Object and Source Coverage for Critical Applications
with the COUVERTURE Open Analysis Framework

Matteo Bordin, Cyrille Comar, Tristan Gingold,
Jérdme Guitton, Olivier Hainque, Thomas Quinot
AdaCore, 46 rue d’Amsterdam, F-75009 PARIS (France)
{bordin, comar, gingold, guitton, hainque, quinot}@adacore.com

Abstract: This paper presents COUVERTURE, an
open coverage analysis framework for safety-critical
software development. COUVERTURE offers non-
intrusive source and object coverage analysis on un-
modified user code, using instrumentation of a virtual
execution platform based on QEMU, a flexible and effi-
cient open-source CPU emulator.

COUVERTURE focuses primarily on the DO-178 civilian
avionics certification process: it supports the source
coverage analysis activities required for each criticality
level. It also provides instruction and branch cover-
age analysis of object code. We discuss the relation-
ship between execution traces, object coverage met-
rics, and source coverage. In particular, we provide
a characterization of source constructs for which ob-
ject branch coverage implies modified condition/deci-
sion coverage, and we discuss the trace collection pro-
cess required for those cases where there is no such
equivalence.

Sources of the software components and qualification
material for COUVERTURE are available under open
source licenses from the OpenDO site (http://www.
open-do.org/).

Keywords: Source coverage, object coverage, DO-
178B, DO-178C, target emulation, open source.

1 Introduction

The development of a high-integrity application in-
volves interaction between the design and testing
phases. System requirements are decomposed into
high-level requirements, which lead to the definition of
a software architecture and lower level requirements.
The latter are implemented, generally using a high-
level programming language such as Ada, C, or C++.
A set of corresponding verification activities often mir-
rors each decomposition step. For example, the testing
part of the verification associated with system require-
ments is often referred to as acceptance testing, the
one associated with software architecture and high-
level requirements is referred to as integration testing,
while unit testing is often used to verify low level re-
quirements. The workflow implied by such a decom-
position is the standard waterfall model but even when

OO WN =

more agile workflows are used, with shorter iterations
and earlier emphasis on integration issues, the same
correspondance exist between a level of requirements
and verification activities.

At any level of decomposition, the test cases to verify
the implementation of a given requirement are to be
built from the requirement itself: the idea is to have the
specifications, rather than the implementation, drive
the testing strategy. One essential point in this pro-
cess is the evaluation of the quality of the testing: Were
enough test cases developed to verify that the software
properly implements all of its requirements? Is there
any functionality in software that does not stem from
requirements?. Structural coverage analysis offers a
means to conduct such an evaluation.

Various coverage metrics are in industrial use [13].
They differ by how comprehensive a test suite should
be to achieve coverage. Two common examples are
statement and decision coverage; the former mea-
sures how source code statements are exercised,
the latter measures how complex or flow-controlling
Boolean expressions (decisions) are evaluated.

Achieving a certain coverage criterion means that
the requirement-driven testing strategy includes a set
of tests whose execution exercises all the coverable
structures that the metric targets.

For example, achieving statement coverage means ex-
ecuting at least once all statements present in the
source code of interest, and achieving decision cov-
erage means that the test suite executes all decisions
with both outcomes (True and False). In section 2.1,
we discuss MC/DC (Modified Condition/Decision Cov-
erage), an even more stringent criterion.

We will use the following small Ada program as an ex-
ample throughout this paper:

procedure P (A, B, C :
begin
if (A and then B) or else C then
Do_Something;
end if;
end P;

Boolean) is

Listing 1: Example source code

The example on listing 1 contains two statements
(lines 3 to 4) and a single decision (the Boolean ex-
pression at line 3). Statement coverage for proce-
dure P can be achieved with just one test causing the
decision to be evaluated True. Decision coverage is
achieved with two tests, one evaluating the decision to
True, the other to False.

Coverage evaluation is explicitly required by several in-
dustrial standards: for example, DO-178B (civil avion-
ics) [14], EN 50128 (railroad systems) [7], ECSS-E-ST-
40C (space systems) [11], or IEC 60880 (nuclear) [12].

The remainder of this paper focuses specifically on
DO-178 (we use DO-178 to refer to both DO-178B,
the current version of the standard, and DO-178C,
its upcoming replacement). In section 2, we give an
overview of the coverage analysis activities defined
in DO-178, and introduce MC/DC analysis. We dis-
cuss the relationship between object and source cov-
erage, as well as current assessment methodologies.
Section 3 presents our innovative approach: achieving
object and structural coverage analysis by means of
control flow traces produced by an emulated execution
platform.

