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Abstract 

When safety-critical software malfunctions people lives are in danger. When security-critical 

software is cracked national security or economic activity may be at risk.  

As more and more software embraces object-oriented programming (OOP) safety-critical and 

security-critical projects feel compelled to use object-orientation. But what are the guarantees of 

OOP in terms of safety and security? Are the design goals of OOP aligned with those of safe and 

secure software (S3) systems? 

In the following sections we look at key OOP aspects and analyze some of the hazards they 

introduce with respect to S3 and outline a possible way of addressing these vulnerabilities. 

Specifically, after a quick overview of OOP in section 2, section 3 deals with inheritance and shows 

some of its hazards in terms of S3 along with possible remedies. Section 4 focuses on dynamic 

binding and suggests a safer and more secure implementation than what is conventionally done. 

Finally, section 5 looks at testing programs with dynamic binding. 

1 Introduction 
Software is typically organized in one of two ways: structured or object-oriented (OO). In 

the structured organization the program is broken down and organized around its 

subprograms. In the OO organization the application is subdivided and arranged around 

its data types (also known as classes). 

Even though the DO-178B safety-critical standard used for airborne software [DO-178B] 

does not impose a specific way of organizing computer software, in practice, most DO-

178B software has used a structured organization. Likewise, the Common Criteria 

security standard [ISO15408] does not make specific recommendations on how a secure 

software program should be organized (structured vs. OO). 

One of the objectives [DO-178C], the future revision of the DO-178B standard, is to 

address the use of object-oriented techniques and their associated development 

processes in the avionics industry. A preliminary document [OOTiA] provides a 

comprehensive analysis on the safety concerns associated with OO techniques in the 

context of DO-178B. 

2 Object-Oriented Programming (OOP) 
Today all modern programming languages such as C++, Java, or Ada (in its 95 or 2005 

incarnation [Ada2005]), allow developers to make use of OOP. To increase its use in the 
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construction of S3 programs, the use of OOP must be balanced with the need to retain 

existing confidence in software safety and security.  

The key shift from structured programming (SP) techniques to OOP is the ability to break 

up SP’s centralized code organization into OOP’s distributed one. SP’s data and code is 

centralized around a small set of types and subprograms while OOP’s data and code are 

distributed around a forest of incrementally built data types. OOP’s organization 

simplifies code maintenance and evolutions when new data types are built incrementally 

from existing ones. In addition, OOP provides a good framework for libraries where 

software components can be adapted and modified. 

To achieve its distributed organization OOP rests on three important concepts: 

(1) Field inheritance & extension: the ability to create a new class from existing ones 

(the parents) and extend this new class with additional data fields. 

(2) Method inheritance & extension: the inheritance for a class of the methods 

declared for its parents with the ability to override them and add new ones. 

(3) Dynamic binding: the ability to link at runtime a method call with a subprogram 

based on the class of the object on which the method is invoked. 

We have excluded from this list important concepts such as encapsulation and privacy 

which are shared by both SP and OOP, as demonstrated by structured programming 

languages such as Ada 83 and Modula 2. 

3 Inheritance and S3 

3.1 Attribute Inheritance & Extension 
When extending a class with data fields the question arises of name clashes, that is what 

if the added data field has the same name as a field in a parent class? In some OOP 

languages, such as Ada 95 and Ada 2005, this problem cannot arise because this is 

forbidden at the language level.  In other languages such as C++ or Java this problem 

does arise and is a potential S3 hazard as shown in the following example. 

C++ Java 

class A {  
  protected: int key;  
  public: A() { key = 99; } 
}; 

class B : public A { }; 
class C : public B {  
  public: void use_key() {  
    cout << "key=" << key << "\n"; 

  } 

}; 

 

class A {  
  protected int key; 
  public A() { key = 99; }  
} 

class B extends A { } 
class C extends B {  
  public void use_key() {  
    System.out.println ("key=" + key); 

  } 

 

  public  
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int main () { 
  C* object = new C(); 
  object->use_key(); 

  return 1; 
} 

  static void main (String[] args) { 
     C object = new C(); 

     object.use_key(); 

  } 

} 

The output from both programs is “key=99”. If later on another developer adds a field 

also named key to class B as shown below: 

C++ Java 

class B: public A {protected: int key;}; class B extends A {protected int key; } 

then the behavior of methods such as use_key() changes implicitly. This implicit change 

is dangerous since it is legal in both C++ and Java and no warnings are typically emitted 

by the compiler. If the derivation chain between A, B, and C is long the side-effect 

caused by the addition of key in B will go undetected.  

