Thoughts on Ada and Language Technology in Our Times

Franco Gasperoni, AdaCore, gasperoni@adacore.com

It is fascinating to open the second edition of John Barnes’ book “Programming in Ada”". If you are
lucky to own a copy | encourage you to read the “Foreword” by Jean Ichbiah, the two prefaces,
section 1.1 “History”, and the last page in the “Finale”. John’s witty style makes for a very enjoyable
read. After recently finishing the book for a second time, almost 20 years after initially doing so, |
emerged with a number of thoughts described in the following pages that can be summarized as
follows:

* The first version of Ada (1983) was a language that was way ahead of its time. Furthermore,
Ada suffered from the association with the US Department of Defense (DoD) whose
reputation had been tarnished by the Vietnam War.

* There are, broadly speaking, four target domains for computing applications: casual
programming, enterprise software, mission-critical systems, mobile apps for all kinds and
shapes. A programming language cannot be successful in all of these domains. Ada is
designed for mission-critical industrial systems where it has a strong track record. In this
context we observe the following challenges for today’s programming languages:

o Modeling and “qualified” components;
o Security;
o Seamless programming of multi and many-core machines.

* Ada 2012 and previous versions have many assets to address the above challenges and
continue playing a key role in mission-critical systems of the 21° century.

* The future of any language lies in the young generations of programmers. To be vibrant the
Ada experience must be readily available to digital natives.

“Programming in Ada” by John Barnes, 2nd Edition, Addison-Wesley,
October 1983

Here are some interesting excerpts from John’s book:

From the Foreword by Jean Ichbiah: “Here is a major contradiction in any design work. On the one
hand, one can only reach an harmonious integration of several features by immersing oneself into
the logic of the existing parts; it is only in this way that one can achieve a perfect combination. On
the other hand, this perception of perfection, and the implied acceptance of certain unconscious
assumptions, will prevent further progress.”

From the preface to the first edition: “This book is about Ada, the new and powerful programming
language originally developed on behalf of the US Department of Defense, for use in embedded
systems. Typical of such systems are those of process control, missile guidance or even the
sequencing of a dishwasher. [...] Although originally intended for embedded systems, it is a general
purpose language and could, in time, supersede FORTRAN and even COBOL.”

1).G.P. Barnes, "Programming in Ada," Second Edition, Addison-Wesley, 1984.

From Section 1.1 “History” in the “Introduction”: “The story of Ada goes back to about 1974 when
the United States Department of Defense realized that it was spending far too much on software. It
carried out a detailed analysis of how its costs were distributed over the various application areas
and discovered that over half of them were directly attributed to embedded systems.

Further analysis was directed towards the programming languages in use in the various areas. It was
discovered that COBOL was the universal standard for data processing and FORTRAN was a similar
standard for scientific and engineering computation. Although these languages were not modern,
the fact that they were uniformly applied in their respective areas meant that unnecessary and
expensive duplication was avoided.

The situation with regard to embedded systems was however quite different. The number of
languages in use was enormous. Not only did each of the three Armed Services have their own
favorite high level languages, but they also used many assembly languages as well. Moreover, the
high level languages had spawned variants. It seemed that successive contracts had encouraged the
development of special versions aimed at different applications. The net result was that a lot of
money was being spent on an unnecessary number of compilers. There were also all the additional
costs of training and maintenance associated with a lack of standardization.”

Jean Ichbiah (1940-2007)

Jean Ichbiah, the principle designer of Ada in the 70s and early 80s, was born in France in 1940.
Grandson of Greek and Turkish immigrants, he was a brilliant student who graduated from elite
French colleges. He obtained diplomas from the “Ecole Polytechnique” and the “Ecole des Ponts et
Chaussées”, one of the best civil engineering schools in France. During his education he developed a
strong sense for aesthetics: for Ichbiah both form and function were important (think Eiffel Tower).
Moving on from civil engineering he went to MIT in Boston where he completed a thesis on
syntactical analysis of programming languages. Ichbiah’s sense for aesthetics and the equal
importance of form and function are very much present in Ada and Ada’s form is one of the things
that makes Ada programs so readable years after the fact. On the less positive side, Ichbiah’s former
colleagues point out that Jean was a “control freak” and a “nano-manager”. As we will see below,
this had an impact on the initial implementation model for Ada’s “program library” concept, which
was later fixed by Richard Stallman and Robert Dewar who are both at the extreme opposite of
“control mania” and “nano-management”.

