Making Proofs of Floating-Point Programs
Accessible to Regular Developers

Claire Dross and Johannes Kanig

AdaCore, F-75009 Paris

Abstract. Formal verification of floating-point computations remains
a challenge for the software engineer. Automated, specialized tools can
handle floating-point computations well, but struggle with other types
of data or memory reasoning. Specialized tools based on proof assis-
tants are very powerful, but require a high degree of expertise. General-
purpose tools for deductive verification of programs have added support
for floating-point computations in recent years, but often the proved
properties are limited to verifying ranges or absence of special values
such as NaN or Infinity. Proofs of more complex properties, such as
bounds on rounding errors, are generally reserved to experts and often
require the use of either a proof assistant or a specialized solver as a
backend.

In this article, we show how generic deductive verification tools based
on general-purpose SMT solvers can be used to verify different kinds of
properties on floating point computations up to bounds on rounding er-
rors. The demonstration is done on a computation of a weighted average
using floating-point numbers, using an approach which is heavily based
on auto-active verification. We use the general-purpose tool SPARK for
formal verification of Ada programs based on the SMT solvers Alt-Ergo,
CV(C4, and Z3 but it can in principle be carried out in other similar
languages and tools such as Frama-C or KeY.

Keywords: Deductive verification - Numerical computation - Numerical
precision.

1 Introduction

Floating-point computations are at the heart of many critical systems. However,
reasoning on floating-point numbers is generally agreed to be counterintuitive.
For example, most usual properties on arithmetic operations, such as associa-
tivity, no longer hold because of rounding errors [21]. Therefore, floating-point
reasoning is an area where tool-assisted verification is welcome.

Deductive verification of programs has improved significantly over the years,
and many popular programming languages have their own tool (Java [2,10,17],
C [12,17], Rust [3,19], Ada [20]...). Still, floating-point computations remain a
challenge in this area. On the one hand, formal verification tools specialized in
floating-point computations and error bounds [14,13] generally can only verify

2 Claire Dross and Johannes Kanig

the properties they were designed for and cannot take into account separate con-
siderations, such as data-structures, or pointer manipulation. On the other hand,
even if some general purpose verification tools support floating-point arithmetic
(Frama-C [12], SPARK [16], KeY [1]), they offer less automation in this domain,
and the verified properties generally remain limited to ranges and absence of
special values, though more precise properties have been considered in the con-
text of the combination of a deductive verification tool with an automated solver
specialized in floating-point reasoning (for example using the solver Gappa inside
Frama-C [7,6]).

In this article, we want to demonstrate that properties such as error bounds
are within reach for deductive verification tools in what we believe is the most
common set-up: a generic deductive verification tool with general-purpose SMT
solvers as a backend. We use the SPARK tool [20] for the formal verification of a
subset of the Ada language [4] with the SMT solvers Alt-Ergo, CVC4, and Z3 as
a backend, but the approach could in principle be carried out in other systems.

It is expected that a certain amount of user interaction will be necessary for
the verification, especially as we go further in the complexity of the properties we
are trying to verify. We choose to stick to auto-active verification only, as opposed
to, for example, going to a proof assistant, so that we remain in the range of
what a software developer might be expected to do. However we take advantage
of the lemma library of SPARK containing lemmas which are themselves verified
using the Coq proof assistant. The lemma library is publicly available with the
source code of SPARK .

After a quick presentation of SPARK, this paper focuses on explaining how
to verify increasingly complex properties on floating-point computations while
remaining in a classical developer set-up. In Section 3, we stick to the verifica-
tion of absence of special values and bounds on program ouputs, like is done in
most industrial uses of deductive verification tools. Section 4 goes further and
considers bounds on the rounding error of a computation based only on basic
arithmetic operations. This work takes advantage of the recently added Ada
library for infinite precision arithmetic operations on rational numbers. In Sec-
tion 5, we consider extending this reasoning to operations which do not benefit
from a precise support in the verification tool (and/or return irrational values).
We take square root as an example.

2 SPARK Ada

SPARK is an environment for the verification of Ada programs used in critical
software development. The SPARK language subset and toolset for static ver-
ification has been applied for many years in on-board aircraft systems, control
systems, cryptographic systems, and rail systems. The SPARK toolset can prove
the absence of run-time errors such as arithmetic and buffer overflow, division
by zero, and pointer manipulation. SPARK verification is modular at the sub-

! https://github.com/AdaCore/spark2014/tree/master/include

Proofs of Floating-Point Programs for Regular Developers 3

program? level, so each subprogram is verified independently from its calling
context. As a consequence, annotations on subprograms are usually required. In
SPARK, this is achieved with contracts - mainly pre- and postconditions. The
SPARK tool checks the correctness of the user-provided contracts as well as the
absence of run-time errors.

To avoid having to learn a separate language for annotations, all annotations
in SPARK, including assertions and pre- and postconditions, use the syntax
and semantics of regular Ada boolean expressions. As a consequence, they are
executable and can be checked at runtime using a compiler switch. However, the
annotation language is somewhat restricted compared to a non-executable logic
language. For example, one cannot quantify over arbitrary data, only ranges,
enumerations or contents of containers.

Under the hood, SPARK translates the Ada program into a WhyML pro-
gram suitable for processing by the Why3 tool [5]. Why3 then generates logical
formulas, called proof obligations, whose validity implies the correctness of the
program. Automatic theorem provers are then used to discharge these proof obli-
gations. SPARK ships with three built-in SMT solvers CVC4, Z3, and Alt-Ergo.
For floating-point variables and basic arithmetic operations, SPARK assumes
conformance to the IEEE 754 floating-point standard, which allows the tool to
take advantage of the recent built-in floating-point support in SMT solvers [23].

