
AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024 December 2024

Security by Default - CHERI ISA
Extensions coupled with a
security-enhanced Ada runtime
P. Butcher | D. King | J. Kliemann

TECH PAPER

https://www.adacore.com

AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024 December 2024

Security by Default - CHERI ISA Extensions
Coupled with a Security-Enhanced Ada Runtime

1. Introduction

As the UK’s National Cyber Security Centre
(NCSC) aptly states, “Secure by Default” is defined
as “technology which has the best security it can
without you even knowing it’s there or having to
turn it on”[3]. This principle served as the guiding
philosophy of our research as we set out to
evaluate the security assurance claims being
made over the adoption of a CHERI compliant
microprocessor and a CHERI pure capability
runtime environment that understands how best
to benefit from the CHERI extended instruction
set architecture (ISA). More specifically, this
paper describes the development steps and
subsequent evaluation of a security-hardened
Ada runtime executing on Arm’s Morello CHERI
extended ISA microprocessor[4]. The goal of
the research was to demonstrate and evaluate
a layered approach to security that avoids
common failure modes and provides security
with significantly reduced effort.

Whilst at first glance it may seem unnecessary
to implement a CHERI pure-capability compliant
runtime for a memory-safe programming
language[5], our research shows that the two
technologies are complementary, and although

there are over-laps in memory safety checks, the
limitations of one approach are overcome by
the feature set of the other. This paper details
why combining a memory-safe programming
language and runtime with a memory-safe
microprocessor results in a security framework
upon which developed embedded real-time
systems are resilient to attack and capable of
attack recovery.

This paper assesses security claims about CHERI
regarding the benefits of fine-grained memory
protection, and the enabling of granularity in
memory access controls that, while not entirely
novel (other historical solutions have come and
gone), are claimed to elevate security assurance
levels of software executing on CHERI hardware.
CHERI offers execution security through dynamic
fine-grained memory protection checks,
which offer a different approach than other
microprocessor security features like trust zones
and secure boot[6]. This paper documents our
research findings around the security assurance
impact when systems utilize CHERI to precisely
define which portions of memory are accessible
and which are off-limits. This evaluation includes

Abstract
In an age where security breaches and cyberattacks have become increasingly prevalent,
the need for robust and comprehensive security mechanisms within embedded real-
time systems is paramount. We propose a novel solution to enforce fault-detection
and increase security assurance: “Security by Default”, specifically combining Capability
Hardware Enhanced RISC Instructions (CHERI) ISA microprocessor extensions with a CHERI
pure-capability compliant Ada runtime. We present case studies showing how combining
memory-safe hardware with memory-safe software results in a mutualistic layered
approach to security and increases assurance of embedded real-time systems. We argue
that this satisfies regulatory security verification objectives outlined in standards like the
“Airworthiness Security Process Specification” (DO-326A/ED-202A[1] [2]).

Keywords: Cyber-security, CHERI, Ada, Airworthiness Security, Memory-safety, embedded real-
time systems

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

measuring the potential reduction of a system’s
attack surface, CHERI’s overall ability to minimize
memory-based vulnerabilities (for example,
buffer overflows and data injection attacks), and
the impact reduction following unauthorized
electronic interaction.

Moreover, this paper quantifies the reduction in
risk of privilege escalation and unauthorized data
access. CHERI’s object capabilities grant programs
the ability to manage and control access to their
data structures and resources with precision. This
level of control can be utilized by systems to enact
robust isolation between components.

Our research shows that CHERI adoption can
not only provide a security layer to applications
written in a memory-unsafe language like C
but also provide a benefit to the adoption of
applications written in a memory-safe language
like Ada or Rust[5]. Thus CHERI can enhance
critical systems, offering high resilience against
security threats. This paper explores the
integration of CHERI ISA extensions into high-
integrity embedded systems and answers the
question: Can CHERI bring extended memory
protection and isolation, thereby enhancing the
security posture of high-integrity, real-time em-
bedded systems?

Ada, as a high-integrity programming language,
is focused on supporting high-assurance, safety-
critical, and embedded real-time systems. Over
the years, Ada has demonstrated its value
in various domains, including aerospace[7],
defense[8], rail[9], space[10] and multiple other
safety-critical applications. Its success is
attributable to several key attributes, including its
robust type system, rigorous runtime checking,
a history of reliability and the availability of
qualifiable freely licensed open source tooling.
Historically, these characteristics have made Ada
a valuable language for critical systems where
maintainability and safety are paramount.

This paper introduces and evaluates a security-
enhanced Ada runtime that extends the freely
licensed open source GNAT Pro Ada runtime
environment[11] with a tailored set of security
features that align with the CHERI architecture.
To assess the security benefits of coupling CHERI

hardware with the Ada programming language,
we have developed spatially safe and CHERI
pure-capability compliant memory allocators
within the GNAT Pro Ada runtime. Spatial safety
ensures that out-of-bounds memory accesses
beyond the bounds of the allocated memory are
detected. In addition, by leveraging Ada’s runtime
exception handling, we have implemented a
mechanism to propagate CHERI-hardware-
detected memory vulnerabilities into software
exception handlers. We have also assessed the
different approaches the Ada language and
CHERI have taken to bounds checking, and we
argue that joint adoption provides a defense-in-
depth approach.

1.1 Introduction to CHERI
CHERI is an extension of the RISC (Reduced
Instruction Set Computer) architecture to
enhance memory safety and security in
computing systems. CHERI is a joint research
project of SRI International and the University of
Cambridge[12], CHERI introduces new instructions
and architectural features to enable fine-grained
memory protection and mitigate common
security vulnerabilities.

CHERI aims to improve memory safety by providing
fine-grained protection mechanisms, reducing
the risk of memory-related vulnerabilities such
as buffer overflows and dangling pointers. CHERI
is a microprocessor ISA hardware security toolkit
for developing high-assurance software runtime
environments to secure application execution.

The CHERI instruction set architecture
introduces security extensions to standard
memory addresses (i.e. pointers) via the
concept of capabilities. More specifically, CHERI
capabilities extend standard pointers with: a
capability tag used to define the validity of the
capability, a specification of the bounds of the
accessible memory region within the address
space, a set of permissible actions related to the
memory and an object type field used for sealing
capabilities (making them immutable and non-
dereferenceable).

CHERI enforces access control policies that
could be missed at the software level by directly

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

incorporating processing checks of capabilities
into the hardware architecture, reducing the
attack surface for malicious exploits. In addition,
CHERI was designed to be compatible with
existing software, allowing for gradual adoption
and integration into existing computing systems
without requiring significant changes to software
development practices[12].

The CHERI Tag extension is a 1-bit value that
defines the validity of the memory address. Any
attempt to dereference invalid capabilities will
result in a CHERI processor exception.

The hardware will raise a capability bounds fault
hardware exception if an instruction attempts
to dereference a capability when the associated
virtual address is outside the configured
capability bounds. In addition, the capability tag
is automatically cleared by the CPU architecture
when instructions attempt to change the
configuration of a capability in an invalid way (for
example, when trying to increase a capability’s
bounds). In addition, CHERI supports the concept
of fine-grained memory protection by enforcing
capability inheritance. Capability inheritance
ensures that capabilities cannot be created out
of thin air; instead, capabilities are derived from
other valid capabilities and inherit the parent
capability’s bounds and permissions. Capability
inheritance is also monotonic; capabilities cannot
increase their bounds or permissions beyond
those inherited from the parent capability. This
policy allowed us to build an Ada runtime fine-
grained memory protection model that adheres
to the principle of least privilege. Figure 1 shows
the memory layout and some of the enforcement
policies made available via capabilities.

