nested subprograms as parameters

We mentioned that accessibility rules also apply to access-to-subprogram 
values. Suppose we had declared Solve so that  the parameter Fn was of a named 
type and that it and Solve are in some package

package Algorithms is
   type A_Function is not null access function (X: Float) return Float;

   function Solve(Trial: Float; Accuracy: Float; Fn: A_Function) 
                                                                                              return Float;
   ...
end Algorithms;

Suppose we now decide to express the interest  example with the target value 
passed as a parameter. We might try

with Algorithms;  use Algorithms;
function Compute_Interest(Target: Float) return Float is

   function Nfv_T (X: Float) return Float is
      Factor: constant Float := 1.0 + X/100.0;
   begin 

Safe and Secure Software: An invitation to Ada 2005



27

      return 1000.0 * Factor**2 + 500.0 * Factor – Target;
   end Nfv_T;

begin
   return Solve(Trial => 5.0, Accuracy => 0.01, Fn => Nfv_T'Access);
                                                                                                      -- illegal
end Compute_Interest;

However, Nfv_T'Access is not allowed as the Fn parameter because it violates 
the accessibility rules. The trouble is that the function Nfv_T is at an inner level 
with respect to the type A_Function. (It  has to be in order to get  hold of the 
parameter Target.) If Nfv_T'Access had been allowed then we could have 
assigned this value to a global variable of the type A_Function so that  when 
Compute_Interest had returned we would have still had a reference to Nfv_T 
even after it had ceased to be accessible. For example

Dodgy_Fn: A_Function := Default'Access;  -- a global variable

function Compute_Interest(Target: Float) return Float is

   function Nfv_T(X: Float) return Float is
      ...
   end Nfv_T;

begin
   Dodgy_Fn := Nfv_T'Access; -- illegal
   ...
end Compute_Interest;

and now suppose that after a call of Compute_Interest we execute:
Answer := Dodgy_Fn(99.9); -- would have unpredictable results

The call of Dodgy_Fn would attempt  to call Nfv_T  but that  is no longer possible 
since it  is local to Compute_Interest and would attempt to access the parameter 
Target which no longer exists. The consequences would be unpredictable (a 
meaningless result, or perhaps an exception would be raised) if Ada did not 
prevent it. Note that  using an anonymous type for the parameter as in the 
previous section allows passing the nested function as a parameter, but the 
accessibility checks prevent  the assignment  to Dogdy_Fn. A runtime check 
would detect that Nfv_T  is more deeply nested than the target access type 
A_Function, and a Program_Error exception would be raised. So the solution is 
just to change the package Algorithms thus

package Algorithms is
   function Solve(Trial: Float; Accuracy: Float;
                         Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
end Algorithms;
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and the original function Compute_Interest is now exactly as before (except  that 
the comment -- illegal needs to be removed).

Those of a mischievous mind might  suggest that  the problem lies with 
nesting Nfv_T inside Compute_Interest. It  would indeed be possible to declare 
Nfv_T  at  the outermost level so that  no accessibility problem arises, but  then the 
value Target would have to be passed globally through some package – in the 
style of Fortran Common blocks. We cannot add it  as an additional parameter to 
Nfv_T  because the parameters of Nfv_T  must  match those of Fn. But  passing 
data globally in this way is in fact  bad practice. It violates principles of 
information hiding and abstraction and does not  work at  all in a multitasking 
program. Note that the practice of nesting a function within another, where the 
inner function uses non-local variables (such as Target) is often called a 
"downward closure".

Downward closures, that  is to say passing a pointer to a nested subprogram as 
a runtime parameter, is a mechanism that  is used in several parts of the Ada 
predefined library, for applications such as iterating over a data structure.

The nesting of subprograms is a natural requirement for these applications 
because of the need to pass non-local information. This is harder to do in flat 
languages such as C, C++ and Java. Although type extensions can be used in 
some languages to model subprogram nesting, this mechanism is less clear and 
can be a problem for program maintenance.

Finally, some applications need to combine (invoke) algorithms in a nested 
manner. Thus we might have other useful stuff in the package Algorithms 

package Algorthms is

   function Solve(Trial: Float; Accuracy: Float;
                        Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
   function Integrate (Lo, Hi: Float; Accuracy: Float;
                        Fn: not null access function (X: Float) return Float)
                                                                                              return Float;
   type Vector is array (Positive range <>) of Float;

   procedure Minimize(V: in out Vector; Accuracy: Float;
 Fn: not null access function (V: Vector) return Float);

end Algorithms;

The function Integrate is similar to Solve. It computes the definite integral of the 
function parameter, between the given limits. The procedure Minimize is a little 
different. It finds those values of the elements of the array V which make the 
value of the function parameter a minimum. We might  have a situation where a 
cost  function is to be minimized and is itself the result of doing an integration 
and that the values of V are used in the integration (this might seem rather 
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unlikely but  the author spent  the first few years of his programming life doing 
just this sort of thing in the chemical industry).

The structure could be
with Algorithms;  use Algorithms;
procedure Do_It is

   function Cost(V: Vector) return Float is

      function F(X: Float) return Float is
         Result: Float;
      begin
         ...  -- compute Result using V as well as X
         return Result;
      end F;

   begin
      return Integrate(0.0, 1.0, 0.01, F'Access);
   end Cost;

   A: Vector(1 .. 10);
begin

   ...  -- perhaps read in or set trial values for the vector A

   Minimize(A, 0.01, Cost'Access);

   ...   -- output final values of the vector A.
end Do_It;

This all works like a dream in Ada 2005 – just  as it  did in Algol 60. In other 
programming languages this is either difficult or requires the use of unsafe 
constructs with potentially dangling references.

Further examples of the use of access to subprogram types will be found in 
the chapter on Safe Communication. 

Finally, the interest rate that turns the investment of 1000 dollars and 500 
dollars into 2000 dollars in two years is about 18.6%. Nice rate if you can get it.
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When speaking of buildings, a good architecture is one whose design gives the 
required strength in a natural and unobtrusive manner and thereby provides a 
safe environment  for the people within. An elegant  example is the Pantheon in 
Rome whose spherical shape has enormous strength and provides an uncluttered 
space. Many ancient cathedrals are not so successful, and need buttresses tacked 
on the outside to prop up the walls. In 1624, Sir Henry Wooton summed the 
matter up in his book, The Elements of Architecture, by saying "Well building 
hath three conditions – commoditie, firmenes & delight". In modern terms, it 
should work, be strong and be beautiful as well.

A good architecture in a program should similarly provide unobtrusive safety 
for the detailed workings of the inner parts within a clean framework. It  should 
permit  interaction where appropriate and prevent  unrelated activities from 
accidentally interfering with each other. And a good language should enable the 
writing of programs with a good architecture.

There is perhaps an analogy with the architecture of office spaces. An 
arrangement where everyone has an individual office can inhibit  communication 
and the flow of ideas. On the other hand, an open plan office often causes 
problems because noise and other distractions interfere with productivity.

The structure of an Ada program is based primarily around the concept  of a 
package, which groups related entities together and provides a natural 
framework for hiding implementation details from its clients.

Package specifications and bodies

Early languages such as Fortran have a flat structure with everything essentially 
at  the same level. As a consequence all data (other than that local to a 
subroutine) is visible everywhere. This can be considered as rather like an open 
plan office. The same flat structure appears in C, although C does provide a 
degree of encapsulation by allowing programmer control over the external 
visibility of functions and file-scope variables.

Other languages such as Algol and Pascal have a simple block structure, 
rather like nested Russian dolls. This is a bit  better but  really is no more than 
having an open plan office subdivided into more such offices. There are still big 
problems of communication.

Consider the simple problem of a stack of numbers. The protocol we want  to 
have is that  an item can be added to the stack by calling a procedure Push and 
that the top item can be removed from the stack by calling a function Pop – and 
perhaps also a procedure Clear to set the stack to an empty state. We do not 
want any other means of manipulating the stack since we want this protocol to 
be independent of the way we implement it.
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Now consider the following implementation of a stack written in Pascal. The 
stack is represented by an array of reals and there are three operations, Push and 
Pop to add items and remove items respectively, and Clear to set it empty. We 
also declare a constant  max and give it  a suitable value such as 100. This avoids 
writing 100 in several places, which would be bad if we changed our minds later 
on about the required size of the stack.

const  max = 100;

var  top : 0 .. max;
 a : array[1..max] of real;

procedure Clear;
begin
 top := 0
end;

procedure Push(x : real);
begin
 top := top + 1;
 a[top] := x
end;

function Pop : real;
begin
 top := top – 1;
 Pop:= a[top + 1]
end

The main trouble with this is that max, top  and a have to be declared outside 
Push, Pop and Clear so that they can all be accessed. And from any part  of the 
program from which we can call Push, Pop and Clear we can also change a and 
top directly and so bypass the protocol and create an inconsistent stack.

This is a source of danger. If we want to monitor how many times the stack is 
changed then adding monitoring statements to count  the calls of Push, Pop  and 
Clear to do this is not adequate. Similarly, if we are reviewing a large program 
and are looking for all places where the stack is changed then we have to track 
all references to top and a as well as the calls of Push, Pop and Clear.

This problem applies to C as well as to Fortran and Pascal. These languages 
to some extent  overcome the problem by adding some form of separate 
compilation facility. Those entities which are to be visible to other separately 
compiled units can then be marked by special statements such as extern or by 
using a header file. However, by its very nature separate compilation is itself flat 
and unstructured. Furthermore, type checking in these languages is weaker 
across compilation units than within a single file.
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The technique in Ada is to use a package to encapsulate and hide the data 
shared by Push, Pop  and Clear so that  only those subprograms can access it. A 
package comes in two parts – its specification which describes its interface to 
other units and its body, which describes how it  is implemented. We can 
paraphrase this by saying that the specification says what it  does and the body 
says how it does it. The specification would simply be

package Stack is
   procedure Clear;
   procedure Push(X: Float);
   function Pop return Float;
end Stack;

This just  describes the interface to the outside world. So outside the package all 
that is available are the three subprograms. The specification gives just enough 
information for the external client  to write calls to the subprograms and for the 
compiler to compile the calls. The body could then be written as

package body Stack is

   Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   procedure Push(X: Float) is
   begin
      Top := Top + 1;
      A(Top) := X;
   end Push;

   function Pop return Float is
   begin
      Top := Top – 1;
      return A(Top + 1);
   end Pop;

end Stack;

The body gives the full details of the subprograms and also declares the hidden 
objects Max, Top and A. Note the initial value of zero for Top.

In order to make use of the entities declared in a package, the client code 
must mention the package by means of a with clause thus
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with Stack;
procedure Some_Client is
   F: Float;
begin
   Stack.Clear;
   Stack.Push(37.4);
   …
   F := Stack.Pop;
...
   Stack.Top := 5;  -- illegal!
end Some_Client;

So now we know that  the required protocol is enforced. The client  cannot 
accidentally or purposely interfere with the inner workings of the stack. Note in 
particular that the direct assignment  to Stack.Top is prevented since Top is not 
visible to the client (it is not mentioned in the specification of the stack).

Observe carefully that there are three entities to consider: the specification of 
the package, its body, and of course the client.

There are important  rules concerning their compilation. The client  cannot be 
compiled without the specification being available and the body also cannot be 
compiled without  the specification being available. But  there are no similar 
constraints relating to the client and the body. If we decide to change the details 
of the implementation and this does not require the specification to be changed 
then the client does not have to be recompiled.

Packages and subprograms at the top level (that  is, not nested inside other 
packages or subprograms) can always be and usually are compiled separately. 
They are often known as library units and said to be at the library level.

Note that  the package Stack is mentioned each time an entity in it  is used. 
This ensures that  the client code is very clear as to what  it is doing. Sometimes 
repeating the package name is tedious and so we can add a use clause thus

with Stack;  use Stack;
procedure Client is
begin
   Clear;
   Push(37.4);
   ...
end Client;

Of course if there were two packages Stack1 and Stack2, both declaring a 
procedure called Clear, and we try to "with" and "use" both of them then the 
code would be ambiguous and the compiler would reject it. In such a case the 
solution is to supply the desired package name explicitly, for example 
Stack2.Clear.
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In conclusion, the specification defines a contract between the client and the 
package. The body promises to implement the specification and the client 
promises to use the package as described by the specification. Finally the 
compiler ensures that  both sides stick to the contract. We will come back to 
these thoughts in the last chapter when we look into the ideas behind the SPARK 
toolset.

A vital point  about Ada is that the strong type matching is enforced across 
compilation unit boundaries. Exactly the same checking applies, whether the 
program is just  one compilation unit  or consists of several units distributed 
across various files.

Private types

Another feature of a package is that part  of the specification can be hidden from 
the client. This is done using a so-called private part. The above package Stack 
only implements a single stack. It  might  be more useful to declare a package 
that enabled us to declare many stacks – to do this we need to introduce the 
concept of a stack type.

We might write
package Stacks is     -- visible part
   type Stack is private;     -- private type
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Float);
   procedure Pop(S: in out Stack; X: out Float);

private       -- private part
   Max: constant := 100;
   type Vector is array (1 .. Max) of Float;
   type Stack is       -- full type
      record
         A: Vector;
         Top: Integer range 0 .. Max := 0;
      end record;
end Stacks;

The body would then be
package body Stacks is

   procedure Clear(S: out Stack) is
   begin
      S.Top := 0;
   end Clear;
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   procedure Push(S: in out Stack; X: in Float) is
   begin
      S.Top := S.Top + 1;
      S.A(Top) := X;
   end Push;

   -- procedure Pop similarly

end Stacks;

The user can now declare lots of stacks and act on them individually thus
with Stacks; use Stacks;
procedure Main is
   This_One: Stack;
   That_One: Stack;
begin
   Clear(This_One);  Clear(That_One);
   Push(This_One, 37.4);
   ...

The detailed information about the type Stack is given in the private part of the 
package and, although visible to the human reader, is not  directly accessible to 
the code written by the client. So the specification is logically split  into two 
parts, the visible part (everything up to the keyword private) and the private 
part. 

If the private part alone is changed then the text  of the client will not  need 
changing but the client code will need recompiling because the object code 
might change even though the source code does not.

Any necessary recompilation is ensured by the compilation system and can 
be performed automatically if desired. Note carefully that  this is required by the 
Ada language and is not simply a property of a particular implementation. It is 
never left  to the user to decide when recompilation is necessary and so there is 
no risk of attempting to link together a set of inconsistent  units – a big hazard in 
languages that do not specify precisely the interaction between compiling, 
binding and linking.

Finally, note the modes in, out and in out on the parameters. These refer to 
the flow of information and are explained in Chapter 6 on Safe Object 
Construction.

Generic contract model

Templates are an important feature of languages such as C++ (and now Java). 
These correspond to generics in Ada and in fact C++ based its templates partly 
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on Ada generics. Ada generics are type-safe because of the so-called contract 
model.

We can extend the stack example to enable us to declare stacks of any type 
and any size (we can do the latter other ways as well). Consider

generic
   Max: Integer;    -- formal generic parameters
   type Item is private;
package Generic_Stacks is
   type Stack is private;  
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Item);
   procedure Pop(S: in out Stack; X: out Item);

private       -- private part
   type Vector is array (1 .. Max) of Item;
   type Stack is 
      record
         A: Vector;
         Top: Integer range 0 .. Max := 0;
      end record;
end Generic_Stacks;

with an appropriate body obtained simply by replacing Float by Item. 
The generic package is just  a template and in order to be used in a program it 

has to be instantiated with appropriate actual parameters corresponding to the 
two generic formal parameters Max and Item. The result  of instantiating a 
generic package is the declaration of an actual package. For example if we want 
stacks of integers with maximum size 50, we write

package Integer_Stacks is
   new Generic_Stacks(Max => 50, Item => Integer);

This declares a package called Integer_Stacks which we can then use in the 
normal way. The essence of the contract  model is that  if we provide parameters 
that correctly match the generic specification then the package obtained from 
the instantiation will compile and execute correctly.

Other languages do not  have this desirable property. In C++, for instance, 
some mismatches are caught  by the linker rather than the compiler and others 
are even left until execution and throw an exception.

There are extensive forms of generic parameters in Ada. Writing: type Item is 
private; permits the actual type to be almost  any type at  all. Writing: type Item 
is (<>); permits the actual type to be any integer type (such as Integer or 
Long_Integer) or an enumeration type (such as Signal). Within the generic we 
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can then use all the properties common to all integer and enumeration types with 
the certainty that the actual type will indeed provide these properties.

