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1. Abstract. 

This paper discusses the implementation model for support- 
ing Ada 95 controlled npes in the GNAT compiler [I]. 
After reviewing the semantics of controlled types, we out- 
line the associated implementation problems and describe 
their solution in GNAT. The design addresses the manage- 
ment of controlled operations on various entities, including 
dynamically allocated objects, transient objects (function 
results and aggregates), and composite objects containing 
controlled components. The interaction of the controlled 
type features with exceptions is also covered. Finally, we 
discuss alternative implementation approaches and possible 
enhancements to the current model. 

2. Controlled Types 

Ada 95 [2] provides direct support for user-defined initial- 
ization, assignment, and finalization. These capabilities are 
important for the support of abstract data types because they 
permit fill control over the creation, update, and clean-up of 
objects and their associated resources. In Ada 83 such con- 
trol could only be partially achieved through the 
mechanisms of private types, default initialization, and by 
the use of limited types. In any event, the clean-up of re- 
sources upon scope exit was not possible. 

In Ada 95, these operations are made available by means of 
“controlled types”. Ada 95 provides two predefined tagged 
types, Controfled and Limited-Controlled, whose primitive op- 

erations are shown in figure I. The dispatching operations 
Initialize. Finalize, and Adjust are used to provide default ini- 
tialization. clean-up, and copying respectively. 

type Controlled is abstract taqqed private; 
procedure Initialize (Object : in out Controlled); 
procedure Ad 1 US II (Object : in out Controlled); 
procedure Finalize fOb]ect : in out Concrolledl; 

Permission to copy without Fee all or part of this material is granted 

provided that the copies are not made oc distributed for direct commercial 

advantage, the ACM copyright notice and the title of the publication and its 
date appear, and notice is given that copying is by permission of the 

Association for Computing Machinery. To copy otherwise or republish, 

requires a fee and/or specific permission. 

type LimiteUantrolLed is abstract taqqed limitad private; 
procedure Initialize (Object : in out Limited-Controlled); 
procedure Finalize (Object : in out Limited-Controlled); 

Figure 1: Primitive operations for types Controlled and 
Limited-Controlled. 

By default, the procedures Initialize, Adjust, and Finalize have 

no effect, but this behavior can be overridden by the user. 
Specifically, every controlled type (that is, types derived di- 
rectly or indirectly from Controlled or Limited-Controlled) can 
be provided with implicit initialization, adjustment. and 
clean-up that apply to objects of the type: 

- Initialization: Initialize is automatically invoked upon 
object creation, if there is no explicit initialization. 

- Clean-up: Finalize is automatically invoked when the 
scope of the object is completed, to perform whatever 
clean-up is desired (for example, deallocation of indi- 
rect stmctures, release of locks, etc.). 

- Adjustment: 
During an assignment OBJI := OBJZ (only for nonlimited 
controlled types), OBJl is first finalized, the new value 
OKl2 is copied into OBJl, and then Adjust is automatical- 

ly invoked on OBJl. 

Adjust can be used to specify whatever actions are needed to 
complete the construction of the new value for OBJ2. For ex- 
ample, it can effect the copying of any indirect data 
structures associated with OBJ2. This enables the designer to 
provide what is sometimes called a deep copy of the object, 
where a new copy of the indirect data is created for the tar- 
get. This is in contrast to the shallow copy semantics that 
happen on normal assignment where attached structures are 
shared after the copy of pointers within the object. 

Since Limited-Controlled is just a special cxic of Controlled 
(with no assignment or aggregates). in the remainder of this 
paper we will only talk in terms of the type Controlled. 

When a scope contains scvernl objects of controlled types. 
each object is initialized in the order of its dcclara.tion with- 
in the scope. Upon scope exit the objects are finalized in the 
reverse order. The reverse order is important since later ob- 
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jects may contain references to earlier objects. If an 
exception occurs during initialization, then only those con- 
trolled objects that have been initialized thus far will be 
finalized. 