One may wonder why such a rule was put in C++ and Java. The reason stems from the 

need to provide freedom to OO library manufacturers in such languages. This is a 

legitimate concern. If the language did not allow the same field name in a parent class 

and a child class, adding a new field to an existing parent class could potentially break 

any child class already using those names. 

This is a good example of a legitimate situation in a day-to-day OO context which turns 

into an S3 hazard.  

As we previously mentioned the rules of Ada 95 or Ada 2005 do not allow the above 

scenario because Ada’s first target is S3 applications. A possible fix in other languages 

would be to create qualified tools (in the DO-178B sense of the term) that would check 

for such a hazard in an S3 context. 

3.2 Method Inheritance and Extension 
As mentioned in 2(2), fundamental to all OOP languages is the ability to override 

inherited methods and add new ones. But what happens if in doing so the programmer 

misspells the name of the method to override as shown below? 

C++ Ada 95 / Ada 2005 

class A {  
public: virtual 
  void finalize_xyz(); 
}; 

class B : public A {  
public: virtual  
  void finalise_xyz(); 
}; 

type A is tagged 
  null record; 
procedure finalize_xyz (Obj: A); 
 
type B is new A with 
  null record; 
procedure finalise_xyz (Obj: B); 
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In the above example the developer of class A has used US-spelling for the word 

“finalize”, whereas the developer of class B has used British-spelling and written 

“finalise”. This means that method finalize_xyz (US spelling) has not been overridden 

in class B and all dynamically bound calls to such a method for objects of class B will 

invoke A’s implementation. 

One may claim that the above typo would be caught as part of the testing procedures of 

certification protocols such as DO-178B since method finalise_xyz (British spelling) will 

come out as never being invoked during testing. Perhaps. But may be the programmer 

of class B needed to make explicit calls to finalise_xyz (British spelling) thereby making 

the above typo invisible to conventional 100% source-coverage (and MC/DC) testing. 

This is true, in particular, if the testing plan did not include a test case with a dynamic 

binding call to finalize_xyz (US spelling) with an object of class B. 

There are several lines of defense against this type of hazard. We will mention the one 

recently introduced by Ada 2005. In Ada 2005 the developer can prefix each method 

with the keywords overriding or not overriding. These signal to the compiler the 

programmer’s intention and allow the compiler to double check that these intentions 

match reality. 

For instance, the code below on the left hand side compiles since the programmer has 

clearly stated that the method with the British spelling should not override the US spelled 

one. On the other hand the code on the right hand side will not compile since the British 

spelled method does not override any method in A and all that is left to do is to fix the 

spelling typo.   

Ada 2005 – correct code Ada 2005 – incorrect code 

type A is tagged null record; 
procedure finalize_xyz (Obj: A); 
 
type B is new A with null record; 
not overriding  
procedure finalise_xyz (Obj: B); 

type A is tagged null record; 
procedure finalize_xyz (Obj: A); 
 
type B is new A with null record; 
overriding 
procedure finalise_xyz (Obj: B); 

By requesting at project level that all methods in subclasses be prefixed with the 

keywords overriding or not overriding (which can be checked by a qualified tool - in 

the DO-178B sense of the term) we defend against this potential hazard. 

4 Dynamic Binding and OOP 
A tricky and crucial element of OOP is dynamic binding. The use of dynamic binding is so 

far discouraged in safety-critical applications that have to be certified according to DO-

178B. This is detailed in FAQ #32 of the DO-178B clarification document [DO-248B]. 

This is partly due to dynamic dispatching, the technique used to implement dynamic 

binding in compiled OO languages. In the following sections we look at dynamic 
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dispatching, its S3 downsides and suggest a safer and more secure alternative to 

implement dynamic binding. 