The generic contract model is very important. It  enables the development of 
flexible but safe general-purpose libraries. An important goal is that  the Ada 
user should not  ever need to pore over the code of the generic body in order to 
puzzle out what went wrong. 

Child units

The overall architecture of an Ada system can have a hierarchical (tree-like) 
structure of units, which provides both flexible information hiding and ease of 
modification. Child units can be public or private. Given a package called 
Parent we can declare a public child thus

package Parent.Child is ...

and a private child thus
private package Parent.Slave ...

Both have bodies and can have private parts as usual. The key difference is that 
a public child essentially extends the specification of the parent (and is thus 
visible to clients) whereas a private child extends the private part  and body of 
the parent  (and thus is not visible to clients). The structure permits 
grandchildren etc to any depth.

There are various rules concerning visibility. Children do not need an explicit 
with clause for their parent  (visibility is automatic). However, the parent body 
can have a with clause for a child if it  needs to use the functionality defined in 
the child. But since the specification of the parent  must  be available before the 
children are compiled (since the children share the name of the parent), the 
parent specification cannot have a normal with clause for a child. More of this 
later.

Another rule is that  the visible part of a private child has visibility of the 
private part of its parent (just  as the body of the parent does). But for a public 
child only its private part  and its body (and not  its visible part) has such 
visibility of the parent. 

A special form of with clause (the private with clause) is permitted on a 
package specification; it  only allows the private part to have visibility of the unit 
concerned. This is useful, for example, where the private part of a public child 
needs information provided by a private child. Thus we might have an 
application package App and two children App.User_View and 
App.Secret_Details thus
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private package App.Secret_Details is
   type Inner is ...
   ...  -- various operations on Inner etc
end App.Secret_Details;

private with App.Secret_Details;
package App.User_View is

   type Outer is private;
   ... -- various operations on Outer visible to the user

 -- type Inner is not visible here
private
 -- type Inner is visible here

   type Outer is 
      record
         X: Secret_Details.Inner;
         ...
      end record;
   ...
end App.User_View;

A normal with clause for Secret_Details is not  permitted on User_View because 
this would allow the client  to see information in the package Secret_Details via 
the visible part of User_View. Ada carefully blocks all attempts to bypass the 
strict visibility control.

Unit testing

One of the problems that  confronts the testing of code is to ensure that  the 
testing does not  upset the software being tested. There is an echo here of 
Quantum Mechanics whereby when we make an observation of a particle such 
as an electron, the very observation itself disturbs the state of the particle.

One problem with good software design is that we strive to hide detailed 
information in order to produce good abstractions – by the use of private types 
for example. But then when we test  the system we often want to observe the 
detailed behavior of this hidden material. 

To take a trivial example we might want  to know the value of Top for a 
particular stack declared using the package Stacks (the one where Stack is a 
private type). We have not  provided a means of doing this. We could add a 
function Size to the package Stacks but this would disturb the package and 
require its recompilation and that  of all the client  code. And possibly we might 
introduce errors into the package we were testing or (worse) might make errors 
when we later removed the testing code.
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Child units provide a convenient way of overcoming this difficulty. We can 
write

package Stacks.Monitor is
   function Size(S: Stack) return Integer;
end Stacks.Monitor;

package body Stacks.Monitor is
   function Size(S: Stack) return Integer is
   begin
      return S.Top;
   end Size;
end Stacks.Monitor;

This works because the body of a child has visibility of the private part  of its 
parent. So we can now call the function Size at  will for test  purposes and when 
we are satisfied that the software is correct we can delete the child package and 
the parent package Stacks did not have to be disturbed at all.

Mutually dependent types

Many languages have the equivalent of private types especially in connection 
with object-oriented programming. Basically, the intrinsic operations (methods) 
belonging to a type are those declared in a package (or a class) along with the 
type. Thus the intrinsic operations of the type Stack are Clear, Push  and Pop. 
The same structure in C++ would be written as

class Stack {
...  /*  details of stack structure  */
public:
   void Clear();
   void Push(float);
   float Pop();
};

The C++ approach is convenient  in that it only has one level of naming Stack 
whereas in Ada we have both package name and type name, thus Stacks.Stack. 
However, in practice the Ada style is not a burden especially if we apply use 
clauses. (Moreover, Ada users have the option of using a different style by 
giving the type some neutral name such as Object or Data so that they can then 
write Stacks.Object or Stacks.Data.)

On the other hand if we have two types that  wish to share private 
information, it is very easy to write this in Ada. We can write

package Twins is
   type Dum is private;
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   type Dee is private;
   ...
private
   ...  -- shared private part
end Twins;

and the private part defines both Dum and Dee and so they have mutual access 
to anything in the private part.

This is not  so easy in other languages and involves constructs such as the 
much-discussed friend mechanism in C++. In Ada there is no possibility of 
getting it  wrong or of breaking privacy in unexpected ways and the mechanism 
is symmetric.

Other examples exhibit  mutual recursion. Suppose we wish to study patterns 
of points and lines where each point has three lines through it and each line has 
three points on it. (This is not an arbitrary example. Two of the most 
fundamental theorems of projective geometry, those of the geometers Pappus 
and Desargues concern such structures.) We use access types. A simple approach 
is a single package

package Points_and_Lines is
   type Point is private;
   type Line is private;
   ...
private
   type Point is 
      record
         L, M, N: access Line;
      end record;
   type Line is
      record
         P, Q, R: access Point;
      end record;
end Points_and_Lines;

If we decided that  each type deserved its own package then we could still define 
their mutually recursive structure using a limited with clause. (Two packages 
cannot have normal with clauses referring to each other because that creates a 
circularity that makes their initialization impossible.) We can write

limited with Lines;
package Points is
   type Point is private;
   ...
private
   type Point is
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      record
         L, N, N: access Lines.Line;
      end record;
end Points;

and similarly for the package Lines. A limited with clause gives a so-called 
incomplete view of the types in the package concerned, which means roughly 
that they can only be used to form access types. 
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OOP took programming by storm about twenty years ago. Its supreme merit is 
said to be its flexibility. But flexibility is somewhat like freedom discussed in 
the Introduction – the wrong kind of flexibility can be an opportunity that 
permits dangerous errors to intrude.

The key idea of OOP is that the objects dominate the programming and 
subprograms (methods) that  manipulate objects are properties of objects. The 
other, older, view sometimes called Function-Oriented (or structured) 
programming, is that programming is primarily about functional decomposition 
and that it is the subprograms that dominate program organization, and that 
objects are merely passive things being manipulated by them.

Both views have their place and fanatical devotion to just  a strict  object  view 
is often inappropriate.

Ada strikes an excellent balance and enables either approach to be taken 
according to the needs of the application. Indeed Ada has incorporated the idea 
of objects right from its inception in 1980 through the concept  of packages 
which encapsulate types and the operations upon them, and tasks that 
encapsulate independent activities.

Object-Orientation versus Function-Orientation

We will look at two examples which can be used to illustrate various points. 
They are chosen for their familiarity which avoids the need to explain particular 
application areas. The examples concern geometrical objects (of which there are 
lots of kinds) and people (of which there are only two kinds, male and female).

Consider the geometrical objects first. For simplicity we will consider just 
flat  objects in a plane. Every object has a position. In Ada we can declare a root 
object which has properties common to all objects thus

type Object is tagged 
   record
      X_Coord: Float;
      Y_Coord: Float;
   end record;

The word tagged distinguishes this type from a plain record type (such as Date 
in Chapter 3) and indicates that it  can be extended. Moreover, objects of this 
type carry a tag with them at  execution time and this tag identifies the type of 
the object. We are going to declare various specific object  types such as Circle, 
Triangle, Square and so on in a moment and these will all have distinct  values 
for the tag.

We can declare various properties of geometrical objects such as area and 
moment of inertia about the centre. Every object  has such properties but they 
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vary according to shape. These properties can be defined by functions and they 
are declared in the same package as the corresponding type. We can start with

package Geometry is
   type Object is abstract tagged
     record
         X_Coord, Y_Coord: Float;
      end record;

   function Area(Obj: Object) return Float is abstract;
   function Moment(Obj: Object) return Float is abstract;
end Geometry;

We have declared the type and the operations as abstract. We don't actually want 
any objects of type Object and making it  abstract  prevents us from inadvertently 
declaring any. We want real objects such as a Circle, which have properties such 
as Area. If we did want to discuss a plain point without  any areas then we 
should declare a specific type Point for this. The functions Area and Moment 
have been declared as abstract  also. This ensures that when we declare a 
genuine type such as Circle then we are forced to declare concrete functions 
Area and Moment with appropriate code.

We can now declare the type Circle. It is best to use a child package for this
package Geometry.Circles is
   type Circle is new Object with
      record
         Radius: Float;
      end record;

   function Area(C: Circle) return Float;
   function Moment(C: Circle) return Float;
end;

with Ada.Numerics;  use Ada.Numerics;  -- to give access to π
package body Geometry.Circles is
   function Area(C: Circle) return Float is
   begin
      return π * C.Radius**2;   -- uses Greek letter π
   end Area;

   function Moment(C: Circle) return Float is
   begin
      return 0.5 * C.Area * C.Radius**2;
   end Moment;
end Geometry.Circles;

Note that  the code defining the Area and Moment is in the package body. We 
recall from the chapter on Safe Architecture that  this means that the code can be 
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changed and recompiled as necessary without  forcing recompilation of the 
description of the type itself and consequently all those programs that use it.

We could then declare other types such as Square (which has an extra 
component  giving the length of the side), Triangle (three components giving the 
three sides) and so on without disturbing the existing abstract  type Object and 
the type Circle in any way.

The various types form a hierarchy rooted at  Object and this set of types (a 
class in Ada terminology) is denoted by Object'Class. Ada carefully 
distinguishes between a specific type such as Circle and a class of types such as 
Object'Class. This distinction avoids confusion that  can occur in other 
languages. If we subsequently define other types as extensions of the type Circle 
then we can then usefully talk about the class Circle'Class.

The function Moment declared above illustrates the use of the prefixed 
notation. We can write either of

C.Area   -- prefixed notation
Area(C)   -- functional notation

The prefixed notation emphasizes the object  model, and indicates that we 
consider the object C to be the predominant entity rather than the function Area.

Suppose now that we have declared various objects, perhaps
A_Circle: Circle := (1.0, 2.0, Radius => 4.5);
My_Square: Square := (0.0, 0.0, Side => 3.7);
The_Triangle: Triangle := (1.0, 0.5, A => 3.0, B => 4.0, C => 5.0);

By way of illustration, we have used named notation for components other than 
the x and y coordinates which are common to all the types.

We might  have a procedure to output the properties of a general object. We 
might write

procedure Print(Obj: Object'Class) is
begin
   Put("Area is ");  Put(Obj.Area);  -- dispatching call of Area
   ...      -- and so on
end Print;

and then
Print(A_Circle);
Print(My_Square);

The procedure Print can take any item in the class Object'Class. Within the 
procedure, the call to Area is dynamically bound and calls the function Area 
appropriate to the specific type of the parameter Obj. This always works safely 
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since the language rules are such that  every possible object  in the class 
Object'Class is of a specific type derived ultimately from Object and will have a 
function Area. Note that  the type Object itself was abstract and so no 
geometrical object of that type can be declared – accordingly it  does not  matter 
that the function Area for the type Object is abstract and has no code – it could 
never be called anyway.

In a similar way we might have types concerning persons. Consider
package People is
   type Person is abstract tagged
      record 
         Birthday: Date;
         Height: Inches;
         Weight: Pounds;
      end record;

   type Man is new Person with
      record
         Bearded: Boolean;  -- whether he has a beard
      end record;

   type Woman is new Person with
      record
         Births: Integer;  -- how many children she has borne
      end record;

   ... -- various operations
end People;

Since there is no possibility of any additional types of persons we could describe 
them by using a variant record, which is more in the line of function-oriented 
programming. Thus

type Gender is (Male, Female);

type Person (Sex: Gender) is 
   record
      Birthday: Date;
      Height: Inches;
      Weight: Pounds;
      case Sex is
         when Male =>
            Bearded: Boolean;
         when Female =>
            Births: Integer;
      end case;
   end record;
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and we might then declare various operations on this version of the type Person. 
Each operation would have to have a case statement to take account  of the two 
sexes.

This might be considered rather old fashioned and inelegant. However, it has 
its own considerable advantages.

If we need to add another operation  in the Object-Oriented formulation then 
the whole structure will need to be recompiled – each type will need to be 
revisited in order to implement the new operation. If we need to add another 
type (such as a Pentagon) then the existing structure can be left unchanged.

In the case of the Function-Oriented formulation, the situation is completely 
reversed (basically we simply interchange the words type and operation).

If we need to add another type  in the Function-Oriented formulation then the 
whole structure will need to be recompiled – each operation will need to be 
revisited to implement the new type (by adding another branch to its case 
statement). If we need to add another operation  then the existing structure can 
be left unchanged.

The Object-Oriented approach has often been lauded as so much safer than 
Function-Oriented programming because there are no case statements to 
maintain. This certainly is true but  sometimes the maintenance is harder if new 
operations are added because they have to be added individually for every type.

Ada offers both approaches and both approaches are safe in Ada.

Overriding indicators

One of the dangers of Object-Oriented programming occurs with overriding 
inherited operations. When we add a new type to a class we can add new 
versions of all the appropriate operations. If we do not  add a new operation then 
that of the parent is inherited.

The danger is that  we might  attempt  to add a new version but spell it 
incorrectly

function Aera(C: Circle) return Float;

or get a parameter or result wrong
function Area(C: Circle) return Integer;

In both cases the existing function Area is not overridden but a totally new 
operation added. And then when a class-wide operation dispatches to Area it 
will call the inherited version rather than the one that  failed to override it. Such 
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bugs can be very difficult to find – the program compiles quietly and seems to 
run but just produces curious answers. 

(Actually, Ada has already provided a safeguard here because we declared 
Area  for Object as abstract and this is a further defensive measure. But if we had 
a second generation or had not had the wisdom to make Area abstract then we 
would be in trouble.)

In order to guard against such mistakes we can write for example
overriding
function Area(C: Circle) return Float;

and then if we make an error we will not get  a new operation but  instead the 
program will fail to compile. On the other hand, if we did truly want  to add a 
new operation then we could assert that also by

not overriding
function Aera(C: Circle) return Float;

Such overriding indicators are always optional, largely for compatibility with 
earlier versions of Ada. 

Languages such as C++ and Java provide less assistance in this area and 
consequently subtle errors can remain undetected for some time. 

Dispatchless programming

In safety-critical programming, the dynamic selection of code is sometimes 
forbidden. Safety is enhanced if we can prove that the flow of control follows a 
strict  pattern with, for example, no dead code. Traditionally this means that  we 
have to use a more function-oriented approach, with visible if statements and 
case statements to select the appropriate flow path.

Although dynamic dispatching is at  the heart  of much of the power of Object-
Oriented programming, other object-oriented features (chiefly code reuse 
through inheritance) are valuable. Thus we might  value the ability to extend 
types and thereby share much coding but declare specific named operations 
where no dynamic behavior is required. We might  also wish to use the prefixed 
notation which has a number of advantages.

Ada has a facility known as pragma Restrictions which enables a programmer 
to ensure that specific features of Ada are not  used in a particular program. In 
this case we write

pragma Restrictions(No_Dispatch);
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and this ensures that  no use is made of the construction X'Class which in turn 
means that no dispatching calls are possible.

Note that this exactly matches the requirements of SPARK which we 
mentioned in the Introduction is often used for critical software. SPARK permits 
type extension but does not permit class-wide types and operations.

If we do specify the restriction No_Dispatch then the implementation is able 
to reduce the code overheads typically associated with OOP. There is of course 
no need to generate a dispatch table for each type. (A dispatch table is a look-up 
table that contains the addresses of the various specific operations for the type.) 
Moreover, there is also no need to store a tag in every record structure. 

There are other less obvious benefits as well. In full OOP some of the 
predefined operations such as equality are dispatching and so the code 
overheads associated with them are also avoided. The net  result is that  the use of 
the pragma minimizes the need for the justification of deactivated code (code 
that is present in the executable and that can be traced back to specific 
requirements, but which will never be executed) for level A certification.

Interfaces and multiple inheritance

Some have looked upon multiple inheritance as a Holy Grail – an objective 
against which languages should be judged. This is not  the place to digress on the 
history of various techniques that have been used. Rather we will summarize the 
key problems.

