GtkAda: Design and Implementation of a High
Level Binding in Ada

Emmanuel Briot!, Joél Brobecker?, and Arnaud Charlet!

1 ACT Europe, 8 rue de Milan, 75009 Paris, France
2 218-1741 West 10** avenue, V6J 2A5 Vancouver B.C., Canada

Abstract. The purpose of this paper is to describe the design and im-
plementation choices that were made during the development of an Ada
binding to the popular Gtk+ graphical toolkit. We concentrate on the
methods used to interface between C and Ada, but many topics described
in this paper are not tied to Ada and can be applied to other high level
languages that need to interface with existing libraries. We also describe
the various mechanisms developed to provide a powerful GUI builder
with GtkAda.

This paper emphasizes the added value that Ada brings to the task of
writing a high level binding over an existing library.

1 Introduction to Gtk+

Gtk+ is a powerful graphical toolkit originally developed as part of the GIMP [1]
(the GNU Image Manipulation Program). Since Gtk+ had been designed to be
cleanly separated from the rest of the GIMP code, and given the success of the
toolkit, it became eventually obvious that the Gtk+ library should be made a
stand-alone capability so that other applications could take advantage of it.

Thanks to its elegant Object-Oriented design, its efficiency, and its portabil-
ity, this toolkit has become very popular and is being used in many applications.
In particular, the GNOME [2] project (the GNU Network Object Model Environ-
ment) which intends to build both a complete, easy-to-use desktop environment
for the user, and a powerful application framework for the software developer,
has chosen Gtk+ as its graphical library.

Another important advantage of Gtk+ is that it was designed to make it easy
to create bindings to it for various languages. Any construct that could make
the binding task more complex, such as procedures with variable arguments for
example, were mostly avoided. This explains why there are currently more than
twenty different listed bindings based on Gtk+.

Gtk+ has thus become the graphical toolkit of choice. Along with its as-
sociated tools, such as code generators like GtkGlade [3], it offers a complete
suite to develop graphical user interfaces in a portable way, and with a common
look-and-feel.

2 The GtkAda Project

The GtkAda project started with the observation that there was no complete
high level graphical library freely available for Ada. From this simple idea, we had
to decide which library our toolkit would be based on. The obvious choices were
Motif and Gtk+. Motif because it was a widely used and known standard; Gtk+
because of its free software status, its modern design, and its open architecture,
which makes it easy to interface to it from other languages. The main drawbacks
of Motif are the requirement to have an X server to run it, and its “old” interface
that suffers some disadvantages that Gtk+ avoids, for example the absence of
built-in support for multi-threaded applications.

2.1 Thin and Thick Bindings

A thin binding is a simple line-for-line translation that is usually done auto-
matically or semi-automatically, to transform a foreign language interface into
Ada specifications. Little attempt, if any, is made to introduce additional type
safety and “real” Ada types, such as strings instead of null terminated character
pointers, high level constructs such as tagged types, controlled types, etc.

The term thick binding usually relates to a library interface that goes beyond
— sometimes far beyond — the simple task of mapping the foreign language types
and routines, providing an APIT that is closer to what a similar library written
directly in Ada would provide. Ideally, a good thick binding should “hide” the
fact that it is using an external library internally, turning this into an “imple-
mentation detail”.

This is where the term thick binding seems inadequate, because by providing
a language-friendly interface and by adding extra functionalities, we are really
making available a complete toolkit on its own. Because of this we like to refer
to GtkAda as an Ada Graphical Toolkit.

3 How to Add Safety to a C Library

The first level of safety is brought by the Ada language itself. As opposed to
C, Ada provides type safety via a strong typing policy which prevents the user
from mixing inadvertently 2 different types. Enumerated types are also used to
our advantage to replace C enums. In contrast to C, where it is possible to use an
out-of-range value, Ada enforces at compile-time the usage of valid enumerations
values only.

A central difficulty in binding to Gtk+ is the systematic usage of C strings
(charx), which leads to memory management problems, such as memory leaks,
dangling pointers, etc. Instead, GtkAda uses the more natural type String, which
allows the user to avoid all these problems. Converting an Ada String to C is
achieved by simply appending ASCIL.Nul to the Ada strings. Converting a C
string to Ada presents additional problems. Although the conversion itself is

straightforward with the services provided in Interfaces.C.Strings, the memory
management part has to be handled by GtkAda to avoid memory leaks.