In section 4, we provide an in-depth discussion of the
applicability of our approach to MC/DC assessment.
We introduce several theoretical results on the condi-
tions in which MC/DC can be derived from synthetic
branch coverage information, and those in which full
execution history must be collected.

We present some practical results obtained with Cou-
VERTURE in section 5, and we discuss future directions
in section 6.

2 Structural coverage and DO-178

DO-178 [14] is the international standard providing
guidance for the development of software to be de-
ployed on airborne systems flying over civil ground.
DO-178 describes a set of development and verifica-
tion objectives which shall be met by a development
team in order to gain certification credit for the devel-
oped software. Structural coverage analysis is an ac-
tivity associated with the software verification process
objectives (see [14], table 7).

Three different metrics are considered within DO-178:
Statement Coverage (SC), Decision Coverage (DC)
and Modified Condition/Decision Coverage (MC/DC).
All these metrics express coverage in terms of source
code elements: SC measures which source code
statements are exercised, DC measures how boolean
expressions (decisions) are evaluated, and MC/DC re-
fines further with rules on atomic elements in boolean
expressions (conditions). We give a brief description
of MC/DC in section 2.1; additional information can be
found in [9].

The metric required for structural coverage depends
on the criticality of the application: the more safety-
critical the application, the more stringent the metric

(i.e. more extensive testing is required to achieve the
coverage objective):

e Level A requires MC/DC. Applications whose criti-
cality level is A are those whose failure would cause
a catastrophic impact.

e Level B requires Decision Coverage. Applications
whose criticality level is B are those whose failure
would cause a severe impact such as a large reduc-
tion in safety.

e Level C requires Statement Coverage. Applications
whose criticality level is C are those whose failure
would cause major impact such as a significant re-
duction in safety margins.

Level D (minor impact) and E (no impact) do not re-
quire any measure of coverage.

2.1 Modified Condition/Decision Coverage
2.1.1 MC/DC definition

MC/DC distinguishes decisions and conditions. A con-
dition is an atomic Boolean expression. A decision
is composed of one or more conditions connected by
boolean operators. (C1 and then C2) or else C3,
for example, is one decision with three conditions C1,
€2, and Cc3. To achieve MC/DC, every point of en-
try and exit in the program must be invoked at least
once, every decision must take all possible outcomes
at least once, and each condition in a decision must
be shown to independently affect the outcome of that
decision [14]. To explain what “independently affect”
actually means, we introduce here the notion of deci-
sion evaluation vector.

An evaluation vector for a decision is a vector of
Boolean values where each element corresponds to
the value of one condition in the decision. For example,
(T,FT) is an evaluation vector for (C1 and then C2)
or else C3 where C1 evaluates to True, C2 to False
and ¢3 to True. A condition C has an independent in-
fluence on a decision D if two evaluation vectors exist
which evaluate D to True and False and are identical
but for the value of C. Note that a given vector may
participate in more than one pair, each pair showing
independent influence of a different condition.

For example, to achieve MC/DC for the code in list-
ing 1, we can use the following evaluation vectors for
the single decision: (T, T, F), (T, F, T), (T, F, F), (F, T, F).
Independent influence of A is demonstrated by (T, T, F)
and (F, T, F): the two vectors are identical but for the
value of A and the decision is evaluated first to True,
then to False. Independent influence of B is demon-
strated by (T, T, F) and (T, F, F); independent influence
of C is demonstrated by (T, F, T) and (T, F, F). MC/DC
requires at least n + 1 tests to cover a decision com-
posed by n independent conditions.

2.1.2 Unique Cause + Short-Circuit MC/DC

MC/DC has been the source of confusion in the avion-
ics certification community, stemming primarily from
the meaning of a condition’s “independently affecting
the outcome” of a decision. The definition of MC/DC
at the beginning of the previous section, based on
the Glossary of DO-178B, has come to be known as
Unique Cause MC/DC. This definition has several lim-
itations:

e Unique Cause MC/DC can never be achieved for de-
cisions with coupled conditions (because coupling
means that the condition values change together);

e The set of possible independence pairs for a given
condition is unnecessarily restrictive (because even
inputs that cannot possibly affect the output are
forced to be unchanged).