CHERI introduces new instructions for working
with capabilities, such as loading and storing
capabilities in memory, restricting the bounds
and permissions of capabilities, and sealing and
unsealing capabilities. These instructions allow
for the creation, manipulation, and enforcement
of capabilities within the hardware architecture.
Additionally, CHERI includes instructions for
performing capability-based memory accesses,
bounds checking, and permission checks to ensure
secure and authorized access to memory regions.

Furthermore, CHERI introduces new registers

dedicated to storing capabilities, such as the
capability register file. These registers hold
capabilities that represent specific memory
regions and include metadata such as base
address, bounds, and permissions. The
capability register file provides a means for
managing and manipulating capabilities within
the hardware, enabling efficient enforcement of
memory protection policies and access control
mechanisms.

1.2 Introduction to the Ada
Runtime
The Ada language provides a significant set
of features including multitasking, exception
handling and memory management. To provide
these features it requires a runtime library. The
runtime library is similar but not identical to
a standard library seen in other languages. It
provides both interfaces for the compiler and
the programmer to use. Some parts of the library
are intended to be used by programmers, such
as I/O interfaces while others are used indirectly
like the multitasking interface.

The runtime library and the compiler work
together to provide the complete set of Ada
features to the programmer. Features like
tasking or returning variable sized objects from
functions are defined in the language itself but
require runtime support. If one of these features
is used, the source code itself will not contain
any direct reference to the runtime. Instead the
compiler will generate the required code to call
the runtime library transparently to the user. The
following paragraphs will go through the major
features in more detail.

Figure 1: General Purpose Register Integer Pointer vs
CHERI Capability

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

The Ada language and its runtime, support a
feature called elaboration. It is used to ensure
the initialization of all global objects in the proper
order. It also takes care of initializing the runtime
itself before starting the program execution. This
feature is implemented as an additional step
in the compilation process. After compilation,
the compiler will call the binder. The binder
evaluates the dependencies of both the program
and the runtime features it uses and creates
the proper initialization code. It will also detect
dependency issues in the initialization such as
circular dependencies. After the code generation
the compilation process will continue similar to
other languages.

The runtime also handles a part of the memory
management that is typically not present in other
languages. Ada supports returning variable sized
objects from functions without requiring a heap.
In a compiled language the compiler in part takes
care of managing the stack. While code can use
the stack for objects whose size is known only
at runtime it can only do so on the top of the
stack. When a function is called the memory
for its return value is stored on the stack before
the new stack frame is created. This requires
knowledge about the size of the returned data.
Otherwise the return value may overflow its
allocated memory. Ada solves that by having
a secondary stack. This secondary stack is not
used for stack frames and therefore can be
used for dynamically sized objects at runtime.
If a function returns a variable sized object the
compiler will emit code that uses the secondary
stack to allocate memory for this object when
returning the object. The stack implementation
itself is part of the runtime library as this allows it
to be adapted to the underlying system.

Tasking, or threading, in Ada is supported at
the language level with the language providing
a specific syntax and semantics for easy use by
the programmer. It also allows an abstraction
away from the underlying platform. Furthermore
the language allows different tasking profiles
providing different feature sets depending on
the application. The compiler will generate
expanded code specific to the chosen tasking
profile and feature set which will call the runtime

library providing the implementation specific to
the underlying platform.

While the list of features highlighted here is not
exhaustive it provides an overview of the specific
features the Ada runtime library provides to the
language, different from a typical standard library.
The runtime provides the interface between the
expanded code and the underlying system.

GNAT Pro provides a diverse set of runtime
libraries for different targets and use cases.
These range from the native runtime on native
targets, which supports a wide selection of
features, such as networking and file handling, to
bare metal runtimes for resource-limited targets,
which still en-able the use of features like tasking
and the secondary stack without the need for
an underlying operating system. Bare metal
runtimes are typically deployed on embedded
real-time systems.

1.3 Introduction to the Edge
Avionics Project
The research described in this paper is funded by
the Rapid Capabilities Office (RCO) of the UK Royal
Air Force (UK RAF) via the Edge Avionics project
(‘Edge Avionics’). Edge Avionics is a consortium
led on behalf of the RCO by the Defence Science
and Technology Laboratory (Dstl, an executive
agency of the UK Ministry of Defence (MOD)[13])
and delivered by GE Aerospace[14] (the prime),
Wind River[15] and AdaCore[16]. The project aims
to demonstrate a network of secure units
running a distributed application at scale and
capable of demonstrating resilience at the
network level. A Dstl-owned and modified air
platform mission system will be used to check
the impact of the new security controls. Through
Edge Avionics, the Edge Avionics consortium
can substantiate CHERI security claims within a
defense environment whilst investigating legacy
software rework overheads.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

This paper presents the architectural details
of multiple toolchains for GCC[17] and LLVM-
targeted[18] bare-metal Morello systems. In all
cases, we have focused on Ada cross-compiler
configurations, basing them on the freely
licensed open source GNAT Pro for the bare-
metal product line, augmented to support an
Ada application benefiting from CHERI features.

The toolchain focuses on using CHERI to enforce
spatial memory safety between objects in
memory. For each object in memory (whether
on the stack, heap or statically allocated), a
capability is created at runtime whose bounds
are restricted to the size of the allocated object.
Restricting the bounds prevents out-of-bounds
access via a pointer to one object from being
able to access another object. The compiler and
runtime work together to ensure that all memory
allocations are correctly bound and with the
correct permissions. The compiler manages the
allocation of objects on the primary stack, and
the runtime manages heap and secondary stack
allocations.

The compiler is also responsible for making
sure that the bounds and permissions, obtained
when an object is allocated, are subsequently
used for all accesses made to the object or parts
of it. That is a relatively easy task in Ada because
the language maintains a strict separation
between addresses (of objects) and offsets that
may be added to these addresses during regular
operations. In cases where this separation is
broken, which can happen only by using very
low-level devices, the compiler gives an explicit
warning.

For objects on the primary stack, the compiler
sets up a capability for each object on entry to
the stack frame. Each capability is set up to point
to the portion of the stack frame that is allocated
for the object, with the bounds set to the allocated
region. These capabilities are inherited from the
capability stack pointer (CSP) which prevents out-
of-bounds access in case of a stack overflow.

The heap and secondary stack memory allocators
in the run-time have been augmented to take
advantage of CHERI and provide spatial safety
between memory allocations. Each allocator has
a capability to the entire block of memory as-
signed to the allocator, which is used to derive
capabilities to fulfil allocation requests. For each
allocation, the allocator returns a pointer to the
allocated memory with the bounds limited to the
size of the allocation to enforce spatial safety.
The difference between the enforced bounding
of the memory allocation is shown in figures 2
and 3.

For runtimes built with exception propagation
enabled, the runtime implements a mechanism
to catch CHERI processor exceptions and
convert them into Ada exceptions that can be
propagated, caught, and handled by user code.
This is discussed further in section 3.2.1.

2. GNAT Pro for Morello Ada: Security by Default
 for Embedded Real Time Systems

Figure 2: Memory allocation without spatial safety. The
allocated pointer (capability) inherits the bounds to the
entire heap/stack and can access other allocated objects.