For instance. consider the following package that imple- 
ments a set of integers: 

package Int-Set is 
type Set is private; 
function Empty return Set; 
procedure Insert (Elmt : Int; Into : in out Set); 
function Exists (Elmt : Int; Into : Set) 

return Boolean; 
private 

type Set is new Controlled with . . . . 
procedure Initialize (S : in out Set); 
procedure Adjust (S : in out Set); 
procedure Finalize (S : in out Set); 

end Int-Set: 

with Ix-&-Set; use Int-Set; 
procedure Try is 

$1 : Set; -- implicit call: Initialize (Sl) 

s2 : Set; -- implicit call: Initialize (S2) 

begin 
Insert (1, Sl); 
s2 := Sl; -- Finalize (S2) before the copy 

-- A@rst (S2) after the copy 

end Try: -- Finalize (SZ): Finalize (Sl) ; 

Figure 2: The Set Abstraction Example 

Note that in this example, the finalization mechanism is hid- 
den from the client, which only sees a regular private type. 
Alternatively, it could have been made apparent by defining 
Set as a private extension of Controlled. 

The special operations of controlled types apply not only to 
stand-alone declared objects, but also to dynamically allo- 
cated objects and controlled components of composite 
objects. A dynamically allocated object is finalized either 
when the scope of its associated access type is exited, or 
when the programmer explicitly deallocates it. 

An object that contains components of a controlled type is 
finalized in a manner similar to other objects: the compo- 
nents are finalized in the reverse order of their initialization 
within the containing object. The Adjust operation occurs 
for components when they are assigned individually, or 
upon assignment to their enclosing object. 

If a controlled object includes controlled components, Initial- 
ize or Adjust is first invoked on the components and then on 
the enclosing object. Finalization is done in the reverse or- 
der. Finalization actions also occur for anonymous objects 
such as aggregates and function results. For these special 
objects. the finalization will occur upon completion of exe- 
cution of the smallest enclosing construct, once the value of 
the aggregate or function result is no longer needed. 

3. Implementation Problems 

Not surprisingly, there are some tricky interactions between 
finalization and other languages features. In this section we 
discuss the most interesting of these issues. 

l Exceptional Block Exit 

In the event of an abnormal block termination, such as when 
an exception is raised or when the task containing the block 
is aborted, there may exist objects which have not yet been 
created and received proper initialization. For these objects. 
Finalize should not be called. For instance in the follo.wing 
code: 

declare 
Sl : Set; 
X : Pos := Random (0,l); - - Constraint-Error is 

- - randomly raised 
S2, : Set; 

begin 
null: 

end; 
Figure 3: Simple Use of Sets 

Sl is initialized, but S2 might not be. Consequently finaliza- 
tion should always occur for Sl whereas S2 should be 
finalized only if it has been initialized. Thus an itnplemen- 
tation cpnsisting of a simple-minded insertion of explicit 
calls to Finalize at the end of the block is inadequate. Note 
that exceptions may be raised during initialization of com- 
posite object containing controlIed components, in which 
case only the initialized part of the object needs finalization: 

l Finalization of Anonymous Objects 

Finalization actions for anonymous objects have to occur 
upon completion of execution of the smallest enclosing con- 
struct, that is, as soon as their value is no longer needed. 
This mechanism has to work even if an exception is raised 
in the middle of such a construct. In the following code, 
Empty is a function returning a controlled object that is kept 
in an anonymous object during the execution of the enclos- 
ing call to Exists: 

declare 
X : Boolean := Exists (1, Into => Empty); 
-- The result qf the call to Empc is kept irt uu ano~~~*mo~r.s 
-- object during the e.recution of Exists. ami Finulix ,shotrld 
-- be ittvoked no later than the semicolon . 

begin 
if Exists (2, Into => Empty) then . . . 
else . . . 
end if; 
- - Here the unot~~wo~~s object has to he,/itwli:ed hq$we 
. _ the ewcutioti of’ either branchc qf’the ~fstatemertt 

end: 
Figure 4: Controlled Anonymous Objects Case 
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l Finalization of Dynamically Allocated Objects 

In contrast to other similar languages, Ada 95 requires dy- 
namically allocated objects to be finalized even if they are 
not deallocated explicitly. This default finalization occurs 
when the scope containing the access type is left. That is to 
say, in the following code, all objects allocated for type 
Set-f%, and not yet deallocated, must be finalized exactly 
between the finalization of Obj2 and Objl : 

declare 
Objl : Set; 
type Set-Ptr is access Set; 
Obj2 : Set; 

begin . . . end; 