The running example used throughout the article is presented in Figure 1.
It is a function doing the weighted average of an array of floating-point num-
bers. It uses single precision floating-point values (type Float in SPARK), but
similar results have been obtained with double precision floats without more
proof efforts. The example uses recursive functions to make it shorter. However
the implementation can easily be rewritten as a loop, while keeping the current
definition as a specification.

3 Proof of integrity of floating-point operations

3.1 Floating point support in SPARK

SPARK supports basic floating-point operations natively and assumes IEEE
754 semantics for them. However, the special value NaN, as well as positive
and negative infinity, are excluded. Generating such a value in a floating-point
computation is considered to be an error, and will result in an unproved check.
In practice, this amounts to checking that we never divide by zero and that
computations do not overflow. Because of these semantics, SPARK reports failed
overflow checks on our running example, one on each arithmetic operation.
One possible way to deal with these potential overflows is to replace prob-
lematic operations by saturating operations, which never overflow but yield po-
tentially incorrect results. This is an easy solution that may be appropriate for

2 Ada uses the term subprogram to denote functions (which return a value) and pro-
cedures (which do not).

4 Claire Dross and Johannes Kanig

package Libst with SPARK_Mode is

Max_Index : constant := 100;

-— Number of elements in an array of values

subtype Extended_Index is Natural range 0 .. Max_Index;
subtype Index is Positive range 1 .. Max_Index;

type Value_Array is array (Index) of Float;
type Weight_Array is array (Index) of Float;

—-— Definition of the weighted average on an array of values using floating
—-— point computation.

function Sum_Weight_Rec
(Weights : Weight_Array; I : Extended_Index) return Float
is (if I = 0 then 0.0 else Sum_Weight_Rec (Weights, I - 1) + Weights (I));
function Sum_Weight (Weights : Weight_Array) return Float is
(Sum_Weight_Rec (Weights, Max_Index));
—-— Sum of an array of weights

function Weighted_Sum_Rec

(Weights : Weight_Array;

Values : Value_Array;

I : Extended_Index) return Float
is (if I = 0 then 0.0

else Weighted_Sum_Rec (Weights, Values, I - 1) + Weights (I) % Values (I));

function Weighted_Average

(Weights : Weight_Array; Values : Value_Array) return Float
is

(Weighted_Sum_Rec (Weights, Values, Max_Index) / Sum_Weight (Weights))
with Pre = Sum_Weight (Weights) # 0.0;
-— Weighted average of an array of values

end Libst;

Fig. 1. SPARK function computing the weighted average of values in an array

certain use cases, but it changes the algorithm if the saturation happens in prac-
tice. In this paper, we instead select bounds for the inputs and intermediate
variables such that overflows never occur, and attempt to formally verify their
absence.

3.2 Bounds for floating-point types

In general, large negative and positive floating-point inputs need to be excluded
to avoid overflows. In the presence of division, it might also be necessary to
exclude values that are too close to zero, as the division might overflow in that
case. The bounds for the input values can come from the application context (for
example, a variable representing an angle can be limited to the range between 0
and 360°), or might be dictated by the needs of the verification of the algorithms.

Ada (and SPARK), in addition to the built-in Float and Long_Float (dou-
ble precision) types, supports the definition of user-defined subtypes. These sub-
types can specify a more restrictive range using the range keyword, or restrict
the set of allowed values using a Predicate (or both). It is generally good
practice to document application-specific ranges using subtypes when possible,
instead of using the built-in types everywhere.

Proofs of Floating-Point Programs for Regular Developers 5

In our example, we choose to bound values so as to specify our algorithm
in a more elegant way. We want to express the maximal weighted sum using
a product Max_Value X Max_Index. For this multiplication to be equal to a
sequence of additions, all the intermediate values should be in the range in which
each integer value is representable exactly as a floating-point value. This range
is bounded by 224, so the largest value we allow is 22 /Max_Index.

We arbitrarily choose to restrict weights to the range between 0 and 1. It is
a common enough use-case for applications of the weighted average. However,
excluding zero from the sum of the weights for the division is not enough to
guarantee the program integrity - if we divide by a very small value, we might
get an overflow. That’s why we also exclude very small non-zero values from
the range of the weights. As a reasonable bound?, we use 27%3. We still allow
individual weights to be zero. The range of weights is thus non-contiguous and
is expressed through a predicate stating that a weight is either zero, or is in the
range from Min Weight to 1.

Max_Exact_Integer_Computation : constant := 2.0 *x 24;
-- Upper bound of the interval on which integer computations are exact
Float_Sqrt : constant Float := 2.0 x% 63;

—-— Safe bound for multiplication

Max_Value : constant :=
Float’Floor (Max_Exact_Integer_Computation / Float (Max_Index));
—-—- Biggest integer value for which the sum is guaranteed to be exact
subtype Value is Float range -Max_Value .. Max_Value;
type Value_Array is array (Index) of Value;

Min_Weight : constant := 1.0 / Float_Sqrt;
—-— Avoid values too close to zero to prevent overflow on divisions
subtype Weight is Float range 0.0 .. 1.0 with
Predicate = Weight in 0.0 | Min_Weight .. 1.0;
type Weight_Array is array (Index) of Weight;

3.3 Proving the absence of overflows

As deductive verification is modular on a per-subprogram basis, it is necessary
to annotate all our subprograms with bounds for their floating-point inputs
and outputs. This can be done in two different ways. It is possible to create
new bounded subtypes like the ones we introduced for values and weights for
intermediate values in the computation. However, as SPARK does not support
dependent types, this only works if the bounds do not depend on other inputs /
outputs of the subprogram. Another alternative is to specify the bounds in the
contract (pre- and postcondition) of the subprogram.

