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Abstract. Among formal methods, the deductive verification approach allows
establishing the strongest possible formal guarantees on critical software. The
downside is the cost in terms of human effort required to design adequate for-
mal specifications and to successfully discharge the required proof obligations.
To popularize deductive verification in an industrial software development envi-
ronment, it is essential to provide means to progressively transition from simple
and automated approaches to deductive verification. The SPARK environment,
for development of critical software written in Ada, goes towards this goal by
providing automated tools for formally proving that some code fulfills the re-
quirements expressed in Ada contracts.

In a program verifier that makes use of automatic provers to discharge the proof
obligations, a need for some additional user interaction with proof tasks shows
up: either to help analyzing the reason of a proof failure or, ultimately, to dis-
charge the verification conditions that are out-of-reach of state-of-the-art auto-
matic provers. Adding interactive proof features in SPARK appears to be com-
plicated by the fact that the proof toolchain makes use of the independent, in-
termediate verification tool Why3, which is generic enough to accept multiple
front-ends for different input languages. This paper reports on our approach to
extend Why3 with interactive proof features and also with a generic client-server
infrastructure allowing integration of proof interaction into an external, front-end
graphical user interface such as the one of SPARK.

1 Introduction

For the development of software with high safety and security requirements, deductive
program verification is an approach that provides access to the highest levels of guaran-
tees. The functional requirements are expressed using formal specification languages.
The conformance of the code with such specifications can be established in a fairly auto-
mated setting using automatic program verifiers available nowadays (such as Dafny, F*,
KeY, KIV, OpenJML, Verifast, Viper, Why3, etc.). Such verification tools typically pro-
ceed by generating verification conditions (VC for short): mathematical formulas that
need to be proven valid. Such VCs are typically discharged using automated solvers,
such as the SMT solvers reasoning on Satisfiability Modulo Theories.
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A major issue preventing the diffusion of deductive verification in industrial appli-
cations is the cost in terms of human effort required to design adequate formal specifica-
tions and to successfully discharge the VCs. To leverage this issue, it is important, when
no SMT solver is able to solve a given VC, to provide the user with means to investigate
the proof failure: is it because the code needs to be fixed, is it because the program is not
sufficiently annotated (e.g. a missing loop invariant), or is it because the VC is too com-
plex to be discharged by automatic provers (e.g. an induction is needed). Among the
possible means is the generation of counterexamples [9]. Such a feature appears to be
useful in particular to fix trivial mistakes, but for complex cases, its limitations quickly
show up: because of the intrinsic incompleteness of back-end solvers, or more prag-
matically because solvers proof search is typically interrupted after a given time limit
is reached, the counterexamples may be spurious or absent [9]. Moreover, there is no
easy mean to distinguish a true bug from insufficiently detailed specifications (although
there is on-going research in that direction [15]).

This paper presents an approach that we designed in the context of the SPARK veri-
fier for industrial development of safety-critical Ada code [7,12]. The goal is to provide
simplified interactions between the user and the failing VC, so as to investigate a proof
task without the need to rely on an external interactive prover. A specificity of SPARK
is that the underlying toolchain from the given input Ada program to the VCs makes
use of the external intermediate language Why3 [6] that itself provides access to many
different automated provers (mainly Alt-Ergo, CVC4 and Z3) but also general purpose
interactive theorem provers (Coq, Isabelle/HOL, PVS). Indeed, an extreme mean to in-
vestigate a proof failure is to launch an interactive theorem prover on the failing VC
and to start writing a manual proof. Such a process shows up useful, mainly because
writing the detailed steps, in which the user believes the proof should work, typically
helps to discover missing elements in the specifications, and in such cases fixing the an-
notations could finally help the SMT solvers to automatically discharge the VC. Also,
an ultimate situation is to finish the proof completely using the underlying interactive
prover [3]. The main drawback in this process is that users should be able to use the
general-purpose back-end interactive prover, forcing them to learn a completely dif-
ferent environment, using its own syntax for formulas, and its specific proof tactics to
discharge proof tasks. Another drawback is that once the user has switched to an exter-
nal proof assistant to proceed with a proof, then there is no easy mean to get back to the
common environment offered by Why3 to call other automatic provers on the sub-goals
generated by interactive proof tactics.