Figure 5: Access to Controlled Objects Case 

l Problems Related to Mutable Objects 

A variable of a discriminated type with defaulted discrimi- 
nants may contain differing numbers of controlled 
components at different times. This possibility introduces 
an asymmetry between elaboration and finalization. In the 
following example no controlled components are present at 
the beginning of the execution, but after the assignment, X 
will contain three components: 

declare 
type Sets is array (Natural range <>I of Set: 
subtype Index is Natural range 0 . . 10; 
type Ret (N : Index := 0) is record 

T : Sets (1 . . N): 
end record; 
X : Ret; -- 0 controlled components 

begin 
x := (3, (1..3 => Empty)); - - 3 controlled components 

end; 
Figure 6: Mutable Objects Case 

It is not easy to find a way to manage controlled operations 
for an object which may have a varying number of compo- 
nents during its lifetime. 

l Controlled Class-Wide Objects 

Type extensions can introduce additional controlled compo- 
nents. In general it’s not possible to know, at compile time, 
whether a class-wide object will contain controlled compo- 
nents. If such an object contains controlled components, its 
initialization requires these components to be adjusted as 
shown in the next figure. A worst-case approach seems 
unavoidable. 

package Test is 
type T is tagged null record; 
function F return TIClass is separate; 

end Test; 

with Test; use Test; 
procedure Try is 

V : T'Class := F; -- does Fyield a value containing 
-- controlled components ? 

begin 
. . . . 

and Try; 

Figure 7: Class-wide Objects Case 

4. Management of Controlled Types in GNAT 

4.1. Basic Scheme 

For each block that contains controlled objects, GNAT de- 
fines a Finalization Chain. When a controlled object is 
elaborated, it is first Initialized or Adjusted (depending on 
whether an initial value was present or not), then attached at 
the beginning of this chain. The following example gives an 
idea of the code generated. The following declarations: 

X : Ensemble; 
Y : Ensemble := X; 

are transformed into: 

X : Ensemble; 
Initialize IX); 
Attach-To-Final-List (F, Finalizable IX)); 
Y : Ensemble := X; 
Adjust (Yl; 
Attach-To-Final-List IF, Finalizable 09); 

Finalizable is the name of the class representing all controlled 
objects, limited or not, and is defined in the GNAT library 
as follows: 

subtype Finalizable is Root-Controlled'Class; 

Upon scope exit, the scope’s finalization chain is traversed 
and Finalize is called on each element. Note that, since ob- 
jects are inserted at the beginning of the list, the ordering of 
the chain is just right for the required sequence of tinaliza- 
tion. The fact that the chain is dynamically built ensures that 
only successfully elaborated objects are dealt with in case of 
exceptional exit. 

To ensure that finalization happens regardless of how the a 
scope is left, we have introduced an “At-End” construct in 
the compiler. This mechanism consists of a call to a param- 
eterless subprogram executed unconditionally upon scope 
exit. This routine performs all clean-up actions required by 
the semantics of the language, such as waiting for subtask 
completion. The next figure shows the simple clean-up pro- 
cedure that is generated for scope finalization and its point 
of call: 

declare 
Final-Chain : Finalizable-Ptr; 
procedure -Clean is 
begin 

Finalize-List (Final-Chain); 
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end-clean; 
begin 

<user code using controlled objects> 
at end 

-Clean; -- executed before leaving the scope 
end: 

Figure 8: The AT END Mechanism 

Finalize-List is a library routine that finalizes all objects on 
the list referenced by its parameter, regardless of any excep- 
tion that could be raised during the process. The list is 
heterogeneous because Finalize-Ptr is an access-to-class- 
wide type, and any object whose type is derived from Con- 

trolled can be attached to this list. This is handled by a call of 
the form “Finalize (Ptr.ait)” in the Finalize-List procedure, 
.which will dispatch to the appropriate user-defined finaliza- 
tion procedure. 

Finakation Chain 

\ 

private part inherited 
from controlled 

-A 

’ Estensions 

Figure 9: A Finalization Chain 

Finalization chains are bidirectional to ease the removal of 
a single object from the middle of the list. The predefined 
types Controlled and Limited-Controlled both include two hid- 
den pointers. Removing an element from the middle of a 
finalization list occurs during the deallocation of dynami- 
cally allocated objects. However, user driven deallocation 
can happen in an order that is not related to allocation. 