In our example, we define a new bounded type for the result of Sum_Weight.
Since weights are always less than 1, the sum of the weights is less than the num-
ber of elements in the array. As we need to divide by this sum in the computation
of our weighted average, we also need to provide a lower bound for this sum when
it is not zero. As for the weights, we can say that the sum is either 0 (if all the

3 It is the bound used for lemmas about division in the lemma library of SPARK
(more about the lemma library later in this article)

6 Claire Dross and Johannes Kanig

weights are 0) or at least Min_Weight (it would be exactly Min Weight if a
single weight has value Min Weight and all others have value 0).

subtype Sum_Of_Weights is Float range 0.0 .. Float (Max_Index) with
Predicate = Sum_Of_Weights in 0.0 | Min_Weight .. Float (Max_Index);

function Sum_Weight (Weights : Weight_Array) return Sum_Of_ Weights is
(Sum_Weight_Rec (Weights, Max_Index));
—-— Sum of an array of weights

Given the recursive definition of Sum_Weight_Rec, using Sum_Of Weights
as a subtype for its result is not enough, as assuming the predicate for the return
value of the recursive call would not be sufficient to prove the predicate for the
result of the addition. Instead, we add a postcondition to Sum_Weight Rec
which bounds the computation depending on the current index.

function Sum_Weight_Rec

(Weights : Weight_Array; I : Extended_Index) return Float
is (if T = 0 then 0.0 else Sum_Weight_Rec (Weights, I - 1) + Weights (I)
with Post = Sum_Weight_Rec’Result in 0.0 | Min_Weight .. Float (I);

The functions Weighted_ Average and Weighted_Sum_Rec can be anno-
tated in a similar way. The function Weighted_Sum_Rec is constrained via a
postcondition while Weighted Average has a constrained return type:

function Weighted_Sum_Rec
(Weights : Weight_Array;
Values : Value_Array;
I : Extended_Index) return Float
is (if I = 0 then 0.0
else Weighted_Sum_Rec (Weights, Values, I - 1) + Weights (I) x Values (I))

with
Post = Weighted_Sum_Rec’Result in
- (Max_Value * Float (I)) .. Max_Value = Float (I);
Max_Sum_Of_Values : constant := Max_Value * Float (Max_Index) / Min_Weight;
subtype Sum_Of_Values is Float range -Max_Sum_Of_Values .. Max_Sum_Of_Values;

function Weighted_Average

(Weights : Weight_Array; Values : Value_Array) return Sum_Of_Values
is

(Weighted_Sum_Rec (Weights, Values, Max_Index) / Sum_Weight (Weights))
with Pre = Sum_Weight (Weights) # 0.0;
—-— Weighted average of an array of values

Note that the bounds used in the Sum_Of Values subtype for the result
of Weighted Average are far from the bounds of the mathematical compu-
tation (which is known to stay between —Max Value and Max_Value). Bet-
ter bounds can be obtained by distributing the division over the addition to
compute wi/Sum_Weight * v1 + The fact that each weight is smaller than
their sum could then be used to reduce Max_Sum_Of Values to Max_Value *
Float(Max_Index). However, as we don’t need this improved bound to prove
the absence of overflows here, we have decided against changing the formulation.

With these annotations, the tool should theoretically have enough informa-
tion to verify our program. As it is, the postconditions of Sum_Weight _Rec and
Weighted_Sum_Rec remain unproved. This is because reasoning about floating-
point computation is a well known challenge, both for programmers and for ver-
ification tools. If we want SPARK to automatically verify our subprograms, we
will have to help it, using auto-active verification through ghost code.

Proofs of Floating-Point Programs for Regular Developers 7

Bounding floating-point operations: Leino and Moskal coined the term of
auto-active verification [18] as a middle ground between fully automatic veri-
fication with no user input, and fully interactive verification as with a proof
assistant. The idea is to add extra annotations and code to a program purely for
the sake of verification. Auto-active verification can come in many forms. The
most basic example is adding assertions that can help “cut” a difficult proof into
two easier proofs. SPARK supports the notion of ghost code, where variables
and subprograms can be marked as ghost [15]. The compiler checks that such
code cannot influence the functional behavior of non-ghost code, and strips such
code from the program during compilation when runtime assertion checking is
disabled.

In SPARK, there is no built-in way to name or parameterize assertions to
create reusable lemmas or axioms. An alternative way to share assertions is to use
ghost procedures. The premises of the lemma we want to parameterize should be
put as preconditions, whereas its conclusion should be used as a postcondition:

procedure Lemma (Paraml : T1l; Param2 : T2, ...)
with Pre => Premisel and then Premise2 and then ...,
Post = Conclusion,
Global = null,
Ghost;

As SPARK handles subprograms modularly, it will check that the postcondi-
tion of Lemma follows from its precondition in any context during its verification.
When the procedure is called, it will check the precondition - the premises, and
assume the postcondition - the conclusion. As a convention, such lemma proce-
dures or simply lemmas have the prefix Lemma_ in their name, are marked as
ghost, and have no global effects.