1.1 Related Work

The need for user interaction in the context of industrial use of deductive verification is
not new, this issue was identified and taken into account early in the design of indus-
trial tools. The KIV environment, used in large realistic case studies in academia and
industry for more than 20 years, considered very early the importance of combining au-
tomated and interactive proving [2]. Other early tools that provide some form of inter-
active proving are the industrial tools, largely used in railway industry, Atelier B [1] and
Rodin [13]. The KeY environment, somehow a successor of KIV, is designed to build
proofs interactively, with the possibility to call efficient automated provers for solving



some leaves of the proof [10,11]. In the context of general purpose proof assistants,
the need for adding automation to their general interactive theorem proving process is
evident, for example in the environments ACL2, HOL Light, and more recently in Is-
abelle/HOL where the so-called Sledgehammer subtool is able to finish proofs using
external SMT solvers [4].

1.2 Common Issues in Automated Program Verification

Interestingly, our analysis of the common situations where fully automatic provers fail,
and switching to proof interaction is needed, is very similar to the analysis made in
previous work mentioned above. Here are the main identified cases:

— quantifier instantiation: a proof should be done by an adequate instantiation of a
universally quantified hypothesis, that the automatic provers cannot discover. Pro-
viding the instantiation by hand helps. Similarly, for proving an existential goal,
automated provers typically cannot guess the witness. This witness should be given
by hand.

— reasoning by cases: an explicit case reasoning can help the automatic provers.

— controlling the context and the strategy of proof search: a prover would sometimes
use most of its available time to try to solve the problem using a direction of think-
ing while a simple solution exists. Reducing the context manually can help.

— inductive reasoning: some properties require reasoning by induction over an inte-
ger, an algebraic datatype, or on an inductively defined predicate ; such reasoning
steps are out-of-reach of common automated solvers, whereas applying an induc-
tion rule by hand usually results in sub-goals that can be automatically discharged.

— non-linear integer arithmetic: it is typically hard for automatic provers, but a few
manual proof steps can make such a proof feasible. Similarly, floating-point arith-
metic is also very hard for automatic provers.

1.3 Contributions and Overview of the Paper

Our goals are shared with the above-mentioned related work. However, in the context
of SPARK, there is an additional issue that does not show up in previous work. Indeed,
in the previous work mentioned above, the language of formulas and proof tasks (e.g.
proof sequents) is directly the language in which the user writes her input problem: for
example in the context of the B method, the logic language is B set theory in which the
code of the B machines is written; in KeY, the underlying Dynamic Logic incorporates
pieces of Java code to verify. In the context of SPARK, we have the additional issue that
a proof task generated by the Why3 VC generator is written in a language that is very
different from the Ada input language.

Our approach proceeds in the following steps. In Section 2, we present what we
added to the Why3 intermediate tool to provide interactive proving features. Section 3
presents the use of interactive proof from SPARK, inside GNAT Programming Studio,
the Ada interface development environment. Section 4 concludes and discusses remain-
ing future work.
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2 Adding Interactive Proving in Why3

Figure 1 presents a general overview of Why3’s core architecture. The input files con-
tain code with formal specifications, written in the dedicated language WhyML [8],
which essentially consists in a set of functions or procedures annotated with contracts
(pre- and post-conditions, loop invariants, etc.). The VC generator produces, from such
a file, a set of proof tasks. A proof task, that we can denote as I - G, consists in a set
I' of logical declarations of types, function symbols, predicates, and hypotheses, and
finally the logical formula G representing the goal to prove. The soundness property
of the VC generator expresses that if all generated proof tasks are valid logical state-
ments, then the input program is safe: no runtime error can arise and formal contracts
are satisfied.
Consider the following toy example of a function written in WhyML.

let f (a:array int) (x:int) : int
requires { a.length > 1000 }
requires { 0 < x < 10 }
requires { forall i. 0 < 4xi+l < a.length — a[4xi+l] > 0 }
ensures { a[result] > 0 }
= let y = 2xx+1 in yxy

The function f takes as parameters an array a and an integer x. The first two pre-
conditions express two simple requirements on the size of array a and an interval of
possible values for x. The third pre-condition is a bit more complex, it expresses that
for indexes that are a multiple of 4 plus 1, the values stored in a is non-negative. The
function f returns an integer, denoted as the keyword result in the post-condition, with
a post-condition expressing that the value at the index returned is also non-negative. The
code simply returns the square of 2x+ 1. For such a code, Why3 generates as the VC
the formula

forall a:array int, x:int.
length a > 1000 A (0 < x A x < 10) A
(forall i:int.
0 < ((4*1) +1) A ((4x%1)+1) < length a — a[(4 * i) + 1] > 0) —
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Fig. 2. Failed proof attempts shown in Why3IDE

(let y = (2 * x) + 1 in aly * y]l > 0)

As one may guess such a formula can quickly become unreadable when code size
grows, and is hardly suitable for human inspection.