To address these issues, several variants of MC/DC
have been proposed, which relax the definition of an
independence pair, allowing some inputs (other than
the condition whose independent influence is being
demonstrated) to differ in the two test vectors. Unique
Cause+Masking MC/DC and Masking MC/DC [9] are
two examples of such relaxed variants which Certifica-
tion Authorities have accepted as reasonable alterna-
tives [4].

In COUVERTURE, we use an intermediate form, which
introduces a limited use of condition hiding: Unique
Cause + Short-Circuit MC/DC. In this variant, we con-
sider the right-hand side operand of a short-circuit op-
erator (and then Or or else) to be hidden when the
value of the left-hand side alone determines the out-
come of the operator, and we ignore differences in
hidden condition values for determination of indepen-
dence pairs.

This is consistent with the code generation strategy for
such operators: the right-hand side is evaluated only if
the value of the left-hand side makes it necessary. In
other words, a condition is hidden under Unique Cause
+ Short-Circuit MC/DC when the evaluation of the en-
closing decision does not even evaluate that condition.
In this case, no value change of that condition can pos-
sibly be the cause of a change in decision outcome. As
for standard Unique Cause MC/DC, we retain the con-
straint that all evaluated conditions (other than the one
being tested for independent influence) have fixed val-
ues. This definition of hiding is more conservative than
the notion of masking proposed in [4].

2.2 Source Coverage versus Object Coverage

Applicants for DO-178 certification have sometimes
proposed the use of object code coverage instead of
source code coverage as a metric to satisfy the ob-
jectives of DO-178. The proposed approach involves
measuring either instruction coverage or branch cov-
erage. Object instruction coverage (OIC) requires as-
sessing whether all object instructions are executed

at least once; object branch coverage (OBC) in addi-
tion requires that all conditional branches be exercised
for both directions (branch and fall through). The use
of object code coverage has also been proposed as
a way to cope with untraceable object code. Section
6.4.4.2 of DO-178 indeed states: The structural cover-
age analysis may be performed on the Source Code,
unless the software level is A and the compiler gener-
ates object code that is not directly traceable to Source
Code statements. Then, additional verification should
be performed on the object code to establish the cor-
rectness of such generated code sequences.

Untraceable object code is compiler generated ma-
chine code that impacts the execution control flow in
a way not directly visible from source code. An ex-
ample is the Ada mod operator, which requires an im-
plicit conditional branch to distinguish between positive
and negative moduli. Achieving a certain source cov-
erage level is not indicative of coverage of untraceable
code: even a comprehensive testing campaign (from a
source coverage point of view) may not assure all ob-
ject code is executed. The untraceable object code is
nevertheless present in the application and may lead
to unintended behaviour not verified during the testing
process.

Measuring object code coverage may be a way to en-
sure even untraceable code is executed during the
requirement-driven testing campaign. However, CAST
paper 12 [5] suggests the use of a traceability study
to satisfy the additional verification activities on un-
traceable object code for level A software: a trace-
ability study provides evidence that, in a given con-
text (coding standard, compiler, compilation switches),
the compiler either generates traceable code or the un-
traceable code is correct — i.e. it correctly implements
the requirements expressed by the specifications of
the chosen programming language.

The issue raised by section 6.4.4.2 of DO-178, and
in general the equivalence of source and object cov-
erage, is considered in both FAQ 42 of DO-248B [15]
(Can structural coverage be demonstrated by analyz-
ing the object code instead of the source code?) and
CAST paper 17 (Structural Coverage of Object Code)
issued by the Federal Aviation Administration [6].

Both documents assert that object code coverage can
substitute for source code coverage as long as analy-
sis can be provided which demonstrates that the cov-
erage analysis conducted at the object code will be
equivalent to the same coverage analysis at the source
code level. In section 4.3, we provide a precise analy-
sis of the conditions under which the OBC and MC/DC
properties imply each other, for a given set of test
cases. It should be noted that such an equivalence
applies only in the context of a given code generator
and coding guidelines: different code generation algo-
rithms may produce object code whose OBC status is
different for the same set of inputs achieving a given
source coverage objective.

2.3 Current approaches

Current industrial solutions to evaluate structural cov-
erage fall into two main categories: tools measur-
ing source code coverage and tools measuring object
code coverage.