The body (implementation) of a lemma procedure may contain any code
or ghost code that helps to establish the postcondition, such as calls to other
lemma procedures, or even loops to establish an inductive proof. In simple cases
the body of the lemma procedure may be empty, because the provers can prove
the postcondition from the precondition directly. Note that it is often the case
that provers can prove a lemma’s postcondition directly, but would not be able
to prove an equivalent assertion in the middle of a large subprogram, due to the
presence of a large, mostly irrelevant context.

SPARK comes with a lemma library that among other things offers basic
lemmas to deduce bounds on the result of floating-point operations. Some of
these lemmas are proved automatically by the SMT solvers, like the lemma
Lemma_Add_Is_Monotonic below?. Others are proved using a proof assistant,
like the similar Lemma Mult_Is Monotonic for multiplication.

procedure Lemma_Add_Is_Monotonic
(Vall : Float;
Val2 : Float;
Val3 : Float)
with
Global = null,
Pre =

4 Lemma Lemma_Add_Is_Monotonic takes inputs between Float’First / 2.0
and Float’Last / 2.0 to statically ensure absence of overflows in the addition.

8 Claire Dross and Johannes Kanig

(Vall in Float’First / 2.0 Float’Last / 2.0) and then
(Val2 in Float’First / 2.0 .. Float’Last / 2.0) and then
(Val3 in Float’First / 2.0 Float’Last / 2.0) and then
vall < valz,

Post = Vall + val3 < val2 + Val3;

Coming back to our example, we use a call to Lemma_Add_TIs_Monotonic
in the proof of Sum_Weight to bound the result of the addition by the sum of
the bounds:

Lemma_Add_Is_Monotonic
(Sum_Weight_Rec (Weights, I - 1), Float (I - 1), Weights (I));

Precise bounds on integers: To prove the integrity of floating-point compu-
tations, it might be necessary to know that the computation is exact in special
cases. In our examples, the bounds we have deduced earlier on our floating-point
computations are not enough to prove the postconditions as they are stated. In-
deed, in the postconditions, we have chosen to use a multiplication instead of
a sequence of additions, which is not equivalent in general with floating-point
numbers because of rounding errors. However, the floating-point computations
are sometimes known to be exact, in particular for computations on integers
if the values are small enough to fall in a range where all integer values are
representable. It is the case in our example, both for the summation from 1 to
Max_Index in Sum_Weight and for the additions on Max _Value in the post-
condition of Weighted Average (Max_Value has been chosen for that).

To help SPARK deduce that the computations are exact in our example,
we introduce specific lemmas. The lemma Lemma_Add_Exact_On_Index states
that floating-point addition is exact on integers in the range of the index type.

procedure Lemma_Add_Exact_On_Index (I, J : Natural) with

Ghost,
Pre = I < Max_Index and J < Max_Index,
Post = Float (I) + Float (J) = Float (I + J);

-—- Floating-point addition is exact on indexes

These lemmas bring the remaining missing pieces for the proof of our ex-
ample. However, to be able to call them in the bodies of our recursive func-
tions, we need to turn them into regular functions with a proper body. The
Subprogram_Variant annotation is unrelated. It is used to prove termination
of recursive functions.

function Sum_Weight_Rec
(Weights : Weight_Array;
I : Extended_Index) return Float
with
Subprogram_Variant = (Decreases = I),
Post = Sum_Weight_Rec’Result =
(if I = 0 then 0.0 else Sum _Weight_Rec (Weights, I - 1) + Weights (I)
and then Sum_Weight_Rec’Result in 0.0 | Min_Weight .. Float (I);

function Sum_Weight_Rec
(Weights : Weight_Array;
I : Extended_Index) return Float is
begin
if T = 0 then
return 0.0;

Proofs of Floating-Point Programs for Regular Developers 9

else
Lemma_Add_Is_Monotonic
(Sum_Weight_Rec (Weights, I - 1), Float (I - 1), Weights (I));
Lemma_Add_Exact_On_Index (I - 1, 1);
return Sum_Weight_Rec (Weights, I - 1) + Weights (I);
end if;
end Sum_Weight_Rec;

4 Functional correctness

To go further in the verification process, functional contracts should be added to
specify the expected behavior of the program. In general, functional contracts can
take various forms. On simple programs doing only floating-point computations,
it is interesting to compare the floating-point result with the result using exact
computations on real numbers. Aside from the direct interest of having an upper
bound on the rounding error in the computation, such a specification allows us to
lift properties that are known to hold for the real computation. As an example,
the bounds given for Weighted Average in the previous section are obviously
greatly over-approximated. On real numbers, the weighted average of an array
of values is known to stay in the bounds of the provided values. This is not
true for the floating-point computation, even with a well behaved bound like
Max_Value, because of the rounding errors. Bounding the rounding error in the
computation of the weighted average would allow us to tighten these bounds
efficiently.

4.1 The Big Real library

To write specifications describing rounding errors, contracts need to use opera-
tions with unlimited precision. As assertions in SPARK are executable, it is not
possible to directly use an axiomatic definition of real numbers as can be done
for example for Why3 [5] or Frama-C [12]. However, in the upcoming release of
Ada (scheduled for 2022) new libraries for infinite precision integers and ratio-
nal numbers have been added®. To specify our example, rational numbers are
enough. In the next section, we discuss how the approach can be extended to
irrational computations.

The Ada library for infinite precision rational numbers defines a type named
(rather counterintuitively) Big Real as the quotient of two infinite precision
integers. It provides the usual operations on rational numbers, as well as conver-
sion functions from floating-point and integer types. This library benefits from
built-in support in the SPARK tool. In the generation of proof obligations, ob-
jects of type Big_Real are translated as mathematical real numbers and their
operations are the corresponding real operations. This allows SPARK to benefit
from the native support from the underlying solvers.