2.1 Proof Tasks and Transformations

The core of Why3 comes as a software library, written in the OCaml language and with
a documented API, that proposes in particular data-types for terms, formulas and proof
tasks, and a large collection of operations to operate on them. A central notion is the
notion of transformation: an OCaml function that takes a proof task as input and returns
a set of proof tasks. All implemented transformations are expected to be sound, in the
sense that if all the resulting proof tasks are valid, then the original task is valid too. A
simple example of such a transformation is splitting, which basically transforms a task
of the form I' - G| A Gy A --- A Gy into the set of tasks I' - G; for 1 <i < k. The VC
generator is designed so as to produce a single proof task for each procedure or function
of the input code, as in the example above. To ease the visibility and understanding of
the resulting formula, a generalized splitting transformation is typically applied, so as
to decompose such a VC into a set of simpler VCs for specific properties to check, e.g.
checking if an array index is in bounds, checking the preservation of a loop invariant,
checking the pre-condition of a sub-procedure called, etc.

Figure 2 presents a screenshot of Why3’s graphical interface (Why3IDE) when
given our toy program as input. The left part of that window is the proof task tree.
The current selected line is for the proof task after applying the transformation named



split_intros_goal wp which implements the generalized splitting transformation
mentioned above.

Indeed the role of transformations is two-fold. The first role is to somehow sim-
plify the given task (such as the splitting above). In such a case a transformation is
applied on user’s request inside the graphical interface. The second role is to preprocess
a task before sending it to an external prover: typically an external prover does not sup-
port all features of Why3’s logic, such as polymorphic types, algebraic data types and
the corresponding pattern-matching, recursive or inductive definition of predicates, etc.
Hence, when the user wants to invoke an external prover on a given task, Why3 trans-
parently applies some transformations to make the proof task fit into the logic of the
target prover, before using an appropriate printer suitable for the back-end prover input
syntax (e.g. SMT-LIB). On Figure 2 it can be seen that the provers Alt-Ergo, CVC4 and
73 were invoked but none of them were able to discharge the expected post-condition.
It is likely that the combination of non-linear arithmetic and the need for finding an
appropriate instantiation for the hypothesis H is the reason why they fail. Mixing quan-
tifiers and arithmetic makes very difficult goals to prove for all categories of automatic
provers: SMT solvers quantifier handling is based on triggers, that do not interact well
with arithmetic, while TPTP provers have a more powerful handling of quantifiers but
do not support arithmetic. This corresponds to the limitation of automatic provers that
we called quantifier instantiation in Section 1.2.

On top of the core architecture of Figure 1, Why3 features two major components:
the proof session manager and the graphical interface. Adding support for interactive
proving in this global architecture requires extensions that we detail in the subsections
below: extensions of the GUI, extension of the transformation setting of the core ar-
chitecture, and extensions in the proof session manager. A feature, that has important
consequences on our approach presented below for adding interactive proving in Why3,
is the genericity of transformations handling. The Why?3 library is designed so that an
additional user-written transformation can be dynamically loaded at run-time, using a
mechanism of registration with a name.

2.2 Extending User Interface

As shown in Figure 2, the graphical interface is naturally where proofs tasks are dis-
played and where the user can decide which transformations to apply and which prover
to call. Below the top-right part of the window, where the current proof task is displayed,
and above the bottom-right part where different kinds of messages are displayed, we
added a kind of command-line input field where the user can input arbitrary character
text to form a command. If we consider our toy example, one possibility to progress
towards proving the goal is to replace y*y by the term 4 (xxx+x)+1. To achieve that,
the user can directly input the text

replace yxy 4x(xxx+x)+1

in the input field and hit the return key. An alternative possible transformation would be
to instantiate the hypothesis H with xxx+x, which can be done with the input

instantiate H xxx+x
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Fig. 3. Completed proof using two possible transformations with arguments

Figure 3 displays the GUI after trying both transformations. As seen on left, the transfor-
mation replace yxy 4x(x*x+x)+1 generated two subgoals: first proving the formula
after the replacement, second proving that yxy=4x (x*x+x)+1. Both subgoals are proved
by Alt-Ergo. Similarly, the transformation “instantiate H x*x+x” generates one sub-
goal where an additional hypothesis is present (the instance of H for the given particular
value for i) and is also proved by Alt-Ergo. As can be seen, applying any of these two
transformations is enough to finish the proof automatically.