A similar problem arises for arrays. Whereas passing an Ada array to a C
function in a portable fashion is easy (give the address of the first element),
getting an array back is trickier. For instance, it is in general not possible to ask
the user to allocate an array, and pass it as an “out” parameter, because this
would require knowledge of the size of the returned array. Likewise, unless one
knows the internals of the implementation of arrays and their bounds in Ada, i.e.
the way the structures are laid out, it is not possible to recreate a complete Ada
array without copying the data element by element, which of course is inefficient.

The solution we have used is to provide “flat arrays”, that have no real
bounds (effectively they have the maximum possible bounds), as seen in figure 1.
With the declarations given therein, a function that interfaces to the C library
should return a System.Address, that can then be safely converted into a valid
Ada array. Of course, the bounds information has to be read from elsewhere,
generally as an out parameter of a C function, since it is not available within
the new array. A Points_Array structure is created to closely associate the flat
array with its real bounds.

type Gdouble_Array is array (Natural) of Gdouble;
type Gdouble_Array_Access is access all Gdouble_Array;
type Points_Array is record

Points : Gdouble_Array_Access;

Num_Points : Gint := 0;
end record;

function To_Double_Array is new Unchecked_Conversion
(System.Address, Gdouble_Array_Access);

Fig. 1. Converting from C arrays to Ada arrays

Tagged types provide another level of type safety, in the widget hierarchy of
GtkAda. Fig. 2 shows the pattern followed for the declaration of each widget:
each widget is declared as an access to a class-wide type. Most of the opera-
tions associated with each widget are primitive, thus making them dispatching
operations. As a result, the library provides the user with all the advantages of
class-wide programming.

Although Gtk+ follows a design that is fully Object-Oriented, the C language
imposed some limitations on the implementation itself. Only type inheritance is
provided, and the “methods” are not inherited. Therefore, there is no real poly-
morphism. As a consequence, the user is forced into the frequent use of type-casts,
as shown in Fig. 3(a) where a Gtk_Window is converted into a Gtk_Container
by calling the GTK_CONTAINER() macro. Experience shows that these type-casts
are ubiquitous, increasing development costs and impairing the readability of

with Gtk.Object; use Gtk.Object;

package Gtk.Widget is
type Gtk_Widget_Record is new Gtk_Object_Record with private
type Gtk_Widget is access all Gtk_Widget_Record’Class;
—-— Followed by all the widget associated operations...

end Gtk.Widget;

Fig. 2. All widget declarations follow the same pattern

the resulting software. Moreover, as type-casting is a potentially unsafe opera-
tion, programming errors are likely to occur and lead to obscure software faults,
which explains the introduction of these casting macros: besides doing a type
cast, they also perform a run time type check.

On the other hand, Ada has been designed to provide such type safety in a
totally transparent way: these problems were naturally solved in GtkAda with
the usage of tagged types. Figure 3, where the same program is successively
written in C and Ada, shows that using tagged types makes the GtkAda toolkit
lighter to use and easier to read. The complexity of developing and maintaining
the Ada program is therefore decreased.

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window), "reparent");
gtk_container_set_border_width (GTK_CONTAINER (window), 0);

(a) C implementation

Gtk_New (Window => Window, The_Type => Window_Toplevel);
Set_Title (Window => Window, Title => "reparent");
Set_Border_Width (Container => Window, Border_Width => 0);

(b) Equivalent Ada implementation

Fig. 3. The same code extract written both in C and Ada

Furthermore, through a careful use of generics, GtkAda provides at compile-
time a type safety which was only available as run-time checks in the C library.
As all other GUI toolkits do, GtkAda provides an callback mechanism (functions
called whenever an event happens). But this mechanism is much more power-
ful than most, since its callbacks can have any number of arguments and can
optionally return a value, depending on the type of event.

This multipurpose callback mechanism, which gives access to functions with
variable argument lists, was probably the area where the type safety issue was
the most critical. In Ada, this callback mechanism has been translated in a set
of collaborating generic packages defined in Gtk.Handlers. The user needs to
instantiate at least one of these packages for each of the possible profiles of the

callbacks, and then use the subprograms provided to connect the widget and the
callback.

The idea behind these packages is that by default the argument list is trans-
formed into an array, and passed as a single argument to the callback. However,
for convenience, another set of packages, called marshallers, is provided to break
this array into its components and then call the user handler.