® http://ada-auth.org/standards/2xrm/html/RM-A-5-7.html

10 Claire Dross and Johannes Kanig

4.2 Specifying the rounding error of floating-point computations

Contracts are expressed in terms of specification functions doing computations
on rational numbers. These functions are in a package marked as Ghost, so that
they will be eliminated if the code is compiled with assertions disabled. It avoids
linking the Big_Reals library into production code.

function R_Weighted_Sum_Rec

(Weights : Weight_Array;

Values : Value_Array;

I : Extended_Index) return Big_Real
is

(if I = 0 then 0.0

else R_Weighted_Sum_Rec (Weights, Values, I - 1)

+ To_Big_Real (Weights (I)) » To_Big_Real (Values (I))

with Subprogram_Variant = (Decreases = I);

function R_Weighted_Average
(Weights : Weight_Array; Values : Value_Array) return Big_Real
is
(R_Weighted_Sum_Rec (Weights, Values, Max_Index) / R_Sum_Weight (Weights))
with Pre = R_Sum_Weight (Weights) # 0.0;
—-- Weighted average of an array of values

The rounding error performed during the computation is expressed as the
difference between the floating-point function and the infinite precision one. The
postcondition on the floating-point function could theoretically be extended with
an estimation of the rounding error. In our example, we prefer to use separate
lemmas. The procedure Error_For_Average below gives an upper bound on
the rounding error in the computation of the weighted average. It is called ex-
plicitly whenever we need to approximate this bound in our verification.
procedure Lemma_Error_For_Average

(Weights : Weight_Array; Values : Value_Array)
with
Pre => R_Sum Weight (Weights) # 0.0,
Post = abs (To_Big_Real (Weighted_Average (Weights, Values)) -

R_Weighted_Average (Weights, Values)) < 2?272;
—-— Error bound on the computation of Weighted Average

Evaluating the error bound: The first step in the specification process is to
determine a bound for the rounding error in the computation. There are tools
that can be used to predict it [13,14]. In SPARK, there is no such facility, so
the bound needs to be computed manually from the individual operations done
in the code. Note that this manual effort of deconstruction is also useful in the
next step to help the verification tool. Here this is done through ghost code, but
a similar reasoning could be expected if a proof assistant were used.

The basic steps to estimate the error bound are rather automatic. The IEEE
754 standard specifies that rounding on binary operations is always done to the
closest floating-point number. As a result, the rounding error is less than half of
the difference between two consecutive floating-point values. As the difference
between two consecutive floating-point values varies depending on the value of
the floating-point, the rounding error is generally bounded relative to the result
of the operation. Standard floating-point numbers are spaced logarithmically,

Proofs of Floating-Point Programs for Regular Developers 11

so this bound is a constant named Epsilon multiplied by the result of the
operation. On 32-bit floating-point numbers, Epsilon is 2724, that is, roughly
10~7. Subnormal numbers are linearly spaced, so the error on them is at most
half of the smallest subnormal number [21].

In our example, the relative error for the function Sum_Weight is bounded
by Max_Index X Epsilon. Indeed, the rounding error for each addition but
the first (with 0) is proportional to the partial sum at the point of the addition,

which is less than the complete sum5.

procedure Lemma_Error_For_Sum_Weight (Weights : Weight_Array)

with Post =
abs (To_Big_Real (Sum_Weight (Weights)) - R_Sum_Weight (Weights)
< 1.0E-5 x R_Sum_Weight (Weights);

—-— Error bound on the computation of Sum _Weight

In the computation of Weighted Average, the values can be both negative
and positive, so we cannot exclude subnormal numbers”. Thus, the error bound
will have two parts, a relative part for standard numbers, and an absolute one
for subnormals. The relative error bound is expressed in terms of the weighted

average of the absolute value of the values.
procedure Lemma_Error_For_Average

(Weights : Weight_Array; Values : Value_Array)
with

Pre => R_Sum Weight (Weights) # 0.0,

Post = abs (To_Big_Real (Weighted_Average (Weights, Values)) -

R_Weighted_Average (Weights, Values))
< 1.01E-45 + 2.03E-43 / R_Sum_Weight (Weights)
+ 2.05E-5 x R_Weighted_Average_Abs (Weights, Values);

-— Error bound on the computation of Weighted_ Average

The error bound is composed of three parts. The first one comes from the
absolute error on the division, the second is the absolute error on the computa-
tion of the sum of values (100 additions and 100 multiplications), and the third
is the sum of the relative errors on the sum of weights and the sum of values
(roughly 1.0E-5 for the sum of weights, see above, and the same for the values,
plus a bit more for the division itself).

Lifting properties from the real computation: Aside from the direct in-
terest in having an upper bound on the rounding error in the computation, this
specification allows us to lift properties that are known to hold for the real com-
putation. For example, it is well-known that the weighted average of an array of
real values ranging from -Max_Value to Max_Value is also between -Max_Value
and Max_Value. Using this fact, we might want to compute a better bound for

5 Note that we use 1077 as an approximation of Epsilon here. A more precise ap-
proximation could be considered, like 6 x 10~%, but, from our experiments, it causes
proofs of error bounds on basic operations to become out of reach of the automated
SMT solvers used behind SPARK.

" Theoretically, as addition on standard numbers can only give standard numbers
and addition on subnormals is exact, the absolute part of the bound should not be
necessary here. However, this reasoning is currently out of reach of the underlying
SMT solvers.