Ada and the DoD

The US Department of Defense was the sponsor of Ada’s design in the 70s and was behind its
adoption in the 80s. This was both a boon and a handicap. Because of the cold war era, the DoD had
deep pockets. Unfortunately, because of the Vietham War, which ended in the mid-70s, the public
perception of the DoD wasn’t as positive as it used to be. Add to that the DoD mandate of the 80s to
use Ada on defense contracts and straight out of the cradle Ada was seen as “un-cool” by the
computing undercurrent.

Ada 1.0

Ada 1.0 (also known as Ada 83) was a language that was way too powerful for its time. Compiling it
for an 8 bit microcontroller was a daunting task and never really happened until recently when Ada
3.0 (Ada 2005) was made available on Atmel’s® 8-bit AVR®.

In the mid-80s Ada was ahead of what compiler and computer technology could do. This, for
instance, led Alsys (the company founded by Jean Ichbiah), to pioneer the use of extended memory
on x86 PCs and to bundle memory cards with the compiler.

Another way in which Ada was ahead of its time is that its users were dealing with defense-related
problems of a complexity not generally encountered in the industry until 10-15 years later
(remember Ronald Reagan’s March 23, 1983 speech on the “Strategic Defense Initiative” later
known as Star Wars?). Ada’s designers anticipated this increase in complexity and added mandatory
consistency checks at various levels of the software construction chain. Unfortunately, in doing this,
Ada 1.0 broke the sociological nature of a fundamental element in collaborative software
development. Unlike its 1970s C predecessor, Ada 1.0 had a collaboration bottleneck: the order-of-
compilation model and its centralized “program library file” assumption. This is one of those
“unconscious assumptions” Jean Ichbiah talks about in the Foreword of John’s 1983 book. From the
Ada 1.0 reference manual:

10.4. The Program Library

Compilers are required to enforce the language rules in the same manner for a program
consisting of several compilation units (and subunits) as for a program submitted as a single
compilation. Consequently, a library file containing information on the compilation units of
the program library must be maintained by the compiler or compiling environment. This
information may include symbol tables and other information pertaining to the order of
previous compilations.

A normal submission to the compiler consists of the compilation unit(s) and the library file.
The latter is used for checks and is updated for each compilation unit successfully compiled.

Today, programming languages foster a common sociological “gestalt” for collaborative software
development: the sources, nothing-but the sources. Some readers may not understand what | am
talking about as this is so obvious today. How could we have lived through a take-your-turn-to-
compile-and-if-your-colleague-recompiles-you-may-have-to-recompile-too? This started from a
noble intention and a critical Ada insight: type safety (type-checking) must operate on the overall
program, across “compilation units” in Ada’s parlance. This was completely novel at the time. What

2n

was unfortunate is the approach “a la Colbert™ that was taken in Ada 1.0. In fact, instead of sticking

2 Jean-Baptiste Colbert served as the Minister of Finances of France under King Louis XIV from 1665 to 1683.
Colbert is referenced here because of his doctrine in which the State exerts a strong directive influence on the
economy as opposed to a merely regulatory role. His doctrine is also known as “Colbertism” or “dirigism”. If
you are still wondering why | mentioned Colbert in the context of the Ada 1.0 centralized program library,
consider the following: Jean Ichbiah graduated from elite French colleges both pure products of “Colbertism”.
The Ada 1.0 centralized program library assumption was the approach “a la Colbert” towards ensuring that an
Ada program was type safe as a whole.

to a purely regulatory philosophy as was subsequently the case in Ada 2.0 (Ada 95), Ada 1.0 strongly
implied an implementation approach to program-wide type safety. This approach was sociologically
broken. This unfortunate oversight was fixed in the early 90s thanks to the intervention of Richard
Stallman from the Free Software Foundation and Robert Dewar (then at NYU). Richard Stallman was
adamant that Ada’s type-safety-across-the-program rule did not create order of compilation
dependencies (a sociological bottleneck). Robert Dewar, leveraging on the evolution of computers,
found a way to achieve Ada’s overall type safety rule with a pure source-based model. Today we can
have the cake and eat it too: C's freedom and Ada’s type safety.