Figure 4 shows how these generic packages can be used to connect a handler
to an event generated when the user tries to close the window using the window
decorations. The function To_Marshaller creates the marshaller transparently,
as explained above, so that the user callback is a standard Ada function.

function My_Cb (Widget : access Gtk_Widget_Record’Class;
Event : Gdk.Event.Gdk_Event)
return Gint;

-- The function that needs to be called back

package Return_Widget_Cb is new Gtk.Handlers.Return_Callback
(Widget_Type => Gtk.Widget.Gtk_Widget_Record,
Return_Type => Gint);

-- Instantiation of a generic callback package

Return_Widget_Cb.Connect

(Widget => W,

Name => "delete_event",

Marsh => Return_Widget_Cb.To_Marshaller (My_Cb’Access));
-- The compiler checks that My_Cb has the right signature

Fig. 4. How to use the generic packages provided by Gtk.Handlers

In combination with generics, access to subprogram types are also used sys-
tematically to provide additional strong typing. This feature is used, for example,
to allow the user to pass in a simple way a self-defined action routine to an active
iterator in Gtk.Ctree, as demonstrated in Fig. 5.

4 Benefits of the Object Oriented Features of Ada

As seen in the previous section, GtkAda is based on a tagged type hierarchy, as
are most modern graphical libraries. This has a number of advantages, which
will be explained in this section. We also show how this hierarchy is implemented
over a non-object oriented C library.

4.1 Why objects are a natural way of representing GUI components

This section is not specific to GtkAda, but rather tries to explain briefly why
having an object oriented design helps the user to better understand and use a li-

with Gtk.Ctree;
with Gtk.Style; use Gtk.Style;

package Access_To_Subprogram_Example is
package Style_Row_Data is new Gtk.Ctree.Row_Data (Gtk_Style);

procedure Set_Background
(Ctree : access Gtk.Ctree.Gtk_Ctree_Record’Class;
Node : in Gtk.Ctree.Gtk_Ctree_Node;
Dummy : in Style_Row_Data.Data_Type_Access) is ... ;
-= The procedure that will be passed to the active iterator

procedure Run is
begin
Style_Row_Data.Pre_Recursive
(Ctree => Ctree,
Node => Gtk.Ctree.Null_Ctree_Node,
Func => Set_Background’Access,
Data => null);
-- Changes the background of all nodes of Ctree
end Run;
end Access_To_Subprogram_Example;

Fig. 5. An access to subprogram used with an active iterator

brary. The arguments below are language-independent and domain-independent,
although we have tried to explain their specific use in the case of GtkAda.

Tight integration between an object and its operations The concept of
object-oriented programming is to provide both a structure that contains data,
and some subprograms to manipulate that structure (called its primitive subpro-
grams in Ada). Such a structure inherits its ancestors’ attributes automatically,
which makes it easier for the user to locate (and if necessary modify) the relevant
subprograms.

For instance, a Gtk_Button is a special kind of widget that reacts to mouse
clicks. Its parent is a Gtk_Container, which has the property of being able to
have one child, and thus a button can also have one child which is displayed in the
button (like a label, a pixmap, ...). It inherits all the behavior from a container,
including the capability to add or remove a child, etc. But a Gtk_Container is
also a Gtk_Widget, that can be displayed on the screen. Thus a Gtk_Button also
inherits that capability.

Avoiding type casting Since the Ada runtime always knows what exact type
an object has, there is no need to dynamically test it in explicit code. The appro-
priate subprogram is automatically called (this is called dynamic dispatching, or
polymorphism).

For instance, this is useful when a widget is returned by one of the functions
in GtkAda (for example when you extract a child from a container). You do not
need to test what type the child has, since the runtime will automatically know
what subprograms apply to it.

In the few cases where an explicit cast (view conversion) is required, Ada
checks at run-time that the conversion is valid.

Easy extension and creation of new widgets The main advantage of object
oriented programming is that you can use any type derived from a parent type
wherever the library expects the parent type. This makes it almost trivial to
extend existing widgets, either by adding your own internal data to them, or by
modifying their behavior.

The whole GtkAda library is based on this principle: for instance, a toggle
button is a simple button with two possible states: (active/inactive). Instead of
rewriting everything to create a toggle button, we just specialize a few subpro-
grams, and inherit the general behavior of a button.

Likewise, it is easy for the user to create his own widgets, either from scratch,
or more simply by modifying an existing one. Instead of handling all the low-level
details, the user just has to concentrate on the high level differences between the
new widget and its parent.