Figure 3: Memory allocation with spatial safety. The
allocated pointer’s (capability) bounds are limited to the
size of the allocated block. The pointer cannot be used to
access other allocated objects.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

Fine-grained memory allocation is a foundational
element of the developed security-enhanced
Ada runtime. By implementing tightly bounded
memory allocation, stringent memory safety
checks can be performed by the CHERI hardware.
Our research shows that fine-grained memory
allocation prevents common vulnerabilities
related to memory manipulation, such as buffer
overflows and data corruption. These checks
ensure that memory accesses remain within
predefined bounds, minimizing the potential
attack surface and acting as countermeasures
to attacks that exploit memory vulnerabilities.
Whilst a regular Ada runtime comes with
protection over the safe usage of the Ada
language, the security-enhanced Ada runtime
also protects the parts of the language that are
considered unsafe, like memory overlays.

3.1 CHERI Limitations
Overall, CHERI provides the means to increase
security assurance. However, it does not guarantee
it, furthermore, the benefits can only be realized
with the correct usage of the instructions and
registers. More specifically, CHERI is meaningless
without a CHERI-compliant software runtime.
However, by integrating capabilities directly into
the hardware architecture CHERI provides a solid
foundation for developing demonstrably more
secure software runtimes for building more
secure and resilient computing systems.

In addition, the protection offered by CHERI is
highly dependent on compiler configuration,
and multiple factors must be considered when
assessing the security assurance offered by
adopting a CHERI-based CPU[19]. One major
factor is pure-capability vs hybrid mode. The
code uses CHERI capabilities for all pointers

when configured in pure-capability mode.
In comparison, hybrid mode allows a mix of
standard RISC pointers and CHERI capabilities
(typically configured via source-code annotation).
Whilst hybrid mode has the benefit of integrating
legacy systems with greenfield CHERI-enabled
development, the downside is that we can no
longer guarantee all pointers are capabilities,
making security arguments harder to write.

Furthermore, our research has found that Ada
code often requires low effort to port to CHERI,
and in many cases, we have found that the
codebases worked with no changes. Therefore,
to focus our work on the highest levels of security
assurance we developed bare-metal Ada CHERI
compilers that only support pure-capability
mode and enforce that all pointers (programmer
or compiler generated) benefit from CHERI
capability protections. As discussed later in this
paper, this required extensive changes to the
GNAT Pro Ada runtime[11].

By only supporting pure-capability CHERI,
we enforce that all pointers are represented
in memory as CHERI capabilities and that
manipulation of a capability, and therefore the
associated Ada object, can only be performed
through capability instructions. Furthermore,
the developed runtime must adhere to the strict
CHERI rules around pointer integrity and mono-
tonicity, specifically that valid capabilities cannot
be created out of thin air; they must be derived
from other, valid capabilities and the inherited
bounds and permissions cannot be broadened.
This results in the following list of unsupported
Ada features which would require the creation
of pointers (capabilities) to arbitrary memory
addresses at runtime:

3. Security Assessment Evaluation

• Ada.Tags.Internal_Tag (used for Ada tagged types to convert an external tag - a string
representation of an address - to an Ada tag, which is implemented as a pointer in GNAT)

• Ada.Tags.Descendant_Tag depends on Ada.Tags.Internal_Tag)
• Reading Ada tagged objects from streams (via S’Class’Input, as this depends on
 Ada.Tags.Descendant_Tag)

• Reading addresses/pointers from streams (more specifically, Ada access types can be
streamed to media, but we can not support streaming the data back into an access type)

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

This prerequisite would unlikely pose a significant
issue for developing an Ada application on the
presented solution. Furthermore, a high-integrity
system, as often found in an embedded real-
time system, would likely have been developed
under strict guidelines prohibiting using these
Ada features. In addition, for the Ada.Tags.
Internal_Tag limitation, this is not a limitation
of the Ada language, but rather reflects the
way GNAT currently implements this feature.
There are alternative implementations of Ada.
Tags.Internal_Tag that would not need to create
capabilities out of thin air.

3.2 Regular Ada software
checks Vs CHERI runtime
hardware checks
Ada provides various language-defined run-time
checks to protect against detectable bugs such as
out-of-bounds array accesses, range violations,
integer overflow, and null pointer dereferences.
Run-time check failures raise exceptions, which
can be caught and handled by user-defined
exception handlers to gracefully recover from the
error whilst ensuring unsafe instructions are not
executed. During the work to port the GNAT Pro
to bare-metal Morello architecture, we evaluated
the possibility of replacing these software run-
time checks with the CHERI hardware run-time
checks to reduce the overhead of the checks at
run-time. We identified two kinds of run-time
checks for consideration: null pointer checks and
array bounds checks.

CHERI performs more robust pointer validity
checks than Ada. CHERI verifies the validity of a
pointer by inspecting the “tag bit” and ensures
the control flow cannot dereference pointers
with an invalid tag. By contrast, Ada’s checks can
only detect null pointers; non-null pointers that
refer to an invalid memory location can still be
dereferenced.

We evaluated using CHERI’s bounds checking
to implement Ada’s semantics for array index
checking. However, we found two issues
that prevented CHERI from being able to
implement the semantics required by Ada’s
language-defined checks[20]. The rules of the
Ada programming language require raising a

Constraint_Error exception before accessing
an array with an index value that is not within
the bounds of the array index type. This requires
the bounds check to be precise, even for very
large bounds. The first issue is that Morello
architecture uses a compressed bounds format,
ensuring the bounds are precise for objects up
to 4 KB[21]. For objects larger than 4 KB, however,
the bounds must be aligned to increasingly more
significant powers of 2 address boundaries. This
prevents the bounds for large objects from being
represented precisely and thus requires padding
in the memory allocation to align the capability
bounds, meaning that CHERI will not detect minor
accesses past the end of the array in the padding
area. The second issue is that array types in Ada
can be unconstrained where the array bounds
are not known at compile time. This requires
the array’s bounds to be stored and passed
alongside the array object at runtime, and this
additional data must be within the bounds of the
underlying CHERI capability. These two issues
mean the CHERI bounds can be larger than the
bounds checks enforced by the Ada language.

While Ada’s compile-time and run-time checks
ensure the correct usage of many parts of the
language, some “unsafe” parts do not have
associated run-time checks and instead rely on the
programmer to ensure correct usage. The term
“unchecked” generally indicates Ada language
features not covered by language checks, such
as Unchecked_Conversion, which is used to cast
between unrelated types. One particular feature
considered unsafe is memory overlays, where an
object is allocated (overlaid) at the same address
as another object, introducing aliasing. There are
no Ada language-defined checks associated with
memory overlays, so it is up to the programmer
to ensure that the two objects have compatible
sizes and alignments and to avoid causing invalid
data representations.

CHERI’s hardware run-time checks cover this gap
and provide memory safety for these unsafe
parts of the language. For example, in the case
of a memory overlay, the overlaid object inherits
the capability of the target object. This ensures
that any attempt to access beyond the bounds
of the target object will be prevented at run-time.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

3.2.1 Beyond Language-defined Run-time Checks
CHERI’s hardware-level run-time checking
provides additional memory safety assurances
beyond language-defined run-time checks. The
hardware checks apply to all code, including
compiler-generated code that is not otherwise
subject to run-time checks. This can reveal errors
and defects in parts of the code that would
otherwise go unnoticed and could potentially
lead to exploitable security vulnerabilities.

While porting the GNAT Pro Ada compilers to
Morello, we discovered a regression introduced
in an unreleased development version of the
compiler front-end that led to an out-of-bounds
memory access. The regression occurred in a
specific case where a function returns a variable-
sized object whose size is known only at run-time.
In this case, the compiler allocates memory on
the secondary stack to store the returned object.
The error was that the compiler used the wrong
object size in the call to the secondary stack
allocator, resulting in the allocation being too
small to store the object. Subsequent memory
accesses to the returned object could then
access memory beyond the end of the allocation,
potentially accessing other adjacent objects on
the secondary stack which could have led to an
exploitable vulnerability.