Regular- Finalization Chain 

i!z O&l 

List Controllei- for Set-Pfi 

To ensure that objects that are not explicitly deallocated are 
finalized at the right time, the finalization chain on which 
they are attached is implicitly defined at the point of the ac- 
cess type definition. This finalization chain is itself enclosed 
in a controlled object (a List-Controller) whose finalization 

consists of calling Finalize-List on its associated internal list. 
The previous figure shows the finalization structures asso- 
ciated with the block defined in figure 5. 

4.2. Assignment of Controlled Objects 

A simple-minded implementation of the assignment opera- 
tion Set1 := Set2; discussed in section 2, might be: 

Finalize (Setl) ; 
Set1 := SetZ; 
Adjust (Setl); 

There are various problems that make such an implementa- 
tion unworkable: first, Set1 may refer to objects present in 
Set2 and thus cannot be finalized before Set2 is evaluated; 
second, the assignment itself must be specialized since 
copying the hidden pointers that hook objects to a finaliza- 
tion list doesn’t make any sense; third, the self assignment 
(X := X;), although not a particularly useful construct, has to 
be addressed specially, either by introducing a temporary 
object or by avoiding the production of any finalization ac- 
tions. Here is a model that works in the general case and can 
be optimized in many cases: 

Anon1 : Ctrl-Typ renames Setl; 
Anon2 : Ctrl-Typ_Access := Eva1 (Seta); 
if Anonl'address /= Access-To-Address Qnon2/ then 

Finalize (Anonl); 
Copy-Explicit-Part (Anon2.all. To => Anonl); 
Adjust (Anonl); 

end if; 

Figure 11: Code for controlled assignment 

Note that the target object, even though it has been final- 
ized, remains in the finalization list because it still need to 
be finalized upon scope exit. 

Figure .lO: Finalization Lists for Dynamically Allocated 
Objects 
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4.3. Management of Anonymous Objects 

Some constructs such as aggregates and functions generate 
anonymous objects that are used to store an intermediate re- 
sult. When such objects are controlled, they must be 
finalized as soon as they are no longer needed, that is to say 
before the beginning of the next statement. GNAT defines 
“transient blocks” to handle this. Such a block is expanded 
around the construct that uses the intermediate objects. For 
instance, in the following example. the function Empty 
yields a controlled value that is only used during the execu- 
tion of Exists: 



declare 
X : Boolean; 

begin 
. . . 

('--%--Exists71 inside => Empty). ' 1. ,,,,,.,,,.,,..., : ,.,,,~C..~~.~.,,.,,, _ ,..._.._._..__. ..! ..___..._.._._._..................~.~.....-.~.- 
. . 

end; 
a~sl~~~ -.-...--............... 

I 

_...._-. * .._. J 

! 

..---....__.. "__ __....__.-.--.I-._-......- _..._ ..-..-. 

Anon : Set := Empty; 
begin 

X := Exists (1, inside => Anon); 
end; _._....._... __ _......_..._............. ,..^- - ..__....__.- --.--_---- --. 

Figure 12: Expansion of a Transient Block around a Statement 

An intermediate block can be introduced without changing 
the semantics of the program in order to make the anony- 
mous object explicit. This new block contains a controlled 
object and thus will be expanded using the scheme present- 
ed in section 4. I. The same kind of mechanism can be 
extended to deal with anonymous objects that appear in the 
Boolean expressions of control structures such as if and while 
statements. For instance: 

2 i 
While Exists (Elmt, Empty) loop i 

[end%o,; 
._" _.._. - _.__,...-....._._._-..........~....... 

$ 

j 
._...._.__..I_..._... - ..- -.-.-' 

,~~~~'-' _ ._...........................,.....................,,,.,.,~~~~..~,...~ .._........... _.-_ 

declare 
Anon : Set := Empty: 

I 
begin 

Res := Exists (Elmt, Anon); 
end; 
exit when not Res; 

. . . 

r .tz - -....._ "- ._.. ".".". ,,.,_. "..."" ,....., *_.,........................ "...~ -....-.-...." ..-..... j 