Suppose that  we were able to inherit  arbitrarily from two parent types. Recall 
that fabulous book Flatland written by Edwin Abbott  (the second edition was 
published in 1884). It  is a satire on class structure (in the sociological, not the 
programming sense) and concerns a world in which people are flat  geometrical 
objects. The working classes are triangles, the middle classes are other 
polygons. The aristocracy are circles. Curiously, all females are two-sided and 
thus simply a line segment.

So using the two classes Objects and Persons introduced above, we could 
conceive of representing the inhabitants of Flatland by a type derived from both 
such as

type Flatlander is new Geometry.Object and People.Person;

The question now arises as to what  are the properties inherited from the two 
parent types? We might expect a Flatlander to have components X_Coord and 
Y_Coord inherited from Object and also a Birthday inherited from Person, 
although Height and Weight might be dubious for a two-dimensional person. 
And certainly we would expect an operation such as Area  to be inherited 
because clearly a Flatlander has an area and indeed a moment of inertia.
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But we see potential problems in the general case. Suppose both parent  types 
have an operation with the same identifier. This would typically arise with 
operations of a rather general nature such as Print, Make, Copy and so on. 
Which one is inherited? Suppose both parents have components with the same 
identifier. Which one do we get? These problems particularly arise if both 
parents themselves have a common ancestor.

Some languages have provided multiple inheritance and devised somewhat 
lengthy rules to overcome these difficulties (C++ and Eiffel for example). 
Possibilities include using renaming, mentioning the parent  name for ambiguous 
entities, and giving precedence to the first parent type in the list. Sometimes the 
solutions have the flavor of unification for its own sake – one person's 
unification is often another person's confusion. The rules in C++ give plenty of 
opportunities for the programmer to make mistakes.

The difficulties are basically twofold: inheriting components and inheriting 
the implementation of operations from more than one parent. But there is 
generally no problem with inheriting the specification of operations. This 
solution was adopted by Java and has proved successful and is also the approach 
used by Ada.

So the Ada rule is that we can inherit from more than one type thus
type T is new A and B and C with 
   record
      ...  -- additional components
   end record;

but only the first type in the list (A) can have components and concrete 
operations. The other types must  be what  are known as interfaces which are 
essentially abstract  types without  components and all of whose operations are 
abstract or null procedures. (The first type could be an interface as well.)

We can reformulate the type Object as an interface as follows
package Geometry is
   type Object is interface;

   procedure Move(Obj: in out Object; 
       New_X, New_Y: in Float) is abstract;
   function X_Coord(Obj: Object) return Float is abstract;
   function Y_Coord(Obj: Object) return Float is abstract;
   function Area(Obj: Object) return Float is abstract;
   function Moment(Obj: Object) return Float is abstract;
end Geometry;

Observe that  the components have been deleted and replaced by further 
operations. The procedure Move enables an object  to be moved – that  is it sets 
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both the x and y coordinates and the functions X_Coord and Y_Coord return its 
current position. 

Note that the prefixed notation means that we can still access the coordinates 
by for example A_Circle.X_Coord and The_Triangle.Y_Coord just as when they 
were visible components.

So now when we declare a concrete type Circle we have to provide 
implementations of all these operations. Perhaps

package Geometry.Circles is
   type Circle is new Object with private;  -- partial view

   procedure Move(C: in out Circle; New_X, New_Y: in Float);
   function X_Coord(C: Circle) return Float;
   function Y_Coord(C: Circle) return Float;
   function Area(C: Circle) return Float;
   function Moment(C: Circle) return Float;

   function Radius(C: Circle) return Float;
   function Make_Circle(X, Y, R: Float) return Circle;

private
   type Circle is new Object with   -- full view
      record
         X_Coord, Y_Coord: Float;
         Radius: Float;
      end record;
end Geometry.Circles;

package body Geometry.Circles is
   procedure Move(C: in out Circle; New_X, New_Y: in Float) is
   begin
      C.X_Coord := New_X;
      C.Y_Coord := New_Y;
   end Move;

   function X_Coord(C: Circle) return Float is
   begin
      return C.X_Coord;
   end X_Coord;

   -- and similarly Y_Coord and Area and Moment as before
   -- also functions Radius and Make_Circle
end Geometry.Circles;

We have made the type Circle  private so that all the components are hidden. 
Nevertheless the partial view reveals that  it is derived from the type Object and 
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so must have all the properties of the type Object. Note how we also add 
functions to create a circle and to access the radius component.

So the essence of programming with interfaces is that  we have to implement 
the properties promised. It  is not  so much multiple inheritance of existing 
properties but multiple inheritance of contracts to be satisfied.

Returning now to Flatland, we can declare 
package Flatland is
   type Flatlander is abstract new Person and Object with private;

   procedure Move(F: in out Flatlander; New_X, New_Y: in Float);
   function X_Coord(F: Flatlander) return Float;
   function Y_Coord(F: Flatlander) return Float;

private
   type Flatlander is abstract new Person and Object with
      record
         X_Coord, Y_Coord: Float := 0.0;  -- at origin by default
         ... -- any new components we wish
      end record;
end;

and the type Flatlander will inherit the components Birthday etc of the type 
Person, any operations of the type Person (we didn't  show any above) and the 
abstract operations of the type Object. However, it  is convenient to declare the 
coordinates as components since we need to do that  eventually and we can then 
override the inherited abstract operations Move, X_Coord and Y_Coord with 
concrete ones. Note also that we have given the coordinates the default value of 
zero so that any flatlander is by default at the origin. 

The package body is 
package body Flatland is
   procedure Move(F: in out Flatlander; New_X, New_Y: Float) is
   begin
      F.X_Coord := New_X;
      F.Y_Coord := New_Y;
   end Move;

   function X_Coord(F: Flatlander) return Float is
   begin
      return F.X_Coord;
   end X_Coord;

   -- and similarly Y_Coord 
end Flatland;
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Making Flatlander abstract  means that we do not  have to implement all the 
operations such as Area just  yet. And finally we could declare a type Square 
suitable for Flatland (when originally written the book was published 
anonymously and the author designated as A Square) as follows

package Flatland.Squares is
   type Square is new Flatlander with 
      record
         Side: Float;
      end record;

   function Area(S: Square) return Float;
   function Moment(S: Square) return Float;
end Flatland.Squares;

package body Flatland.Squares is

   function Area(S: Square) is
   begin
      return S.Side**2;
   end Area;

   function Moment(S: Square) is
   begin
      return S.Area * S.Side**2 / 6.0;
   end Moment;

end Flatland.Squares.

and all the operations are thereby implemented. By way of illustration we have 
made the extra component Side  of the type Square directly visible but we could 
have used a private type. So we can now declare Dr Abbott as

A_Square: Square := (Flatlander with Side => 3.00);

and he will have all the properties of a square and a person. Note the extension 
aggregate which takes the default values for the private components and gives 
the additional visible component explicitly. 

There are other important properties of interfaces that can only be touched 
upon in this overview. An interface can have a null procedure as an operation. A 
null procedure behaves as if it has a null body – that is, it can be called but does 
nothing. If two ancestors have the same operation then a null procedure 
overrides an abstract operation with the same parameters and results. If two 
ancestors have the same abstract operation with equivalent parameters and 
results then these merge into a single operation to be implemented. If the 
parameters and results are different  then this results in overloading and both 
operations have to be implemented. In summary the rules are designed to 
minimize surprises and maximize the benefits of multiple inheritance.

  Safe object-oriented 
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This chapter covers a number of aspects of the control of objects. By objects 
here we mean both small objects in the sense of simple constants and variables 
of an elementary type such as Integer and big objects in the sense of Object-
Oriented Programming.

Ada provides good control and flexibility in this area. This control is in many 
cases optional but  the good programmer will use the features wherever possible 
and the good manager will insist upon them being used wherever possible.

Variables and constants

As we have seen we can declare a variable or a constant by writing
Top: Integer;    -- a variable
Max: constant Integer := 100;  -- a constant

respectively. Top  is a variable and we can assign new values to it  whereas Max is 
a constant and its value cannot be changed. Note that when we declare a 
constant  we have to give it  a value since we cannot  assign to it  afterwards. A 
variable can optionally be given an initial value as well.

The advantage of using a constant is that  it  cannot be changed accidentally. It 
is not  only a useful safeguard but it  helps any person later reading the program 
and informs them of its status. An important point is that the value of a constant 
does not  have to be static – that is computed at compile time. An example was in 
the program for interest rates where we declared a constant called Factor

function Nfv_2000 (X: Float) return Float is
   Factor: constant Float := 1.0 + X/100.0;
begin 
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv_2000;

Each call of the function Nfv_2000 has a different value for X and so a different 
value for Factor. But  Factor is constant  throughout  each individual call. 
Although this is a trivial example and it is clear that Factor is not  changed 
during execution of an individual call nevertheless we should get into the habit 
of writing constant whenever possible.

Parameters of subprograms are another example of variables and constants. 
Parameters may have three modes: in, in out, and out. If no mode is shown 

then it is in by default. All parameters of functions must be of mode in. 
A parameter of mode in is a constant  whose value is given by the actual 

parameter. Thus the parameter X of Nfv_2000 has mode in and so is a constant  – 
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this means that  we cannot  assign to it and so are assured that  its value will not 
change. The actual parameter can be any expression of the type concerned.

Parameters of modes in out and out are variables. The actual parameter must 
also be a variable. The difference concerns their initial value. A parameter of 
mode in out is a variable whose initial value is given by that  of the actual 
parameter whereas a parameter of mode out has no initial value (unless the type 
has a default value such as null in the case of an access type).

Examples of all three modes occur in the procedures Push and Pop in the 
chapter on Safe Architecture

procedure Push(S: in out Stack; X: in Float);
procedure Pop(S: in out Stack; X: out Float);

The rules regarding actual parameters ensure that  constancy is never violated. 
Thus we could not pass a constant such as Factor to Pop since the relevant 
parameter of Pop has mode out and this would enable Pop to change Factor.

The distinction between variables and constants also applies to access types 
and objects. Thus if we have 

type Int_Ptr is access all Integer;
K: aliased Integer;
KP: Int_Ptr := K'Access;
CKP: constant Int_Ptr := K'Access;

then the value of KP can be changed but  the value of CKP cannot. This means 
that CKP will always refer to K. However, although we cannot make CKP refer 
to any other object we can use CKP to change the value in K by

CKP.all := 47;   -- change value of K to 47

On the other hand we might have
type Const_Int_Ptr is access constant Integer;
J: aliased Integer;
JP: Const_Int_Ptr := J'Access;
CJP: constant Const_Int_Ptr := J'Access;

where the access type itself has constant. This means that we cannot change the 
value of the object  J referred to indirectly whether we use JP or CJP. Note that 
JP can refer to different objects from time to time but CJP cannot. Of course, 
the value of the object J can always be changed by a direct assignment to J.
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Constant and variable views

Sometimes it is convenient  to enable a client to read a variable but  not to write 
to it. In other words to give the client  a constant  view of a variable. This can be 
done with a so-called deferred constant and the access types just described.

A deferred constant is one declared in the visible part  of a package and for 
which we do not give an initial value. The initial value must then be given in the 
private part. Consider the following

package P is
   type Const_Int_Ptr is access constant Integer;
   The_Ptr: constant Const_Int_Ptr;  -- deferred constant
private
   The_Variable: aliased Integer;
   The_Ptr: constant Const_Int_Ptr := The_Variable'Access;
   ...
end P;

The client  can read the value of The_Variable indirectly through the object 
The_Ptr of type Const_Int_Ptr by writing

K := The_Ptr.all; -- indirect read of The_Variable

But since the access type Const_Int_Ptr is declared as access constant the 
value of the object referred to by The_Ptr cannot be changed by writing

The_Ptr.all := K; -- illegal, cannot change The_Variable indirectly

However, any subprogram declared in the package P can access The_Variable 
directly and so write to it. This technique is particularly useful with tables where 
the table is computed dynamically but we do not want the client  to be able to 
change it.

The named access type is not really necessary since we can equally write
package P is
   The_Ptr: constant access constant Integer;      -- deferred constant
private
   The_Variable: aliased Integer;
   The_Ptr: constant access constant Integer := The_Variable'Access;
   ...
end P;

Note the double use of constant in the declaration of The_Ptr. The first says 
that The_Ptr is itself a constant. The second says that  it cannot  be used to 
change the value of the object that it refers to.
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Limited types

The types we have met so far (Integer, Float, Date, Circle and so on) have 
various operations. Some are predefined, such as the equality operation to 
compare two values (with =) and some also have user-defined operations, such 
as Area in the case of the type Circle. The operation of assignment is also 
available for all the types mentioned so far.

Sometimes assignment is undesirable. There are two main reasons why this 
might be the case
▪ the type might represent  some resource such as an access right and 

copying could imply a violation of security,
▪ the type might be implemented as a linked data structure and copying 

would simply copy the head of the structure and not all of it.
We can prevent assignment by declaring the type as limited. A good 

illustration of the second problem occurs if we implement the stack using a 
linked list. We might have

package Linked_Stacks is
   type Stack is limited private;
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Float);
   procedure Pop(S: in out Stack; X: out Float);

private
   type Cell is
      record
         Next: access Cell;
         Value: Float;
      end record;

   type Stack is access all Cell;
end Stacks;

The body might be
package body Stacks is

   procedure Clear(S: out Stack) is
   begin
      S := null;
   end Clear;

   procedure Push(S: in out Stack; X: in Float) is
   begin
      S := new Cell'(S, X);
   end Push;
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   procedure Pop(S: in out Stack; X: out Float) is
   begin
      X := S.Value;
      S := Stack(S.Next);
   end Pop;

end Stacks;

This uses the normal linked list  style of implementation. Note that the type 
Stack is declared as limited private so that assignment of a stack as in

This_One, That_One: Stack;
...
This_One := That_One;  -- illegal, type Stack is limited

is prohibited. If assignment had been permitted then all that would have 
happened is that  This_One  would end up pointing to the start  of the list  defining 
the value of That_One. Calling Pop on This_One would simply move it down 
the chain representing That_One. This sort of problem is known as aliasing – we 
would have two ways of referring to the same entity and that is often very 
unwise.

In this example there is no problem with declaring a stack, it  is automatically 
initialized to be null which represents an empty stack. However, sometimes we 
need to create an object with a specific initial value (necessary if it is a 
constant). We cannot do this by assigning in a general way as in

type T is limited ...
...
X: constant T := Y; -- illegal, cannot copy value in variable Y

because this involves copying which is forbidden since the type is limited.
Two techniques are possible. One involves aggregates and the other uses 

functions. We will consider aggregates first. Suppose the type represents some 
sort of key with components giving the date of issue and the internal code 
number such as

type Key is limited
   record
      Issued: Date;
      Code: Integer;
   end record;

The type is limited so that keys cannot be copied. (They are a bit  visible but we 
will come to that in a moment.) But we can write

K: Key := (Today, 27);

  Safe object construction

 



60

since, in the case of a limited type, this does not copy the value defined by the 
aggregate as a whole but rather the individual components are given the values 
Today and 27. In other words the value for K is built in situ.

It  would be more realistic to make the type private and then of course we 
could not use an aggregate because the components would not be individually 
visible. Instead we can use a constructor function. Consider

package Key_Stuff is
   type Key is limited private;
   function Make_Key( ... ) return Key;
   ...
private
   type Key is limited
      record
         Issued: Date;
         Code: Integer;
      end record;
end Key_Stuff;

package body Key_Stuff is

   function Make_Key( ... ) return Key is
   begin
      return New_Key: Key do
         New_Key.Issued := Today;
         New_Key.Code := ... ;
      end return;
   end Make_Key;
   ...
end Key_Stuff;

The external client (for whom the type is private) can now write
My_Key: Key := Make_Key( ... );  -- no copying involved

where we assume that the parameters of Make_Key are used to compute the 
internal secret code.

It  is worth carefully examining the function Make_Key. It  has an extended 
return statement which starts by declaring the return object New_Key. When the 
result type is limited (as here) the return object is actually built  in the final 
destination of the result  of the call (such as the object  My_Key). This is similar 
to the way in which the components of the aggregate were actually built in situ 
in the earlier example. So again no copying is involved.

The net outcome is that Ada provides a way of creating initial values for 
objects declared by clients and yet prevents the client  from making copies. The 
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limited type mechanism gives the provider of resources such as the keys 
considerable control over their use.