Apart from this, Ada 1.0 was visionary on the fundamental properties that a programming language
for industrial systems possess. Decade after decade these properties have paid back their dividends
to users of Ada (and continue to do so). My favorite property is the ability to communicate to other
humans the key elements of what is being computed and have the compiler check their consistent
use. This property has evolved and strengthened from Ada 1.0 (1983), to Ada 2.0 (1995), to Ada 3.0
(2005), to today’s Ada 4.0 (2012).

General-Purpose Does Not Mean Universal

When Ada 1.0 came about the DoD was the biggest software contractor. Everything had to be
programmed. No spreadsheets. To compute a simple linear regression we had to do it with pencil
and paper and a hand calculator. The luckier ones had access to statistical packages on
minicomputers or mainframes. Programming languages were the heart of the matter: they were the
only way to get anything done with a large, bulky, slow, expensive, unconnected computer.
Programming was the realm of mathematicians, physicists, chemists, and engineers. A programming
language, a dumb editor, and a compiler were all that was available then. No IDEs, no components,
no frameworks.

When “Green”? was designed, the attitude towards developing an embedded application was: let’s
do it from scratch using the best possible language, a language that would decrease the chance of
writing “wrong” code, a language that would make abstractions clear, a language that would
facilitate the reading, use, and re-use of software.

From the mid-50s onwards, computer scientists nurtured the dream that a sound, general-purpose,
programming language would be the key to computing salvation. In the 60s general-purpose did not
include embedded systems, which were just starting to emerge. IBM’s PL/I effort was focused
around IBM’s concerns of the time and did not have embedded systems in mind. A general-purpose
language targeting embedded systems was needed. Only in the wildest of dreams could that
language could be used from embedded real-time systems to accounting applications in the DoD.

Ada substantiated the dream that a general-purpose programming language could be used
universally to program all computing devices and applications. This idea strengthened throughout
the 80s, 90s, and a portion of this century. After placing that hope on Ada 1.0, the community placed

* The Ada language emerged from a DoD-sponsored language design competition, in which the four selected
proposals were given color codes for anonymity. The design by Ichbiah’s team at Cll-Honeywell-Bull was
known as the Green language. It eventually was selected over the Red language proposal from Intermetrics,
the Yellow language from Stanford Research Institute, and the Blue language from SofTech.

its bets on C++ and then Java, hoping to find the programming language that does it all. This never
happened.

The message of this section is that we cannot expect a general-purpose programming language, be it
Ada, C++, or Java, to be used universally. The spread and usage of a language is correlated with the
economics and evolution of the application domain which gave birth to that language. In this respect
some languages such as Ada and C++ compete because their application domains overlap, while
neither is a serious contender in web-centric applications.

Because there is no “universal language”, systems are being written using several idioms and
approaches. For this to be viable, languages should be able to talk to each other. Ada realized the
importance of this in its 2.0 release and today Ada interfaces well with subsystems written in other
languages. In the end what matters is being a good playmate: if you are, everyone wants to play with
you.

Raising the Level of Abstraction: Model It

The myth of a universal programming language is slowly fading (I wrote universal not general-
purpose). Universality comes at the cost of expressivity. Imagine doing math, physics, or engineering
without mathematical notation. Imagine having to spell everything out in plain English. Sure we can
do that. English is a general-purpose (and as close as we can get universal) language. But how
expressive is it to talk math, physics, and engineering? Likewise, how can a team of scientists and
engineers model a “phenomenon”? What language can the team use to devise that model? The key
is in the meaning of the word ontology. From Wikipedia:

“In computer science and information science, an ontology formally represents knowledge as a set of
concepts within a domain, and the relationships between those concepts. It can be used to reason
about the entities within that domain and may be used to describe the domain. In theory, an
ontology is a “formal, explicit specification of a shared conceptualization”. An ontology renders
shared vocabulary and taxonomy which models a domain with the definition of objects and/or
concepts and their properties and relations. Ontologies are the structural frameworks for organizing
information and are used in ... as a form of knowledge representation about the world or some part
of it.”