4.2 Providing a tagged type hierarchy over a C library

Designing the hierarchy We have seen all the advantages that an object-
oriented design provides. However, it is not always possible to create such a
hierarchy over every C library. Fortunately for us, the design of Gtk+, the C
library on which GtkAda is based, was already object-oriented, even if not pro-
grammed in a strict object-oriented language. This of course made the choice of
objects and the design of the hierarchy much easier to do, whereas it is generally
one of the hard things when designing from scratch. We will not discuss in this
paper the different approaches (UML, HOOD, etc.) available for this task.

A well-designed binding must be easy to maintain and be kept up-to-date
vis-a-vis of the underlying C library. It was thus very important for GtkAda to
be as independent as possible from the C structures. We did not want to make
visible the internals of these structures in the GtkAda interface.

All our objects contain a single private field that is a pointer to the C object
(System.Address), and everything is done through that pointer. A couple of
subprograms (Set and Get) must be provided for all the public fields of the C
interface, and it is in fact sometimes a difficult task to guess whether a given
field should be public or private. At this level, the Ada interface is thus much
cleaner than the C one, in that the user does not have to read the source to
understand whether he is allowed to use a field or not.

This method also makes the interface highly stable: if one field of the C struc-
ture is renamed, or removed in a future version of Gtk+, it is still possible to keep
the same interface at the Ada level, but change the body of the subprograms.

As we said, accessing the fields is done through a functional interface. This
requires an additional small C layer. Using that layer means that we do not have
to map all the C structures to Ada records, thus solving the big portability issue
of representation clauses.

Links between C and Ada objects One implementation problem is worth
noticing. It is closely related to memory management (see the next section of
this paper). Although it is easy to get the matching C structure given an Ada
tagged object (just use the appropriate field of the record), it is sometimes more
difficult to convert from a C object to the matching Ada record. This feature is
required every time a subprogram (implemented in C in the underlying library)
needs to return a widget.

Simply creating a new Ada structure is not possible, since we have to create
it with the appropriate type (a C GtkButton is mapped to a Gtk_Button, not to
the more general Gtk_Widget), and because the user might in fact have created
his own tagged object by inheritance, we need to restore the exact value of the
new fields.

This problem can not be solved in a general way for all the C libraries.
Fortunately, this is made quite easy with Gtk+, since it is possible to associate
some user data with every widget, through a keyword, like a hash-table. Thus,
every time an object is created at the Ada level, we also create the C object at
the same time, and set some user data to point back to the Ada object.

Ada tagged object C structure

Ptr : System.Address;

gpointer user_data

Of course, some widgets are not created by the user, but directly in some C
code. For these widgets the user data is absent. In such cases, we simply invoke
a more elaborate procedure that tests the C type against all its possible values,
and creates the corresponding Ada type. This procedure is time-consuming, but
is only executed rarely, since once we have created the new Ada object, it is
permanently associated with the C widget.

This mechanism is made easy with Gtk+. In fact, it can easily be done for
other foreign languages bindings through a global hash table that the Ada code
would maintain.

5 Avoiding Memory Leaks

Library designers are always confronted to the problem of memory management:
should the memory allocation and deallocation be done automatically, or should
it be left to the user ? Although the first solution is obviously more user-friendly,
it generally has some speed tradeoffs, and is not always possible to implement.

Ada offers a very powerful memory management mechanism : controlled
types. Initialization and cleanup functions can be called automatically on ob-
jects of a controlled type. Although very comprehensive and fine-grained, this
mechanism is heavy, and imposes a substantial overhead of function calls.

With GtkAda, leaving the memory management to the user is not an option.
This is a difficult issue for GUISs, since it is not always obvious when a widget
is still needed and when it can be destroyed. Moreover, when a container is
destroyed, all its children must be destroyed as well.

Of course, the same problem appears in Gtk+. The authors of Gtk+ have
thus implemented a reference counting mechanism, close to a garbage collector,
that takes care of all memory management. This is implemented in the ancestor
of all widgets, so that creating new widgets does not require special care.

Whenever a C widget is destroyed, it also frees the memory occupied by all its
user data (as seen in the section 4.2). Since we can register our own destruction
callbacks, this also allows us to free the memory allocated at the Ada level. Thus,
GtkAda does not add any overhead over Gtk+.

This system of hooks or callbacks (functions called whenever specific actions
are performed by a library) is extremely useful, both for the users of the library
and for the people who want to adapt the library to their needs.