Figure 13: Expansion of a Transient Block around an 
Expression 

The problem is a bit more complex when controlled anony- 
mous objects appear in a declaration since transient blocks 
are not allowed in such a context: if such blocks were al- 
lowed in declarative parts, they would make the declaration 
they are enclosing local to their scope, which is obviously 
improper. To handle this case, the anonymous object is cre- 
ated in the original enclosing scope but it is attached to an 
intermediate finalization list, represented by the same 
List-Controller that was used for the dynamic allocation case, 
and which is finalized right after the declaration. For 
example: 

a : Boolean := Exists (1, Empty); 

is transformed into: 

L : List-Controller: 
Anon :,Set := Empty; 
Adjust (Anon); 

Attach-To-Final-List (L, Anon): 
B : Boolean := Exists (1, Anon); 
Finalize (L); 

List-Controller is itself a controlled type. Thus, an object of 
that type is attached to the enclosing scope’s finalization 
chain, ensuring that the anonymous object will be finalized 
even if an exception is raised between its definition and the 
finalize call. In the normal case, the List-Controller is final- 
ized twice, once right after the declaration, and once upon 
scope exit, So the Finalize routine makes sure that the second 
finalization has no effect. 

4.4. Management of Objects with Controlled 
Components 

Composite type such as records (tagged or not) and arrays 
can contain controlled components. Objects of these types 
require specific actions that take care of calling the proper 
lnitializd, Adjust, and Finalize routines on their components. 
These actions are carried out in implicit procedures called 
-Deep-Initialize, -Deep-Adjust and Jeep-Finalize that are used 
in a manner similar to their counterparts for regular con- 
trolled types. Here is the body of Jeep-Adjust for a type T 
that is a one-dimensional array of controlled objects: 

procedure-Deep-Adjust (V : in out T; 
C : Final-List; 
B : Boolean) is 

begin 
for J in V'range loop 

Adjust (V (J)); 
if B then 

Attach-To-Final-List fC, V IJI): 
end if; 

end loop: 
end; 

Figure 14: Adjustment of Array’s Controlled Components 

Note that the deep procedures have a conditional mecha- 
nism to attach objects to the finalization chain’s0 that the 
same procedure can be used in a context where attachment 
is required, such as explicit initialization, as well as when it 
is not needed, such as in the assignment case. Note also the 
recursive nature of the above definition: Deep-Adjust on an 
array is defined in term of Deep-Adjust of its components. 
Ultimately, if the component type is a simple controlled 
type with no controlled components Deep-Adjust ends up 
just being a call to the user-defined Adjust subprogram. 
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Finalization Chain 

array of 
controIled 
objects 

record controller 

record with 
controlled 
components 

Figure 15: Finalization Chain of Objects with Con&oiled 
Components 

A similar method could have been used for records. In that 
case, deep procedures would have been implicitly defined to 
perform the finalization actions on the controlled compo- 
nents in the right order, depending of the structure of the 
type itself. The controlled components would have been 
stored on the finalization list of the enclosing scope. Unfor- 
tunately such a model makes the assignment of mutable 
objects quite difficult: the number of objects on the finaliza- 
tion list may be different before and after the assignment, so 
all the controlled components of the target would need to be 
removed from it before the assignment and afterwards put 
back at the same place on the list. To avoid such a problem 
as well as to simplify the definition of deep procedures for 
records a different approach has been used. Records are 
considered as scopes and they have their own internal final- 
ization chain on which all controlled components are 
chained. This is achieved by inserting a hidden component, 
the Record-Controller within the record itself. The next figure 
shows the compiler’s transformation of the mutable record 
Ret presented in figure 6: 

type Ret (N : Index := 0) is record 

-Controller : Record-Con troller; 
T : Sets (1 . . N); 

end record; 

Record-Controller plays a role equivalent to List-Controller: it 
introduces an indirection in the enclosing finalization list. 
The finalization list of controlled components is local to the 
object. So, upon assignment the number of controlled com- 
ponents may vary without affecting the enclosing 
finalization list. This provides a simple solution to the mu- 
table record problem. In GNAT, finalization pointers are 
absolute and when they are part of a local component list, 
they have to be adjusted after a copy. This action is carried 
out by the Adjust subprogram associated with the Record 
Controller type which uses for this purpose its own compo- 
nent my-address that is initialized with the original address 

and is used to compute the displacement: 

type Record-Controller is new Root-Controlled with 
record 

Component-List : Finalizable-Ptr; 
MyJddress : System.Address; 

end record; 

Class-wide objects present an interesting challenge since 
the compiler doesn’t know how many, if any, controlled 
components are present in such objects. To address this 
problem, class-wide types are considered “potentially” con- 
trolled and calls to the deep procedures are always 
generated for initializations and assignments. Dispatching 
is used to ensure that the appropriate deep procedure is 
called. Thus, such deep procedures must be defined as hid- 
den primitive operations for all tagged types. 