12 Claire Dross and Johannes Kanig

the result of Weighted Average than the current one (Max_Sum_ Of Values
is larger than 1.5e26 against 1.7e5 for Max Value). The expected property is
proved on the real computation, and then lifted to the floating-point computa-
tion using the approximation of error bounds.

The error bound provided by the lemma Lemma Error For Average is
maximal when the denominator is close to Min_Weight and the weighted aver-
age is close to Max_Value. In this case, the significant part is the relative error
on the weighted average. It evaluates to less than 3.5 as an absolute value. This
allows us to prove the following lemma, providing notably more precise bounds
for the computation.

procedure Lemma_Precise_Bounds_For_Average
(Weights : Weight_Array; Values : Value_Array)
with
Pre = Sum_Weight (Weights) # 0.0,
Post = Weighted_Average (Weights, Values)
in - (Max_Value + 3.5) .. Max_Value + 3.5;
-— Precise bounds for Weighted Average obtained through error bound computation

Note that this bound is not optimal, as we have approximated the error
bounds in the computations. In particular, we are losing nearly a factor two on
the approximation of Epsilon. However, some testing shows that the optimal
bound is at least Max_Value + 1.3, so it is not too far off either.

Proving that the error bounds are correct: Correctly predicting the error
bounds is not enough for SPARK to verify them. As in Section 3, reasoning
about floating-point computations is difficult for the underlying solvers, and it
is even worse when considering a combination of floating-point and real numbers.
As before, it is possible to help the tool using auto-active verification. The key
is to work in small steps, factoring out each proof step in a lemma.

As a basis, shared lemmas are introduced to bound the rounding error per-
formed by a single floating-point operation. If the result is a subnormal number,
the error is less than half of the smallest positive subnormal number. If it is a
standard number, it can be bounded linearly using the Epsilon constant.

procedure Lemma_Bound_Error_Add (X, Y : Floats_For_Add) with
Post = abs (To_Big Real (X + Y) - (To_Big Real (X) + To_Big_Real (Y))
(if abs (To_Big_Real (X) + To_Big_Real (Y)) > First_Norm
then Epsilon * abs (To_Big Real (X) + To_Big_Real (Y))
else Error_Denorm);

IN

Complex computations are split into parts, each part accounting for an in-
dividual error factor. For example, the computation of Weighted Average is
made of three parts: the computation of the weighted sum in the numerator,
the computation of the sum of the weights in the denominator, and the division
itself. For the tool to be able to put the parts together, the global error needs to
be expressible as a sum of the various parts. The following code gives a possible
partition of the computation of Weighted Average:

Num_F : constant Float := Weighted_Sum Rec (Weights, Values, Max_Index);
Den_F : constant Float := Sum_Weight (Weights);

Num_R : constant Big_Real := R_Weighted_Sum_Rec (Weights, Values, Max_Index);
Den_R : constant Big_Real := R_Sum_Weight (Weights);

Proofs of Floating-Point Programs for Regular Developers 13

abs (To_Big_Real (Num_F / Den_F) - Num_R / Den_R) <
—-—- Error on the division
abs (To_Big_Real (Num_F/Den_F) - (To_Big_Real (Num_F)/To_Big_Real (Den_F)))
—-—- Error on the computation of the numerator
+ abs (To_Big_Real (Num_F)/To_Big_Real (Den_F) - Num_R/To_Big_Real (Den_F))
—-— Error on the computation of the denominator
+ abs (Num_R / To_Big_Real (Den_F) - Num_R / Den_R)

As can be seen in the example, the parts are not necessarily direct applica-
tions of one of the basic lemmas, or one of the lemmas introduced for previous
computations. For the second term of the addition, the lemma introduced for
Weighted_Sum_Rec will bound the difference between Num_F and Num_R. The
effect of dividing each term by To_.Big_Real (Den_F) must still be accounted
for separately. New lemmas can be introduced for that. The premises are the
simple error we are trying to compute, and the errors on other terms mentioned
in the expression. The conclusion is the error on the considered operation. It
should be expressed in terms of the real computation only.

—-— Lemma to compute the part of the error in Weighted Average coming from the
-— computation of the numerator.
procedure Lemma_EB_For_Sum

(Num_F : Floats_For_Mul;
Den_F : Floats_For_Div;
Num_R, Den_R, Num_A : Big_Real)

with

Pre =>Den_F > 0.0 and Den_R > 0.0 and Num_A > abs (Num_R)
—-— Error on the computation of the numerator

and abs (To_Big_Real (Num_F) - Num_R) < 2.01E-43 + 1.01E-5 » Num_A
—-— Error on the computation of the denominator
and abs (To_Big_Real (Den_F) - Den_R) < 1.0E-5 % Den_R,

—-- Error accounting for the error on the computation of the numerator
Post = abs (To_Big_Real (Num_F)/To_Big_Real (Den_F) - Num_R/To_Big_Real (Den_F))
< 2.02E-43 / Den_R + 1.02E-5 x Num_A / Den_R;

The statement and auto-active proof of the lemmas providing the error
bounds on the computations involved in the evalutation of the weighted average
amount to a bit less than 400 lines of ghost code, while the initial (unproved)
implementation was 25 lines of code and its real counterpart is 34 lines of code.

4.3 Prover performance

Encoding The SPARK tool translates Ada code to Why3, which then generates
proof obligations for various provers. The three provers CVC4, Z3 and Alt-Ergo
are available in SPARK by default and have been used in our work. CVC4 and
73 use the SMT-LIB encoding of Why3. This means that floating-point variables
and operations are encoded using the corresponding SMT-LIB operations [16].
For Alt-Ergo, its native input is used, together with an axiomatization based on
arithmetic operations on reals, following by rounding [11].