This regression was found only by running our
existing test suites on Morello with our spatially
safe secondary stack allocator. Running the same
test suites on conventional architectures did not
detect the regression. We also ran the test suites
with Valgrind[22] and AddressSanitizer[23] which
were also unable to detect the regression as all
memory accesses were still within the bounds of
the underlying buffer used for the secondary stack.

3.3 Enhanced Security over
Language Bindings
Static checks completed by the compiler ensure
a significant part of code correctness. While the
programmer must define types and function
signatures properly, the compiler can check
for violations of these constructs. In C, this
includes the const modifier. If used in a function
signature, the caller can be sure that the passed
value will remain unmodified throughout the

call. While there are ways to circumvent this
check, it has to be done explicitly. Without this
circumvention, the compiler verifies the value
remains unmodified inside the function. Utilising
the const modifier is a design decision that
improves the understandability of the code and
reduces the risk of wrong assumptions.

Ada employs a similar mechanism where function
arguments can be specified with the modifiers
in, out, and in out. Parameter mode in is the
default and enforces that a value is only passed
into the function and must not be modified. It
is similar to the const modifier in C. Parameter
mode out requires the callee to set the value,
allowing the caller to assume initialization after
the call. The modifier in out specifies that the
caller must pass an initialized value, which the
callee may modify. Additionally, when passing
arrays into a function, the array value contains
information about its bounds, allowing the
compiler to insert runtime checks if required.

While the compiler can do many checks and
prevent many problems, its scope is limited to
the constructs of the language. However, the
compiler only creates machine code from source
code and does not connect the built parts of
code, typically object files. The linker does this
task. The linker, having only access to object
files and symbols, cannot check types or even
function signatures when linking object files into
an application. It resolves symbols in object files
with addresses, ensuring the correct place in the
final binary is executed when the corresponding
function is called.

This limitation is acceptable if the compiler can
check types and signatures. Still, it stops working
when multiple languages are used in the same
project and foreign function interfaces are
invoked for calls between languages. A foreign
function interface is a feature that allows the
programmer to tell the compiler that a particular
function is imported and not defined in the same
language. Imported means that the compiler
will keep references to the imported function
unresolved and instead expect the linker to
resolve them. For these inter-faces to be used,
the programmer must declare the imported
function to have the same arguments, argument

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

types, argument modes and a calling convention
as defined in the other language. It cannot
check whether the imported declaration in one
language conforms to the exported definition in
another.

Consider the following C and Ada code:

 void print_string (const char *s, size_t len){
 for(size_t i = 0; i < len; i ++){
 putchar(s[i]);
 }
 }

This C function prints a string by iterating over its
characters and printing each of them. The input
string S is passed by pointer and is declared
const, forbidding the function from modifying
it. The following Ada program will import the
function and use it to print a string:
with Interfaces .C; use Interfaces.C

procedure Main is
 procedure Print_String (S : char_array; Len : size_t) with
 Import,
 Convention => C,
 External_Name => “print_string”;
 Some_String : constant char_array := “Hello World!”;
 Backup_String : constant char_array := Some_String;
begin
 Print_String (Some_String, Some_String’Length);
 pragma Assert (Some_String = Backup_String);
end;

The Ada program imports the C function using
a matching function signature. By telling the
compiler Convention => C, it will know that the
string is passed by a pointer and will prepare the
arguments accordingly. To ensure that both Ada
and C use compatible function signatures the Ada
code uses C types defined in the Interfaces.C
package. The assertion checks that both strings
are equal after the call (i.e., that they have the
same contents). The assertion check should
never equate to false, as both strings are equal
on creation and constant.

But what happens when Print_String is
modified to change the string it writes to the
console? If it was implemented in Ada the new
declaration would be:

procedure Print_String (S

: in out char_array; Len : size_t);

With this change, the compiler will complain
when Some_String is passed as it cannot be
modified due to being a constant. However, this

function is implemented in C, likely in a separate
library. Its new implementation looks as follows

 void print_string (char *s, size_t len){
 for(size_t i = 0; i < len, i ++){
 putchar(s[i]);
 }
 }

If the change is not identified during development,
the Ada compiler will continue to assume that the
string is not modified and base its checks on that
assumption. Identification of the C code change
is manual and error-prone; the Ada compiler
cannot distinguish between the different C code
bases as it does not parse and incorporate the
C code. By design, the linker, responsible for
connecting the compiled Ada and C code, does
not understand types and calling conventions
and will, therefore, also miss this inconsistency.
The result is a program that does not behave
according to the programmer’s intention, even
though it should be according to the code and
compiler. Furthermore, if the implementation
is erroneous, the C function may overflow the
buffer provided, corrupting the caller’s stack.

While CHERI does not solve the problem statically,
it can introduce runtime checks beyond what the
compiler can typically do. The caller of a function
creates capabilities matching the permissions
required by the arguments the caller is ex-pecting
to call the callee with. In this example, the string
is passed as a capability using the bounds of the
string without write permission. The modified
or erroneous C implementation may still try to
violate these permissions. However, this now
results in a CHERI exception. This approach can
be employed for all data passed by reference. It
does not cause the erroneous program to fail to
compile, but it allows the problematic condition
to be detected early through verification testing.
Furthermore, it will enable the program to
abort in a defined state or even recover from
the error. As with many other improvements
CHERI enables, this feature requires thoroughly
applying the principle of least privilege in all
pointers/capabilities passed to functions.

CHERI improves the situation; however, it does not
solve the problem of foreign function interfaces
in general. Calling conventions, type sizes, valid
values, or even the number of arguments are

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

still unchecked by the compiler. It does, however,
apply to the bounds and permissions of data
passed by reference, avoiding hard-to-debug
memory corruptions or broken assumptions
about the immutability of passed data.

3.4 Hardware detected
Capability Fault Propagation
and Recovery
One feature of the Morello bare-metal Ada
runtime is its ability to convert CHERI hardware
exceptions into Ada exceptions that can be
propagated, caught, and handled by application
exception handlers. In traditional bare-metal
runtimes, hardware exceptions are handled by a
top-level trap handler which typically aborts the
entire program. By contrast, the Ada Morello bare-
metal runtime implements a trap handler that
first determines which kind of CHERI exception
has occurred, then returns control back to the
call stack that triggered the trap but with the
return address altered to call a subprogram that
raises an Ada exception. This effectively causes
an Ada exception to be raised from the point in
the call stack that triggered the CHERI exception.
When the Ada exception is raised, the runtime
unwinds the call stack until it finds a handler for
the exception, at which point control is passed to
the handler. This is illustrated in Figure 4 which
shows the conversion and propagation of a
CHERI exception across function calls.

This mechanism allows the software application
to use conventional Ada exception handlers
to detect, isolate, and recover from any CHERI
exceptions that occur within that code block. In
a multitasking environment, this also isolates the
exception to the individual task that triggered
it, allowing other tasks to continue execution
unaffected. The ability to actively detect and
respond to memory safety breaches allows
the system to isolate compromised elements
and initiate recovery procedures, enhancing
fault-resilience. The affected system can fail in
a “secure but degraded” manner, resulting in
unaffected areas of the program being allowed
to continue.

3.5 Reduction in Exploitability
CHERI significantly improves application
memory safety by checking for violations of
memory boundaries. Many exploit techniques
require such a violation to work, be it by inserting
code directly into the attacked application
or modifying the application’s state. These
techniques typically require a good knowledge
of the application’s internal memory, especially
the used address ranges.