5. An Alternative Implementation: The Mapping 
Approach 

The solution presented in the previous section is one of sev- 
eral possible approaches. Its storage costs are fairly high 
since every controlled object contains two additional point- 
ers and the size of a record with N controlled components is 
increased by 2*N+4 pointers. 

There exists another approach to implementing finalization, 
sometimes called PC mapping. This method is often used in 
C++ compilers. 

The method derives its name from the way in which abnor- 
mal block exits are handled. More specifically, if, during an 
abnormal block exit, it were possible to determine the pro- 
gram counter (PC) where the abnormal exit occurred, it 
would be possible to figure out the precise list of objects that 
need to be finalized. 

In what follows we explain a simplified version of the PC 
map approach which actually does not use any PC informa- 
tion. Albeit less efficient, this simpler method is hardware 
independent and hence more bortable than the full-blown 
PC map. 

The idea is to build a map for every scope (be it for a block, 
procedure, or record) containing controlled objects. Every 
entry in this map represents the state of a controlled object 
created in the block. If the entry for a given object is true. 
then the object has been initialized and hence must be tinal- 
ized upon block exit. 

This map can be implemented as a packed Boolean array. In 
the absence of anonymous objects, the map of a given scope 
is sequentially updated to true during elaboration. 

The presence of anonymous objects may create holes in a 
map (see example below). This is why we need a full- 
fledged map rather than a simple counter. 

The following example shows how the map is initialized 
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and how finalization is carried out. Here is a simple user 
program that uses a few of the controlled types features de- 
scribed in this paper: 

declare 
Sl : Set; 
V : Integer; 
B : Boolean := Exists (2, Into => Empty); 
Obj : Ret-With,Ctrl; 

begin 
mull; 

aa; 

Here is a possible transformation of this program fragment 
that illustrates the use of the maps for finalization: 

declare 
Map: array (1..3) of Boolean := (others=>False); 
$1 : Set; 
Initialize fS1): 
Map (1) := True; 
V : Integer; 
Anon : Set := Empty: 
Map (2) := True; 
B : Boolean := Exists (2, Into =7 Anon); 
Finalize IAnan); 
Map (2) := False; 
Obj : Ret-With-Ctrl; 
-DeepJni tialize (Objj: 
Map (3) := True; 

procedure Clean is 
begin 

for I in Map'range loop 
if Map (II then 

case I is 
when 1 => Finalize (Sl/; 
when 2 => Finalize (Anon); 
when 3 => -Deep-Finalize (Objl; 

end case; 
end if: 

end loop; 
end; 

begin 
null: 

AT-EhD: Clean; 
end; 

Records containing controlled components have their own 
(internal) initialization map as an additional field. For each 
array of controlled objects we need to add a specific map 
with as many entries as there are elements in the array. 

The mapping model looks fairly attractive from the storage 
point of view since it only’requires an additional bit per con- 
trolled object. On the down side. this method requires more 
complex deep finalization and clean-up procedures and the 
space gained in the objects is paid by an increase in object 
code size. 

The major drawback of the mapping approach is its inability 
to cope with dynamically allocated controlled objects. For 
that case. the linked list implementation seems to be the 

only possible choice. 

6. Conclusion 

This paper explains the implementation of Ada 95 con- 
trolled types in the GNAT compiler. Even though the 
implementation method described in this paper entails some 
space overhead at run time (compared to the map-based im- 
plementation described in section 4), the method is very 
portable (in contrast to PC maps) and the machinery that is 
embedded in the user code by GNAT is modest. Indeed a 
good part of this-machinery is implemented once and for all 
in the GNAT library and can therefore be shared by all con- 
trolled types. 

One possible improvement in our implementation would be 
to omit the hidden backward pointer for statically allocated 
controlled objects. The only purpose of this pointer is to 
support user deallocation. This would necessitate special- 
ized allocation of dynamic objects requiring finalization. 
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