4.1 Dynamic Dispatching 
Consider the following: 

C++ Ada 95 / Ada 2005 

class A {  
public:  
  virtual void method (); 
}; 

class B : public A {  
public: 
  void method (); 
}; 

class C : public B {  
public: 
  void method (); 
}; 

void dynamic  
  (A *object)  

{ 

  object->method (); 

} 

type A is tagged 
  null record; 
procedure method (Obj: A); 
 
type B is new A with 
  null record; 
procedure method (Obj: B); 
 
type C is new B with 
  null record; 
procedure method (Obj: C); 
 

procedure dynamic  
  (object : A’class) is 
begin 
  object.method; -- Ada 2005 only 

  method (object);-- Ada 95 / Ada 2005 

end call; 

In procedure dynamic the call to method has dynamic binding: the routine called at 

runtime will depend on object’s exact class. Specifically, the call to method will call A’s 

method, B’s method, or C’s method, according to object’s class. 

The way compilers typically implement the above is with dynamic dispatching. This 

consists, in the case of simple inheritance, in adding a new field known as the vtable 

pointer in C++ or the tag in Ada 95/2005 to the object. This new field references a table 

(the dispatch table) of pointers to the dynamically bound operations defined for the 

object’s class (see picture below). 

class specific 

dispatch table object

 

object’s 

data 

 

 

… 

method 1 

method 2 

dynamically bound 
operations of object’s 
class 
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To make a dispatching call one follows the tag/vtable pointer, indexes the resulting table 

by the offset corresponding to the dynamically bound method (a constant known at 

compile time) and makes an indirect call to the resulting method pointer. 

Note that this way of implementing dynamic binding is very flexible as it allows the 

addition of further classes on the outskirts of the inheritance graph without the need to 

recompile existing classes and their clients. 

4.2 Problems with Dynamic Dispatching  
Dynamic dispatching has several safety and security problems, namely: 

(1) Initialization: how can we prove that dispatch tables and tag/vtable fields are 

initialized correctly?  

(2) Modification: how can we prove that dispatch table and tag/vtable values are not 

updated maliciously or unintentionally during the execution of a program?  

Because the implementation of dynamic dispatching is invisible at source level a further 

practical issue arises: 

(3) Tools: how can we use source-based tools in the presence of dynamic dispatching 

for tasks such as code coverage? 

Demonstrating correct dispatch-table initialization at object-level is akin to the problem 

of showing that the linker produces a correct executable from the object files it links. 

This problem is part of the control coupling objective in DO-178B parlance and is 

addressed by either verifying the correctness of the final result by hand of by employing 

a qualified tool that performs such verification [VerOLink]. 

If one can ROM dispatch tables or place them in OS-guarded read-only memory the need 

to verify that dispatch tables are unchanged during a program’s execution disappears. 

Unfortunately, an object’s tag/vtable field cannot typically be placed into read-only 

memory and the costs of demonstrating at object-code level that these fields are 

unchanged during a program’s execution remain. Such modifications could occur because 

of a rogue pointer or buffer overflow in assembly or C/C++ code that may be part of the 

S3 application or by other accidental or malicious means. 

4.3 Fixing the Problems of Dynamic Dispatching 
A possible solution to address the problems described in the previous section would be to 

use a special pre and post-processor integrated in the compile/bind/link cycle to 

transform every dynamically bound call into case statements. This transformation, done 

partly at compile-time and partly just before link-time, is illustrated below for C++ and 

Ada 95 / Ada 2005 for the code example given in section 4.1. Items in the source added 

during the pre-processing stage (prior to compilation) have a gray background. Items 

removed from the source during pre-processing are commented out, italicized, and have 

a gray background.   