A common approach to source coverage, implemented
in tools such as IBM Rational Test RealTime, LDRA
Testbed, IPL AdaTest or Bullseye Coverage, depends
on source code instrumentation. The coverage analy-
sis tool modifies application code by inserting calls to
logging facilities in appropriate locations. For exam-
ple, to measure statement coverage, it is enough to
log the entry in each basic block (IF statements, loops,
CASE statements, etc.). If all basic blocks are entered
and no exception has been raised, then all statements
have been covered. More stringent coverage metrics
require increasingly invasive instrumentation: instru-
menting the source code for MC/DC requires logging
the evaluation of each atomic boolean expression, in
order to demonstrate independent effect of conditions
on decisions.

Coverage of instrumented code has the advantage
of providing a straightforward mapping between the
source code and the logged coverage information: it
satisfies the requirements of DO-178. On the other
hand, developers may be asked to demonstrate that
the instrumentation did not modify the application be-
haviour and that the coverage of the instrumented ap-
plication is representative of the coverage of the final
application.

Another common approach to structural coverage tar-
gets object code, using hardware probes that log which
instructions have been executed and allow step-by-
step execution. This approach, implemented in tools
such as VeroCel VeroCode or GreenHills GCover, has
the advantage of being non intrusive: coverage is mea-
sured on the final, cross compiled application, and no
additional verification is required. In addition, this ap-
proach is independent of the choice of a specific pro-
gramming language, making it an excellent candidate
for multi-language applications. However, this tech-
nique has several limitations. First of all, as we discuss
in section 4.3, MC/DC and OBC are not equivalent in
the general case. Furthermore, coverage may be mea-
sured only when the target hardware is available.

These limitations make it impractical to evaluate ob-
ject code coverage continuously during the develop-
ment process, potentially leading to late discovery of
defects in the testing strategy, and costly remediation
actions.

3 The COUVERTURE approach to coverage

COUVERTURE is a research project founded by French
institutions within the System@tic framework. The
project consortium comprises AdaCore, OpenWide,
Telecom ParisTech and LIP6 (Pierre et Marie Curie

University, Paris). COUVERTURE innovates on all as-
pects of current technology for structural coverage by:

e Providing a virtualized execution platform for cross-
compiled application on the host machine. The vir-
tual machine is able to produce a detailed control
flow execution trace (i.e. a report of which basic
blocks have been executed, and how control trans-
ferred from one to another).

e Measuring object code coverage through careful ex-
amination of execution traces.

e Measuring source code coverage as defined by DO-
178 by relating elements of the execution trace
(instructions, branches) to source-level structures
(statements, decisions, conditions).

The COUVERTURE technology is thus able to measure
both source and object coverage for the cross com-
piled application, thus offering maximal flexibility. The
use of a virtualized environment removes any depen-
dency on target hardware and offers an efficient cov-
erage analysis workflow. No source code instrumen-
tation is required, which ensures that the coverage
analysis activity does not interfere with application be-
haviour.

3.1 Virtualized execution environment

The core of the COUVERTURE technology is a virtual-
ized execution environment playing a dual role: it per-
mits the execution of cross compiled applications on
the host workstation without requiring the final hard-
ware to be available, and it gathers execution traces
used by COUVERTURE to measure object and source
code coverage. The basic idea behind COUVERTURE
is to virtualize the approach commonly used to mea-
sure object code coverage: while traditional object cov-
erage tools require a physical connection to the target
hardware to measure coverage, COUVERTURE uses
a virtualized environment producing a rich execution
trace containing the address of executed object in-
structions and the outcomes of conditional branches.
COUVERTURE is then able to determine actual object
code coverage by processing several execution traces
corresponding to the executions of different tests.

The technology at the heart of COUVERTURE is
QEMU [1]. QEMU is a processor emulator employing dy-
namic binary translation. QEMU takes as input a cross-
compiled application and translates basic blocks into
executable code for the host processor. This method is
in general very efficient, and in the case of current gen-
eration PowerPC or ERC32/LEON2 targets, the simu-
lator even proved to be faster than actual target boards
in our environments. QEMU also provides an accurate
model of the target Floating Point Unit (FPU), as well
as an emulation of various 1/0O devices, allowing a sig-
nificant amount of testing without any physical environ-
ment interaction.

An open source project, QEMU can be modified and
extended by users. Our main contribution to QEMU is
the support for the generation of execution traces. Two
output modes are supported:

e synthetic, bounded-size traces indicating which
range of code addresses have been executed, and,
for conditional branches, whether they have been
taken in one direction or the other, or both.

o full historical traces (for selected code addresses),
indicating branch direction information for each sep-
arate evaluation of relevant conditional instructions.