Controlled types

Ada provides a further mechanism for the safe management of objects through 
the use of controlled types. This enables us to write special code to be executed 
when 
1)  an object is created and, 
2)  when it ceases to exist and, 
3)  when it is copied if it is of a nonlimited type.

The mechanism is based on types called Controlled and Limited_Controlled 
declared in a predefined package thus

package Ada.Finalization is
   type Controlled is abstract tagged private;
   procedure Initialize(Object: in out Controlled) is null;
   procedure Adjust(Object: in out Controlled) is null;
   procedure Finalize(Object: in out Controlled) is null;

   type Limited_Controlled is abstract tagged limited private;
   procedure Initialize(Object: in out Limited_Controlled) is null;
   procedure Finalize(Object: in out Limited_Controlled) is null;
private
   ...
end Ada.Finalization;

The central idea (for a nonlimited type) is that  the user declares a type which is 
derived from Controlled and then provides overriding declarations of the three 
procedures Initialize, Adjust and Finalize. These procedures are called when an 
object  is created, when it  is copied, and when it  ceases to exist, respectively. 
Note carefully that these calls are inserted automatically by the system and the 
programmer does not have to write explicit calls. The same mechanism applies 
to a limited type which has to be derived from Limited_Controlled but  there is no 
procedure Adjust since copying is not  permitted. These operations are typically 
used to provide complex initializations, deep copying of linked structures, 
storage reclamation at  the end of the lifetime of an object, and other 
housekeeping activities that are specific to the type.

As an example, suppose we reconsider the stack and decide that  we want to 
use the linked mechanism (so there is effectively no upper bound to the capacity 
of the stack) but wish to allow copying one stack to another. We can write
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package Linked_Stacks is
   type Stack is private;
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Float);
   procedure Pop(S: in out Stack; X: out Float);

private
   type Cell is
      record
         Next: access Cell;
         Value: Float;
      end record;

   type Stack is new Controlled with
      record 
         Header: access Cell;
      end record;

   overriding
   procedure Adjust(S: in out Stack);
end Linked_Stacks;

The type Stack is now just  private. The full type shows that it is actually a 
tagged type derived from the type Controlled and has a component Header 
which effectively is the stack in the previous formulation. In other words we 
have introduced a wrapper. Note that  the user cannot see that the type is 
controlled and tagged. Since we want  to make assignment work properly we 
have to override the procedure Adjust. Note also that we have supplied the 
overriding indicator so that the compiler can double check that Adjust does 
indeed have the correct parameters. 

The package body might be
package body Linked_Stacks is

   procedure Clear(S: out Stack) is
   begin
      S := (Controlled with Header => null);
   end Clear;

   procedure Push(S: in out Stack; X: in Float) is
   begin
      S.Header := new Cell'(S.Header, X);
   end Push;

   procedure Pop(S: in out Stack; X: out Float) is
   begin
      X := S.Header.Value;
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      S.Header := S.Header.Next;
   end Pop;

   function Clone(L: access Cell) return access Cell is
   begin
      if L = null then
         return null;
      else
         return new Cell'(Clone(L.Next), L.Value);
      end if;
   end Clone;

   procedure Adjust(S: in out Stack) is
   begin
      S.Header := Clone(S.Header);
   end Adjust;

end Linked_Stacks;

Assignment will now work properly. Suppose we write
This_One, That_One: Stack;
...
This_One := That_One;  -- calls Adjust automatically 

The raw assignment of That_One to This_One copies just  the record containing 
the component Header. The procedure Adjust is then called automatically with 
This_One as parameter. Adjust calls the recursive function Clone which actually 
makes the copy. This process is often called a deep copy. The result  is that 
This_One and That_One now contain the same elements but are otherwise 
disjoint structures.

Another notable point is that the procedure Clear sets the parameter S to a 
record whose header component is null; the structure is known as an extension 
aggregate. The first part of the extension aggregate just gives the name of the 
parent type (or the value of an object  of that type) and the part  after with gives 
the values of the additional components, if any. The procedures Pop  and Push 
are straightforward.

The reader might wonder about  reclamation of unused storage when Pop 
removes an item and also when Clear sets a stack to empty. This will be 
discussed in the next chapter when we consider memory management in 
general. 

Note that Initialize and Finalize  are not overridden and thus inherit the null 
procedure of the type Controlled. So nothing special happens when a stack is 
declared – this is correct  since we just  get  a record whose Header is null by 
default and nothing else is required. Also nothing happens when an object  of 

  Safe object construction

 



64

type Stack ceases to exist  on exit from a procedure and so on – this again raises 
the issue of the reclamation of storage and will be addressed in the next chapter.
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The memory of the computer provides a vital part of the framework in which 
the program resides. The integrity of the memory contents is necessary for the 
health of the program. There is perhaps an analogy with human memory. If the 
memory is unreliable then the proper functioning of the person is seriously 
impaired. 

There are two main problems with managing computer memory. One is that 
information can be lost by being improperly overwritten by other information. 
The other is that  the memory itself can become filled and irrecoverable, so that 
no new information can be stored. This is the problem of memory leaks.

Memory leak is an insidious fault since it  often does not show up for a long 
time. There was an example of a chemical control program that seemed to run 
flawlessly for several years. It was restarted every three months because of some 
external constraints (a crane had to be moved which necessitated stopping the 
plant). But the schedule for the crane changed and the program was then 
allowed to run for longer – it crashed after four months. There was a memory 
leak which slowly gnawed away at the free storage.

Buffer overflow

Buffer overflow is almost  a generic term used to denote the violation of the 
security of information. Buffer overflow enables information to be overwritten 
or read mistakenly or maliciously. 

This is a common fault  with C and C++ programs and is typically caused by 
the absence of checks in those languages regarding writing or reading outside 
the bounds of an array. We illustrated this problem in the chapter on Safe Typing 
when discussing the example of throwing a pair of dice.

This problem cannot  normally arise in Ada because there are checks that an 
array index does not lie outside the range of allowed values. These checks can 
be suppressed if we are absolutely sure that the program is perfect, but this is 
perhaps an unwise thing to do unless the program has been proved to be correct 
by analysis tools such as the SPARK Examiner mentioned in Chapter 11.

Although the absence of range checks is the ultimate cause of buffer overflow 
problems in C, it is exacerbated by other language features such as the choice of 
indicating the end of a string with a zero byte. This means that programmers 
have to test  for this value (directly or indirectly) in many string manipulation 
routines. It is easy to make mistakes in performing such tests and in any event 
the zero value might be accidentally overwritten itself. These secondary 
problems are often the key to loopholes which enable viruses to enter a system.

Another common way in which data can be accidentally destroyed is through 
the use of incorrect  pointers. Pointers in C are treated as addresses and 
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arithmetic can be performed on them. It is therefore easy for a pointer to have a 
miscomputed value and so to point to the wrong thing. Writing through the 
pointer then destroys some other data. 

In the chapter on Safe Pointers we saw that Ada guards against  this by 
applying strong typing to all pointers, and through the accessibility rules which 
ensure that objects do not vanish while being referenced by other objects.

Therefore, basic features of Ada guard against the accidental loss of data 
through overwriting memory. The remainder of this chapter addresses the issue 
of losing memory itself.

Heap control

Programming languages are typically implemented using three sorts of data 
storage
▪ global data that  exists throughout  the life of the program and can thus be 

allocated permanently (and often statically),
▪ data stored on a stack which grows and contracts as the flow of control 

passes through various subprograms,
▪ data allocated in a heap and used and discarded in a manner not  directly 

tied to the flow of control.
Fortran global common is the primeval example of global static storage (this 
relates to Fortran as it was in the early days of programming). But  global static 
storage exists in all languages. In Ada if we declared

package Calendar_Data is
   type Month is (Jan, Feb, Mar, ... , Nov, Dec);
   Days_In_Month: array (Month) of Integer := 
      (Jan => 31, Feb => 28, Mar => 31, Apr => 30, 
      May => 31, Jun => 30, Jul => 31, Aug => 31,
      Sep => 30, Oct => 31, Nov => 30, Dec => 31);
end;

then storage for the array Days_In_Month would naturally be declared in fixed 
global storage.

The stack is an important storage structure in all modern programming 
languages. Note that we are here talking about the underlying stack used by the 
implementation and not an object of the type Stack used for illustration in an 
earlier chapter. The stack is used for parameter passing in subprogram calls 
(actual parameters, the return address, saved registers, and so on) as well as for 
local variables within a subprogram. In a multitasking program where several 
threads of activity occur in parallel, each task has its own stack.
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Now consider the function Nfv_2000  used in the program for interest  rates in 
the chapter on Safe Pointers

function Nfv_2000 (X: Float) return Float is
   Factor: constant Float := 1.0 + X/100.0;
begin 
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv;

The object  Factor will typically be stored in the stack. It will come into 
existence when the function is called and will cease to exist  when the function 
returns. This is all managed safely and automatically by the call/return 
mechanism. Note that although Factor is marked as a constant  nevertheless it  is 
not static since each call of the function will provide a different  value for it. 
Moreover, the function might be called by two different  tasks at  the same time 
in a multitasking program and so Factor certainly cannot be stored globally.

The values of any actual parameters such as X are also stored on the stack.
Now consider a more elaborate subprogram which declares a local array 

whose size is not  known until the program executes – consider for example a 
function to return an arbitrary array in reverse order. In Ada we might write

function Rev(A: Vector) return Vector is
   Result: Vector(A'Range);
begin
   for K in A'Range loop
      Result(K) := A(A'First+A'Last–K);
   end loop;
   return Result;
end Rev;

where the type Vector is declared as
type Vector is array (Natural range <>) of Float;

This notation indicates that  Vector is an array type but the bounds are not  given 
except  that they must  be within the subtype Natural  (and so in the range 0 to 
Integer'Last). When we declare an actual object  of the type Vector we must 
supply bounds. So we might have

L: Integer := ... ;
My_Vector, Your_Vector: Vector(1 .. L);  -- L need not be static
...
Your_Vector := Rev(My_Vector);

In most  programming languages we would be forced to place an object such as 
the local variable Result on the heap rather than the stack because its size is not 
known until the program executes. This is certainly not  necessary because a 
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stack is flexible and storage for local variables can always be managed on a last-
in–last-out basis. 

But  the heap is often used because it requires a bit of thought to design and 
manage dynamically sized data efficiently and without care the subroutine 
calling mechanism can suffer a loss of performance. Implementations of Ada 
always use the stack for local data – an efficient technique is to use both ends of 
the stack, one end for return links and fixed local data and the other end for 
dynamically sized local data. This enables the location of return addresses to be 
computed more efficiently and yet keeps full flexibility. Furthermore, Ada 
systems usually guard against the stack running out of storage and raise the 
exception Storage_Error if it does (or rather if it is about to).

The above example illustrates a number of nice points about Ada. By contrast 
it  is quite tricky to write in C. This is because C has no proper abstraction for 
arrays and so we cannot pass an array as a parameter but only a pointer to an 
array. Moreover C cannot return a result which is anything other than a scalar 
value and so cannot  pass back the reversed array either. We could of course 
simply declare a function that  reverses the argument in situ  and leave it  to the 
user to make a copy first. But  doing the reverse in situ  is tricky since we have to 
take care not to destroy the values as we swap them. So perhaps it is best to pass 
pointers to both the original array and the result as distinct  parameters. The 
other difficulty is that C does not  know how long its arrays are and so we have 
to pass the length of the array as well (or maybe the upper bound). This is yet 
another hazard since it is all too easy to pass a length that  does not correspond to 
that of the array. So we might have

void rev(float *a, float *result, int length);
{
   for (k=0; k<length; k++)
      result[k] = a[length–k–1];
}
...
float my_vector[100], your_vector[100];
...
rev(my_vector, your_vector, 100);

Although this chapter is meant to be about  storage management  it  is perhaps 
worth pausing to list some of the risks and difficulties in the above C code.
▪ Arrays in C always have lower bound 0 and so if the application has a 

different  natural lower bound such as 1 then confusion can arise. Ada 
allows any lower bound.

▪ The length of the array has to be passed separately, there is a risk of 
getting the length wrong and confusing the length with the upper bound. 
In Ada the attributes of the array are passed as part of the array itself.
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▪ The address of the result  array has to be passed separately. There is the 
danger of confusing the two arrays which cannot happen in Ada because 
the assignment clarifies which is which.

▪ The loop has to be written out  explicitly whereas the Ada notation ties it 
to the range of the array automatically.

However, we have strayed from the topic. The key point  is that if we did declare 
a local array in C++ whose size was not static as in

void f(int n, ... );
{   float a[] = new float [n];
...
}

then the array a will be placed in the heap and not  on the stack. In C we would 
have to use malloc which does explicitly reveal the use of the heap.

The general danger of using the heap is that storage might  be deallocated 
when it  is still in use or left allocated when it is not  needed. Because Ada allows 
dynamically sized objects on the stack, the heap is basically only used when 
allocators are invoked as mentioned in the chapter on Safe Pointers. This results 
in better performance and less chance of memory leaks.

Storage pools

We now turn to the use of the heap in Ada. The proper term is storage pool. If 
we do an allocation such as in the procedure Push  discussed in the chapter on 
Safe Object Construction thus

   procedure Push(S: in out Stack; X: in Float) is
   begin
      S := new Cell'(S, X);
   end Push;

then the space for the new Cell will be taken from a storage pool. There is 
always a standard storage pool but we can declare and manage our own storage 
pools as well.

LISP  was the first language to take storage management  out of the hands of 
the programmer, and to incorporate a garbage collector in order to reclaim 
storage. This approach is used in a number of other languages including Python 
and Java. The presence of a garbage collector simplifies programming 
substantially, but  has its own problems. For example, the garbage collector may 
interrupt  the execution of the program at  unpredictable times, and is therefore 
unusable in a real-time environment. A programmer of a real-time system must 
retain fine control over memory and deallocation and must  be able to reclaim 
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memory at  some precise time rather than waiting for the garbage collector to do 
it. As a consequence a garbage collector is not appropriate for a general purpose 
language and especially to one used for low-level, real-time and safety-critical 
applications.

Ada provides the user with a choice of mechanisms. Storage control can be 
done 
▪ by hand. That  is by programming the release of storage on an individual 

basis.
▪ by using storage pools. Individual items can be deleted from a specific 

pool and the whole pool can be discarded when no longer required.
▪ by a garbage collector. This might  not be available in all 

implementations.
In order to return a lump of storage that  is no longer used we call an 

instantiation of a predefined generic function called Unchecked_Deallocation. In 
order to do this we have to use a named access type so we will suppose that  the 
type Cell is declared by 

type Cell;
type Cell_Ptr is access all Cell;

type Cell is
   record
      Next: Cell_Ptr;
      Value: Float;
   end record;

Note that  we have an intrinsic circularity here which is broken by first  giving an 
incomplete declaration of the type Cell. We now write

procedure Free is new Unchecked_Deallocation(Cell, Cell_Ptr);

In order to deallocate storage we simply call the procedure Free with an access 
value referring to the storage concerned. Thus the procedure Pop should now be 
written as

procedure Pop(S: in out Stack; X: out Float) is
   Old_S: Stack := S;
begin
   X := S.Value;
   S := S.Next;
   Free(Old_S);
end Pop;

Note that we are here using the version of the type Stack that is limited private 
and not the version that is controlled. 
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It  might seem that  the use of Free is risky. In general it  might be that there 
was another reference to the deallocated storage. But in this example the user's 
view of the type is limited and so the user cannot have made a copy of the 
structure. Moreover, the user cannot see the details of the type Stack and in 
particular cannot  see the types Cell and Cell_Ptr at all and therefore cannot call 
Free. Thus once we have assured ourselves that  Pop is correct then no trouble is 
possible. Finally, the instantiation of Unchecked_Deallocation provides a cross-
check by requiring the use of named access types and thus checks that  the 
parameters match.

We must also change Clear as well. The easy way is to write
procedure Clear(S: in out Stack) is
   Junk: Float;
begin
   while S /= null loop
      Pop(S, Junk);
   end loop;
end Clear;

Although this technique ensures that  storage is deallocated properly whenever 
Pop and Clear are called, there is still the risk that the user might declare a stack 
and leave its scope when it is not empty. Thus

procedure Do_Something ...
   A_Stack: Stack;
begin
   ...   -- play with A_Stack
   ...   -- is it empty as we leave?
end Do_Something;

If A_Stack were not null when Do_Something is left then the storage would be 
lost. We cannot leave the onus on the user to take care not to lose storage so we 
should make the stack a controlled type as illustrated at the end of the chapter on 
Safe Object Construction. We can then declare our own procedure Finalize 
perhaps simply as

overriding
procedure Finalize(S: in out Stack) is
begin
   Clear(S);
end Finalize;

Note the use of the overriding indicator just to ensure that  we have not 
misspelled Finalize or mistyped its formal parameters.