In order to counter memory corruption-based
attacks, many mitigation mechanisms have been
created both on the system and the application
level. In applications, memory protection is
often improved by inserting runtime checks to
detect over-flows and abort execution in case of
detection. While this improves the application’s
security and often allows recovery from the
error, it also incurs a performance penalty.
Additionally, the protection is limited to the code
written in that language. Other system parts,
sometimes even the runtime required to execute
the application, are not protected.

At the system level, memory protection consists
of mechanisms that increase the difficulty of
successfully executing an attack. This approach
may not prevent memory corruption; however,
it makes it harder to take control and manipulate
the application behavior. Address Space Layout
Randomization (ASLR) is a technique that assigns
random parts of the address space to the
application. While an attack may still overflow
a buffer, it is much harder to guess the correct
address for the overflow. For example, triggering
the application to jump to a specific address
requires knowledge of the address space.

Figure 4: Converting a CHERI exception (raised in func3)
to anAda exception and propagating it up the call stack to
the handler in func1.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

Another approach is to restrict the privileges of
different memory regions. More specifically, the
Write XOR Execute (WˆX) principle. The assumption
is that code is never modified by the program in its
regular state and that modifiable memory, such
as the stack and heap, are never used to execute
code. While this also does not prevent memory
corruption, it prevents placing and executing the
attack payload. Even if the payload can be placed
through memory corruption, it will likely be placed
on the stack or in the heap where it cannot be
executed. It also cannot be moved into executable
memory as this region is not writable.

A technique to defeat this restriction is Return
Oriented Programming. It uses the fact that some
relevant metadata for the program execution
is still placed on the stack and, therefore, in
modifiable memory. This includes the return
address, which controls the program’s execution
when the current function returns. An exploit
using this technique will overwrite the stack,
especially the return addresses, with values that
cause the CPU to jump to parts of the code that
contain the functionality needed by the attacker.
These parts, often called gadgets, can be only
parts of functions. They can be chained together
by writing multiple return addresses into the stack,
and after a jump into a gadget has happened, the
next jump will be executed once the gadget tries
to return.

We have analyzed CHERI’s resistance against
Return Oriented Programming. While this
approach still often includes an initial memory
corruption, we assume that the attacker is able
to manipulate the stack once at the beginning of
the attack. While CHERI would typically prevent
this initial condition from happening we wanted
to know whether Return Oriented Programming
could leverage an initial vulnerability to further
exploit the system.

At first, we validated the WˆX property of CHERI
by creating examples that violate this principle
while otherwise keeping all capabilities valid.
Our tests have been executed and validated
on an unprotected AArch64 platform. CHERI
successfully rejected executing the stack by raising
a capability permission fault. It also detected the
code modification and raised a capability-sealed

fault. A capability sealed fault is raised if a sealed
capability is either dereferenced or has been
modified before use. Sealed capabilities are used
for capabilities referencing code. They cannot be
modified or dereferenced but can be used as a
jump target for the program counter.

Furthermore, we created two test cases to modify
jump targets. The first test executed a common
approach in ROP by overflowing a buffer on the
stack and thereby overwriting the return address
of the calling function. As all examples are written
in Ada, the language caught that attack with a
runtime check. Disabling runtime checks made
the attack work on an AArch64 target. As expected
on CHERI, this attack caused a capability-bound
fault as soon as the program tried to write outside
the allocated buffer on the stack.

The second test tried to manipulate the control
flow more directly. It consists of a routine that
takes a function pointer, adds an offset and calls
the resulting function pointer. Adding an offset
of zero should yield the same result as calling it
without an offset while adding an offset greater
than zero will cause the call to jump somewhere
into the middle of the function or behind it. We
generated the base function pointer from an
existing function to ensure we start from a valid
capability. On a non-CHERI target, this worked
even with runtime checks enabled. Our CHERI
solution detected the violation and raised a
capability tag fault. While the created capability
was valid, modifying it with an offset, even if it
was zero, invalidated it. The reason is that CHERI
uses sealed capabilities to represent function
pointers, and sealed capabilities are immutable.

For an attacker that has access to all the
information about the program but cannot
modify its code directly, we conclude that a
successful Return Oriented Programming attack
is very unlikely, if not impossible. Even if many
assumptions about CHERI, such as the bounds
checks for capabilities, are invalidated, it still has
additional layers of defense that prevent the
unintended execution of the program’s code.
Even with the ability to manipulate the stack
without triggering an exception, an attacker
must replace the return address with a valid
sealed capability.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

Generally we notice that CHERI provides more
than just resistance against memory corruptions.
It also restricts the control flow into a narrow path,
preventing deviations from the programmer’s
intended functionality. Even if some of CHERI’s
fundamental properties are violated, the
remaining constraints still prevent or at least
increase the difficulty of an effective attack.

3.6 Performance
The Edge Avionics project aims to produce a
demonstrator Avionics system that showcases
the security benefits of CHERI. The final prototype
is not intended for flight. Therefore, Arm’s Morello
development board is a good choice for the
final target demonstrator platform. The Morello
board microprocessor is a CHERI-enabled
prototype CPU based on Arm’s Neoverse N1, as
found in the N1SDP evaluation board. As stated
by Arm, “This is a high-performance superscalar,
out-of-order pipeline design. The existing 64-bit
Armv8.2-A support in the CPU was retained and
support for the new Morello architecture was
added”[24]. Performance metrics are essential
to understanding the feasibility and impact of
adopting a CHERI microprocessor architecture,
particularly for high-integrity and safety/security-
critical avionics. Our research through the Edge
Avionics programme will contribute towards the
final demonstrator platform and should the work
be taken into commercial production, the Morello
development board would not be selected as the
final target hardware. An extensive performance
analysis is only needed for the final target
platform intended for flight, which is outside
of the project’s scope. CHERI microprocessors
have yet to achieve airworthiness certification
at the time of writing. However, the University
of Cambridge Computer Laboratory has already
completed extensive performance studies
around the prototype Morello microarchitecture,
and the results provide a strong argument that
future, commercially available and fit-for-flight
CHERI microprocessor solutions will be able to
cope with modern-day demands of defence-
related avionics. Cambridge writes, “results
to date give us strong confidence that CHERI
support can be tightly and cleanly integrated
into future Arm architectures”[25]. The report

stipulates that “the dynamic performance aims
for Morello were to create a hardware design
able to enable the evaluation of the usage of
capabilities within rich established software
ecosystems and to demonstrate their practical
viability and security benefit[25]”. Therefore, whilst
the performance was a factor in the design of
the Morello CPU, it is expected there is room
for significant optimizations and that second
and third-generation CHERI microprocessor
architectures and subsequent hard-ware
implementations will be higher performing in
terms of execution speed, memory footprint and
energy consumption. Cambridge backs up this
claim by stating: “It is reasonable to project that
the goal of 2%-3% overhead for deterministic
spatial and referential memory safety is
achievable with an optimized instruction-
set architecture on a performance-optimized
microarchitecture[25]”. The performance penalty
predicted with future CHERI microprocessor
architectures and subsequent compiler designs
is acceptable, adding to the viability of the Edge
Avionics project.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

Airworthiness is the discipline of ensuring
air vehicles are safe. Airworthiness Security
forms part of that same discipline, focusing on
security aspects that, should they fail, would
lead to safety hazards. More specifically, a
security case is argued that claims system
security risks do not lead to unacceptable safety
risks. Regulatory organizations like the Federal
Aviation Administration (FAA) in the U.S. and the
European Union Aviation Safety Agency (EASA)
have circulated advisories around the need to
detect and prevent unauthorized electronic
interactions within air vehicles, primarily to
ensure existing and future air vehicles remain
safe. Satisfying advisory circular requirements
around unauthorized electronic interactions is
required before the awarding of airworthiness
certifications. At the time of writing, the FAA or
EASA are not mandating a particular solution;
however, industrial consortium working groups
within the European Organisation for Civil Aviation
Equipment (EUROCAE) and RTCA (previously
known as the Radio Technical Commission for
Aeronautics) have put considerable effort into
two jointly developed sets of Airworthiness
Security publications. Our research has focused
on how the described “Security by Default”
approach can help meet the objectives stated
within the EUROCAE and RTCA “Airworthiness
Security Methods and Considerations”.

