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Executive Summary 

For high-assurance FACE™ Units of Conformance – e.g., components that need to 
be certified / qualified at Design Assurance Levels A or B of a standard such as DO-
178C [1] for software on commercial aircraft or a similar standard for military 
airborne systems– verifying that the code correctly implements its requirements can 
be a daunting challenge. This paper shows how a developer can address this 
challenge through hybrid verification, a technique that combines both traditional 
testing and mathematics-based formal methods. Taking advantage of advances in 
proof technology and hardware speed and capacity, formal methods are practical for 
real-world systems and can be introduced incrementally into a project alongside 
testing.  

This paper explains hybrid verification in a FACE context. It uses the Ada language 
[2] and its formally analyzable SPARK subset [3] to illustrate the concepts, based on 
the Ada 95 Safety capability set definitions in Edition 3.0 of the FACE Technical 
Standard [4]. Work is currently in progress on defining Ada 2012 Safety capability 
sets, and the same verification principles will apply. Critical modules in the 
application can be written in SPARK, meeting the restrictions imposed by either the 
Ada 95 Safety-Base & Security or Safety-Extended capability set, and properties 
such as absence of run-time errors can be verified formally by the SPARK toolset. 
Less critical modules can be written using Ada features outside the SPARK subset 
but still within the relevant Safety capability set, and then verified through testing. 
Appropriate checking is performed at the interfaces between tested and formally 
verified modules. By combining formal methods and testing, a FACE component 
developer can achieve higher confidence that the software meets its requirements – 
including safety and security assurance – than through testing alone. Experience has 
shown that formal methods can be introduced into an organization’s verification 
infrastructure by stages, without requiring developers to have previous knowledge of 
the technology and without increasing life cycle costs.  

The general approach of hybrid verification can be applied in other contexts, for 
example using the C language and the Frama-C [5] technology, but Ada and SPARK 
bring the benefits of easier analyzability through strong typing and other semantic 
checks. Hybrid verification also applies in mixed-language situations (e.g., formally 
verified SPARK combined with traditionally tested C).  

The paper is oriented towards software developers or project managers; no previous 
knowledge of Ada is required 
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Introduction 
Software targeted to an Operating System that conforms to a FACE Safety or Security profile often has to 
meet a domain-specific standard such as DO-178C for airborne software on commercial aircraft or a similar 
military standard. Certification under such a standard comprises a range of activities associated with the 
various software life cycle processes, and a major effort is devoted to verification: demonstrating, with a 
degree of confidence commensurate with the criticality of the system, that the software meets its 
requirements. Verification combines review, analysis and testing. The highest Design Assurance Levels, 
DAL A and B in DO-178C, demand a correspondingly significant amount of effort, with an emphasis on 
requirements-based testing. Testing, however, can never be complete.  

This paper describes a technique known as hybrid verification, which combines traditional testing with 
mathematics-based formal methods. Through formal methods the developer can prove relevant properties of 
critical software, such as correctness of information flow, absence of run-time errors, and even full functional 
correctness. Advances in proof technology and hardware power / capacity have made formal methods a 
practical approach, and one which can be introduced incrementally into an existing project. DO-333 [6], the 
Formal Methods supplement to DO-178C, shows how formal methods can be applied to reduce the 
verification effort during certification, in some cases by replacing a testing activity. Even when certification 
is not required, formal methods provide the benefit of increased confidence that the software has the required 
properties. 

The SPARK technology – a formally analyzable subset of Ada 2012 together with its supporting toolset – 
illustrates how hybrid verification can work in practice. Developers can employ formal methods to analyze 
critical modules written in SPARK while using traditional testing to achieve an appropriate level of 
confidence in less critical modules that use Ada features outside the SPARK subset. The key to enabling this 
approach is Ada’s contract-based programming features and, in particular, the ability to provide pre- and 
postconditions for subprograms. This facility is supported directly in Ada 2012 with special syntax and can 
be modeled in Ada 95 via pragmas. Formally verified components can invoke subprograms that have been 
verified through testing, and in the other direction a tested component can invoke a subprogram that has been 
formally verified. The relevant pre- and postcondition checks are performed at module boundaries, either 
statically or via testing. Hybrid verification can also be used when mixing formally analyzed SPARK code 
with modules written in C, such as low-level functions that might be needed for Operating System services. 