These traces are the basis for COUVERTURE’s cover-
age analyses, to date supported on LEON2/ERC32
(SPARC) bareboard platforms as well as on PowerPC,
bareboard or with Wind River VxWorks 653.

3.2 Source coverage obligations

The traces produced by QEMU are enough to measure
object code coverage. They are however not sufficient
in themselves to produce source code coverage evi-
dence as required by DO-178.

In order to produce these reports from object execu-
tion traces, COUVERTURE needs additional information
about source code structure. This information comes
in two parts.

The first one is the standard DWARF debugging infor-
mation emitted by the compiler. Debugging informa-
tion links every executable instruction to a location in
source code (identified by file, line and column).

In order to further relate this information to cover-
able constructs (statements, decisions, and condi-
tions), COUVERTURE augments the debugging infor-
mation with Source Coverage Obligations (SCOs),
which identify source constructs (including their source
location) for which coverage artifacts need to be exhib-
ited in order to satisfy some coverage objective.

SCOs are extracted from source code by the compiler.
They contain an abbreviated representation of the log-
ical control flow of the program, including the full logi-
cal structure of decisions. These obligations are then
discharged by associating them with execution traces,
using debug information and source locations as the
connection.

COUVERTURE can thus infer all DO-178 source code
coverage metrics from the execution traces produced
by QeEMU: Statement, Decision, and Modified Condi-
tion/Decision coverage.

4 MC/DC assessment from execution traces

In this section, we discuss how execution traces col-
lected from an instrumented virtual execution environ-
ment, as described above, can be used to determine
whether a given source coverage criterion (and specif-
ically MC/DC) is achieved by a certain set of execu-
tions.

4.1 MC/DC assessment work flow

The general principle in this process is to infer the val-
ues of each condition for a given evaluation of a deci-
sion from the direction taken by execution at each con-
ditional branch instruction in the object code. This as-
sumes that the code generation process generates ap-
propriate conditional branch instructions (as opposed
e.g. to Boolean computations) for each condition, i.e.
that the object control flow graph reflects the source
structure of decisions. In GNAT, this is achieved us-
ing the -fpreserve-control-flow compiler switch, in
addition to mandating the exclusive use of short-circuit
boolean operators (the non-short-circuit Boolean oper-
ators and, or, and xor, as well as all relational opera-
tors on Boolean operands, are forbidden).

SCOs and DWARF debugging information are used as
an aid to trace each edge of the control flow graph
back to edges of the decision’s Binary Decision Dia-
gram (BDD), i.e. to the value of each condition: from
a conditional branch instruction, debugging information
yields a location in source code (file, line, and column),
and SCOs then indicate what condition is tested at that
location. This mapping is created during a preliminary
static analysis phase, prior to code execution.

Determining whether MC/DC is reached for a given
decision and a given set of tests requires the ability
to reconstruct the complete set of evaluated test vec-
tors, i.e. the combination of values of the relevant
conditions encountered for each evaluation of a deci-
sion. In general, this requires full historical traces of
the corresponding conditional branch instructions, and
the amount of collected data can potentially grow to an
unwieldy size.

However in some cases it is sufficient to keep synthetic
information about each conditional branch instruction
(indicating whether it has been taken in one direction,
in the other, or both), as opposed to keeping state in-
formation about all evaluations of the instruction. In
other words, there are cases where MC/DC can be
derived from object branch coverage information and
in such cases, there is no need to keep and process
historical traces since the regular stateless execution
traces are sufficient. Relying as much as possible on
stateless traces makes it also easier to produce accu-
rate coverage metrics in a multithreaded context. It is
therefore important to be able to characterize very pre-
cisely and accurately the situations where MC/DC can
be deduced from OBC.

4.2 Non equivalence between OBC and MC/DC

First let us have a look at how MC/DC and object
coverage relate to each other on some simple cases.
Cases of non-equivalence for decisions with up to 5
conditions have been studied in [10]: non-equivalence
cases have been shown to occur in decisions with
three or more conditions, and an illustration is provided
with (A and then B) or else C, where A, B and C are

three independent conditions. A representation of this
decision’s BDD is depicted on figure 1(a):

T
C’{ F
VF
T o
T T
JF o .
+F «F
4 e
T+ LF T LF
T T F T T F
@) (b)

Figure 1: Example decision BDDs

From this representation, we can see that a set of three
evaluations can achieve branch coverage of the whole
BDD, corresponding to the three vertical paths in fig-
ure 1(a). These evaluations are:

A | B | C | (Aand thenB)or elseC
T|T] x T
TIF|T T
Flx|F F

where “x” means not evaluated and thus can be indif-
ferently True or False. Now, indeed, even though all
the BDD edges are covered, MC/DC is not met. In
particular, the independent effect of conditions B and
C on the decision is not shown. Since n + 1 tests are
needed to cover a decision with n condition with re-
spect to MC/DC, 3 evaluations cannot cover a three-
condition decision.