Conventional programming languages such as FORTRAN, COBOL, C, ... have been used to create,
express, maintain and evolve the ontology of the “phenomenon” that we want to model. To identify
and communicate among humans the patterns of interactions between the elements of the
ontology there has been a race to design the “best” high-level, general-purpose programming
language: Ada, C++, Java These languages have grown out of the Church—Turing computability
thesis. The Church-Turing thesis tells us that to be processed mechanically a “phenomenon” must be
modeled as computable mathematical functions. Although accurate, this view can limit the horizon
of our possibilities. In fact, to create a computable model of the “phenomenon” we may want to use
human-understandable languages that are not computable.

To raise the level of abstraction beyond general-purpose programming languages we could start
from the ontology of the application domain and model the “phenomenon” using the language and

III

symbols that are part of the application domain, i.e. its “natural” ontology. We could use that
ontology to design, communicate, and convince others and ourselves that our model of the
“phenomenon” is faithful. The last step would be to translate the model into a language that
machines can understand. This last step could be done by humans, machines themselves, or a
mixture of both. Welcome back domain-specific languages (DSL) also known as modeling languages
(and 4GL before that): UML, AADL, Simulink, Modelica ... As a side note, when human intervention is
required to go from the model to the machine the use of a high-level programming language such as

Ada keeps translation and maintenance costs down.

When the ontology of our “phenomenon” is clearly defined and well established in the application
domain, DSL are an attractive complement and even a substitute for general-purpose programming
languages. In application domains without an obvious domain-specific language to express the
ontology, high-level general-purpose programming languages are the best we have. In fact, attempts
at consensus establishing such ontologies, which are human artifacts, lead to endless committees
meetings and large and fuzzy standards.

In many cases we need a mixture of domain-specific and general-purpose programming languages.
Note that a DSL that is mechanically translatable to machine language is nothing more than a high-
level programming language that does away with generality in favor of expressivity for the
application domain.

As for programming languages, modeling languages come in many shapes and forms and UML is no
more a Universal Modeling Language than Esperanto is a universal natural language. Modeling
business interactions and machine flight are fundamentally different activities and are so at the
modeling level.

Given the multi-language nature of large systems today, a language that plays well with others and
recognizes the existence of other languages (DSL and otherwise) has a definite advantage.
Unsurprisingly, the message of this section is that in addition to being a good playmate with other
programming languages, Ada needs to meld well with DSL for the domains Ada has been designed
for: industrial systems. See http://www.open-do.org/projects/p/ for a possible approach in this area.

Raising the Level of Abstraction: Brick by Brick

There is a constant race to raise the level of abstraction. In the previous section we have looked at
DSL as a possible way to raise the level of abstraction. Another way is brick by brick. If there are
libraries, components, frameworks with the desired functional and extra-functional (safety, security
...) behavior and properties that can be acquired cost-effectively we may as well use them. This will
reduce our time to delivery and it will increase the quality of our apps while allowing us to keep the
costs under control: the programming language here becomes the cement between the bricks.

Apart from things like standard libraries and containers, components are domain-specific. We are
unlikely to find high-quality components covering a large spectrum of application domains that can
all be used effortlessly in a single programming language. There is an interesting circular dependency
(a bootstrap problem if you prefer) between the application-domain of a component and the
language it is written in. We are back at the generality vs. universality dilemma.

In today’s systems of systems with many connected devices, security issues are a growing concern.
In addition to Ada’s orientation towards safety, Ada could play the role of a glue language for
certifiable/provable components with the desired security properties. Ada 4.0 has certainly made
this possible. In this respect it is fascinating to go back to the “Finale” of John’s 1983 book:

“Indeed, in the imagined future market for software components it is likely that packages of all sorts
of generalities and performance will be available. We conclude by imagining a future conversation in
our local software shop.

Customer: Could I have a look at the reader writer package you have in the window?

Server: Certainly sir. Would you be interested in this robust version — proof against abort?
Or we have this slick version for trusty callers. Just arrived this week.

Customer: Well —it’s for a cooperating system so the new one sounds good. How much is it?

Server: It’s 250 Eurodollars but as it’s new there is a special offer with it — a free copy of this
random number generator and 10% off your next certification.

Customer: Great. It is validated?