The SPARK Ada subset is an excellent match for the restrictions in both the Ada 95 Safety-Extended and 
Safety-Base & Security capability sets. This is not a surprise, as both SPARK and the Safety capability sets 
have the goal of restricting or excluding features that could be problematic (or are not needed) in safety-
critical software. Work is in progress (in the FACE Technical Working Group’s Operating System Segment 
Subcommittee) on defining analogous Safety capability sets for Ada 2012, compatible with the Ada 95 sets: 
i.e., a program obeying the Ada 95 Safety capability set restrictions will also obey the Ada 2012 restrictions. 
As a result, SPARK is likewise expected to be an excellent match for the Ada 2012 Safety capability sets. A 
legal SPARK program satisfies many of the restrictions in both Ada 95 Safety sets. Features allowed by 
SPARK, but prohibited from a Safety capability set, can be detected and prevented through a combination of 
the standard Ada pragma Restrictions coupled with an automated static analysis tool. The SPARK toolset can 
formally prove a variety of relevant properties based on the FACE component’s assurance requirements. As a 
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result, the SPARK technology in general, and its support for hybrid verification in particular, are especially 
useful to developers of safety- or security-critical FACE components. 

The SPARK Technology 

The SPARK language 

SPARK is an extensive subset of Ada 2012. It includes as much of the Ada language as is possible /practical 
to analyze formally, while eliminating sources of undefined and implementation-dependent behavior. 
SPARK includes Ada’s program structure support (packages, generics, child libraries), most data types, 
contract-based programming (subprogram pre- and postconditions, scalar ranges, type/subtype predicates), 
Object-Oriented Programming, and the Ravenscar subset [2, Section D.13] of the tasking features. 

Principal exclusions are side effects in functions and expressions, problematic aliasing of names, the goto 
statement, exception handling, and most tasking features. Access types (pointers) have traditionally been 
excluded from SPARK but support for a safe and formally analyzable subset of the Ada access type features 
is being added. 

Figure 1 shows an example of SPARK code. 

The “with” constructs, known as “aspects”, here define the Decrement procedure’s contracts: 

• Global: the only access to non-local data is to read the value of N 

• Depends: the value of X on return depends only on N and the value of X on entry 

• Pre: a Boolean condition that the procedure assumes on entry 

• Post: a Boolean condition that the subprogram guarantees on return 

In this example the SPARK tool can verify the Global and Depends contracts and can also prove several 
dynamic properties: no run-time errors will occur during execution of the Decrement procedure, and, if the 
Pre contract is met when the procedure is invoked then the Post contract will be satisfied on return. 

N : Positive := 100; -- N constrained to 1 .. Integer'Last 
 
procedure Decrement (X : in out Integer) 
   with Global => (Input =>N), 
        Depends => (X => (X, N)), 
        Pre     => X >= Integer'First + N, 
        Post    => X = X'Old – N; 
 
procedure Decrement (X : in out Integer) is 
begin 
   X := X-N; 
end Decrement; 
 

Figure 1: SPARK Example with Contracts 
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Although SPARK (and the SPARK proof tools) work with Ada 2012 syntax, a SPARK program can also be 
expressed in Ada 95, with contracts captured as pragmas. A usage scenario, if a FACE component developer 
is applying the SPARK technology in an otherwise all-Ada 95 context, would be to write the SPARK 
contracts as pragmas, limiting expressions to those permitted in Ada 95 (thus no quantification). SPARK’s 
“ghost variable” facility – the use of temporary variables that are only used for proofs and do not exist at run 
time – is useful here. 