It turns out that this particular case can be general-
ized in a quite spectacular counterexample: there ex-
ists classes of decisions with an arbitrary high number
of conditions that can be branch covered by just three
evaluations; the previous example was one element of
this class with 3 conditions.

Consider the following set {D,, }.cn of decisions:

e let Dy be a simple condition decision; by convention,
we will call Cy its condition;

e let us define D, for any n > 0, as follows:
D,, = (D,,—1 and then C)) or else C)
C! and C! being independent from each other and
from any condition in D,,_;.

In other words:

e Dy =0Cy
e D; = (Cpy and then C]) or else CY

e Dy = (((Cy and then C}) or else C7)
and then C)) or else CY

e D35 = (((((Co and then C]) or else CY)
and then C%) or else CY)
and then C%) or else CY

Figure 1(b) shows the BDD for D, where it is visible
that all the edges can be covered by three evaluation
paths which only demonstrate the independent effect
of Cy:

crley|ey oy
T X T X
F T F T
X F X F

=4
= =3

We can thus build a decision D,, with an arbitrary num-
ber of conditions, that can be BDD branch covered by
just three evaluation paths. As MC/DC can only be
achieved with a minimal number of n + 1 evaluations,
this is a striking case where BDD branch coverage
(and consequently OBC) is far from being equivalent
to MC/DC.

4.3 Equivalence cases between OBC and MC/DC

Having introduced two example situations where OBC
and MC/DC are not equivalent, we now generalize
this discussion using formal reasoning on properties
of the canonical reduced ordered binary decision dia-
gram associated with each decision, considering the
variables ordered as they appear in source code. The
construction of this canonical diagram is given in [3]. In
the remainder of this paper, we will refer to this canon-
ical diagram informally as the BDD.

We rely on the straightforward correspondence be-
tween nodes of the object control flow graph and
nodes of the BDD: it is assumed — and this
property is guaranteed by GNAT when using the
-fpreserve-control-flow compiler switch — that the
evaluation of a condition corresponds to a conditional
branch instruction (that is, an alteration of the execu-
tion control graph depending on the condition), and
that a mapping can be established between edges of
the control flow graph and edges of the BDD.

Under this representation, evaluating the decision us-
ing the Ada semantics of short-circuit operators (evalu-
ating the right-hand side only if necessary to determine
the outcome) is exactly equivalent to following a path
through the BDD.

The following property then holds:

Theorem 1 Given a decision D, branch coverage of the
BDD implies MC/DC if, and only if, there is no dia-
mond in the BDD (i.e. no node of the BDD is reachable
through more that one path from the root).

A complete formal proof is given in the COUVERTURE
documentation [2].

As a consequence of this theorem, when the BDD has
no diamond, it is possible to establish MC/DC without
resorting to full historical traces. When there is exactly
one conditional branch instruction for each condition,
this is also exactly equivalent to OBC, assuming a code
generation process where the object control flow is iso-
morphic to the BDD (which is the case in the context
of COUVERTURE).

When some conditions involve multiple conditional
branch instructions, OBC still implies MC/DC, but be-
comes in effect an even stronger property: MC/DC
could potentially be established by a test set that does
not achieve OBC. However, as long as the conditions
of theorem 1 hold, it is still the case that MC/DC can be
determined from stateless execution traces (i.e. from
the OBC information for each conditional branch in-
struction) even if full OBC is not achieved (because
some edge of the control flow graph that remains within
a condition might not be taken, even when all those
edges that do correspond to BDD edges are).

4.4 Alternative characterization

In this section we provide an alternative (equivalent)
property that characterizes cases where BDD branch
coverage implies MC/DC:

Theorem 2 Given a decision D, BDD branch coverage
implies MC/DC if, and only if, when considering the
negation normal form D’ of D, for every sub-decision E
of D', all binary operators in the left-hand-side operand
of E, if any, are of the same kind as E’s operator.