Even if this mechanism using a textual interface may seem old-fashioned, it permits
a lot of genericity. We’ll see below how it simplifies the communication with a front-end
such as SPARK. It also permits a lot of extra features that show themselves important
in practice, such as searching in the proof context.

2.3 Adding Parameters to Proof Transformations

A central design choice towards the introduction of interactive proofs is to reuse the
existing infrastructure of transformations. Basically, since that infrastructure already
allows the user to select among a given set of transformations to apply on a given proof
task, we just have to extend this set, after extending the concept of transformations so
that they can take parameters, like the two transformations used above: replace is a
transformation that takes two terms as input. instantiate takes an hypothesis name
and a term. We faced two main issues for this extension. First, the transformations can
take various objects as parameters: a term, a formula, a name, a string, etc. It means that
at the level of the API, we need some typing mechanism in order to declare what are
the right types of objects to pass as parameters. Second, at the level of the interface, the



data submitted by the user are just textual, so we need a generic infrastructure to parse
them and turn them into objects of the right kind.

At the level of the API, in order to handle the large variability of the kinds of trans-
formation parameters, we were able to use the advanced concept of GADT (Generalized
Abstract Data Types). An excerpt of the new declaration of transformation type in the
API is as follows (the real one has 20 constructors):

type _ trans_typ =

| Ttrans_1 : (task -> task list) trans_typ

(xx transformation with no argument, and many resulting tasks x*)

| Tstring : 'a trans_typ -> (string -> ’a) trans_typ

(*x transformation with a string as argument x)

| Tprsymbol : ’a trans_typ -> (Decl.prsymbol -> ’a) trans_typ

(*x transformation with a Why3 proposition symbol as argument x)

| Tterm : ’a trans_typ -> (Term.term -> 'a) trans_typ

(xx transformation with a Why3 term as argument x)

| Topt : string * ('a -> ’'c) trans_typ -> ('a option -> 'c) trans_typ

(xx transformation with an optional argument. The first string is
the keyword introducing that optional argumentx)

To implement a transformation like instantiate above, we first have to program it
with an OCaml function, say inst, of type prsymbol — term — task list, and then
register it under the proper name as follows

wrap_and_register "instantiate" (Tprsymbol (Tterm Ttrans_1)) inst

Not only will it make the transformation available for use in the interface, but it will
automatically proceed with the parsing, name resolution and typing of the textual argu-
ments, as given by the type (Tprsymbol (Tterm Ttrans_1)). This mechanism based
on GADTs is powerful enough to handle optional parameters. For example, the replace
transformation is declared with type

(Tterm (Tterm (Topt ("in", Tprsymbol Ttrans_1))))

which means that a third optional argument is allowed, of type prsymbol and introduced
by the keyword in to say that the replacement should be done in the hypothesis of the
given name instead of the goal, e.g. “replace (length a) 1000 in H”. Notice the
large genericity of this mechanism, in particular the keyword used for introducing the
optional argument. The genericity also comes from the wrap_and_register function
which is defined once and for all and does all the hard job. In particular, the resolution
of variable names given as arguments had to be carefully made consistent with the
printing of the task, which can rename variables.

Here is a quick summary of the major transformations with parameters that we
added in Why3. They are supposed to cover the major needs for interaction as already
listed in Section 1.2.

— case analysis on a formula (case P), on an algebraic data (destruct_alg ¢), decom-
position on propositional structure of an hypothesis (destruct H). For example, the
transformation “caseP” where P is an arbitrary formula would be transforming a
task I' - G into the two tasks I',P+ G and I",-P I G.