Ada also permits users to declare their own storage pools. This is 
straightforward but  would take too much space to explain in detail here. But  the 
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general idea is that  there is a predefined type Root_Storage_Pool  (which itself is 
a limited controlled type) and we can declare our own storage pool type by 
deriving from it thus 

type My_Pool_Type(Size: Storage_Count) is 
  new Root_Storage_Pool with private;
overriding
procedure Allocate( ... );
overriding
procedure Deallocate( ... );
-- also overriding Initialize( ... ) and Finalize( ... );

The procedure Allocate is automatically called when a new object  is allocated by 
an allocator and Deallocate is automatically called when an object  is discarded 
by calling Free. The user then writes appropriate code to manage the pool as 
desired. Since a pool type is also controlled the procedures Initialize  and Finalize 
are automatically called when the whole pool is declared and finally goes out of 
scope.

In order to create a pool we then declare a pool object  in the usual way. And 
finally we can link a particular access type to use the pool.

Cell_Ptr_Pool: My_Pool_Type(1000);  -- pool size is 1000
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

An important advantage of declaring our own pools is that the risk of 
fragmentation can be minimized by keeping different  types in different  pools. 
Moreover, we can write our own storage allocation mechanisms and even do 
some storage compaction if we so wish. A further point  is that  if the access type 
concerned is declared locally then the pool can be local as well and will 
automatically be discarded so that there can be no possibility of storage being 
lost.

Finally, there is a safeguard against misuse of Unchecked_Deallocation and 
that is that since it  is a predefined library unit, any unit we write that calls it will 
have 

with Unchecked_Deallocation;

written boldly at  the start of the text. This will then be clearly visible to anyone 
reviewing the program and especially to our Manager.

Restrictions

There is a general mechanism for ensuring that we do not  use certain features of 
the language and that is the pragma Restrictions. Thus if we write
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pragma Restrictions(No_Dependence => Unchecked_Deallocation);

then we are asserting that the program does not use Unchecked_Deallocation at 
all – the compiler will reject the program if this is not true.

There are over forty such restrictions in Ada 2005 which can be used to give 
assurance about various aspects of the program. Many are rather specialized and 
relate to multitasking programs. Others which concern storage generally and are 
thus relevant to this chapter are

pragma Restrictions(No_Allocators);
pragma Restrictions(No_Implicit_Heap_Allocations);

The first completely prevents the use of the allocator new  as in new  Cell'( ... ) 
and thus all explicit use of the heap. Just  occasionally some implementations 
might  use the heap temporarily for objects in certain awkward circumstances. 
This is rare and can be prevented by the second pragma.
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We can carefully write a program so that it  behaves properly when running, but 
it is all to no avail if it will not start properly.

The motor car that  will not  start is no good even if when going it  behaves like 
a Rolls-Royce.

In the case of a computer program, the key things are to ensure that data is 
initialized properly and this often means to ensure that  its various components 
are initialized in the correct order.

Elaboration

A program typically consists of a number of library packages P, Q, R and so on, 
plus a main subprogram M. The general idea is that when the program is started 
the various packages are elaborated, after which the main subprogram is called. 
The elaboration of a package consists of the creation of the various entities 
declared at  the top level in the package – but  not entities declared within 
subprograms in the package because these are created when the subprograms are 
called.

Thus consider again the package Stack in the chapter on Safe Architecture. In 
outline it was

package Stack is
   procedure Clear;
   procedure Push(X: Float);
   function Pop return Float;
end Stack;

package body Stack is

   Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;

   ... -- procedures Clear and Push and function Pop

end Stack;

The elaboration of the specification of the package does nothing in this case 
because there are no objects declared in it. The elaboration of the body of the 
package notionally causes the space for the integer Top and the array A to be set 
aside. In this particular case the size of the array is known before the program 
executes because it is given by the constant  Max which happens to have a static 
value and so the storage can be effectively set  aside even before the program is 
loaded.



76

But Max need not  have had a static value – it might  have been given the result 
of some function call thus

   Max: constant := Some_Function;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;

and then the space required for A would be computed as part of the elaboration 
of the package body. If we had been careless and declared Max as a variable and 
forgotten to give it an initial value thus

   Max: Integer;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;

then the size of the array would be given by the value that  Max happened to 
have. If Max were negative then the attempt to declare the array would raise 
Constraint_Error and if Max were too large than it might raise Storage_Error.

It  should also be noted that  we gave an initial value of zero to the variable 
Top  so that the user did not have to call the procedure Clear before calling Push 
or Pop. 

Alternatively we can give the package body an explicit  initialization part  so 
that it becomes

package body Stack is

   Max: constant := 100;
   Top: Integer range 0 .. Max;
   A: array (1 .. Max) of Float;

   ... -- procedures Clear and Push and function Pop

begin    -- initialization part
   Top := 0;
end Stack;

The initialization part can contain any statements at all. It is executed as part  of 
the elaboration of the package body and so before any of the subprograms in the 
package can be called by code outside the package.

Readers might feel that it is surely always best to give all variables an initial 
value anyway just  in case. In the example given here the value zero is indeed a 
sensible initial value and corresponds to a call of Clear. In some situations there 
is no obvious initial value and giving a value just  in case is not always wise 
because it can actually obscure real errors. We will come back to this briefly 
when we discuss SPARK in the final chapter.
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In the case of numeric variables, the consequences of using a value that  has 
not been set are not disastrous. But the consequence of using an access value or 
some other implicit address which has not  been set  could be. In the case of 
access types in Ada these either have a default value of null or must be 
initialized as we have seen. 

A related kind of potential error concerns "access before elaboration". This 
means attempting to use something before it  has been properly elaborated. 
Consider

package P is
   function F return Integer;
   X: Integer := F;  -- raises Program_Error
end;

where the body of F is of course in the body of the package P. We cannot 
successfully call F to give an initial value to X before the body has been 
elaborated. So in this case the exception Program_Error is raised. The same sort 
of error in C could have unpredictable effects.

Elaboration pragmas

Within a single compilation unit the rule is that  declarations are elaborated in 
the order in which they appear in the text.

In the case of a program linked from several different  units, a unit is always 
elaborated after all those on which it depends. Thus a body is elaborated after 
the corresponding specification, the specification of a child is elaborated after 
the specification of its parent  and any unit is elaborated after the specifications 
of all those mentioned in a (nonlimited) with clause.

However, this only partially dictates the order and is sometimes not  enough to 
ensure the correct behavior of the program. We can extend the example above as 
follows

package P is
   function F return Integer;
end P;

package body P is
   function F return Integer is ...
end P;

with P;
package Q is
   X: Integer := P.F;
end;
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It  is important  that the body of P has been elaborated before the specification of 
Q is elaborated because this elaboration requires that  the body of F itself (and 
everything on which this body might in turn depend) be already elaborated. But 
the above rules do not ensure this and Program_Error might  be raised at 
runtime.

We can force the required order of elaboration by inserting a pragma in the 
context clause for Q thus

with P;
pragma Elaborate_All (P);
package Q is
   X: Integer := P.F;
end;

Note that  the All  in Elaborate_All indicates the transitive nature of the pragma. 
Its effect  is that  at  runtime the elaboration code for package P (and all the 
packages on which it depends) will be executed before the elaboration code for 
Q.

There is also a pragma Elaborate_Body which can be given with a 
specification and indicates that its body must be elaborated immediately after 
the specification.

Dynamic loading

A related topic concerns dynamic loading. Some languages are designed to 
create a single coherent  program that is fully assembled before being run. Ada, 
C and Pascal are like that. The operating system may swap lumps of the 
program in and out  of memory using paging algorithms but  that is an 
implementation detail.

Other languages are designed to be much more dynamic and enable new code 
to be compiled, loaded and executed while the program is running. Cobol and 
Java are like that.

An approach used with programs written in languages such as C is to use 
dynamic linked libraries (DLLs) whereby an indirect call is used to invoke the 
new code. But  this is not safe since there is no checking that  the parameters of 
the new code match those of the old calling sequence.

One approach that can be used with Ada is to use the dispatching mechanism 
as the hook to dynamic linking. The point  about dispatching is that it enables 
existing compiled code containing a class (such as Geometry.Object'Class) to 
call operations (such as Area) of further types (such as Pentagon, Hexagon  and 
so on) without the central code having to be recompiled. This was briefly 
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mentioned in the chapter on Safe Object-Oriented Programming. Moreover the 
mechanism is completely type safe.

A good example of how dynamic linking can be added within this framework 
is given in [2].

  Safe startup
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A program that doesn't  communicate with the outside world in some way is 
useless although very safe. Such a program might  almost be in solitary 
confinement. A prisoner in solitary confinement is safe in the sense that  he 
cannot hurt other people but he is equally of no use to society either.

So for a program to be useful it  must communicate. And if the program is 
written in a safe way so that  it  does not have internal dangers, it  is largely futile 
if its communication with the world is unsafe. So safety in communication is 
important since it is here that the program truly has a useful effect.

It  is perhaps worth recalling from the introduction that we characterized the 
difference between safety-critical and security-critical systems as that the former 
is where the program must  not harm the world whereas the latter is where the 
world must  not  harm the program. So communication is the ultimate lynchpin of 
both safety and security.

Representation of data

An important aspect of communication concerns the mapping between the 
abstract software and the actual hardware. Most  languages leave this sort of 
thing to individual implementations. But Ada gives the user quite specific 
control over many aspects of data representation.

For example we might  decide that  we want data in a record to be laid out  in a 
particular manner – perhaps to match that of an existing file structure. Suppose 
the record is the type Key in the chapter on Safe Object Construction

type Key is limited
   record
      Issued: Date;
      Code: Integer;
   end record;

where the type Date is 
type Date is
   record
      Day: Integer range 1 .. 31;
      Month: Integer range 1 .. 12;
      Year: Integer;
   end record;

We will assume that  we are using a 32-bit  machine with four bytes to a word. 
The day and month easily fit into one byte each and the year needs at  most  16 
bits so the whole date can be neatly packed into a single word. We can express 
this by 
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for Date use
   record
      Day at 0 range 0 .. 7;
      Month at 1 range 0 .. 7;
      Year at 2 range 0 .. 15;
   end record;

In the case of the type Key, the required structure is simply two words and 
almost inevitably the implementation will use the representation we require. But 
we can ensure this by writing

for Key use
   record
      Issued at 0 range 0 .. 31;
      Code at 1 range 0 .. 31;
   end record;

As another example consider the type Signal  of the chapter on Safe Typing. It 
was

type Signal is (Danger, Caution, Clear);

Unless we say otherwise, the compiler will encode this type using 0 for Danger, 
1 for Caution and 2 for Clear. But in a real application the value of the signal 
might  enter the program encoded as 1  for Danger, 2 for Caution and 4 for Clear. 
We can instruct the program to use this encoding by writing

for Signal use (Danger => 1, Caution => 2, Clear => 4);

Furthermore, if the value of The_Signal is autonomously loaded into the 
program at a particular hardware location as a single byte then we can direct  the 
compiler to ensure that the type is indeed held as such and that  the variable is 
located appropriately by for example

for Signal'Size use 8;

for The_Signal'Address use 16#0ACE#;

The latter locates the variable at the hexadecimal address 0ACE.

Validity of data

An important part of all programming is to ensure that data received from the 
outside world is valid. In most case we can simply program various checks 
using normal programming techniques. But sometimes this is awkward. 

The type Signal is a case in point. We have instructed the compiler to hold the 
value as an enumeration type with a certain representation. If by some 
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misfortune a value turns up which does not have a recognized pattern (perhaps 
two bits are set  because of a transient  in the external device) then we cannot 
express a test of that  in the normal way because that  would take us outside the 
domain of definition of the type Signal. Instead we can write

if not The_Signal'Valid then ...

Another approach is to use Unchecked_Conversion. We can read the value in, 
perhaps as a byte, check it and then if it is acceptable, convert  it to the type 
Signal. First we need the type Byte and the conversion routine 

type Byte is range 0 .. 255;
for Byte'Size use 8;

function Byte_To_Signal is new Unchecked_Conversion(Byte, Signal);

and then
Raw_Signal: Byte;
for Raw_Signal'Address use 16#0ACE#;
The_Signal: Signal;
...
case Raw_Signal is
   when 1 | 2 | 4  =>
          -- raw value OK, convert it
      The_Signal := Byte_To_Signal(Raw_Signal);
      ...    -- process valid value
   when others =>
      ...    -- raw value invalid
      ...    -- take corrective action
end case;

The idea of course is that  since the type Byte is simply an integer type we can do 
normal arithmetic on the value in order to check it. The corrective action might 
include logging the particular invalid value and so on.

The reader should note a flaw in the above if the value truly is loaded 
autonomously. Between checking and the conversion, a new value might  arrive. 
So it should be copied into a local variable before being tested and processed.

Communication with other languages

Many modern large systems are written in a mixture of languages each 
appropriate to the part of the system concerned. The safety-critical control 
routines and security-critical input routines might  be written in Ada (perhaps in 
SPARK), the GUI interface might  be written in C++, some complex 
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mathematical analysis might be written in Fortran, some device drivers might be 
in C and so on.

Many languages have some facilities for interworking with other languages 
(C++ with C for example) but these are often loosely defined. Ada is perhaps 
unique in providing well-defined mechanisms within the language standard for 
interfacing to programs in other languages in general. Ada provides specific 
facilities for communication with programs and data in C, C++, Fortran and 
COBOL. In particular, Ada recognizes the representation of types in these other 
languages such as the arrangement  of matrices in Fortran and strings in C so that 
communication retains type safety.

In a mixed language situation it  is thus a good idea to use Ada as the central 
language so that  communication with other languages has the benefit of the type 
checking provided by the Ada conversion routines.

The general means of communication uses pragmas. Thus suppose we have a 
C routine called next_byte and we wish to call it from our Ada program as the 
function Next_Byte. We simply write

function Next_Byte return Byte;
pragma Import(C, Next_Byte);

The pragma indicates that the calling convention is C and also tells the compiler 
that there is no Ada body for this function. The pragma can supply a different 
external name and link name if necessary.

Similarly, if we wish the external C program to call the Ada procedure Action 
then we can make the name of the Ada procedure available externally by writing

procedure Action(D: in Data);
pragma Export(C, Action);

Access-to-subprogram types are important  for communication with other 
languages especially when programming interactive systems. For example, 
suppose we want the procedure Action to be called by the GUI when the mouse 
is clicked. Suppose that there is a C routine mouse_click that takes the address 
of the code to be called when the mouse is clicked. We can do this by writing

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data);
pragma Convention(C, Action);
...
Set_Click(Action'Access);
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In this case we have not made the name of the procedure Action visible to the C 
program because it  is called indirectly but we do have to ensure that  it uses the 
C calling convention.

Streams

A potential difficulty occurs when we transmit values of different types to and 
from the external world. Output  is straightforward because we know the type of 
the value being transmitted and can use the appropriate format. But input is a 
problem because typically we do not know what is coming. If a file is uniform 
and all values are of the same type then we simply have to ensure that we have 
connected to the correct  file. The real difficulty arises when values of different 
types are involved in the same file. Ada has a number of different  filing 
mechanisms, some are for homogeneous files such as files of all integers or text 
files; for heterogeneous files we use a stream file.

As a very simple example suppose a file is to have a mixture of values of 
types Integer, Float and Signal. All types have special attributes 'Read and 'Write 
for use with streams. On output we simply write

S: Stream_Access := Stream(The_File);
...
Integer'Write(S, An_Integer);
Float'Write(S, A_Float);
Signal'Write(S, A_Signal);

and this results in a mixture of values of different  types on The_File. In the 
space available we cannot give the full details but S identifies the stream 
associated with the file.

On input we simply do the reverse
Integer'Read(S, An_Integer);
Float'Read(S, A_Float);
Signal'Read(S, A_Signal);

If we do the calls in the wrong order then the exception Data_Error will be 
raised because Ada checks that the item being read is of the correct format.