The negation normal form is obtained by rewriting the
expression using De Morgan’s laws so that negations
apply only to atomic conditions (and not to more com-
plex subexpressions).

More informally, this corresponds to expressions
where there is no or else in the left-hand-side of a
and then and conversely.

The proof of this theorem first shows that this alter-
native characterization is equivalent to having no dia-
mond in the associated BDD. Theorem 2 then follows
by application of Theorem 1.

5 Results

In this section, we give examples of the output of
the COUVERTURE analysis tool for simple test cases,
and we discuss interesting MC/DC analysis results ob-
tained on real-life industrial code.

5.1 Object and Source coverage ouput examples

We will consider the results obtained exercizing the
Ada procedure in listing 1, which evaluates (A and
then B) or else C where A, B and C are incoming
arguments. We are using a version of the GNAT com-
piler which ensures that each condition eventually ma-
terializes as a conditional branch instruction.

Let us look at object branch coverage results first.
Amongst several possible output formats, we will
observe an “annotated source” report, where each
source line is annotated with a synthetic sign to sum-
marize the coverage information for all the instructions
associated with that line.

Out of two calls with (T, T, F) and (T, F, T) for A, Band C
respectively, we obtain partial branch coverage for the
code associated with the evaluation line. This trans-
lates into a ’!’ sign next to the line number, and we
can request the expansion of all the associated ma-
chine instructions to confirm:

4 1: if (A and then B) or else C then
£f££fc019c v: beq cr7, <_ada_p+00000044>
fffcOlac +: bne cr7, <_ada_p+00000054>

fffcOlbc v: beq cr7, <_ada_p+00000060>

The v’ sign next to address for the first conditional
branch instruction indicates that the branch was only
taken one way. This is as expected since the branch
is decided on the value of A, and A was True in both
evaluations. The '+ on the second branch indicates
that it was taken both ways, as expected since B was
evaluated twice, once True and once False. The v’
sign on the third branch indicates partial coverage of
the branch for C, as for A. Even though the C argu-
ment was passed both True and False in the program,
partial coverage of this branch was actually expected
because C is not evaluated on the first call.

As suggested earlier in this paper, full object branch
coverage for this expression is achieved by adding no
more than a third call with (F, F, F), which indeed trans-
lates as '+ annotations everywhere.

If we now consider source coverage criteria, the 3-calls
testset we have so far achieves decision coverage as
well: there is one decision in the code and the tests
have exercized it both True and False. We still don’t
have MC/DC, however, and the reason is reported if
we re-analyze for this criterion:

"B" : failed to show independent influence
"C" : failed to show independent influence, MC/DC not achieved

5.2 Evaluation on actual industrial code

Our approach to DC and MC/DC assessment through
execution traces rely on good properties of the code
generator used, preserving source decision structure
and reflecting it, to some extent, in the object code con-
trol flow graph. Improvements have been made to the
GNAT compiler enabling this mapping to be performed
completely on an actual industrial application, with no
optimization of the generated code. Adjusting the code
generator to preserve sufficient decision structure in
the generated code at higher optimization levels is still
work in progress.

We have evaluated COUVERTURE against two indus-
trial applications. Reporting from the analysis phase
of COUVERTURE provided interesting insight on the fre-
quency of those constructs that are specifically difficult
to check for MC/DC coverage (decisions involving dia-
mond paths in their BDD). Some of these results are
summarized below.

| Measure | App.1] App. 2 |
Ada units 351 8356
Ada SLOCs 67 344 1166183
Decisions 869 37324
Max. conds per decision 7 78
Decisions with diamond | 7 (0.8 %) | 141 (0.4 %)

For the first application, the breakdown of decisions
according to condition count is as follows:

conditions 1 2 3 4 |56 |7
decisions 597 | 194 |49 |13 | 5|10 | 1

Of these 869 decisions, only 7 (or 0.8 %) have a node
in their BDD that is reachable through multiple paths.
Additionally, all of these complex decisions are in pre-
conditions, postconditions or assertions: none is in ac-
tual functional code.

The second application similarly has relatively few de-
cisions with multiple paths (0.4 % of all decisions). It
has a few pathological very large decisions (up to 78
conditions), but 35844 decisions (or 96 %) have one,
two or three conditions.

This means that in practice, even though COUVER-
TURE is prepared to handle the worst case scenario
where full historical traces is required to establish
MC/DC coverage, in practice the overhead will be
marginal compared to plain OBC assessment (which
can be performed using synthetic traces of bounded
size), because in industrial code those worst cases are
very infrequent.