Experimental results Figure 2 contains the experimental results. All three
provers are necessary to fully prove the example. If one of the provers was not
available, some additional effort, with additional lemmas and assertions, and
possibly longer prover timeouts, could also lead to full proofs.

14 Claire Dross and Johannes Kanig

Prover ‘Alt-Ergo 2.3.0 ‘CVC4 1.8 ‘Z3 4.8.10 ‘Total
Runtime Checks 453 (0) 470 (10) 437(0) 540
Assert, Lemmas, Pre/Post 70 (10) 45 (2) 51(2) 79

Fig. 2. Results of provers on the Weighted Average example on 619 proof obligations.
A timeout of 60s was used. A cell contains the number of proved VCs, and the number
of VCs only this prover could prove in parentheses. The last column contains the total
number of VCs in each category. The results were obtained on an AMD Ryzen 3950x
with 64GB of RAM.

One can see that, while CVC4 is strong on runtime checks (mostly array
accesses and checks on bounds of integer and floating-point operations on the
example), Alt-Ergo is the strongest prover when it comes to lemma procedures,
assertions and pre- and postconditions. Alt-Ergo also uniquely proves the most
VCs in this category. This probably comes from the fact that Alt-Ergo is the
only prover whose support for floating-point arithmetic is not based on bitlevel
reasoning, but on an axiomatization using real numbers and rounding, which
helps on our example, since it involves both real and floating point computations.

5 Going beyond basic arithmetic operations

The method applied in the previous section works on computations involving
only basic arithmetic operations. However, it is not enough in general. For ex-
ample, the computation of the standard error of our average computation would
require the use of square root. Our method can be extended to handle other
operations, but it necessitates some additional preparatory steps.

5.1 Approximating irrational computations

The first issue is the lack of a real infinite precision counterpart for the considered
floating-point operation. Since SPARK only supports infinite precision rational
numbers, and not real numbers, if the operation returns an irrational value, then
it is not possible to write a specification function to represent the operation with
infinite precision. Fortunately, since we are only interested in the error bounds,
it is enough to provide a function giving a good enough approximation of the
result as a rational value. Here, we define a function that approximates the
square root of a rational number with a given precision. The precision is chosen
to be negligible with respect to the rounding errors on the floating-point type.

Sqgrt_Bound : constant := 1.0E-8;
—— Small enough value to be absorbed by the over-approximation on Epsilon
Sg_Bound : constant := 1.999 % Sqgrt_Bound;

—-— Approximation of the minimum bound on the square to ensure Sqrt_Bound

function R_Sqgrt (X : Big_Real) return Big_Real with
Pre =X > 0.0,
Post = R_Sqrt’Result > 0.0
and then abs (X - R_Sgrt’Result * R_Sqgrt’Result)
< Sqg_Bound * R_Sqrt’Result x R_Sqgrt’Result;
-— Approximation of sqrt on real numbers

Proofs of Floating-Point Programs for Regular Developers 15

Coming up with a specification for the rational function might be difficult for
transcendental functions. A possibility would be to provide only some proper-
ties of the function through axioms (that is, lemma procedures without a body,
or whose body is not verified). This would not permit us to benefit from na-
tive support in the underlying solvers however. This might not be a big deal, as
support for transcendental functions is poor in most solvers. This could be allevi-
ated if needed by providing specialized support for most common transcendental
functions in the SPARK tool as it is done for the Big_Reals library.

5.2 Axiomatizing floating-point operations

The second issue is the absence of support in the SPARK tool for complex opera-
tions on floating-point values. The usual functions on floating-point types (square
root, exponentiation, logarithm, trigonometric functions...) are provided as a
library. Some of these functions are annotated with a minimal contract providing
some bounds on their result, but nothing more precise is known about them by
the tool. For example, here is the contract provided for Sqrt.
function Sqgrt (X : Float) return Float with

Pre =X > 0.0,

Post = Sgrt’Result > 0.0

and then (if X = 0.0 then Sqgrt’Result 0.0)

and then (if X = 1.0 then Sqgrt’Result 1.0)
and then (if X > Float’Succ (0.0) then Sqrt’Result > 0.0);

The reason for this minimal support is that the language does not necessarily
enforce compliance to the IEEE 754 standard for these functions on all platforms.
When additional information is needed, it can be supplied through axioms. On
a safety critical project, particular care should be taken that these axioms are
indeed valid on the chosen architecture. Here are some examples of axioms that
could be provided for the Sgrt function on 32-bit integers:
procedure Axiom_Bound_Error_Sqrt (X : Float) with

Pre =X > 0.0,
Post = abs (To_Big_Real (Sgrt (X)) - R_Sgrt (To_Big_Real (X))) <

(if Sgrt (To_Big_Real (X)) > First_Norm
then Epsilon * R_Sqgrt (To_Big_Real (X)) else Error_Denorm);

procedure Axiom_Sqrt_Is_Monotonic (X, Y : Float) with
Pre =X > 0.0 and Y > X,
Post = Sgrt (Y) > Sgrt (X);

procedure Axiom_Sqrt_Exact_Integer (X : Integer) with
Pre =X in 0 .. 4096,
Post = Sgrt (Float (X) *x 2) = Float (X);

The first axiom gives an over approximation of the error bound with respect
to the approximation of square root on rational numbers. The following two are
variants of the lemmas used on basic arithmetic operations to verify program
integrity in Section 3. The first states that square root is monotonic while the
second expresses that Sqrt is exact on the square of a small enough integer.
Using these axioms, we have proven correct an implementation of the euclidean

16 Claire Dross and Johannes Kanig

norm of a vector which could be used to compute the standard error of our
weighted average®. It uses a method similar to the one from Sections 3 and 4.