SPARK and the Ada Safety capability sets 

The Ada 95 Safety capability sets (and indeed the capability sets for the other programming languages 
supported by the FACE Technical Standard) are not intended as style-oriented coding rules, but they do 
prohibit features with complex run-time semantics and also restrict functionality that could be problematic in 
a safety-critical system. These goals are consistent with SPARK, and in fact a SPARK program will 
automatically comply with many of the restrictions imposed by the Ada 95 Safety capability sets. For 
example, the tasking features in SPARK are those that are allowed by the Ravenscar profile, which is also the 
tasking subset permitted in the Ada Safety capability sets. In those cases where SPARK permits a feature that 
is outside the Ada capability sets, the FACE component developer has several techniques to detect and 
eliminate the excluded feature: 

• pragma Restrictions 

This standard Ada pragma allows the user to specify language features that the compiler will reject. The 
pragma can prohibit dependence on all of the run-time packages excluded from the Ada Safety capability 
sets (Ada.Wide_Text_IO, etc.) and also prohibit or restrict the usage of exceptions and allocators. 

• Static analysis tool (code standard enforcer) 

The other restrictions in the Ada Safety capability sets are Ada semantic features that can be detected by 
an automated tool such as GNATcheck [7]. The FACE component developer can configure this rule-
based and tailorable tool to flag Ada capability set violations such as usage of  specific prohibited types 
or subprograms defined in otherwise-permitted packages.  

For compliance with a certification standard such as DO-178C, the developer needs to define the language 
subset to which the application will be restricted, termed a “code standard”. For a FACE component the code 
standard is the SPARK language as constrained by the additional Safety capability set restrictions. The Ada 
compiler and SPARK proof tools will enforce compliance with the SPARK language definition, and a 
combination of Ada’s pragma Restrictions and an automated tool such as GNATcheck can enforce the 
additional FACE capability set restrictions. 

The FACE Technical Standard, Edition 3.0, did not define Safety capability sets for Ada 2012, but, as noted 
above, work is in progress (a proposal has been drafted by the Operating Systems Subcommittee) to define 
such sets for inclusion in Edition 3.1, compatible with the Ada 95 Safety capability sets. As a result, the 
approach described in this section – use of pragma Restrictions and static analysis to detect violations – will 
be applicable to FACE components written in Ada 2012 once the new capability set definitions are 
incorporated in a subsequent edition of the FACE Technical Standard (possibly with additional restriction 
checks based on the new sets). 
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SPARK and software certification 

The treatment of formal methods in the certification standards for airborne software has evolved in light of 
the benefits and continuing maturity of the underlying technology. In DO-178B formal methods were 
permitted as an “alternative method” which in principle could have been used to satisfy some of the 
verification objectives. However, there was not a common understanding of which activities formal methods 
could replace or ameliorate. In practice formal methods were therefore only considered as additional 
measures, augmenting the verification activities that DO-178B otherwise specified. As a result, formal 
methods tended to see very little usage for certification, at least as part of the certification evidence. 

That situation is changing, and the DO-178C effort included the development of the DO-333 Formal 
Methods supplement to clarify the role that formal methods can take in verification. DO-333 defines a formal 
method as a “formal model combined with a formal analysis”. A formal model needs to be precise and 
unambiguous and have a mathematically defined structure. Formal analysis applies to a formal model and 
needs to be sound: if it purports to detect whether a given property is true (e.g., that all variables are 
initialized before being read) then it must not report that the property is true when in fact there is an 
execution context where it is false.  

DO-333 offers guidance (objectives, activities) on applying formal methods during various software life 
cycle processes. The SPARK language and toolset can be used to satisfy many of these objectives, most 
notably in the verification process. For example, since a subprogram’s pre- and postconditions define the 
subprogram’s low-level requirements, formal analysis showing that a subprogram's postcondition will be met 
if its precondition is also satisfied can replace low level requirements testing. As another example, proof of 
data initialization and absence of run-time errors can satisfy some of the source code accuracy and 
consistency objectives in DO-178C. However, absence of unintended functionality must still be shown, and 
additional activities – though at much less effort than requirements testing – need to be performed on the 
executable object code to demonstrate preservation of properties between the source code and the object 
code. A comprehensive discussion of how SPARK and formal analysis can be used in a DO-178C / DO-333 
certification context may be found in [8]. 