If we do not know the order in which things are to be read then we need to 
create a class to cover all the different types involved. In this simple case we 
might declare a root type

type Root is abstract tagged null record;

to act as a sort  of wrapper and then a series of individual types to encapsulate 
the real data thus
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type S_Integer is new Root with
   record
      Value: Integer;
   end record;

type S_Float is new Root with
   record
      Value: Float;
   end record;
...

and so on. On output we write
Root'Class'Output(S, (Root with An_Integer));
Root'Class'Output(S, (Root with A_Float));
Root'Class'Output(S, (Root with A_Signal));

Note that  the same procedure is used for all the calls. It first  outputs the value of 
the tag of the specific type and then calls (by dispatching) the appropriate Write 
attribute.

For input we might write
Next_Item: Root'Class := Root'Class'Input(S);
...
Process(Next_Item);

The procedure Root'Class'Input reads the tag from the stream and then 
dispatches to the Read attribute to read the item and finally assigns it  as the 
initial value of the object  Next_Item. We can then call some other procedure 
such as Process by dispatching to do whatever we want. We might  assign the 
value to a particular variable according to its type. 

To do this we first declare the abstract procedure for the root type thus
procedure Process(X: in Root) is abstract;

and then specific procedures such as
overriding
procedure Process(X: S_Integer) is
begin
   An_Integer := X.Value;  -- extract value from wrapper
end Process;

The procedure Process could of course do anything we like with the value 
concerned.
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This has been a somewhat artificial example. The purpose of it  has been to 
illustrate that Ada can process items of various types in a way that preserves the 
security of the type model.

Object factories

We have just  seen how the predefined stream mechanism enables us to 
manipulate values whose types are not known until they are input in some way. 
The underlying mechanism of reading a tag and then creating an object of the 
appropriate type is also available to the user in Ada 2005.

Suppose we are manipulating the geometrical objects discussed in the chapter 
on Safe Object-Oriented Programming. These are of various types such as 
Circle, Square, Triangle and so on and are all derived from the root  type 
Geometry.Object. We might  wish to read values of these objects from a 
keyboard. For a circle we would expect the values of its two coordinates 
followed by the radius. For a triangle we would expect  the two coordinates plus 
the values of the three sides and so on. We could declare functions Get_Object 
to read these values such as

function Get_Object return Circle is
begin
   return C: Circle do
      Get(C.X_Coord);  Get(C.Y_Coord);  Get(C.Radius);
   end return;
end Get_Object;

The internal calls of Get are calls of predefined procedures to read simple values 
from the keyboard. The user will have to type some code to indicate which type 
of object is being supplied. Perhaps the values for a circle could be preceded 
with the string "Circle"; we will also suppose that we have written a simple 
function Get_String to read and return such a string.

So now all we have to do is to read the code string, and then call the 
appropriate procedure Get_Object to create an object of the correct type. The 
key to this is to use a predefined generic function which, given a tag, returns an 
object of the corresponding type. In essence it is

generic
   type T(<>) is abstract tagged limited private;
   with function Constructor return T is abstract;
function Generic_Dispatching_Constructor(The_Tag: Tag) return T'Class;

This generic function has two generic parameters, the first identifies the class of 
types concerned (such as Geometry.Object from which the types Circle, Square 
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and Triangle are derived) and a dispatching operation to make objects of the 
specific types (such as functions Get_Object).

We can now instantiate this generic function to give a constructor function for 
geometrical objects

function Make_Object is 
 new Generic_Dispatching_Constructor(Object, Get_Object);

A call of Make_Object takes the tag of the specific type concerned, then 
dispatches to the appropriate function Get_Object and finally returns the value 
created.

We might  decide to declare an access variable to refer to the newly created 
object thus

Object_Ptr: access Object'Class;

If the tag value is in a variable Object_Tag (of the type Tag which is defined in 
the predefined language package Ada.Tags – the generic constructor function is 
also in this package), then we call Make_Object thus

Object_Ptr := new Object'(Make_Object(Object_Tag));

and now we have made the new object  (perhaps a circle) with the values of its 
coordinates and radius which were read from the keyboard.

We are not quite finished since we have to convert the string "Circle" which 
identifies the type concerned into the tag value used for dispatching. A simple 
way to do this is to write

for Circle'External_Tag use "Circle";
for Triangle'External_Tag use "Triangle";

and then we can read and convert  the external string into the internal tag value 
by

Object_Tag: Tag := Internal_Tag(Get_String);

There is of course no need to declare the variable Object_Tag since we can 
combine the operations into one single statement thus.

Object_Ptr := new Object'(Make_Object(Internal_Tag(Get_String));

Finally, it should be noted that the above discussion has been slightly simplified. 
The actual constructor has an auxiliary parameter which we have ignored.
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In real life many activities happen in parallel. Human beings do thing in parallel 
with considerable ease. Females seem to do this better than males – perhaps 
because they have to rock the baby while cooking the food and keeping the tiger 
out of the cave. The male typically just  concentrates on one thing at a time such 
as catching that rabbit  for dinner – or trying to find a bigger cave or perhaps 
even inventing a wheel.

Computers traditionally only do one thing at  a time, and the operating system 
makes it  look as if several things are going on in parallel. This is not  quite so 
true these days, since many computers do truly have multiple processors but it 
still does apply to the vast majority of small computers including those used in 
process control.

Operating systems and tasks

Operating systems vary enormously in the amount  of parallel activity that  they 
permit. Operating systems supporting POSIX provide the programmer with 
multiple threads of control. These various threads of control can flow through 
the program quite independently and so support parallel activities.

On some hardware there will only be one processor, which will be allocated 
to the different threads according to some scheduling algorithm. One approach 
is simply to give the processor to each thread in turn for a small amount  of time; 
more sophisticated approaches are to use priorities or deadlines to ensure that 
the processor is used effectively.

Some hardware might  have multiple processors in which case several threads 
can truly be active in parallel. Again a scheduler will allocate the processors in a 
hopefully effective way to the active threads of control.

In a programming language the parallel activities are generally called threads 
or tasks. Here we will use the latter which is the Ada term. Languages take very 
different  approaches to tasking. Some languages have intrinsic facilities for 
tasking built  into the language itself. Others provide simple access to the 
underlying primitives of the operating system. Yet others ignore the subject 
completely.

Ada and Java are languages with intrinsic tasking facilities. C and C++ have 
no built-in support for tasking, so programmers using these languages need to 
rely on third-party libraries and make direct calls to operating system services.

There are at  least  three advantages of having tasking within the language 
itself
▪ Built-in syntactic constructions make it much easier to write correct 

programs because the language can prevent a number of errors from 
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being made. It is essentially the old story about  abstraction. By hiding 
low-level details certain errors are prevented. 

▪ Portability is difficult if operating system facilities are used directly 
because they vary widely from system to system.

▪ General operating systems do not provide the range of timing and 
related facilities needed by many real-time applications.

The operations typically required in a tasking program are
▪ Tasks must be prevented from violating the integrity of data if several 

tasks need access to the data concurrently.
▪ Tasks need to communicate with each other in order to transfer data 

between them.
▪ Tasks need to be controlled in order to meet specific timing 

requirements.
▪ Tasks need to be scheduled in order to use resources efficiently and to 

meet their overall deadlines. 
This chapter will briefly look at  these topics and illustrate how Ada addresses 

them in a reliable manner. This is a design challenge, since programs with 
tasking are much harder to write correctly than ordinary sequential programs. 
But  first we introduce the simple idea of an Ada task and the overall program 
structure.

An Ada program can have many tasks running in parallel. A task is written in 
two parts rather like a package. It has a specification which describes the 
interface it  presents to other tasks and a body which contains the code saying 
what it actually does. In simple cases the specification simply names the task so 
we might have

task A;    -- task specification

task body A is   -- task body
begin
   ...   -- statements saying what the task does
end A;

Sometimes it  is convenient  to have several similar tasks in which case we can 
introduce a task type

task type Worker;

task body Worker is ...

We can then declare several tasks by declaring objects in the usual way
Tom, Dick, Harry: Worker;
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This creates three tasks called Tom, Dick and Harry. We can also declare arrays 
of tasks and have task components inside records and so on. Tasks can be 
declared wherever other objects can be declared such as in a package or in a 
subprogram or even within another task. Not surprisingly, task types are limited 
types, since assigning one task to another is not a meaningful operation.

The main subprogram of a complete program is invoked by the so-called 
environment  task and it is this environment task that  elaborates library 
packages, as described in the chapter on Safe Startup. An overall program with 
library packages A, B and C and main subprogram Main can therefore be 
thought of as 

task Environment_Task;

task body Environment_Task is
   ...  -- declarations of library packages A, B, C 
   ...  -- and main subprogram Main
begin
   ...  -- call of main subprogram Main
end;

A task becomes active simply by being declared. It finishes by reaching the end 
of the task body. An important  rule is that  a local task declared within a 
subprogram or another task must  finish before the enclosing unit  can itself be 
left  and the enclosing unit  will be suspended until the local task terminates. This 
rule prevents dangling references to data that no longer exists.

Protected objects

Suppose that the three tasks Tom, Dick and Harry are using a stack as some sort 
of temporary storage device. From time to time one of them pushes an item onto 
the stack and from time to time one of them (perhaps the same one, perhaps a 
different one) pops an item off the stack. 

The three tasks run in parallel and the runtime system gives the processor to 
each in turn according to some algorithm. Perhaps they each get 10 ms in turn.

Suppose the stack they are using is as declared in the chapter on Safe 
Architecture. Suppose that Harry is calling Push when his time slot expires and 
control then passes to Tom  who calls Pop. To be precise, suppose Harry loses the 
processor just after he has executed the statement to increment Top in

procedure Push(X: Float) is
begin
   Top := Top + 1;  -- Harry loses processor just after this
   A(Top) := X;
end Push;
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At this point Top has been incremented but the new value X has not been 
assigned to the component of the array. When Tom calls Pop, he gets the old and 
possibly meaningless value in the array component that was about  to be 
overwritten by the new value. When Harry gets the processor back (and 
assuming no other stack activity occurs meanwhile) he will write the value X 
into a component of the array that is a part  of the stack that  is not in use. In other 
words the value X is lost.

A worse situation can occur if the processor is switched part  way through a 
statement. Thus Harry might  lose the processor just  after he has picked up Top 
into a register but before he replaces Top with the new value. Suppose Dick now 
comes along and also does a Push thereby adding 1 to the old value of Top. 
When Harry resumes he will replace the value that  Dick computed by the same 
value. In other words the two calls of Push add just 1 to Top rather than 2 as 
expected. 

This unwanted behavior is overcome in Ada by using a protected object  for 
the stack. We write

protected Stack is
   procedure Clear;
   procedure Push(X: in Float);
   procedure Pop(X: out Float);
private
   Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float; 
end Stack;

protected body Stack is

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   procedure Push(X: in Float) is
   begin
      Top := Top + 1;
      A(Top) := X;
   end Push;

   procedure Pop(X: out Float) is
   begin
      X := A(Top);
      Top := Top – 1;
   end Pop;

end Stack;
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Note that  package has been changed to protected, the data which was in the 
body now appears in the private part of this new construct, and for reasons 
explained below the function Pop has been changed into a procedure Pop. 

The three procedures Clear, Push and Pop are called protected operations 
and are invoked in the same way as procedures. Their behavior is that only one 
task can access the operations of the object at  a time. If a task such as Tom 
attempts to call the procedure Pop while Harry is executing Push then Tom  is 
forced to wait  until Harry returns from Push. This is all done automatically with 
no effort  on the part  of the programmer. So any inconsistency problems are 
avoided. 

Behind the scenes the protected object has a lock, and a task attempting to 
access an operation of the object  has to acquire the lock first. If another task 
already has the lock then the first  one has to wait until that other task has 
finished with the protected operation of the object  that it was using and so 
relinquishes the lock. 

We can modify this example to show how we might cope with an attempt to 
push an item on the stack when it is full. In the package formulation this would 
raise Constraint_Error on the attempt to assign the value Max+1 to Top. As it  is 
written the same thing would happen and the lock would be automatically 
relinquished, because the exception terminates the call of the protected 
procedure. 

But  we can do much better. We can modify the protected object to use 
barriers as follows

protected Stack is
   procedure Clear;
   entry Push(X: in Float);
   entry Pop(X: out Float);
private
  Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;
end Stack;

protected body Stack is

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   entry Push(X: in Float) when Top < Max is
   begin
      Top := Top + 1;
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      A(Top) := X;
   end Push;

   entry Pop(X: out Float) when Top > 0 is
   begin
      X := A(Top);
      Top := Top – 1;
   end Pop;

end Stack;

The operations Push and Pop are now entries rather than procedures, and they 
have Boolean barrier expressions such as Top < Max. The effect  of a barrier is to 
prevent the body of the entry from being executed if the barrier is False. Note 
that his does not prevent the entry from being called. All that happens is that  the 
calling task is suspended until the barrier becomes True. So if Harry tries to call 
Push when the stack is full then he has to wait until some other task (Tom or 
Dick) calls Pop and removes the top item. Harry will then automatically proceed. 
The user does not have to program anything special.

Note that  entries, like protected procedures, are also called in the same way 
as normal procedures, thus

Stack.Push(Z);

In summary, the protected object  mechanism provided by Ada gives a structured 
mechanism for arranging mutually-exclusive access to a shared data object. A 
protected object  declares its protected operations (procedures, functions, or 
entries) in the visible part  of its specification, and the protected components in 
its private part. The body of the protected object  contains the implementation of 
the protected operations. A protected procedure and a protected entry have 
"read/write" access to the protected components – that  is, they can reference 
and/or assign to them – whereas a protected function only has read access. This 
restriction enables an optimization whereby multiple tasks may simultaneously 
read a protected object  (through protected function calls) but only one task at  a 
time is allowed to write to it. (This is sometimes called "Concurrent  Read, 
Exclusive Write".) The prohibition against protected functions assigning to 
protected components is why we had to express Pop as a procedure rather than a 
function in the first protected object version of Stack above.

Note also that, just as we can declare a task type as a template for task 
objects, we can likewise declare a protected type as a template for protected 
objects. And like task types, protected types are limited.

It  is instructive to consider how we might program this example using lower 
level primitives. The historic basic primitives are the operations P (acquire) and 
V (release) acting on objects called semaphores. The effect  of P(sem) is to 
acquire the lock associated with sem, if the lock is available, and otherwise to 
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suspend the calling task on a queue associated with sem. The effect of V(sem) is 
to release the lock associated with sem and to awaken one of the tasks (if any) 
suspended on the queue of sem.
The idea is that we put pairs of calls of P and V around the operations for which 
we wish to ensure mutually exclusive access. Thus, using the same Ada syntax, 
Push would become

   procedure Push(X: in Float) is
   begin
      P(Stack_Lock);  -- secure the lock
      Top := Top + 1;
      A(Top) := X;
      V(Stack_Lock);  -- release the lock
   end Push;

with similar pairs of calls around the body of Clear and Pop. This is essentially 
a Do-It-Yourself operation or assembly type coding for tasking. The 
opportunities for errors are many
▪ We might omit one of a P and V pair thus creating an imbalance.
▪ We might forget  them altogether around one group of statements that 

should be protected. 
▪ We might use the wrong semaphore name.
▪ We might inadvertently bypass a closing V. 

The last problem would arise if, in the model without  barriers, Push was 
called when the stack was full. This causes Constraint_Error to be raised. If we 
omit to provide a local exception handler to call V then the system will be 
permanently locked. 

None of these difficulties can arise when using Ada protected objects because 
all this low-level mechanism is done automatically. Although, with care, 
semaphores can be used successfully in simple situations, it  is very difficult to 
use them correctly in more complicated situations such as the example with 
barriers. Not  only is it difficult to program correctly with semaphores but it  is 
extremely difficult to prove that a program is correct.

Those familiar with Java will appreciate that the mechanisms of synchronized 
operations and wait/notify are rather low-level and error-prone. The programmer 
must be aware of the details of thread notification, which are handled 
automatically by Ada protected objects.
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The rendezvous

The other important  communication requirement between tasks is for one task to 
convey information (data) to another. This is done in Ada with a mechanism 
known as a rendezvous. The two tasks that communicate have a client–server 
relationship. The client that requests some service needs to know the identity of 
the server task, but  the server task who provides it  will accept a request  from 
any client. 

The general pattern of the server is
task Server is
   entry Some_Service(Formal: in out Data);
end;

task body Server is
begin
   ...
   accept Some_Service(Formal: in out Data) is
      ...  -- statements providing the service
   end Some_Service;
   ...
end Server;

The specification of the server indicates that it has an entry Some_Service. This 
is called by a client task in the same way as calling an entry of a protected 
object. The difference is that  the code to be obeyed is given by an accept 
statement and that is only executed when the server task reaches the accept 
statement. Until that happens the calling task is suspended. When the server 
reaches the accept statement, it executes it using any parameters supplied by the 
client. The client remains suspended until the accept  statement  is finished and 
after any out or in out parameters have been updated.