6 Future directions

The current results of COUVERTURE have been ob-
tained with all compiler optimizations disabled (gcc
-00). Higher optimization levels hinder coverage as-
sessment because of code reorganizations that break
the relationship between object code and source cov-
erable constructs. Work is in progress to improve Cou-
VERTURE so that most of -01 can be retained while
preserving the ability to compute source coverage from
execution traces.

As discussed in section 3.2, this computation relies
on SCOs: artefacts produced by the compiler that de-
scribe source constructs that are the targets of cover-
age assessment. SCO generation is currently imple-
mented only for Ada language programs. We have
plans to extend GCC to also generate SCOs for C
source code. Ongoing research work of academic
partners in the COUVERTURE project also aims at ap-
plying it to Ocaml programs [8].

7 Conclusion

We have presented the COUVERTURE approach to
object and structural coverage analysis for certified
safety-critical applications, in particular in the context
of DO-178. Our methodology is non-intrusive, assess-
ing coverage on unmodified user code, and collecting
execution traces from an instrumented emulated and
very efficient execution platform. We have used ob-
ject coverage techniques in order to generate precise
source coverage metrics. In particular, we have for-
mally characterized the cases where synthetic object
branch coverage information is sufficient to establish
MC/DC coverage and the cases where it is not.

This approach has been implemented in a set of open
source tools that have been successfully evaluated
against both extensive unit tests aiming at tool quali-
fication and real-life industrial application code. These
tools and methods will constitute an important building
block within the OpenDO initiative.

We also hope that the availability of such efficient and
accurate coverage techniques on the embedded code
itself will be useful to the growing number of critical
software developers adopting agile techniques such as
“continuous integration”. As a matter of fact, providing
daily coverage metrics on the system being continu-
ously integrated provides an inestimable too for evalu-
ating project advancement.

References

[1] QEMU, a generic and open source machine em-
ulator and virtualizer.

[2] AdaCore.
2010.

Couverture project documentation,

[3] Randal E. Bryant. Graph-Based Algorithms for
Boolean Function Manipulation. /EEE Transac-
tions on Computers, 35:677—691, 1986.

[4] CAST, Certification Authorities Software Team.
Rationale for accepting Masking MCDC in certi-
fication projects. Position Paper 6, August 2001.

[56] CAST, Certification Authorities Software Team.
Guidelines for Approving Source Code to Object
Code Traceability. Position Paper 12, December
2002.

[6] CAST, Certification Authorities Software Team.
Structural Coverage of Object Code. Position Pa-
per 17, June 2003.

[7] CENELEC. Railway applications - Communica-
tion, signalling and processing systems - Soft-
ware for railway control and protection systems.
European standard EN 50128:2001, Brussels,
Belgium, Mar 2001.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Emmanuel Chailloux, Adrien Joncquet, and
Philippe Wang. Non Intrusive Structural Coverage
for Objective Caml. BYTECODE 2010, 5th Work-
shop on Bytecode Semantics, Verification, Analy-
sis and Transformation, March 2010.

John J. Chilenski. An Investigation of Three
Forms of the Modified Condition/Decision Cov-
erage (MCDC) Criterion. Technical Report
DOT/FAA/AR-01/18, April 2001.

FAA, Federal Aviation Administration. Object Ori-
ented Technology Verification Phase 3 Report -
Structural Coverage at the Source Code and Ob-
ject Code Levels. Technical Report DOT/FAA/AR-
07/20, June 2007.

European Cooperation for Space Standardiza-
tion (ECSS). Space engineering — software.
ECSS standard ECSS-E-ST-40C, ESA-ESTEC,
Requirements & Standards Division, Mar 2009.

IEC. Nuclear power plants — Instrumentation and
control systems important to safety — Software
aspects for computer-based systems performing
category A functions. IEC standard 60880:2006
(2nd edition), Geneva, Switzerland, May 1986.

S. C. Ntafos. A comparison of some struc-
tural testing strategies. IEEE Trans. Softw. Eng.,
14(6):868—874, 1988.

RTCA. Software considerations in airborne sys-
tems and equipment certification. Document
RTCA DO-178B, 1992.

RTCA. Final annual report for clarification of do-
178b "software considerations in airborne sys-
tems and equipment certification”. Document
RTCA DO-248B, 2001.