— introduction of an auxiliary hypothesis (cut P, assert P) or term (pose x t)

— induction on integers, on inductive predicates

— instantiation as seen above (instantiate H fy,...,f;), including existential case
(exists t), or via direct application of an hypothesis to a goal (apply H)

— various rewriting and computation transformations: rewrite H (in H’),
replacet; fp (in H), subst x, subst_all, etc.

— context handling: remove Hy,...,H, clear_but ...

— unfolding a definition: unfold f

— import an extra theory: use_th T

2.4 Extending The Proof Session Mechanism

A proof session is essentially a record of all the proof tasks generated from a given
input file, and also a record of all transformations applied to these tasks. It is indeed
an internal representation of the proof task tree displayed on the left part of Figure 2.
Such a session can be stored on disk, and can be reloaded to a former state by the
user. A crucial feature of the session manager is to manage the changes if the input file
is modified (e.g. more annotations are added): the manager implements a clever and
sound merging operation to discover which parts of the proof session can be reused,
which tasks are modified, which external proofs should be replayed [5].

The Why?3 session files do not store any internal representation to avoid any problem
when the Why?3 tools themselves evolve. Accordingly, we decided that the arguments of
transformations should be stored under their textual form too. This definitely avoids po-
tential problems with changes in internal representations, but still some problems with
renaming could occur. For example, an automatically introduced name for any hypothe-
sis, say H1, could perfectly be renamed into H2, e.g. if an extra annotation is added in the
source code. It is thus perfectly normal that from time to time, while reloading a proof
session, a transformation with argument does not apply anymore. In order to avoid the
loss of any sub-proof tree, we implemented the new notion of detached nodes in the
proof task tree. These nodes are a record of the state of the previous session, but sim-
ply without any corresponding proof task anymore. We then implemented a mechanism
to copy and paste fragments of proof trees from one node to another. This copy-paste
mechanism showed itself very useful in practice for maintaining interactive proofs.

2.5 Examples

A first way we evaluated the new interactive proof features of Why3 was to restudy
past examples where some VCs could not be discharged except using the Coq proof
assistant. Bobot et al. paper [6] illustrated the use of Why3 on the three challenges of the
VerifyThis competition in 2012. On each of these case studies, at least one Coq proof
was required. We have reconsidered the first challenge (Longest Repeated Substring)
and were able to replace all three Coq proofs with interactive proofs. Interestingly, only
very few transformations were needed, because we quickly arrived to simpler subgoals
that are discharged by automatic solvers.

Another illustrative example is the proof of Dijkstra’s shortest path algorithm on
graphs: again, we were able to replace Coq proofs with interactive transformations and



automatic solvers. We noticed that not only does it simplify the proofs, they are now
easier to maintain in case of a change in Why3 implementation or standard library.

We still have to evaluate to what extent the interaction using transformations with
argument is easy to use for regular users. Moreover, we need more practice in order
to see if this mechanism is of effective help for debugging proofs, as explained in the
introduction.

3 Adding Interactive Proving in SPARK

Although the SPARK verifier, called GNATprove, is based on Why3 for generating
VCs and proving them, there is a large gap between the SPARK and WhyML pro-
gramming languages. Therefore, the interactive proof features of Why3 cannot be used
directly by SPARK users. The same issue arose in the past with the counterexample
generation features of Why3, which required translation back to SPARK for use inside
GNATprove [9]. That issue also involved interactions with users inside different IDEs,
Why3IDE for Why3 users and GNAT Programming Studio (GPS) for SPARK users,
but that interaction was one-way only: the counterexamples output by provers were
translated back to either Why3 or SPARK syntax and displayed in their respective IDE.
Here, we need a two-way interaction where users can input commands (possibly with
elements of the code as parameters) and Why3 returns a modified set of proof tasks.

We start by presenting a simple SPARK program that cannot be proved with auto-
matic provers in Section 3.1. Then we describe in Section 3.2 the client-server archi-
tecture that we have adopted for two-way communication between the IDE for SPARK
programs and Why3. We detail in Section 3.3 how we translate back and forth between
user-level names in SPARK and internal names in Why3. Finally, we explain in Sec-
tion 3.4 how to complete the proof of our example, which resisted provers.

3.1 Unprovable Code Example

The code in Figure 4 is a simplified version of an excerpt from a bounded string library.
This code contains a post-condition that cannot be proved today by any prover available
with SPARK (Alt-Ergo, CVC4, Z3). The reason for this unproved property is charac-
teristic of the kind of problems faced by users of a technology like SPARK. It is in the
class of problems called quantifier instantiation already presented in Section 2.