The European Organisation for Civil Aviation
Equipment (EUROCAE) ED-203A “Airworthiness
Security Methods and Considerations”[26]
foreword states that ED-203A is technically
identical to RTCA DO-356A [27], and this is
also true of ED-202A[2] and RTCA DO-326A[1].
Furthermore, these standards and guidelines are
equally applicable to the defense industry as well
as the civilian aerospace industry. For example,
first published in May 2023, the UK Ministry of
Defence (MOD) announced new regulations
for the Military Aviation Authority (MAA)[28]. The
report includes reference to Regulatory Articles
(RA) 5890 [29], which states: “The MAA recognises
the risk assessment and mitigation process
detailed in RTCA DO-326A / EUROCAE ED-202A
and associated standards RTCA DO-356A /

EUROCAE ED-203A as an acceptable means of
compliance.”

Our work has indicated three promising areas
where our pro-posed solution to “Security by
Default” can help satisfy Air-worthiness Security
objectives: Security Measures, Vulnerability
logging and Refutation testing.

4.1 DO-326A/ED-202A Security
Measure
To produce a convincing argument over the
safe management of avionics security risk, we
must show evidence that identifies all threat
conditions and scenarios that could lead to loss
of privacy, integrity or availability of identified
security assets. Second, all attack paths must
be understood and addressed. Applying
risk treatment to an attack path amounts to
allocating and assessing the effectiveness of
one or more security measures and their ability
to satisfy allocated security requirements.
Where an attack vector involves memory safety
vulnerabilities like a buffer overflow, we can
argue a CHERI microprocessor architecture
is a security measure that can reduce or stop
the damage caused by the attack. Suppose the
attack intends to expose a security asset within
the system, i.e., violate a security requirement
regarding asset privacy. In that case, correctly
using CHERI’s finegrain memory protection will
result in a high-assurance security measure; the
attacker may be able to trigger an exploit, but the
hardware trap will detect the violation and guard
against unauthorized memory reads/writes. The
same feature provides a security measure that
enforces the security asset’s integrity; by bounding
a memory address we ensure neighboring data
is not overwritten and corrupted. In addition,
whilst the security measure must still detect the
event even if the attack only intends to cause
disruption or loss of availability (for example,
a denial of service attack), it must also satisfy
security requirements that minimize or eradicate
the loss of service, for example, recovery,
isolation, or damage limitation. Our proposition
described within this paper argues that the

4. Airworthiness Security Methods and Considerations

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

propagation of CHERI capability faults into Ada
runtime exception handlers provides detection
and countermeasure options to respond to the
loss of service attack and, therefore, acts as an
additional high assurance security measure.

4.2 Security Verification
Objectives
The aim of refutation in the context of the
Airworthiness Security Process is to refute the
allegation of exploitable vulnerabilities[30]. The
Airworthiness Security Process[2] [1] describes
refutation as: “an independent set of assurance
activities beyond analysis and requirements. As
an alternative to exhaustive testing, refutation
can be used to provide evidence that an
unwanted behavior has been precluded to an
acceptable level of confidence. NOTE: Refutation
is also known as Security Evaluation in some
contexts[26] [27].” The refutation activities aim to
identify any unexpected situations where the
system would unexpectedly transition into a
non-secure state (or, more generally, violate a
minimal invariant guaranteeing the system’s
security)[30]. The difficulty with refutation testing is
in the consistent and repeatable detection of the
transition. Consistency and repeatability make
it feasible to argue for an elevation in security
assurance and, for Airworthiness Security, this
must be adequately described within the Plan
for Security Aspects of Certification (PsecAC).
The PsecAC is the initial phase within the
Airworthiness Security Process, and it is here that
we set our security goals and how we intend to
security test our application. Much like a “Plan for
Safety Aspects of Certification” within the parent
process “Software Considerations in Airborne
Systems and Equipment Certification” (ED-12C
and DO-178C [31]), integrators need to ensure
regulatory authority accepts the plan before
commencing with development and test phases.

Our approach enforces anomaly detection
through regular Ada runtime constraint checks[20]
and through the developed CHERI-hardware-
enforced pure-capability Ada runtime. This
dynamic verification feature captures unsafe
memory instructions that would otherwise
result in memory violations, such as out-of-

bounds reads/writes. Not only can we isolate
security assets in deployed systems, but we
greatly enhance security verification testing as
more anomalies can be detected. To understand
why this is important, consider the resultant
behavior of a standard (non-CHERI) CPU
executing an application not using Ada runtime
constraint checks. When a triggered software
bug results in an out-of-bounds memory read
or write instruction, the system could exhibit
behavior that can be detected, for example, a
segmentation fault may get signaled; however,
it could equally go undetected such that the
system continues to operate but also transitions
into a state where the security can no longer
be guaranteed. The combination of an Ada
pure-capability runtime executing on a CHERI
microprocessor architecture eliminates this
possibility; all out-of-bounds reads/writes will be
captured by either the Ada runtime or the CHERI
hardware. In both cases, the transition into a
non-secure state will be visible to the verification
suite so that the bug can be identified, logged
and mitigated at a higher level in the safety plan
or fixed and retested. It is also important to
recognise the symbiosis of the pure-capability
Ada runtime and the CHERI hardware capability
checks; without the combination the guaranteed
detection is lost and the quality of the refutation
degraded.

The Airworthiness Security Process Guidelines in
ED-203A and DO-326A[26] [1] state that refutation
encompasses multiple disciplines, including
“Dynamic Code Analysis”. This specific refutation
testing technique analyzes the system’s behavior
whilst the system is executing. An example of
dynamic code analysis would be monitoring a
non-safe or non-secure sequence of instruction
calls made to the processor (i.e., detection of
buffer overflows). Dynamic code analysis can be
enforced within the semantics of programming
languages via run time constraint checks or
tools that detect memory corruption bugs via
code instrumentation added during additional
compilation passes[30]. Our research has shown
that existing memory detection tools like
Address Sanitizer[23] and Valgrind[22] can’t detect
the complete set of memory violations that our
approach can (see section 3.4). In both cases,

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

anomalies can only be detected when a test case
triggers the scenario that exhibits the unwanted
behavior. However, our research has uncovered
sequences where Address Sanitizer and Valgrind
fail to detect the transitions that our solution
captures. Vulnerability identification is a critical
aspect of any security process. As it is widely
recognised that non-safe memory instruction
calls form the basis of the majority of exploitable
software bugs, being able to dynamically and
consistently detect and guard against memory
violations provides a security safety net should
all other measures fail.