Page 6 of 12 



 

C++ Ada 95 / Ada 2005 

 
 
typedef int Class_Id; 
extern const Class_Id a_id;  
 
class A { 
public: Class_Id ID; 
  /* virtual */  
  void method(); 
}; 

extern const Class_Id b_id;  
 
class B : public A {  
public: void method (); 
}; 

extern const Class_Id c_id;  
 
class C : public B {  
public: void method (); 
}; 

B some_object; 

some_object.ID = b_id; 

pragma Restrictions (No_Dispatching_Calls); 
 

type Class_Id is new Integer; 
a_id : constant Class_Id; 

pragma import (Ada, a_id); 
type A is tagged record 
  ID : Class_Id; --could be a discriminant 
end record; 
procedure method (Obj: A); 
 
b_id : constant Class_Id; 

pragma import (Ada, b_id); 
type B is new A with null record; 
procedure method (Obj: B); 
 
c_id : constant Class_Id; 

pragma import (Ada, c_id); 
type C is new B with null record; 
procedure method (Obj: C); 
 

some_object : B; 

some_object.ID := b_id; 

The pre-processing part of the code transformation involves telling the compiler that 

there are no more dispatching calls. This is achieved by removing the keyword virtual in 

C++ and adding a restrictions pragma in Ada. The objective of this transformation is to 

request to the compiler that it no longer generate dynamic dispatching machinery, such 

as dispatch tables, implicit tag/vtable pointers inside objects, and their initialization since 

this would be dead data/dead code in the final executable. The pre-processing stage also 

introduces an explicit ID field used to contain the type of the object. When created, 

objects of type A, B, or C, have their ID field initialized by the pre-processor to a_id, 

b_id, or c_id respectively. 

The second part of the pre-processing code transformation involves replacing every 

dynamically bound call with a statically bound one as shown below. 

C++ Ada 2005 

void dynamic (A *object)  
{ 

  find_method (object, object->ID); 

  //  was  object->method (); 

} 

procedure dynamic (object: A’class) is 
begin 
  find_method (object, object.ID); 

  --  was  object.method; 

  --  or   method (object); 

end call; 
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The post-processing part of the code transformation is performed just before link time 

and involves generating the values for constants a_id, b_id, and c_id, as well as the 

body for routine find_method which implements dynamic binding with an explicit case 

statement as shown below (code for Ada 95 is the same as for Ada 2005 except for the 

difference in method call notation). 

C++ Ada 2005 

void find_method 
  (A *object, 

   Class_Id ID) 

{ 

  switch (ID) { 
    case a : object->A::method(); break; 
    case b : object->B::method(); break; 
    case c : object->C::method(); break; 
    default:  
      find2_method (object, ID);  break; 
  } 

} 

procedure find_method 
  (object : A’class; 

   ID    : Class_Id) is 
begin 
  case ID is 
    when a => A (object).method; 
    when b => B (object).method; 
    when c => C (object).method; 
    when others => 
      find2_method (object, ID); 

  end case; 
end find_method; 

In the above, the find2_method routine invoked in the default case would take some 

remedial action since it is called when the type of the object cannot be determined. 

The above code transformation has several advantages: 

• It is completely transparent to the programmer who can keep using dynamic 

binding as usual. 

• It makes control flow explicit in the post-processed source without the danger of 

accidental or malicious modifications to dispatch tables or vtable pointers. 

• It allows the use of source-based tools based on static control flow. 

• If the compiler implements sibling call optimization (e.g. GCC) then the 

performance of the case statement implementation of dynamic binding is 

practically the same as for dynamic dispatching. 

• The find_method routine can be generated on an individual call basis or on a 

global method basis thereby allowing different levels of testing granularity 

(more on this in section 5). 

These advantages come at the cost of having to do a complete post-processing before 

link every time a new class is added to the program. This is unattractive in the case of 

general-purpose OO applications but is desirable for S3 applications where knowing and 

checking the flow of control statically is important. 

Note that the above scheme allows a certain degree of flexibility since unforeseen events 

(such as the later addition of a new class derived from A) could be daisy-chained 

through routine find2_method without having to recompile existing code. 
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5 Testing 
Testing is a very important aspect of safety-critical software. In DO-178B, for instance, 

requirements-based testing is mandated to verify that the software behaves as 

expected. Requirements-based testing translates into various levels of code coverage 

and can be done at either source or object-code level. 