The code in Figure 4 computes the location of a sub-list of integers within a list
of integers, when the sub-list is contained in the list. Lists are implemented here as
SPARK arrays starting at index 1 and ranging over positive indexes. The post-condition
of function Location introduced by Post states the following properties: the result of
the function ranges from O to the length of the list; a positive result is used when the
sub-list is contained in the list, and value O is used as result otherwise. For the sake of
simplicity, we do not state the complete post-condition of Location, but this could be
done easily. This post-condition relies on the definition in function Contains of what
it means for a sub-list Fragment to be contained in a list Within. This function is only
used in specifications, which is enforced by marking it as Ghost. It is defined as an
expression function, quantifying with for some (Ada existential quantification) over a
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type List is array (Positive range <>) of Integer
with Predicate => List’First = 1;
subtype Natural_Index is Integer range O .. Positive’last;

function Contains (Within : List; Fragment : List) return Boolean is
(Fragment’Length in 1 .. Within’Length and then
(for some K in 1 .. (Within'Length - Fragment’'Length + 1) =>
Within (K .. (K - 1 + Fragment’Length)) = Fragment))
with Ghost;

function Location (Fragment : List; Within : List) return Natural_Index
with
Post => Location’Result in 0@ .. Within’Length and then
(if Contains (Within, Fragment) then
Location’Result > 0
else
Location’Result = 0)
is begin
if Fragment’Length in 1 .. Within’Length then
for K in 1 .. (Within’Length - Fragment’Length + 1) loop
if Within (K .. (K - 1 + Fragment’Length)) = Fragment then
return K;
end if;
pragma Loop_Invariant
(for all J in 1 .. K =>
Within (3 .. (3 - 1 + Fragment’'Length)) /= Fragment);
end loop;
end if;
return 0;
end Location;

Fig. 4. Example of SPARK code with an unprovable post-condition

range of scalar values the property that the sub-list Fragment is equal to a moving slice
of the list Within (K .. (K - 1 + Fragment’Length)). This last expression is the
slice of array Within from index K to index (K - 1 + Fragment’Length). For the sake
of simplicity, function Location naively iterates over each possible location for a match
and tests for equality of the corresponding slice with the argument sub-list. The loop
invariant repeats the post-condition and specializes it for the K’ iteration of the loop, so
that the loop invariant is itself provable and can be used to prove the post-condition.

When running GNATprove on this program, it proves automatically the absence of
runtime errors (no integer overflows, no array access out of bounds, no other runtime
check failures), as well as the loop invariant in function Location, but it does not prove
the post-condition of that function. The user interaction is quite simple here. The user
requests that this program is verified by GNATprove inside GPS, and a few seconds
later receives the output of the tool as messages attached to program lines. Between
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these two instants, GPS called GNATprove; GNATprove translated the SPARK program
into an equivalent WhyML program w.r.t. axiomatic semantics for generation of VCs;
an internal program using Why3 API successively generated VCs by calling Why3 VC
generator and dispatched VCs to provers; this internal program collected the output
of provers and returned the overall results to GNATprove; GNATprove generated and
adapted results for GPS; and GPS displayed these results to the user.

All this work occurred transparently for the user, who never had to see the generated
WhyML code in Why3IDE, or to launch Why3 commands in a terminal. A less-than-
ideal process for completing the proof of the post-condition would consist in asking
the user to open the session file generated by Why3 in Why3IDE to complete the proof
using the interactive proof feature described in Section 2. While this would work, this is
not a suitable solution in an industrial context. Indeed, asking users to interact directly
with a generated artifact in a different language (the Why3 file) is akin to asking them
to debug their programs at assembly level. While this is possible and sometimes useful,
it is best left to rare occasions when this is really needed, and instead interaction should
be done as much as possible at source code level.