4.3 Vulnerability Logging /
Fault-Recovery / Fail-Secure
In addition, our “Security by Default” research
argues that propagating CHERI hardware
detected faults into Ada soft-ware handlers
makes it feasible to isolate system components
such that fail-secure-but-degraded is possible.
Without this feature, CHERI-based systems can
still protect security assets. However, fault-
recovery is only possible through intervention
from a third-party monitoring system, such as
a hypervisor. However, the main difference
between this approach and the one proposed
is that by dynamically detecting the impending
violation at the point just before the failure
condition, the state of the system, the triggering
conditions and any other relevant information
can be recorded within a security log file.
Regulatory Article 1202 describes a framework
approach for In-Service Air System Cyber
Compliance. It is noted that this method is
based on the requirements of the US National
Institute of Standards and Technology (NIST)
Cybersecurity Framework, which advocates
the phases of “Identify”, “Protect”, “Detect”,
“Respond” and “Recover”, note that the National
Cyber Security Centre (NCSC) also provides
a Cyber Assessment Framework (CAF) that
shares the principles of the NIST Framework.
Two aspects of this methodology where the
proposed solution plays a role are “Detect”
and “Respond”. “Detect” is described as being
“introduced to enable timely detection of cyber
security Incidents that may impact Air Safety,

such as continuous monitoring and security
log files.”[29] Therefore, capturing and isolating
attacks is essential to satisfying the Detection
requirements. In addition, the “Respond” phase
is described as “once a cyber incident affecting
Air Safety has occurred, the level of response
is key in supporting the ability to contain the
impact.” This requirement is aimed at “business
continuity plans” and “associated response
plans” and having the ability to detect, capture,
isolate and report the attack directly within the
affected system is clearly beneficial.

4.4 Software Supply Chain
Security
Modern-day large-scale systems often
require collaborative efforts spanning large
geographical regions that exacerbate the
complexity around software supply chain
security. The software supply chain is made up
of all aspects of software development across all
phases of the software development lifecycle.
This includes development tools that have
direct access to the source code and pose a
risk to security assurance. A compiler’s primary
responsibility is to translate source code into
machine code. Assuring that this translation
is correct amounts to traceability studies that
include binary-to-source code analysis[32]. Our
work included porting a developed CHERI pure
capability Ada runtime with different compiler
back-ends, namely GCC[17] and LLVM[18]. Having
more than one compiler solution is beneficial
as it allows for novel software supply chain
security verification techniques, like differential
testing. Here, we argue that the integrity of the
development tool is maintained by comparing
it to the behavior of the alternative simply by
feeding the same inputs into both, verifying
the output, and observing the state. Voting
algorithms are frequently used in high-integrity
systems to increase the assurance of processed
data. For example, flight control systems may
sample data from multiple sensors and use
algorithms to check the consistency and decide
which value to use. The same argument can be
applied to the security assurance of software
development tools. However, this approach

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

requires multiple independent solutions that,
whilst the sampled data will be identical (i.e. the
source code, in the case of a compiler), perform
the same functionality and generate output
that satisfies the translation requirements
(the generated CPU instructions perform the
functionality de-fined by the source code) with
differing algorithmic designs. Developing both
GCC[17] and LLVM[18] Ada Morello bare-metal
compilers allows this argument to be made.

5. Further work

To further extend the approach described,
we propose developing additional software
runtime components that enhance the
capabilities of CHERI hardware extensions.
Security assurance can be further elevated by
integrating features such as Temporal Memory
Protection and Compartmentalization. Beyond
spatial memory protection, software can extend
CHERI’s capabilities to include temporal memory
protection. Temporal Memory Protection helps
prevent vulnerabilities like use-after-free errors,
which is achieved through careful memory
management and the use of capabilities to track
and control memory lifecycles. Examples include
tools like CHERIvoke[33] and Cornucopia[34] that
characterize pointer revocation using CHERI
Capabilities for Temporal Memory Safety.
Compartmentalization is concerned with adding
protection around untrusted libraries such
that separate heap allocations are used and
compartmentalized code can only access code
or data in another compartment through a well-
defined interface. Examples include CHERIoT[35].
In addition, support could be added for Ada.
Tags.Internal_Tag in Morello GNAT which would
remove the limitation on streaming Ada tagged
types. Finally, future work will focus on the latest
microprocessor architectures supporting CHERI.
While the research conducted within this paper
used Arm’s Morello platform, the next phase of
work will likely be on a CHERI-RISC-V CPU.

6. Conclusions

The paper summarizes research and
development into a “Security by Default”
approach to real-time embedded systems
by leveraging the Arm Morello CHERI ISA
extensions and a bare-metal security-
enhanced Ada runtime. More specifically, a
layered approach to security is described that
demonstrates the benefits of memory-safe
programming languages executing on memory-
safe microprocessors. This combination allows
Ada developers to benefit from an enhanced
security toolchain and execution environment
for high-integrity real-time systems. In addition,
the paper proposes a fault resilience approach
to bare-metal software security design by
propagating CHERI hardware capability
bounds exceptions into bare-metal application
code exception handlers. Furthermore, our
experience with CHERI has shown that it is an
excellent verification target due to the advanced
anomaly detection features of hardware
capabilities and that porting Ada code to CHERI
is often no effort. In addition, had it not been
for this work, a security vulnerability could
have made its way into deployed software, and
our continuous integration suite now benefits
from executing our Ada runtime regression
tests on CHERI. Our work included analyzing
the benefits of a CHERI pure-capability runtime
and a CHERI-compliant microprocessor to
airworthiness certification. As described in
section 4, our developed solution could satisfy
multiple security objectives; more specifically,
it can be used as a deployed security measure
guarding against high-security assurance level
vulnerabilities and a dynamic analysis security
verification tool for refutation testing. The
results and insights presented in this research
open additional avenues for strengthening
the security of embedded real-time systems,
ultimately contributing to safer, more reliable
and more secure technology.

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

References
[1] RTCA, “DO-326A - Airworthiness Security

Process Specification,” 12 2014. for the U.S.
Federal Aviation Administration FAA.

[2] EUROCAE, “ED-202A - Airworthiness Security
Process Specification,” 6 2014. for the European
Union Aviation Safety Agency (EASA).

[3] National Cyber Security Centre, “Secure by
Default,” NCSC publications, 2018.
https://www.ncsc.gov.uk/information/
secure-default

 [Accessed: (31/10/2023)].

[4] Arm®, “Arm® Architecture Reference Manual
Supplement Morello for A-profile Architecture,”
Arm® Morello publications, vol. A.k, 2022.
https://de veloper.arm.com/
documentation/ddi0606/latest

 [Accessed: (31/10/2023)].

[5] National Security Agency, “Cybersecurity
Information Sheet - Software Memory Safety,”
National Security Agency Publications, 2022.
https://media.de fense.gov/2022/
Nov/10/2003112742/-1 /-1/0/CSI_
SOFTWARE_MEMORY_SAFETY.PDF

 [Accessed: (02/11/2023)].

[6] Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson,
and X. Fu, “Secure boot, trusted boot and
remote attes-tation for ARM TrustZone-based
IoT Nodes,” Journal of Systems Architecture, vol.
119, p. 102240, 2021.

[7] Frédéric Pothon, Quentin Ochem, “AdaCore
Technolo-gies for DO-178C / ED-12C,” AdaCore
publications, 2017.
https://www.adacore.com/uploads/
books/pdf/AdaCoreTechnologiesForDO17
8C-web.pdf

 [Accessed: (31/10/2023)].

[8] AdaCore, “White Paper - Disruptive Technology
for Military-Grade Software,” AdaCore
publications, 2021.
https://www.adacore.com/uploads/tech
Papers/Developing-Military-Grade-
Software.pdf

 [Accessed: (31/10/2023)].

[9] Jean-Louis Boulanger, Quentin Ochem,
“AdaCore Tech-nologies for CENELEC EN
50128:2011,” AdaCore publications, 2018.
https://www.adacore.com/books/
cenelec-en-50128-2011f

 [Accessed:(31/10/2023)].