Server: All our products conform to the highest standards sir. The parameter mechanism
conforms to ES98263 and it has the usual multitasking certificate.

Customer: OK, I'll take it.
Server: Will you take it as is or shall I instantiate it for you?

Customer: As itis please. | prefer to do my own instantiation.

John and the Ada community had sensed the growing role that components were to play in the
coming decades. Because large industrial systems is the domain where Ada made its debut and
showed its strengths, significant sets of component libraries have not emerged from Ada to date.
This state-of-affairs is part of the socio-economics of the domains Ada has targeted. This is very
different from the status of the Java context where a large set of business-oriented components and
frameworks have appeared: in the last two decades business apps have dominated the software and
service industry.

Still what are we to do with the “certification” or “provable properties” aspects of the components
John talks about in his fictional dialog? That is an interesting alley where Ada 4.0 (with its assertions,
pre/post conditions, and type invariants) should be leveraged on in the realm of provable/certifiable
components in safety-critical and security-critical domains (for safety-critical domains DO-178C has
created new opportunities for Ada 4.0 to lower the costs of certification). Efforts are ongoing in
these areas at Kansas State University and other places such as in the Hi-Lite project (see
http://www.open-do.org/projects/hi-lite/). These efforts have their foundations in the SPARK

language and its vision.

The objective of Hi-Lite is to combine testing and formal methods to lower the cost of verification.
The enabler is an “executable annotation language”, which allows writing contracts on types and
subprograms for unit testing (because it is executable) and unit proof (because it has a logic
interpretation). Ada 4.0 comes with such an executable annotation language in the form of type
invariants, pre and post-conditions for subprograms, and a rich expression language (if-expressions,
case-expressions, quantified-expressions, expression-functions). Annotations can be written by the
user, inferred by static analysis, or generated with the code from a model. Being able to apply formal
verification to parts of a program and testing to the rest of the program will be key to lowering the
costs of verification.

The message of this section is that Ada 4.0 (and beyond) could be used to create certifiable
components (general-purpose and domain-specific: containers, TCP/IP stack ...) for the domains Ada
has been designed for: industrial systems.

Security

Security in mission-critical applications is a growing concern, and a difficult one. In a safety-critical
system developers have to ensure that software malfunctions lead either to fail-safe modes or have
to show sufficient due diligence so that chances of catastrophic failure are reasonably low (the
famous ALARP — As Low As Reasonably Practical - principle). What these developers fight against is
their own mistakes or unforeseen sequences of events in other software components or the natural
environment with which the software interacts.

In a security-critical application developers are fighting against other humans of equal and
sometimes superior intelligence that may try to exploit any breach in the software to take control of
the underlying system. ALARP approaches are no longer sufficient, the challenge is much greater
than in conventional safety-critical systems: we need to use formal approaches to demonstrate that
the most critical applications are provably secure in the context of their use.

Multicores and Industrial Systems

CPUs have gone multi-core. Industrial systems are affected by this trend and will be even more so in
this decade. With all their glory and glitter, today’s languages and their programming environments
do not ease the task of writing concurrent applications to take advantage of multicores: it is both a
matter of programming paradigm and tools. Ada is no different, except that Tucker Taft, the lead
architect of Ada 95 and beyond, has recently designed a programming language, ParaSail, to address
the issue of programming multi-core (see http://parasail-programming-language.blogspot.com/). A

subset of Ada 2012 is a very natural and sound basis on which to graft the concepts introduced in
ParaSail for seamless programming of multi and many-cores.

Ada as a Pivot Language in Requirements-Based Development

An interesting role that Ada 4.0 can play in the context of safety-critical software is to facilitate
collaboration and communication within a team and lower the cost for the production of
certification artifacts. For more on this read the Ada Europe 2012 paper: “Source Code as Key
Artifact in Requirements-Based Development: The Case of Ada 2012” by Comar, Ruiz, and Moy.