In a few cases it wasn’t possible to use this mechanism. This is most notably
the case for the low-level part of the library, which is very close to the X11 or
Win32 protocols. These specific parts are carefully documented, since GtkAda
does not provide any memory management for them. Using controlled types is
not possible here, since most of these structures have to live in the X server itself,
and thus cannot always be freed automatically when the subprogram exits. To
avoid potential hidden memory leaks, some of the simplest structures have been
directly mapped to Ada record (like points, rectangles,etc.) But there are still
a few cases (pixmaps and graphic contexts most notably) where the user must
take care of freeing the structure when done with them. Convenient functions
are always provided for that usage.

6 Integrating GtkAda with a GUI Builder

GUI builders are one of the most desirable and popular applications built on top
of graphical libraries. They are popular because they can automatically generate
a major part of a user interface, simply by mouse interactions, or by describing
at a high level the desired widget hierarchy. GUI builders obviate the need to
write long, repetitious and stereotyped code.

6.1 Finding a suitable GUI Builder

Up to now, outside of the Windows world, GUI builders were rare and expensive,
forcing many people to develop GUIs by hand. With the availability of a popular
and open toolkit like Gtk+, many projects can develop GUI builders of their own.
The most popular of these projects, called GtkGlade, had reached a sufficient

level of functionality when we started to look at a GUI builder solution for
GtkAda that we could consider adopting it for Ada needs.

6.2 Generation of Ada code

Following the design philosophy of Gtk+, GtkGlade had been designed to eas-
ily support code generation for any language, by saving the widget hierarchy
and properties in an easy-to-read and easy-to-parse XML file. Therefore, we de-
cided to write an XML-to-Ada translator, specifically tailored for GtkGlade and
GtkAda. During the design of this translator (called Gate), we had two choices:
either write a completely independent code generator that would contain all
the information and properties required for each widget, or enhance our exist-
ing GtkAda library by giving each widget the ability to generate the Ada code
associated with it.

The second solution looked much more promising for several reasons. First,
we had complete control over GtkAda anyway, so making changes in the library
itself was not an issue. Second, it would take advantage of the already existing
widget hierarchy, thus avoiding the need to recreate many of the needed struc-
tures. Finally, giving each widget the capability to generate the code related to
its own properties is very natural and fits the object oriented model well. It also
makes it easy to add support for new widgets. For example, suppose the user
needs to add support for an extended implementation of Gtk_Drawing_Area (for
instance a double buffer area), instead of having to write a complete support for
all the data and properties of the ancestors of this new widget, he only needs to
add code generation for the extended features, which is usually a simple task.

6.3 Clear and easy to read output

One common defect that we wanted to avoid in our translator, was the generation
of Ada code that no human being could read and understand.

In order to output a clean code that would be easy to examine, we decided
to generate a “composite widget” for each top level widget of the interface. A
composite widget is an object that extends an existing type (typically a top level
window) by adding a set of other widgets to it. This approach makes it very easy
to see the group of widgets created, and offers a simple way to access all the
fields.

Compared to other possible approaches, this one shows many advantages. If
you consider for example the C code generated by GtkGlade, which generates
local variables that are then stored in a hash table, this makes the generated
code heavier and the user’s code more complex.

Figures 6 and 7 provide a typical example of code generated by Gate and
GtkGlade.

This example gives a good overview of the advantages that GtkAda brings
to Gtk+:

type About_Dialog_Record is new Gtk_Dialog_Record with record

Dialog_Vbox : Gtk_Vbox;
Button : Gtk_Button;

end record;

type About_Dialog_Access is access all About_Dialog_Record’Class;

procedure Initialize (About_Dialog : access About_Dialog_Record’Class) is
begin

Gtk.Dialog.Initialize (About_Dialog);

Set_Title (About_Dialog, "About The Editor");
Set_Policy (About_Dialog, True, True, False);
Set_Position (About_Dialog, Win_Pos_Mouse);
About_Dialog.Dialog_Vbox := Get_Vbox (About_Dialog);
Set_Border_Width (About_Dialog.Dialog_Vbox, 2);

end Initialize;

Fig. 6. Sample Ada code generated by Gate

GtkWidgetx*
create_about_dialog ()