[10] Benjamin M. Brosgol, Jean-Paul Blanquart,
“AdaCore Technologies for Space Systems

Software Supporting Qualification for ECSS-
E-ST-40C and ECSS-Q-ST-80C,” AdaCore
publications, 2021.
https://www.adacore.com/uploads/
books/pdf/Ad aCore-Tech-Space-
Systems.pdf

 [Accessed:(31/10/2023)].

[11] AdaCore, “AdaCore / bb-runtimes (Public),”
2024.
https://github.com/AdaCore/bb-
runtimes

 [Accessed: (03/11/2024)].

[12] Robert N. M. Watson, Simon W. Moore, Peter
Sewell, Peter G. Neumann, “An Introduction to
CHERI,” UCAM-CL-TR-941, ISSN 1476-2986, 2019.
https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-941.pdf.

[13] Defence Science and Technology Laboratory,
“About Us,” 2024.
https://www.gov.
ukgovernmentorganisations/
defencescience-and–technology-
laboratory/about

 [Accessed: (03/11/2024)].

[14] GE Aerospace, “About Us,” 2024.
 https://www.geaerospace.com/

 [Accessed: (03/11/2024)].

[15] Wind River, “Wind River: About Us,” 2024.
 https://www.windriver.com/contact

[Accessed:(03/11/2024)].

[16] AdaCore, “About Us,” 2024.
https://www.adacore.com/companyabout
[Accessed:(03/11/2024)].

[17] Richard M. Stallman et al., “Using the
GNU Compiler Collection,” 2012.
https://https://gcc.gnu.org
onlinedocs/gcc-4.4.2/gcc/

[18] C. Lattner and V. Adve, “LLVM: A compilation
framework for lifelong program analysis and
transformation,” in CGO, (San Jose, CA, USA),
pp. 75–88, Mar 2004.

[19] Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft
Security Response Center (MSRC), “Security
analysis of CHERI ISA,” MSRC-Security-Research/
papers/2020,2020.
 https://github.com/microsoft/
MSRC-Security-Research/blob/master/
papers/2020/Security%20analysis%20
of%20CHERI%20ISA.pdf.

[20] AdaCore, “Ada Conformity Assessment
Authority: Ada Reference Manual,” 2024.
http://ada-auth.org/arm.html

 [Accessed: (03/11/2024)].

December 2024AdaCore Tech Paper - Embedded Real Time Systems (ERTS) 2024

[21] Jonathan Woodruff, Alexandre Joannou,
Hongyan Xia, Anthony Fox, Robert Norton,
Thomas Bauereiss, David Chisnall, Brooks
Davis, Khilan Gudka, Nathaniel W. Filardo,
A. Theodore Markettos, Michael Roe, Peter
G. Neumann, Robert N. M. Watson, Simon
W. Moore, “CHERI Concentrate: Practical
Compressed Capabilities,”IEEE Transactions on
Computers 68(10), 2019.
https://doi.org/10.1109/TC.2019.2914
037,https://www.cl.cam.ac.uk/researc
h/security/ctsrd/pdfs/2019tc-cheri
concentrate.pdf.

[22] “Valgrind,” 2023.
https://valgrind.org/

 [Accessed: (03/20/2024)].

[23] Clang 19.0.0git documentation,
“AddressSanitizer,” 2023.
https://clang.llvm.org/docs/
AddressSanitizer.html

 [Accessed: (03/20/2024)].

[24] Arm, “Creating the Morello Technology
Demonstrator,”2022.
https://community.arm.com/arm-
community-blogs/b/architectures-and-
processors-blog/posts/creating-the-
morello-technology-demonstrator.

[25] Robert N. M. Watson, Jessica Clarke, Peter Sewell,
Jonathan Woodruff, Simon W. Moore, Graeme
Barnes, Richard Grisenthwaite, Kathryn Stacer,
Silviu Baranga, Alexander Richardson, “Early
performance results from the prototype Morello
microarchitecture,” September 2023.
https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-986.pdf.

[26] EUROCAE, “ED-203A - Airworthiness Security
Meth-ods and Considerations,” 6 2018. for the
European Union Aviation Safety Agency (EASA).

[27] RTCA, “DO-356A - Airworthiness Security
Methods and Considerations,” 9 2014. for the
U.S. Federal Avia-tion Administration FAA.

[28] UK Ministry of Defence, “Cyber security for
airworthi-ness: new MAA regulations,” 2023.
https://www.gov.uk/government/news/
cyber-security-for-airworthiness-
new-maa-regulations/

 [Accessed: (03/20/2024)].

[29] UK Gov, “RA 5890 – Cyber Security for
Airworthiness and Air Safety – Type Design and
Changes / Repairs to Type Design,” 2023.
https://assets.publishing.
service.gov.uk/
media/656866f2cc1ec500138eef7b/
RA5890_Issue_2.pdf

 [Accessed: (03/20/2024)].

[30] Paul Butcher, “Guidelines and Considerations
Around ED-203A / DO-356A Security Refutation
Objectives,” AdaCore Papers, 2021.
https://www.adacore.com/uploads/
techPapers/Guidelines-a round-ED203A-
and-DO356A-Security-Refutation-
Objectives.pdf.

[31] RTCA/EUROCAE,“Software Considerations in
Airborne Systems and Equipment Certification,
DO178C/ED-12C,” 2011.

[32] AdaCore, “Source Code to Object Code
Traceability Study,” 2016.
https://www.adacore.com/up loads/
books/pdf/traceability-sample. pdf.

[33] Hongyan Xia, Jonathan Woodruff, Sam
Ainsworth, Nathaniel W. Filardo, Michael Roe,
Alexander Richard-son, Peter Rugg, Peter
G. Neumann, Simon W. Moore, Robert N.
M. Watson, Timothy M. Jones, “CHERIvoke:
Characterising Pointer Revocation using CHERI
Capa-bilities for Temporal Memory Safety,”
in In Proceed-ings of the 52nd IEEE/ACM
International Symposium on Microarchitecture
(IEEE MICRO 2019), pp. 12–16, 2019.
https://www.cl.cam.ac.uk/
research/security/ctsrd/
pdfs/201910microcheritemporal-safety.
pdf

 [Accessed:(31/10/2023)].

[34] Nathaniel Wesley Filardo, Brett F. Gutstein,
Jonathan Woodruff, Sam Ainsworth, Lucian
Paul-Trifu, Brooks Davis, Hongyan Xia, Edward
Tomasz Napierala, Alexander Richardson,
John Baldwin, David Chisnall, Jessica Clarke,
Khilan Gudka, Alexandre Joannou, A. Theodore
Markettos, Alfredo Mazzinghi, Robert M.
Norton, Michael Roe, Peter Sewell, Stacey Son,
Timothy M. Jones, Simon W. Moore, Peter G.
Neumann, Robert N. M. Watson, “Cornucopia:
Temporal Safety for CHERI Heaps,” in In
Proceedings of the 41st IEEE Symposium on
Security and Privacy (Oakland 2020), pp. 18–20,
2020.
https://www.ncsc.gov.uk/information/
secure-default

 [Accessed: (31/10/2023)].

[35] Amar, Saar and Chisnall, David and Chen, Tony
and Wesley, Nathaniel Filardo and Laurie, Ben
and Liu, Kunyan and Norton, Robert and Moore,
Simon W. and Tao, Yucong and Watson, Robert
N. M. and Xia, Hongyan, “CHERIoT: Complete
Memory Safety for Embedded Devices,” in
proceedings of the 56th IEEE/ACM International
Symposium on Microarchitecture, Association, for
Computing Machinery, Oct. 2023.