Tools and Programming Languages

Suppose | gave you the programming language of your dreams: The right level of expressiveness and
efficient use of target hardware for your application domain, a clear and elegant syntax (textual or
graphic). Need anything else? Well of course you do. Some 30 years ago a text editor and a
compiler/interpreter were the only things you needed. Fast forward to 2012: try teach programming
to young students providing just a text editor and a compiler, good luck! Leaving aside the
importance of programming environments and libraries, if you wanted safety 30 years ago, the
philosophy was to put the safety-nets in the language and compilers or run-time systems were
tasked with spotting unwanted behaviors. Today there is an alternative. Use an un-safe or non-
secure language and use advanced tools (e.g. based on static analysis) to detect unwanted behaviors
in computer programs. Depending on the application domain this second approach may make sense.

On our travel from problem to computer-executable solution it does not matter how we got there.
What matters is how easily we got there and, depending on the application domain, the quality of
the end result. In this respect the environment that surrounds a given programming language
matters very much, it is part of the “problem-to-solution travel experience”. As Erhard Ploedereder
said at the Ada Europe 2012 conference in Stockholm:

“Programming Language technology is increasingly “environmental” ... the distinction [between]
programming language and tool responsibilities blur”.

At the same conference José Maria Martinez Rodriguez added:

“When starting a new software development project you should take into account all the software
development cycle and how a potential language fits in this cycle. As well as how the technology
around this language helps or assists in supporting the life cycle. For example, having the chance of
generating code from design, a good and solid support for your language within your favorite design
tool seems desirable. This “technology assistance” gets crucial in verification and validation since,
in the context of complex systems, this task can be quite time consuming.

It is so important how language technology assists in the development of the final product, that
sometimes it is easier to choose the language based on the surrounding technology ...”

Ada for Digital Natives

Programming language experts focus on language purity, elegance, and completeness. What do our
young programmers care about? And who are these programmers anyway? Is computer science a
specialist-only discipline or is it a skill that most scientists and engineers need to master much like
the ability to speak English? Today there is a broadening and blurring of engineering roles. Engineers
are required to have a hand in multiple areas. As a result a programming language for industrial
systems should be attractive to engineers as well as computer scientists.

How will these generations of new scientists and engineers learn programming? This decade
presents a fantastic opportunity: web and tablet technologies allow current and future programmers
of industrial systems to be easily reached. To be vibrant the Ada experience must be readily available

to younger generations. These digital natives are tech-savvy, plugged-in, and require quick and

convenient feedback.

The design complexity of modern programming languages, be they Ada, C++, or Java, is significant.
John’s 1983 Edition of “Programming in Ada” was 367 pages; John’s “Programing in Ada 2005” is 828
pages. For C++ it is terrifying: the book on “The C++ Standard Library: A Tutorial and Reference (2nd
Edition)” is 1128 pages, and that is just the standard library. Most programmers don’t want to be
gurus. We have to develop short, interactive, design-elegant, self-contained, on-line tutorials that
present subsets of Ada in which useful programs can be written. Not just one tutorial. A family of
tutorials depending on the concepts each tutorial wants to convey.

Regarding the approach to tutorials and teaching (on-line and off-line), | recommend the reading of
“Programming goes back to School” in the May 2012 edition of the Communications of the ACM.
The article promotes a “project-first” approach instead of the more traditional “principles-first”
methodology. This pedagogical style allows students to learn principles just-in-time which proves to
be very beneficial from the viewpoint of captivating the audience (and | believe speed of learning for
many). The following diagram from the article is particularly telling. The explanation of the diagram
guoted from Webb, Repenning, and Koh is fascinating. The quote is an excerpt of their article:
“Toward an emergent theory of broadening participation in computer science education” published
in the ACM Special Interest Group on Computer Science Education Conference in 2012 (SIGCSE

2012).

AgentSheet and AgentCubes
Projects

"
o &
g 0 °b°
(7] vinciples. o
= s @
s N
o e

=

2

L then

o .