{

GtkWidget *about_dialog;
GtkWidget *dialog_vbox;
GtkWidget *button;

about_dialog = gtk_dialog_new ();

gtk_widget_ref (about_dialog);

gtk_object_set_data_full (GTK_OBJECT (about_dialog), "about_dialog", about_dialog,
(GtkDestroyNotify) gtk_widget_unref);

gtk_window_set_title (GTK_WINDOW (about_dialog), _("About The Editor"));

gtk_window_set_position (GTK_WINDOW (about_dialog), GTK_WIN_POS_MOUSE);

gtk_window_set_policy (GTK_WINDOW (about_dialog), TRUE, TRUE, FALSE);

dialog_vbox = GTK_DIALOG (about_dialog)->vbox;

gtk_widget_ref (dialog_vbox);

gtk_object_set_data_full (GTK_OBJECT (about_dialog), "dialog_vbox", dialog_vbox,
(GtkDestroyNotify) gtk_widget_unref);

gtk_widget_show (dialog_vbox);

gtk_container_set_border_width (GTK_CONTAINER (dialog_vbox), 2);

return about_dialog;

Fig. 7. Sample C code generated by GtkGlade

— In order to ensure a clean memory deallocation, the C code duplicates for
each subwidget the code to reference a widget (gtk_widget_ref) and reg-
isters a cleanup function (gtk_object_set_data_full). This is done auto-
matically by GtkAda when doing a Gtk_New, as explained in section 5.

— With GtkAda, there is no need to associate artificially the widget children
to their parent (using gtk_object_set_data_full), since this is done in a
natural way by the type extension.

— There is no need to cast the widgets (see section 4.1).

— The widgets are typed instead of being anonymous pointers (Gtk_Button
instead of GtkWidget *).

— The use clauses even if not mandatory, provide output that is lighter and
easier-to-read.

6.4 Merging user’s changes

The ability to go back and forth between the user interface and the generated
code is a powerful feature that simplifies greatly the development of user inter-
faces.

Usually GUI builders approach this need by generating "read only” files and
skeleton files that are automatically generated at first and subsequently modified
manually. The read-only files contain code to build the widgets themselves, tak-
ing into account all their properties, while the skeleton files serve as templates
where the user implements his callback subprograms. It is occasionally useful
to modify some of the generated files themselves. This capability is usually not
provided by GUI builders.

With Gate, we decided to implement both. The former because it seemed
cleaner to separate the automatically generated construction code from the user’s
code. The latter because we want to provide the maximum flexibility.

In order to implement this capability, we decided to take a very simple but
still powerful approach, based on a shell script and the “patch” and “diff” tools.

Here are the details of the operations performed by our script, to wrap our
translator transparently for the user:

— Create the working directory: a different directory is created for each project
file. This operation is usually done once.

— Compute a diff between the previously generated files (if any) and the current
files (possibly modified).

— Generate the raw Ada files: this is a call to the real translator that does not
have to worry about merging code and overriding files.

— Save the raw files as being the “previous files”

— Apply the diff to a copy of the raw Ada files.

Another possibility would have been to use ASIS during code generation, to
be able to find the right procedures to modify, remove or add. But this would have
required much more work than the simple-minded but powerful script described
above. Furthermore, this approach would not work when the modified files do
not compile properly, which can often be the case when the application is in the
development phase.

7

Conclusion

As we explained, many of the choices we made can be applied to the construction
of similar bindings for another language. However, it is clear that thanks to the
use of some of the more powerful features of Ada (genericity, tagged types and
access to subprograms), we have managed to build a high level binding to the
Gtk+ library that provides compile-time checks, code readability, reusability and
robustness.

Moreover, by integrating the various components of a graphical user interface,

GtkAda now offers a complete solution for end-user applications written in Ada.

References

© 0N Do W

11.

GIMP home page. http://www.gimp.org/.

GNOME home page. http://www.gnome.org/.

GLADE home page. http://glade.pn.org/.

GtkAda home page. http://gtkada.eu.org/.

GtkAda User’s Guide. http://gtkada.eu.org/gtkada_ug.html.

GtkAda Reference Manual. http://gtkada.eu.org/gtkada_rm_toc.html.

Gtk+ home page. http://www.gtk.org/.

Havoc Pennington. GTK+/Gnome application development. New Riders, 1999.
Eric Harlow. Developing Linux Applications with GTK+ and GDK. New Riders,
1999.

David Odin. Programmation Linuz avec Gtk+. Eyrolles, 1999.

ACT-Europe home page. http://www.act-europe.fr/.