Soundness is a necessary, but not sufficient condition for a formal analysis method to be practical. Other 
important usability considerations include precision (minimization of false positives), scalability (acceptable 
performance as a system’s size increases), localizability (the ability to define specific code regions that are or 
are not subject to formal analysis), proof engine power, and user assistance (help, such as the furnishing of a 
counterexample, when a proof does not succeed). The SPARK toolset has been designed to meet these 
requirements. For example, it comprises multiple proof engines to maximize its analysis capabilities and can 
exploit multicore architectures for optimal performance.  

Levels of Adoption of Formal Methods 
Formal methods are not an “all or nothing” technique; it is possible and in fact advisable for an organization 
to introduce the methodology in a stepwise manner, with the ultimate level depending on the assurance 
requirements for the software. This approach is documented in [9], which details the levels of adoption, 
including the benefits and costs at each level, based on the practical experience of a major aerospace 
company in adopting formal methods incrementally; the development team did not have previous knowledge 
of formal methods. The levels are additive; all the checks at one level are also performed at the next higher 
level. 
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In the context of a FACE component, the analysis performed by the SPARK tools would need to be 
combined with verification of adherence to the Ada Safety capability set restrictions as explained above. 

Stone level: Valid SPARK 

As the first step, a project can implement as much of the code as is possible in the SPARK subset, run the 
SPARK analyzer on the codebase (or new code), and look at violations. For each violation, the developer can 
decide whether to convert the code to valid SPARK or exclude from analysis. The benefits include easier 
maintenance for the SPARK modules (no aliasing, no side effects in functions) and project experience with 
the basic usage of formal methods. The costs include the effort that may be required to convert the code to 
SPARK (especially if there is heavy use of pointers). 

Bronze level: Initialization and correct data flow 

This level entails performing flow analysis on the SPARK code to verify intended data usage. The benefits 
include assurance of no reads of uninitialized variables, no interference between parameters and global 
objects, no unintended access to global variables, and no race conditions on accesses to shared data. The 
costs include a conservative analysis of arrays (since indices may be computed at run time) and potential 
“false alarms” that need to be inspected.  

Silver level: Absence of run-time errors 

At the Silver level the SPARK proof tool performs flow analysis, locates all potential run-time checks (e.g., 
array indexing), and then attempts to prove that none will fail. If the proof succeeds, this brings all the 
benefits of the Bronze level plus the ability to safely compile the final executable without exception checks. 
Critical software should aim for this level. The cost is the additional effort needed to obtain provability. In 
some cases (if the programmer knows that an unprovable check will always succeed, for example because of 
hardware properties) it may be necessary to augment the code with pragmas to help the prover. 

Gold level: Proof of key integrity properties 

At the Gold level, the proof tool will verify properties such as maintenance of critical data invariants or safe 
transitions between program states. Subprogram pre- and postconditions and subtype predicates are 
especially useful here, as is “ghost” code that serves only for verification and is not part of the executable. A 
benefit is that the proofs can be used for safety case rationale, to replace certain kinds of testing. The cost is 
increased time for tool execution, and the possibility that some properties may be beyond the abilities of 
current provers. 

Platinum level: Full functional correctness 

At the Platinum level, the algorithmic code is proved to satisfy its formally specified functional requirements. 
This is still a challenge in practice for realistic programs but may be appropriate for small critical modules, 
especially for high-security systems. 
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Hybrid Verification 
The typical scenario for hybrid verification is an in-progress project that is using traditional testing and that 
has high-assurance requirements that can best be met through formal methods. The new code will be in 
SPARK; and the adoption level depends on the experience of the project team (typically Stone at the start, 
then progressing to Bronze or Silver). The existing codebase may be in Ada or other languages. To maximize 
the precision of the SPARK analysis, the subprograms that the SPARK code will be invoking should have 
relevant pre- and postconditions expressing the subprograms’ low-level requirements. If the non-SPARK 
code is not in Ada, then the pre- and postconditions should be included on the Ada subprogram specification 
corresponding to the imported function; see Figure 2 for an example. 