3.2 Client-Server Architecture

Most modern IDEs like GPS provide client-server in-
terfaces with various tools such as debuggers or, in the
context of formal verification, with proof assistants such GPS IDE Why3 interactive server
as Emacs ProofGeneral support for Coq, Isabelle, Lego,

. . Launch the serve
HOL, etc. We have adopted a client-server architecture e

to allow two-way communications between the interactive Notify starting proof tree
proof module (acting as a server) and the client IDE, which
can be Why3IDE or GPS here. The server handles requests Ask for proof task ;

—_—

from the user (through the IDE), such as proof transforma-

tions (see Section 2.3) and direct calls to provers. After the Send the task
requested action terminates, the server informs the IDE of
changes to the proof task tree.

For the integration in GPS, we developed both a wrap-
per in OCaml for the underlying service to act as the server,
and a plugin in Python to communicate with the server
from GPS. The server takes the session file as initial ar- Exit request
gument, gets its input in JSON format on standard input, -
calls Why3 core services, updates the session file accord- Save session and stops

ingly, and returns its output in JSON format on the stan-
dard output. The plugin modifies GPS interface to add a
console window for command-line interaction, a window
to display VCs and a window to display the proof task
tree. The plugin translates requests made by the user on the
command-line interface into JSON requests that are sent to
the server, and translates back the server notifications into
updates of the graphical user interface (adding nodes in the proof task tree, changing the
VC, etc.). For example, as seen in Figure 5, GPS first starts the server, then the server

time time
Fig.5. Schematic of the in-

teractions between IDE and
server
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else
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{1 == k1 /% k1l == ({length3 Within - length3 F
{let temp 174 =
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of _array? (to_array3 Within) k1l temp 173
in

bool_eqd (to_array? temp 174) (first4 temp
{(to_array3 Fragment) (first6 Fragment) (lasté
= True)
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1 ==k /\ k == temp 208 -=
not bool_eqd (elts3 Within)

(to_rep4 (firstl (mk k {{k - 1) + length3 Fr
(to_repd (lastl (mk k {(k - 1) + length3 Fra
({to_repd (first7 (rt3 Fragment))) (to_repd |
= True

goal WP parameter def : int content Locationg = 0@

250:1 B '}

lar
w 0 [postcondition]
w instantiate contains__def_axiom Within,
w 0 [postcondition]

w rewrite Hinst in H16

w 0 [postcondition]

w destruct H16

w 0 [postcondition]
w destruct H
w 0 [postcondition]
w destruct H

w 0 [postcon
w instanti
z

vl

Z3 4.5.1-gnatprove
Messages Locations Manual Proof
= instantiate H18 k '

= z3

Fig. 6. Example of interactive proof in GPS

returns the initial proof task tree which is printed by GPS. When the user clicks a node,
GPS asks for the corresponding proof task which the server returns and GPS then prints
it for the user. This goes on until the user exits manual proof which GPS interprets by
sending the exit request: Why3 interactive server ends its execution. The death of the
process is detected by GPS which goes back to its normal interface. A schematic of
the interactions between the IDE and the server is depicted in Figure 5. With very little
effort, we transformed a generic IDE such as GPS into an elementary proof assistant.

As seen on Figure 06, the user interface in GPS is similar to the one in Why3IDE
presented in Figure 2. The same windows are present but they are not located at the same
place. From left to right, we can see the SPARK code window, the proof task window
and the proof task tree window. The command-line console is displayed as a bottom
panel sharing its window with other panels for Messages (tool output) and Locations
(tool messages). The user can type commands for applying transformations and calling
provers inside the command-line console, similar to what we saw for Why3IDE.

One can observe that the VC from Figure 6 is much more complex than the simple
VC we generated with Why3 in Figure 2. This is mainly a consequence of the com-
plexity of the WhyML code generated from SPARK. Simple data structures and control
flow in SPARK are modeled with much more complex data structures and control flow
in WhyML to encode the semantic features of SPARK. This complexity gets exposed in
the VC generated by Why3 VC generator, as it combines the complexity of data struc-
tures and control flow. This inherent complexity cannot be eliminated and must be dealt
with to present SPARK users with understandable VCs.
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3.3 Printing of Proof Tasks and Parsing of Transformation Arguments

In order for users to be able to relate the proof task to their code, it is necessary to use the
names of source SPARK entities in the proof task instead of the generated Why3 names.
This is achieved by creating a mapping from Why3 names to their source SPARK name
during the generation of Why3 code from SPARK. This mapping is embedded in the
WhyML code using labels, a generic mechanism in Why3 to attach strings to terms.
For example, in the following code snippet the label "name:Not_y" is attached to the
identifier y:

let f (a:array int) (x:int) : int
ensures {result = 20}
= let y "name:Not_y" = 2xx+1 in yxy