6 Related Work

Historically, most deductive verification tools interpreted floating-point num-
bers as real numbers. Following the addition of floating-point support in SMT
solvers [11,9], some verification tools changed to a sound handling, even if it
meant a decrease in provability. This is the case for Frama-C and SPARK [16],
as well as KeY [1] more recently.

Even with built-in support in SMT solvers, verifying floating-point computa-
tions remains a challenge. As a result, most verification efforts on floating-point
computations rely on either specialized tools or proof assistants to reason about
error bounds. For example, the static analyzer Fluctuat [14] is used in an in-
dustrial context to automatically estimate the propagation of error bounds in
C programs. Specialized libraries are also available inside proof assistants. The
Flocq [8] library offers a formalization to reason about floating- and fixed-point
computations in Coq. As a middle ground between both approaches, Gappa [13]
is a proof assistant targeting specifically verification of floating-point computa-
tion, with automated evaluation and propagation of rounding errors.

Verification efforts using standard deductive verification tools largely do not
go beyond absence of special values. It is still possible to use a standard veri-
fication tool in combination with either a specialized tool or a proof assistant.
For example, Gappa was used as a backend for the Frama-C tool to success-
fully verify an average computation on C code [7,6]. In the opposite direction, a
Point-in-Polygon algorithm was verified by first generating lemmas about stable
tests using the specialized tool PRECISA and then reusing them inside Frama-C
to prove the program [22].

7 Conclusion

We have demonstrated that it is possible to use general purpose verification tools
like SPARK to verify advanced properties of (simple) floating-point programs.
Absence of overflows is achievable through bounds propagation. Precise speci-
fications can be written in terms of the equivalent real computation and error
bounds, but proving them correct is more involved and requires user interaction
currently. The situation could improve in the future, either following improve-
ments in SMT solvers, as support for floating-point in SMT-LIB is fairly recent.
Though we believe it stays within the reach of regular developers, our approach
does require some expertise, in particular to compute the correct error bounds.
It might be possible to use external tools to estimate the bounds and reuse the
results, but we have not explored this approach.

8 https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/U129-
014__sqrt_error_bounds

Proofs of Floating-Point Programs for Regular Developers 17

References

10.

11.

12.

13.

14.

15.

16.

17.

Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive verifica-
tion of floating-point Java programs in KeY. In: TACAS (2). pp. 242-261 (2021)
Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M.: De-
ductive software verification—the key book. Lecture Notes in Computer Science
10001 (2016)

Astrauskas, V., Miiller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proceedings of the ACM on Programming Lan-
guages 3(OOPSLA), 1-30 (2019)

Barnes, J.: Programming in Ada 2012. Cambridge University Press (2014)

Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. pp. 53-64 (2011)

Boldo, S.: Formal verification of programs computing the floating-point average.
In: International Conference on Formal Engineering Methods. pp. 17-32. Springer
(2015)

Boldo, S., Marché, C.: Formal verification of numerical programs: from ¢ annotated
programs to mechanical proofs. Mathematics in Computer Science 5(4), 377-393
(2011)

. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point al-

gorithms in coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic. pp.
243-252. IEEE (2011)

Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 79-98. Springer (2019)

Cok, D.R.: Openjml: Jml for java 7 by extending openjdk. In: NASA Formal Meth-
ods Symposium. pp. 472-479. Springer (2011)

Conchon, S., Iguernlala, M., Ji, K., Melquiond, G., Fumex, C.: A three-tier strategy
for reasoning about floating-point numbers in smt. In: International Conference on
Computer Aided Verification. pp. 419-435. Springer (2017)

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c. In: International conference on software engineering and formal methods.
pp. 233-247. Springer (2012)

De Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implemen-
tation of an elementary function using gappa. IEEE Transactions on Computers
60(2), 242-253 (2010)

Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of fluctuat on safety-critical avionics software. In: International
Workshop on Formal Methods for Industrial Critical Systems. pp. 53—69. Springer
(2009)

Dross, C., Moy, Y.: Auto-active proof of red-black trees in spark. In: NASA Formal
Methods Symposium. pp. 68-83. Springer (2017)

Fumex, C., Marché, C., Moy, Y.: Automating the verification of floating-point
programs. In: Working Conference on Verified Software: Theories, Tools, and Ex-
periments. pp. 102-119. Springer (2017)

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for ¢ and java. In: NASA
formal methods symposium. pp. 41-55. Springer (2011)

18

18.

19.

20.

21.

22.

23.

Claire Dross and Johannes Kanig

Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop (2010)

Matsushita, Y., Tsukada, T., Kobayashi, N.: Rusthorn: Chc-based verification for
rust programs. In: Furopean Symposium on Programming. pp. 484-514. Springer,
Cham (2020)

McCormick, J.W., Chapin, P.C.: Building high integrity applications with SPARK.
Cambridge University Press (2015)

Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 30(3), 1-41 (2008)
Moscato, M.M., Titolo, L., Felii, M.A., Muifioz, C.A.: Provably correct floating-
point implementation of a point-in-polygon algorithm. In: International Sympo-
sium on Formal Methods. pp. 21-37. Springer (2019)

Rimmer, P., Wahl, T.: An smt-lib theory of binary floating-point arithmetic. In:
International Workshop on Satisfiability Modulo Theories (SMT). p. 151 (2010)