The verification activity depends on whether the formally verified code invokes the tested code, or vice 
versa. 

• The SPARK code calls a tested subprogram 

If the tested subprogram has a precondition, then at each call site the SPARK code is checked to see if 
the precondition is met. Any call that the proof tool cannot verify for compliance with the precondition 
needs to be inspected to see why the precondition cannot be proved. It could be a problem with the 
precondition, a problem at the call site, or a limitation of the prover. 

The postcondition of the called subprogram can be assumed to be valid at the point following the return, 
although the validity needs to be established by testing. In the example shown in Figure 2, testing would 
need to establish that the getascii function only returns a result in the range 0 through 127. 

• The SPARK code is invoked from tested code 

In this situation testing would need to establish that, at each call, the precondition of the SPARK 
subprogram is met. Since the SPARK subprogram has been formally verified, at the point of return the 
subprogram’s postcondition is known to be satisfied. Testing of the non-SPARK code can take advantage 
of this fact, thereby reducing the testing effort. 

Hybrid verification can be performed within a single module; e.g., a package can specify different sections 
where SPARK analysis is or is not to be performed. 

function getascii return Interfaces.C.unsigned_char 
with Post => getascii'Result in 0..127; 
pragma Import (C, getascii); 
-- Interfaces.C.unsigned_char is a modular (unsigned) integer type, 
-- typically ranging from 0 through 255 
 
procedure Example is 
   N : Interfaces.C.unsigned_char range 0 .. 127; 
begin 
   N := getascii; -- SPARK can prove that no range check is needed 
 
end Example; 
 

Figure 2: SPARK Code Invoking a Tested C Function 
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Conclusions 
The FACE Ada 95 Safety capability sets are intended for applications that need to meet safety-and/or 
security requirements and that thus need to adhere to additional restrictions beyond those specified in the 
capability sets. The SPARK language, an Ada subset, was specifically designed to meet the needs of safety-
critical and high-security software and is a natural candidate for implementing high-assurance FACE 
applications. In summary: 

• The SPARK language is an excellent match for the FACE Ada 95 Safety capability sets and is 
likewise expected to be an excellent match for Ada 2012 Safety capability sets, when these are 
incorporated in a subsequent edition of the FACE Technical Standard. SPARK meets many of the 
restrictions in the Ada 95 sets, and the SPARK features outside the capability sets can be detected 
via standard Ada mechanisms (pragma Restrictions) or via a rule-based static analysis tool such as 
GNATcheck. 

• The SPARK technology can be used for Ada 2012 and Ada 95 environments. 

• Formal methods are a practical technique for real-world high-assurance systems, and can be 
introduced incrementally into an organization’s verification infrastructure based on assurance 
requirements. For critical systems the Silver level (Absence of Run-Time Errors) is recommended. 

• Formal methods can be combined with traditional testing (“hybrid verification”), realizing the 
benefits of both, and with smooth transitions in both directions: from testing to formal analysis for 
critical modules, from formal analysis to testing when proofs are not practical. 

• When certification is required, for example under DO-178C, formal methods can be used for credit 
towards a variety of verification objectives and can eliminate or reduce the testing effort. Even if 
certification is not required, DO-178C and its Formal Methods supplement contain useful guidance 
for an organization responsible for fielding critical systems. 

With the increasing importance of reliability, safety and security in modern airborne systems, formal methods 
are moving into mainstream software development. SPARK and hybrid verification can be an enabling 
technology for FACE component developers, providing not simply the portability that is the FACE 
approach’s cornerstone objective but also the high assurance that is becoming more and more critical.  
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