The body of a client might look like
task body Client is
   Actual: Data;
begin
   ...
   Server.Some_Service(Actual);
   ...
end Client;

Each entry has an associated queue. If a task calls an entry of a server and the 
server is not  waiting at an accept statement for that  entry, then the caller is 
queued. On the other hand, if the server reaches an accept statement and there 
are no tasks waiting on the associated entry queue, then the server is suspended. 
An accept statement  can appear anywhere, for example within a branch of a 
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conditional (if) statement, or within a loop, and so the mechanism is very 
flexible.

The rendezvous is a high level abstract  mechanism (like the protected object) 
and as such is relatively easy to use correctly. The corresponding queuing 
mechanisms programmed at a low level are hard to write correctly.

Here is an example of how the rendezvous can be used to enable a service to 
be provided without the client  waiting. The idea is that  the client  gives the 
server an entry to be called when a job is done. First we declare a mailbox type

task type Mailbox is
   entry Deposit(X: in Item);
   entry Collect(X: out Item);
end;

task body Mailbox is
   Local: Item;
begin
   accept Deposit(X: in Item) do
      Local := X;
   end;
   accept Collect(X: out Item) do
      X := Local;
   end;
end Mailbox;

A task of this type acts as a simple mailbox. An item can be deposited and 
collected later. The client  passes the identity of a mailbox to the server so that 
the server can deposit  the item in the mailbox from which the user can collect it 
later. We need an access type

type Mailbox_Ref is access Mailbox;

The tasks Server and Client now take the following form
task Server is
   entry Request(Ref: Mailbox_Ref; X: Item);
end;

task body Server is
   Reply: Mailbox_Ref;
   Job: Item;
begin
   loop
      accept Request(Ref: Mailbox_Ref; X: Item) do
         Reply := Ref;
         Job := X;
      end;
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      ...   -- work on job
      Reply.Deposit(Job);
   end loop;
end Server;

task Client;

task body Client is
   My_Box: Mailbox_Ref := new Mailbox;      -- create mailbox task
   My_Item: Item;
begin
   Server.Request(My_Box, My_Item);
   ...   -- do something whilst waiting
   My_Box.Collect(My_Item);
end Client;

In practice the client might poll the mailbox from time to time to see if the item 
is ready. This is easily done using a conditional entry call which takes the form

select
   My_Box.Collect(My_Item);
   -- item collected successfully
else
   -- not ready yet
end select;

It  is important  to realize that  the mailbox agent  task serves several purposes. It 
decouples the deposit  and collect operations so that the server can get on with 
the next job. Moreover, it means that  the server need know nothing about  the 
client; calling the client  directly would require the client to be of a particular 
task type and this would be most impractical. The mailbox agent task enables us 
to factor out the only property required of the client, namely the existence of the 
entry Deposit.

Restrictions

The pragma Restrictions which can be used to ensure that we do not use certain 
features of the language in a particular program was mentioned in the chapters 
on Safe Object-Oriented Programming and Safe Memory Management.

Many of the restrictions in Ada 2005 relate to tasking. The tasking features in 
Ada are very comprehensive and provide a whole range of facilities necessary to 
meet the programming needs of a variety of real-time applications. But  some 
applications are quite simple and do not need many of these facilities. Here are 
some samples of the sort of restrictions that can be applied.
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No_Task_Hierarchy
No_Task_Termination
Max_Entry_Queue_Length => n

The restriction No_Task_Hierarchy prevents tasks from being declared inside 
other tasks or inside subprograms – all tasks are therefore inside library-level 
packages. No_Task_Termination means that all tasks run for ever – this is 
common in many control applications where each task essentially has an endless 
loop doing some repetitive action. And the restriction on entry queues places a 
limit on the number of tasks that can be queued on a single entry at any time.

The advantage of giving appropriate restrictions are twofold
▪ It  might  enable a somewhat  simpler runtime system to be used. This 

could be smaller and faster and thus more appropriate for some time- 
and space-critical embedded applications.

▪ It  might enable various properties of the application to be proved 
correct, concerning matters such as determinism, absence of deadlock, 
and ability to meet deadlines. This might be vital for certain safety-
critical applications.

There are many other tasking restrictions and most  of these concern tasking 
facilities that we have not described.

Ravenscar

A particularly important  group of restrictions is imposed by the Ravenscar 
profile. In order to ensure that a program conforms to this profile we write

pragma Profile(Ravenscar);

in the program. Use of any of the excluded features (summarized below) would 
then cause a compile-time error.

The key purpose of the Ravenscar profile is to restrict the use of tasking 
facilities so that the effect  of the program is predictable. (The profile was 
defined by the International Real-Time Ada Workshops which met twice at the 
remote village of Ravenscar on the coast of Yorkshire in North-East England.)

The profile is simply defined to be equivalent to a number of restrictions plus 
a few other related pragmas concerning matters such as scheduling. The 
restrictions include those mentioned earlier so there are no task hierarchies, all 
tasks run for ever, and entry queues have a limit size of one (that is, there can be 
only one task blocked at a time on a given entry).
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The combined effect  of the restrictions is that  it  is possible to make 
statements about the ability of a particular program to meet  stringent 
requirements for the purposes of certification.

No other programming language offers the reliability of Ada as constrained 
by the Ravenscar profile. A description of the principles and use of the profile in 
high integrity systems will be found in an ISO/IEC Technical Report [3].

Timing and scheduling

No survey of Ada tasking, however brief, would be complete without a few 
words about timing and scheduling.

There are statements to enable a program to be synchronized with a clock. 
We can delay a program for a specific amount of time (this is referred to as a 
relative delay) or until a specific time thus

delay 2*Minutes;
delay until Next_Time;

assuming suitable declarations for Minutes and for Next_Time. Small relative 
delays might be useful for interactive use, whereas a delay until a particular time 
can be used to program periodic events. Time itself can be measured either by a 
real-time clock (which is guaranteed to have a certain accuracy) or by the local 
wall clock which might  be subjected to changes such as occur because of 
Daylight Savings. In Ada, it  is even possible to take account  of time zones and 
leap seconds.

Ada also provides a number of standard timers whose expiry can be used to 
trigger actions defined by a protected procedure (a handler). There are three 
kinds of timers, one enables the monitoring of the CPU time used by an 
individual task, one concerns the CPU budget for a group of tasks, and the third 
concerns time as measured by the real-time clock. The handler is attached to a 
timing event by a call of a procedure such as Set_Handler.

This is illustrated by the following amusing example concerning the boiling 
of an egg. We declare a protected object Egg thus

protected Egg is
   procedure Boil(For_Time: in Time_Span);
private
   procedure Is_Done(Event: in out Timing_Event);
   Egg_Done: Timing_Event;
end Egg;

protected body Egg is
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   procedure Boil(For_Time: in Time_Span) is
   begin
      Put_Egg_In_Water;
      Set_Handler(Egg_Done, For_Time, Is_Done'Access);
   end Boil;

   procedure Is_Done(Event: in out Timing_Event) is
   begin
      Ring_The_Pinger;
   end Is_Done;

end Egg;

The consumer can then write
Egg.Boil(Minutes(4));
-- now read newspaper whilst waiting for egg

and the pinger will ring when the egg is ready.
A number of different  scheduling policies are provided in Ada 2005. These 

can be applied to all tasks in a program or just to those in certain priority ranges 
by the use of pragmas. The policies are
FIFO_Within_Priorities – Within each priority level to which it applies tasks are 

dealt with on a first-in–first-out  basis. Moreover, a task may preempt  a 
task of a lower priority.

Non_Preemptive_FIFO_Within_Priorities  – Within each priority level to which it 
applies tasks run to completion or until they are blocked or execute a 
delay statement. A task cannot be preempted by one of higher priority. 
This sort of policy is widely used in high integrity applications.

Round_Robin_Within_Priorities  – Within each priority level to which it applies 
tasks are timesliced with an interval that  can be specified. This is a very 
traditional policy widely used since the earliest days of concurrent 
programming.

EDF_Across_Priorities – This provides Earliest  Deadline First  dispatching. The 
general idea is that within a range of priority levels, each task has a 
deadline and that with the earliest  deadline is processed. This is a new 
policy and has mathematically provable advantages with respect  to 
processor utilization.

Ada also has comprehensive facilities concerning the setting and changing of 
task priorities and the so-called ceiling priorities of protected objects. These 
avoid problems of priority inversion as described in [4].

  Safe concurrency

 



Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company



Safe and Secure Software
Ada 2005An Invitation to

Certified Safe with SPARK

11

Courtesy of

The GNAT Pro Company
John Barnes



103

For some applications, especially those that are safety-critical or security-
critical, it  is essential that  the program be correct, and that correctness be 
established rigorously through some formal procedure. For the most  severe 
safety-critical applications the consequence of an error can be loss of life or 
damage to the environment. Similarly, for the most severe security-critical 
applications the consequence of an error may be equally catastrophic such as 
loss of national security, commercial reputation or just plain theft. 

Applications are graded into different  levels according to the risk. For 
avionics applications the DO-178B standard [1] defines the following
level E none: no problem; e.g. entertainment system fails? – could be a benefit!
level D minor: some inconvenience; e.g. automatic lavatory system fails.
level C major: some injuries; e.g. bumpy landing, cuts and bruises.
level B hazardous: some dead; e.g. nasty landing with fire.
level A catastrophic: aircraft crashes, all dead; e.g. control system fails.
As an aside, note that although a failure of the entertainment system in general 
is level E, if the failure is such that  the pilot is unable to switch it  off (perhaps in 
order to announce something unpleasant) then that failure is at level D.

For the most demanding applications, which require certification by an 
appropriate authority, it is not enough for a program to be correct. The program 
also has to be shown to be correct and that is much more difficult.

This chapter gives a very brief introduction to SPARK. This is a language 
based on a subset  of Ada which was specifically designed for the writing of high 
integrity systems. Although technically just  a subset  of Ada with additional 
information provided through Ada comments, it  is helpful to consider SPARK as 
a language in its own right  which, for convenience, uses a standard Ada 
compiler, but which is amenable to a more formal treatment than the full Ada 
language. Analysis of a SPARK program is carried out by a suite of tools of 
which the most important are the Examiner, Simplifier, and Proof Checker.

We start by considering the important concept of correctness and contracts.

Contracts

What  do we mean by correct software? Perhaps a general definition is: software 
that does what  the user had in mind. And "had in mind" might literally mean just 
that for a simple one-off program written to do an ad-hoc calculation; for a large 
avionics application, it  might  mean the text  of some written contract between 
the ultimate client and the software developer.

This idea of a software contract  is not new. If we look at the programming 
libraries developed in the early 1960s, particularly in mathematical areas and 
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perhaps written in Algol 60 (a language favored for the publication of such 
material in respected journals such as the Communications of the ACM and the 
Computer Journal), we find that  the manuals tell us what parameters are 
required, what constraints apply on their range and so on. In essence there is a 
contract between the writer of the subroutine and the user. The user promises to 
hand over suitable parameters and the subroutine promises to produce the 
correct answer.

The decomposition of a program into various component parts is very 
familiar and the essence of the programming process is to define what these 
parts do and therefore what  the interfaces are between them. This enables the 
parts to be developed independently of each other. If we write each part 
correctly (so that it  satisfies its side of the contract  implied by its interface) and 
if we have defined the interfaces correctly, then we are assured that when we put 
the parts together to create the complete system, it will work correctly.

Bitter experience shows that  life is not quite like that. Two things go wrong: 
on the one hand the interface definitions are not usually complete (there are 
holes in the contracts) and on the other hand, the individual components are not 
correct or are used incorrectly (the contracts are violated). And of course the 
contracts might not say what we meant to say anyway.

Correctness by construction

SPARK encourages the development of programs in an orderly manner with the 
aim that  the program should be correct  by virtue of the techniques used in its 
construction. This "correctness by construction" approach is in marked contrast 
to other approaches that  aim to generate as much code as quickly as possible in 
order to have something to demonstrate.

There is strong evidence from a number of years of use of SPARK in 
application areas such as avionics, banking, and railway signaling that indeed, 
not only is the program more likely to be correct, but  the overall cost of 
development  is actually less in total after all the testing and integration phases 
are taken into account.

We will now look in a little more detail at  the two problem areas introduced 
above, first  giving complete interface definitions, and secondly ensuring that  the 
code correctly implements the interface.

Ideally, the definition of the interfaces between the software components 
should hide all irrelevant  detail but expose all relevant  detail. Alternatively we 
might say that an interface definition should be both complete and correct. 

As a simple example of an interface definition consider the interface to a 
subprogram. As just mentioned, the interface should describe the full contract 
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between the user and the implementer. The details of how the subprogram is 
implemented should not concern us. In order that these two concerns be clearly 
distinguished it is helpful to use a programming language in which they are 
lexically distinct. Some languages present  subprograms (functions or methods) 
as one lump, with the interface physically bound to the implementation. This is 
a nuisance: not only does it  make checking the interface less straightforward 
since the compiler wants the whole code, but it also encourages the developer to 
hack the code at  the same time as writing the interface and this confuses the 
logic of the development process. 

Ada has a structure separating interface (the specification) from the 
implementation (the body). This applies both to individual subprograms and to 
groups of entities encapsulated into packages and this is a key reason why Ada 
forms such a good base for SPARK. 

SPARK requires additional information to be provided and this is done through 
the mechanism of annotations which conveniently take the form of Ada 
comments. A key purpose of these annotations is to increase the amount of 
information about  the interface without  providing unnecessary information 
about the implementation. In fact  SPARK allows the information to be added at 
various levels of detail as appropriate to the needs of the application.

Consider the information given by the following Ada specification
procedure Add(X: in Integer);

Frankly, it tells us very little. It  just  says that  there is a procedure called Add and 
that it  takes a single parameter of type Integer whose formal name is X. This is 
enough to enable the compiler to generate code to call the procedure. But it says 
nothing about  what  the procedure does. It  might do anything at  all. It certainly 
doesn't  have to add anything nor does it have to use the value of X. It could for 
example subtract  two unrelated global variables and print  the result to some file. 
But  now consider what happens when we add the lowest  level of annotation. 
The specification might become

procedure Add(X: in Integer);
--# global in out Total;

This states that the only global variable that the procedure can access is that 
called Total. Moreover the mode information tells us that  the initial value of 
Total  must  be used (in) and that a new value will be produced (out). The SPARK 
rules also say more about the parameter X. Although in Ada a parameter need 
not be used at all, nevertheless an in parameter must be used in SPARK.

So now we know rather a lot. We know that a call of Add will produce a new 
value of Total  and that  it  will use the initial value of Total  and the value of X. We 
also know that  Add cannot  affect  anything else. It certainly cannot print 
anything or have any other unspecified side effect.
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Of course, the information regarding the interface is not complete since 
nowhere does it  require that  addition be performed in order to obtain the new 
value of Total. In order to do this we can add optional annotations which 
concern proof and obtain

procedure Add(X: in Integer);
--# global in out Total;
--# post Total = Total~ + X;

The annotation commencing post is called a postcondition and explicitly says 
that the final value of Total  is the result  of adding its initial value (distinguished 
by ~) to that of X. So now the specification is complete.

It  is also possible to provide preconditions. Thus we might require X to be 
positive and we could express this by 

--# pre X > 0;

An important  aspect of the annotations is that  they are all checked statically by 
the SPARK Examiner and other tools and not when the program executes. 

It  is especially important to note that  the pre- and postconditions are checked 
before the program executes. If they were only checked when the program 
executes then it would be a bit like bolting the door after the horse has bolted 
(which reveals a nasty pun caused by overloading in English!). We don't  really 
want to be told that the conditions are violated as the program runs. For 
example, we might have a precondition for landing an aircraft

procedure Touchdown( ... );
--# pre Undercarriage_Down;

It  is pretty unhelpful to be told that  the undercarriage is not  down as the plane 
lands; we really want to be assured that the program has been analysed to show 
that the situation will not arise.

This thought  leads into the other problem with programming – ensuring that 
the implementation correctly implements the interface contract. This is often 
called debugging. Generally there are four ways in which bugs are found
(1) By the compiler. These are usually easy to fix because the compiler tells 

us exactly what is wrong.
(2) At runtime by a language check. This applies in languages which carry 

out checks that, for example, ensure that  we do not  write outside an 
array. Typically we obtain an error message saying what structure was 
violated and whereabouts in the program this happened.