2 project

2

o o

principles
A first >
>

i Skills S
¥ 3 e 3

. 4

Simulations Games 0% 100%

tional

Computational Thinking Patterns

The fundamental idea of the Project-first approach can be illustrated through what we call the Zones
of Proximal Flow (ZPF) [...]. Flow is an ideal condition for learning [...]. The ZPD can be understood as

10

an orchestration of participation in a rich set of carefully designed practices where forms of
assistance and tool use are strategically employed. In the Zones of Proximal Flow diagram in Figure
1, the horizontal axis represents students’ computational thinking (CT) skills and the vertical axis
represents the level of the design challenge that would be intrinsic to a certain game or STEM
simulation [STEM = science, technology, engineering, and mathematics]. [...] As student acquisition
of skills advances in response to the challenges, an ideal path in the flow region would progress from
the origin to the upper right. Within this diagram, pedagogical approaches can now be described as
instructional trajectories connecting a skill/challenge starting point (A) with destination point (B) in
the Zones of Proximal Flow diagram. In many traditional CS education models, a principles-first
approach would introduce students to a number of concepts such as Al search algorithms that may,
or may not, be relevant for future projects. At some later stage, students receive the challenge of
making a project such as a Pacman-like game.

The acquisition of skills without the context of concrete challenges is not a bad pedagogical model,
especially at the undergraduate CS level, but it runs the risk of seeming irrelevant, hence boring, for a
broader audience of younger students if it does not go hand-in-hand with project based approaches.
This assertion is consistent with the Flow model and with our own observations in classrooms.
Instead of decoupling the acquisition of principles and the applications of these principles to a
project, the project-first approach combines just-in-time CT skill acquisition with application to
produce a tangible artifact.

In a nutshell: learn by doing, by example, by trial, by cut-paste-modify. Engage students in an
exciting and feasible project. “I hear and | forget. | see and | remember. | do and | understand”,
Confucius.

In the end scientists and engineers want to build things. Can we craft tutorials where students
experience the exhilarating feeling of building a system in Ada? Simulations on tablets? Lego
Mindstorms, train, UAV, or robotics projects?

If we look at this issue from a different angle, it is important that we help universities increase their
focus on software development for industrial systems. In these contexts the use of Ada, as one of
the tools in the Swiss army knife of the engineer, is appealing and is to be encouraged by providing
to educators ready-made chunks of self-contained and student-engaging Ada training material.

The message of this section is that we should teach Ada providing a level of immediate engineering
feedback and gratification. For instance, why bug students with constraints that do not have a
pedagogical purpose? Why don’t we allow the direct execution of Ada programs asking the compiler
to automatically fix silly mistakes like missing semicolons?

The entry point is the initial experience. If that experience is gratifying, if the student has learnt and
built something by doing, Ada’s usage in industrial systems will broaden as new generations of
professionals enter the workforce.

Concluding Thoughts

Ada has been created for industrial systems embedded in an airplane, train, satellite, helicopter,
UAV, subway, automobile, radar, medical device, ... for industrial systems controlling air traffic,

11

power plants, railways, ... as well as simulators for all of the above. Ada has been very successful in
these areas. Ada’s strengths have shown that its use in other domains can bring significant
advantages and rewards.

As software takes an increasingly important role in the correct functioning of applications so this
software will have to become more and more reliable. Recent examples of critical failures highlight
the need for robust systems and programming languages still very much have a role to play. From
Ada 1.0 right through to the latest version, the language has addressed these issues and offered
solutions for engineers.

Today the software community is looking at the “Cloud”. The fact that these new celestial systems
have taken over the financial and socio-dynamics of the computing industry and use languages and
technologies that are intertwined with the history, evolution, and rise of the Web is not
contradictory with the strengths and use of Ada for the domains Ada has been designed for: earthly
industrial systems where software matters.

To keep playing an important role in future industrial systems, Ada’s level of abstraction in
describing these systems, should continue to rise, while attracting new generations of users. For this
to happen, Ada language designers and tool providers should continue their cross-fertilization
journey towards model-based and formal methods approaches integrating multi and many-cores in
the equation. The Ada community must develop exciting Ada tutorials and should help teachers
develop engaging courses on software development for industrial systems.

Thank You

Many thanks to Ed Schonberg, Ben Brosgol, Yannick Moy, Nicolas Setton, Ed Falis, Greg Gicca, Tucker
Taft, Eric Botcazou for their feedback on initial versions of this paper. Many thanks to Erhard
Ploedereder, Bertrand Meyer, and José Maria Martinez Rodriguez for very interesting discussions at
the panel of the Ada Europe conference in Stockholm on June 12, 2012 . Special thanks to John
Barnes who decade after decade has helped the Ada community with his prolific and thought-
provoking writings on Ada and SPARK.

12

