
WHITE PAPER

Why use a commercially
supported C/C++ toolchain?

AdaCore recently extended its support of C and C++ toolchains and now supports not only native
environments (such as Linux or Windows) but also cross ones such as VxWorks, embedded Linux,
and even bare metal (C only at the time of this writing). In a world where most developers have
access to a C/C++ toolchain that’s included with hardware or OS environments, this produces a
question - what’s the added value of a commercially supported compiler for C and C++?

A qualified toolchain for industrial usage
Building and qualifying a toolchain for industrial usage involves more work than it may appear at
first. At AdaCore, our compilers are GCC-based. You might think that all we need to do to provide a
GNAT Pro compiler is fetch GCC sources and compile and package it. However, it actually takes us
about a year between the day we obtain a build from the open-source repository and the day when
we stabilize it and manage to make it pass our quality assurance suite, which includes 25 years of
accumulated test cases from the industry.

We aren’t saying the work done by the community isn’t of high quality - it most definitely is a
fantastic achievement. However, qualifying the toolchain we provide to customers requires
making it pass tests cases that couldn’t be shared on an open-source platform because they
include confidential code, sometimes entire customer applications of over beyond a million lines of
code, stressing the toolchain in unique ways that come directly from the field, which are
sometimes specific to environments not commonly available.

Using an industrial toolchain means that you’re using a toolchain that has been built and verified
with stringent industrial requirements in mind, and is used and tested by other industrial users
with similar needs, all the more likely to confirm its appropriateness. But there’s more.

A toolchain with support provided from the experts
Compilers are extremely complex programs that constantly evolve to support new language
features, new optimizations, and new instruction sets. In this context, it’s not uncommon to hit
roadblocks when using them. This may be due to toolchains that are difficult to configure (think
for example of the hundred of switches typically available for the compiler and linker), features
that need tweaks to be usable, or even on rare occasions plain old bugs.

A good order of magnitude estimate cost of an engineer in an industrial context is about $1,000 /
day. Having one or more l engineers blocked on compiler problems can quickly translate into 5 or 6
digits of costs while forcing them to investigate problems in areas in which they don’t have the
expertise (e.g., optimization technology). Having a professional support contract is an assurance
that should any problems occur, they’ll be quickly resolved . In particular, in the case of AdaCore,
support is provided directly by toolchain developers. If it’s a configuration issue, they’ll be able to
explain the nuances of the tool and offer alternatives. If it’s a feature missing or that needs
tweaking, they’ll be able to modify the tool to make it meet the need. If it’s a plain bug, they’ll be
able to fix it and provide a working toolchain in a matter of weeks, sometimes days, all the while
providing fast workarounds so that the team can continue working while waiting for resolution.

Stability over decades
Industrial systems often require to set a toolchain for years - sometimes decades - all the while
continually monitoring for potential issues and maintaining the possibility of getting minimal fixes
for critical problems. Products such as GNAT Pro Assurance provide exactly that. Projects can
select a specific version of the technology and receive support services on that version for many
years. While keeping the underlying tools extremely stable, maintenance includes potential fixes
for critical problems by allowing minimal tool upgrade in case of a serious issue.The project can
then decide to adopt the minimally fixed toolchain to deploy a new version of the application or

just to compare newly compiled binaries with the original ones to identify whether these fixes (and
therefore the initial problem) have an impact, and if yes, where.

This provides strong assurance of stability over the lifetime of the application, including after its
deployment and again ensures that whatever issue could arise, there will be a set of experts
available to provide insights and options.

Certification artifacts
In the most stringent safety-critical context, having a supported toolchain isn’t sufficient.
Certification standards require demonstrating that the toolchain is usable in a certified context.
What this demonstration entails varies depending on the industry. All require the kind of long-
term maintenance described in the previous section, all require that the, the language library (also
known as standard library or run-time) to be certified. Each standard has specific additional
requirements: Avionics (DO-178) requires source to object traceability analysis at the highest
level, Rail (EN-50128) and Automotive (ISO-26262) require compiler qualification, etc.

Certification artifacts typically include development processes evidence, quality assurance, and
verification documents, which can be extremely costly to develop independently for a specific
project. It may indeed not be possible without deep insights into the technology. Using a
commercially supported toolchain is also strong assurance that, should such a need arise,
projects are already using a technology for which AdaCore can provide these artifacts .

Cross-platform portability
Another key element in selecting an independent vendor toolchain is ensuring portability as things
evolve over time. Indeed, a toolchain coming with a specific environment may have specificity to
this environment. This can cause difficulties when it comes time to migrate to another hardware
or OS vendor. For example, one vendor might provide an old custom GCC build, another an LLVM
build, and a third one enable specific language extensions or custom run-times,. This can become
a serious problem in situations where the same code needs to run on several platforms at the
same time, for example both on a Windows or Linux test-bed together along with the target cross
environment, or, as is often the case with product-line driven strategies, on different targets at the
same time.

A vendor such as AdaCore literally supports hundreds of different environments, each of which is
a combination of different hardware and operating systems. There may also be multiple variants
within a specific hardware/software system. All of these are all targeted by the same toolchain.
This provides a very strong assurance of the ability to preserve a software investment over time,
ensuring that adopting new environments is as easy as possible, and increasing the number of
ways to optimize market positioning of industrial applications.

Beyond the toolchain
Last, but not least, toolchains are more than a compiler / linker / assembler / debugger suite.
Additional tools are often provided to complete the development package. In the case of GNAT
Pro, these include an IDE, a bare-metal emulator, an advanced multi-language builder, and a static
stack usage checker. All these tools are provided with the same level of quality and support as the
compiler itself.

Conclusion
Today’s world of toolchains is full of options and it’s been decades since it was last necessary to
spend thousands of dollars to be able to compile a first “hello world”. This is a good thing, which
has enabled generations of developers to learn valuable techniques and start projects at minimal
costs. The good news is that while these commodity compilers are widely available, some
companies such as AdaCore are positioned for the next step, when applications require industrial-
grade guarantees and services.

	A qualified toolchain for industrial usage
	A toolchain with support provided from the experts
	Stability over decades
	Certification artifacts
	Cross-platform portability
	Beyond the toolchain
	Conclusion