(3) By testing. This means running various examples and poring over the 
(un)expected results and wondering where it all went wrong.
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(4) By the program crashing. This often destroys much of the evidence as 
well so can be very tedious.

Type 1 should really be extended to mean "before the program is executed". 
Thus it  includes program walkthroughs and similar review techniques and it 
includes the use of analysis tools such as those provided for SPARK.

Clearly these four ways represent a progression of difficulty. Errors are easier 
to locate and correct if they are detected early. Good programming tools are 
those which move bugs from one category to a lower numbered category. Thus 
good programming languages are those which provide facilities enabling one to 
protect oneself against  errors that are hard to find. Ada is a particularly good 
programming language because of its strong typing and runtime checks. For 
example, the correct  use of enumeration types makes hard bugs of type 3 into 
easy bugs of type 1 as we saw in the chapter on Safe Typing.

A major goal of SPARK is to strengthen interface definitions (the contracts) 
and so to move all errors to a low category and ideally to type 1 so that  they are 
all found before the program executes. Thus the global annotations do this 
because they prevent  us writing a program that accidentally changes the wrong 
global variables. Similarly, detecting the violation of pre- and postconditions 
results in a type 1 error. However, in order to check that  such violation cannot 
happen requires mathematical proof; this is not  always straightforward but the 
SPARK tools automate much of the proof process.

The kernel language

Ada is a very comprehensive language and the use of some features makes total 
program analysis difficult. Accordingly, the subset  of Ada supported by SPARK 
omits certain features. These mostly concern dynamic behavior. For example, 
there are no access types, no dynamic dispatching, generally no exceptions, all 
storage is static and hence all arrays must have static bounds (but  subprogram 
parameters can be dynamic) and there is no recursion.

Tasking of course is very dynamic and although SPARK does not support  full 
Ada tasking it  does support  the Ravenscar profile mentioned in the chapter on 
Safe Concurrency.

Another restriction that helps analysis is that every entity has to have a name. 
And each name should uniquely identify one entity. Hence all types and 
subtypes have to be named and overloading is generally prohibited. But the 
traditional block structure is supported so that local names are not restricted. 
Moreover, tagged types are permitted, although class wide types are not. 

The idea of state is crucial to analysis and there is a strong distinction 
between procedures whose purpose is to change state and functions whose 
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purpose is simply to observe state. This echoes the difference between 
statements and expressions mentioned in the chapter on Safe Syntax. Functions 
in SPARK are not permitted to have any side effects at all.

The resulting kernel has proved to be sufficiently expressive for the needs of 
critical applications which would not  want to use features such as dynamic 
storage.

Tool support

There are three main SPARK tools, the Examiner, the Simplifier and the Proof 
Checker. 

The Examiner is vital. It has two basic functions
• It checks conformance of the code to the rules of the kernel language. 
• It  checks consistency between the code and the embedded annotations 

by flow analysis. 
The Examiner performs these checks largely by analyzing the interfaces 
between components and ensuring that the details on either side do indeed 
conform to the specifications of the interfaces. The interfaces are of course the 
specifications of packages and subprograms and the annotations say more about 
these interfaces and thereby improve the quality of the contract  between the 
implementation of the component and its users.

Incidentally, the Examiner is itself written in SPARK and has been applied to 
itself. There is therefore considerable confidence in the correctness of the 
Examiner.

The core annotations ensure that a program cannot  have certain errors related 
to the flow of information. Thus the Examiner detects the use of uninitialized 
variables and the overwriting of values before they are used. This means that 
care should be taken not  to give junk initial values to variables "just in case" as 
mentioned in the chapter on Safe Startup because that  would hinder the 
detection of flow errors.

However, the core annotations do not address the issue of dynamic behavior. 
In order to do this a number of proof annotations can be inserted such as the pre- 
and postconditions we saw earlier which enable dynamic behavior to be 
analysed prior to execution. The general idea is that these annotations enable the 
Examiner to generate conjectures (potential theorems) which then have to be 
proved in order to verify that the program is correct  with respect  to the 
annotations. These proof annotations address
• pre- and postconditions of subprograms, 
• assertions such as loop invariants and type assertions, 
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• declarations of proof functions and proof types. 
The generated conjectures are known as verification conditions. These can then 
be verified by human reasoning, which is usually tedious and unreliable, or by 
using other tools such as the Simplifier and the Proof Checker.

Even without  proof annotations, the Examiner can generate conjectures 
corresponding to the runtime checks of Ada such as range checks. As we saw in 
the chapter on Safe Typing, these are checks automatically inserted to ensure 
that a variable is not assigned a value outside the range permitted by its 
declaration or that no attempt  is made to read or write outside the bounds of an 
array. The proof of these conjectures shows that the checks would not be 
violated and therefore that the program is free of runtime errors that would raise 
exceptions.

Note that  the use of proof is not necessary. SPARK and its tools can be used at 
various levels. For some applications it  might be appropriate just  to apply the 
core annotations because these alone enable flow analysis to be performed. But 
for other applications it  might be cost-effective to use the proof annotations as 
well. Indeed, different levels of analysis can be applied to different  parts of a 
complete program. 

There are a number of advantages in using a distinct tool such as the 
Examiner rather than simply a front-end processor which then passes its output 
to a compiler. One general advantage is that  it  encourages the early use of a V & 
V (Verification and Validation) approach. Thus it is possible to write pieces of 
SPARK complete with annotations and to have them processed by the Examiner 
even before they can be compiled. For example, a package specification can be 
examined even though its private part might not yet be written; such an 
incomplete package specification cannot of course be compiled.

There is a temptation to take an existing piece of Ada code and then to add 
the annotations (often referred to as "Sparking the Ada"). This is to be 
discouraged because it typically leads to extensive annotations indicative of an 
unnecessarily complex structure. Although in principle it  might  then be possible 
to rearrange the code to reduce the complexity, it is often the case that  such 
good intentions are overridden by the desire to preserve as much as possible of 
the existing code. 

The proper approach is to treat  the annotations as part of the design process 
and to use them to assist in arriving at a design which minimizes complexity 
before the effort of detailed coding takes one down an irreversible path. 
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Examples

As a simple example here is a version of the stack with full core annotations 
(but not proof annotations)

package Stacks is

   type Stack is private;

   function Is_Empty(S: Stack) return Boolean;
   function Is_Full(S: Stack) return Boolean;

   procedure Clear(S: out Stack);
   --# derives S from ;

   procedure Push(S: in out Stack; X: in Float);
   --# derives S from S, X;

   procedure Pop(S: in out Stack; X: out Float);
   --# derives S, X from S;

private  
   Max: constant := 100;
   type Top_Range is range 0 .. Max;
   subtype Index_Range is Top_Range range 1 .. Max;
   type Vector is array Index_Range of Float;
   type Stack is  
      record
         A: Vector;
         Top: Top_Range;
      end record;
end Stacks;

We have added functions Is Full  and Is Empty which just read the state of the 
stack. They have no annotations at all.

Derives annotations have been added to the various procedure specifications; 
these are not mandatory but  can improve flow analysis. Their purpose is to say 
which outputs depend upon which inputs – in this simple example they can in 
fact be deduced from the parameter modes. However, redundancy is one key to 
reliability and if they are inconsistent with the modes then that will be detected 
by the Examiner and perhaps thereby reveal an error in the specification.

The declarations in the private part have been changed to give names to all 
the subtypes involved.

At this level there are no changes to the package body at all – no annotations 
are required. This emphasizes that SPARK is largely about  improving the quality 
of the description of the interfaces.
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A difference from the earlier examples is that  we have not given an initial 
value of 0 for Top but require that  Clear be called first. When the Examiner 
looks at  the client code it will perform flow analysis to ensure that Push and 
Pop are not called until Clear has been called; this analysis will be performed 
without  executing the program. If the Examiner cannot deduce this then it  will 
report that  the program has a potential flow error. On the other hand if it  can 
actually deduce that Push or Pop are called before Clear then it will report that 
the program is definitely in error.

In this brief overview it  is not  feasible to give serious examples of the proof 
process but the following trivial example will illustrate the ideas. Consider

procedure Exchange(X, Y: in out Float);
--# derives X from Y &
--#              Y from X;
--# post X = Y~ and Y = X~;

which shows the specification of a procedure whose purpose is to interchange 
the values of the two parameters. The body might be

procedure Exchange(X, Y: in out Float) is
   T: Float;
begin
   T := X;  X := Y;  Y := T;
end Exchange;

Analysis by the Examiner generates a verification condition which has to be 
shown to the true. In this particular example this is trivial and is done 
automatically by the Simplifier. In more elaborate situations the Simplifier will 
not be able to complete a proof in which case the Proof Checker is then used. 
This is an interactive program which, under human guidance, will hopefully be 
able to find a valid proof. 

Certification

As earlier chapters have shown, Ada is an excellent  language for writing reliable 
software. Ada allows programmers to catch errors early in the development 
process. Even more errors can be detected by using SPARK without having to 
rely on testing – a difficult and error-prone process in itself, yet an indispensable 
part of the software process. 

For the highest level of safety-critical and security-critical applications it  is 
not enough for a program to be correct. It  also has to be shown to be correct. 
This is usually called certification and is performed according to the methods of 
a relevant  certification agency. Examples of such agencies in the US are the 
FAA for safety-critical applications and the NSA for security-critical 
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applications. SPARK is of great value in developing programs to be certified as 
safe or secure as appropriate.

It  might  be thought that using SPARK adds to development costs. However, a 
recent  study concerning a security system for the NSA [5] showed that using 
SPARK proved cheaper than conventional development  methods. This again is 
perhaps surprising because SPARK clearly requires effort for the writing of 
annotations. But again that effort is well spent  and reduces time needed for 
correcting errors. In the particular application concerned it is claimed that  no 
errors were ever introduced anyway because of the careful way in which the 
program was constructed.
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It  is hoped that  this booklet will have proved interesting. It  has covered a 
number of aspects of writing reliable software and hopefully has shown that  Ada 
is a good language and source of inspiration to use for programs that  matter. We 
conclude with some background notes on the development of languages. 

The balance between hardware and software is interesting. Hardware has 
evolved in an amazing way in the last  half century. The hardware of today bears 
no resemblance whatever to the hardware of 1960. By contrast, software has 
progressed but  little. The languages of today are in many ways little different  to 
those of 1960. I suspect that  the ultimate problem is that we know little about 
software although we probably think we know rather a lot. Moreover, society 
has made huge investments in badly written software and finds it hard to move 
forward at  all. But hardware changes so rapidly that it  inevitably gets discarded. 
And of course it  is very easy for anyone to learn to write a bit of software but 
massive know-how is required to build any hardware.

Mainstream languages have two main origins, Algol 60 and CPL. These are 
the ancestors of the languages mentioned most  in this booklet. Another group of 
languages, Fortran, COBOL and PL/I, live on but seem to be somewhat isolated.

Algol 60 was perhaps the most important  step forward ever made. (There was 
a lesser known precursor called Algol 58 from which the US military language 
Jovial was derived but that  is a minor detail.) Algol gave the feeling that writing 
software was more than just coding. 

Algol made two big steps. It  recognized that assignment was not equality by 
using := for assignment. It also introduced English words for control purposes 
and thereby eliminated most of the gotos, jumps and labels that  made early 
Fortran and autocode programs so hard to understand. This second point  is 
worth looking at in some detail.

Consider first the following two statements in Algol 60
if X > 0 then
   Action( ... );
Otherstuff( ... );

The effect  is that if X is indeed greater than zero then the subroutine Action  is 
called. Whether Action is called or not we then always go on to call Otherstuff. 
The interesting thing is that  the conditional only governs the first statement 
following then. If we need to govern several statements such as call subroutines 
This and That then we have to combine the two statements into a single 
compound statement thus

if X > 0 then
begin
   This( ... );
   That( ... );
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end;
Otherstuff( ... );

There are two dangers here. One is simply that  we might forget to insert begin 
and end. It  would still compile of course but That would always get called 
whatever the value of X. But a bigger hazard is the danger of stray semicolons. 
Algol 60 was perhaps the first  language to use semicolons to terminate or 
separate statements. Now consider what  happens if a programmer inadvertently 
adds a semicolon immediately after then. We get

if X > 0 then ;
begin
   This( ... );
   That( ... );
end;
Otherstuff( ... );

Unfortunately, in Algol 60 the semicolon is deemed to be separating a null 
statement from the compound statement (a null statement does nothing – it  is 
invisible too!) And so the conditional does nothing and the subroutines This and 
That are always called. There were other related problems in Algol 60 
concerning the syntax of loops.

The designers of Algol 68 recognized this problem and introduced a 
bracketed form thus

if X > 0 then
   This( ... );
   That( ... );
fi;
Otherstuff( ... );

Other similar structures were used for loops with do being matched by od and 
case being matched by esac. This structure completely solves the problem. It is 
now crystal clear that the conditional governs the two statements. Moreover, 
adding a spurious semicolon after then is a syntax error and so is instantly 
detected by the compiler. Of course many thought  that the reversed words fi, od 
and esac indicated that the language was bizarre and not to be taken seriously.

Whatever the reason, the designers of Pascal ignored this sensible approach 
and continued to use the flawed structure of Algol 60. Eventually however they 
did realize their error when it came to Modula 2 but this was long after Ada.

Ada was probably the first successful language to use the bracketed structure 
but it does sensibly avoid the peculiar backward words. Thus in Ada we write

if X > 0 then
   This( ... );
   That( ... );
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end if;
Otherstuff( ... );

Many other languages have taken this safe route including even the macro 
language in the elegant  Microsoft Word for DOS and Visual Basic which is the 
corresponding macro language for Word for Windows.

The other important background language was CPL. It was devised in about 
1962 as the language to be used by two powerful new computers at Cambridge 
and London universities.

CPL (like Algol 60) used := for assignment  and = for equality. Here is a small 
fragment of CPL

§ let t, s, n = 1, 0, 1
  let x be real
  Read[x]
     t, s, n := tx/n, s + t, n + 1
     repeat until t << 1
  Write[s] §|

An interesting feature of CPL is that  it used = rather than := when setting initial 
values on the grounds that no change was involved. CPL had many novel 
features such as parallel assignments and list  processing. However, CPL was 
never implemented but remained an academic design. 

CPL used essentially the same structure as Algol 60 for grouping statements. 
Thus we would have written

if X > 0 then do
   § This( ... )
      That( ... ) §|
Otherstuff( ... )

Note that  the items grouped together are surrounded by the strange brackets § 
and §| (actually the closing bracket was the section sign with the vertical bar 
through it but this word processor does not allow me to do that so I have put 
them side by side).

Although CPL was never implemented, the simple language BCPL (Basic 
CPL) was a simple successor devised at Cambridge. The major difference was 
that whereas CPL was a strongly typed language, BCPL really had no types at 
all and arrays were just  treated as arithmetic on addresses. BCPL is the origin of 
the buffer overflow problem which plagues the world today.

From BCPL came B and then C, C++ and so on. BCPL used := for 
assignment but  somewhere along the way someone missed the point  and C 
ended up with = for assignment. Having hijacked = for assignment  C uses a 

  Conclusion
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double equals (==) to mean equality and this gives rise to a number of problems 
as we saw in the chapter on Safe Syntax. 

C inherited the same compound statement  style from CPL but replaced the 
strange brackets by the braces { and }and thus in C we write 

if (x > 0) 
{
   this( ... );
   that( ... );
};
otherstuff( ... );

There is little of the original CPL left  in C. In fact  the only thing really left  is the 
brackets.

And finally, we conclude by noting that  the use of the equals sign for 
assignment is an example of the use of puns so hated by the late Christopher 
Strachey. Strachey was one of the designers of CPL. At a NATO lecture many 
years ago he said "The way in which people are taught to program is 
abominable. They are over and over again taught to make puns; to do shifts 
when they mean multiplying; to confuse bit patterns and numbers and generally 
to say one thing when they mean something quite different. I think we will not 
make it possible to have a subject of software engineering until we can have 
some proper professional standards about how to write programs; and this has 
to be done by teaching people right at the beginning how to write programs 
properly. I'm sure that one of the first things to do about this is to say what you 
mean, and not to say something quite different.". 

That about sums it  up. We need to learn to say what we mean. Ada enables us 
to say what we mean clearly and that ultimately is its strength.

Safe and Secure Software: An invitation to Ada 2005
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