Labels on terms are preserved by VC generation and transformations. For example,
the label "name:Not_y" remains attached to the constants derived from y in the final VC
obtained after VC generation and transformations. Thus, when printing a proof task, the
name of an identifier can be replaced by the name found in the attached label when there
is one. Thus we get the following proof task where the source SPARK name Not_y is
used instead of the generated Why3 name y:

constant x : int
constant Not_y : int = (2 * x) + 1
goal VC f : (Not_y * Not_y) = 20

Different Why3 names with the same name label are currently distinguished by
appending a unique number to the source SPARK name. The consecutive problem of
interpreting the names of SPARK entities as Why3 names occurs when the user types
a command with arguments referring to the names of SPARK entities. Why3 uses here
the inverse map from distinguished SPARK names to Why3 names associated to a given
proof task to translate automatically the arguments of transformations.

3.4 Application to the Unprovable Code Example

We can use the interactive proof interface in GPS to complete the proof of the post-
condition of Location from Section 3.1. For the sake of simplicity, we will only de-
scribe the proof part of the then branch in this subsection, shown in the screenshot in
Figure 6. The root of the proof task tree is green, showing that the initial VC was fully
proved.
The interactive proof proceeds by deriving a contradiction from the loop invariant
property in the last iteration of the loop and the condition of the then branch Contains
(Within, Fragment). This requires unfolding the definition of Contains and finding
suitable instances of quantified properties. In this case, the proof task tree is linear and
a complete proof script is the following:

instantiate contains__def_axiom Within, Fragment
rewrite Hinst in H16

destruct H16

destruct H
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destruct H
instantiate H18 k

The intuition of the proof is that we need to explain to the tool how to combine the
hypotheses coming from the loop invariant and the definition of Contains. The first two
transformations (instantiate, rewrite) are used to make the axiomatic definition of
Contains, applied to the right arguments, appear as an hypothesis in the context. The
three calls to the destruct transformation are used to destruct the head connective of
the hypothesis that appeared. They transform I',H : (AAJk.P(k)) - Ginto ', H : Ak :
int, H; : P(k) b G. The objective is to use k as an instance for the loop invariant property
(to make the contradiction appear). This is exactly what transformation “instantiate
H18 k” does. The quantification disappears and SMT solvers are now able to solve the
goal. This completes the proof of the then branch of the post-condition of Location.
The else branch is handled similarly, which completes the proof of the program.

4 Conclusions and Future Work

We brought interactive proving features to the SPARK verification environment for
Ada. This was done by conservatively extending the intermediate Why3 tool by al-
lowing to pass arguments to proof task transformations. The design is generic enough
to allow simple addition of new transformations via Why3’s API. The proof session
mechanism and the graphical interface have been extended to allow simple user inter-
action and facilities for proof maintenance. A few program examples were re-proved,
showing that former external interactive proofs using Coq can be substituted with light
interactive proofs in our new setting. The user interface of Why3 was redesigned under
the form of a generic client-server architecture, allowing to bring interactive proving
features to the SPARK front-end inside the regular GPS graphical interface.

Future Work will go into several directions. First, we certainly want to enlarge the
set of transformations with arguments, to cover more needs for interactive proofs. The
needed transformations will be identified from practice. Notice that others are already
reusing our API to implement new transformations, for example for doing proofs by re-
flection for complex non-linear goals [14]. Second, we plan to reuse the client-server ar-
chitecture to provide an alternative interface for Why3, this time within a web browser.
We also plan to bring the interactive proof feature to the Frama-C front-end for C code,
by augmenting the existing Jessie plug-in of Frama-C that uses Why3 internally. A
third longer-term work is to allow for more customization of the printing of tasks and
the parsing of transformation arguments: from SPARK, we would like the terms in
proof tasks expressed in a more Ada-like syntax, in particular for arrays. For this we
will need to design in Why3’s generic API a possibility to register printers and parsers.
A fourth even longer-term issue is the question of trust in the implemented transfor-
mations. Since we implement more and more complex OCaml code for that purpose,
a general need for verifying the soundness of the transformations shows up. It is likely
that we will need to design a language of proof terms or proof certificates to achieve
this long-term goal.
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