One important issue when it comes to testing OO applications is how to ensure that 

programs containing dynamic binding are properly tested in the context of S3 

applications. In particular, should the testing campaign provide test cases exerting all 

possible operations at every dynamically bound call (100% dispatching coverage) or is it 

sufficient to test a subset of these operations, as long as all operations are called at least 

once in some dispatching call (100% method coverage)? 

If the number of “dispatching” methods in the program is m and the number of 

dynamically bound calling points is d then 100% dispatching coverage could require as 

many as O(m x d) tests, as opposed to the O(m + d) tests needed to achieve 100% 

method coverage. This is a significant difference for OO programs making heavy use of 

dynamic binding. 

5.1 When 100% Method Coverage Is Not Enough 
To gain an insight on the 100% dispatching vs. 100% method coverage issue let’s go 

back at the difference between structured programming (SP) and OOP.  

In this section we look at the SP and OOP implementations of a simple alert system.  The 

example shows that certain bugs involving crosscutting of concerns [ASPECT] would be 

detected by conventional testing in the SP version but not in the OOP version unless we 

test all method calls at certain dispatching points. This example does not prove that 

100% dispatching coverage is systematically needed for S3 applications, but it does show 

that 100% method coverage isn’t enough. 

For the purpose of the example we are to implement an alert system which is to handle 

alerts in a system coming from different devices (flaps, rudder, cabin pressure, etc). All 

handled alerts must be logged. A partial sketch of the SP and OOP versions in Ada 2005 

of the core alert structures follows. The problem shown below arises in similar terms had 

the system been coded in C++ or Ada 95. 
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SP version (Ada 83/Ada 95/Ada 2005) OOP version (Ada 2005) 

type Device_Kind is (Flaps, Rudder); 
type Alert (Device: Device_Kind) is 
record 
  …  -- Fields common to all alerts 

  case Device is 
    when Flaps  => 
      … -- Flaps specific data 

    when Rudder => 
      … -- Rudder specific data 

  end case; 
end record; 
 
 
 
 
procedure Handle (A: Alert) is 
begin 
  CH; -- Code common to all alerts 

  Log (A); -- alerts are logged here 

  case A.Device is 
    when Flaps  =>  
      FH; -- Flaps specific handling 

    when Rudder => 
      RH; -- Rudder specific handling 

  end case; 
end Handle; 
 

function Get_Alert return Alert; 
-- Builds the alert object for the 

-- device that issued the alert  

-- interrupt. 

type Alert is abstract tagged record 
  …  -- Fields common to all alerts 

end record; 
procedure Handle (A: Alert); 
 
type Flaps_Alert is new Alert with record 
  …  -- Flaps specific data 

end record; 
overriding procedure Handle (A: Flaps_Alert); 
 

type Rudder_Alert is new Alert with record 
  …  -- Rudder specific data 

end record; 
overriding procedure Handle (A: Rudder_Alert); 
 

procedure Handle (A: Alert) is 
begin 
  CH;  -- Code common to all alerts 

  Log (A)  -- alerts are logged here 

end Handle; 
 

procedure Handle (A: Flaps_Alert) is 
begin 
  Alert (A).Handle; -- do common processing 

  FH;  -- Flaps specific handling 

end Handle; 
 

procedure Handle (A: Rudder_Alert) is 
begin 
  -- **BUG** forgot to call: Alert (A).Handle; 

  RH;  -- Rudder specific handling 

end Handle; 
 

function Get_Alert return Alert’Class; 
-- Same comment as in SP version 

Function Get_Alert in the above code may be called by a routine which is invoked by 

the system when detecting an alert interrupt. Let's assume that this routine, which we 

will call Process_Alert also computes the time interval between two consecutive alerts 

and does something based on this time interval as shown in the following code snippet 

which is common to both the SP and OOP version. 
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Code common to both SP and OOP versions (Ada 83/Ada 95/Ada 2005) 

function Time_Last_Alert_Handled return Ada.Real_Time.Time; 
--  Time in which the last alert was handled or zero if no such alert exists 
 

procedure Process_Alert is 
  T1, T2 : Ada.Real_Time.Time; 

begin 
  T1 := Time_Last_Alert_Handled; 

  Handle (Get_Alert); -- Can be written Get_Alert.Handle in Ada 2005 

                      -- Dynamically bound call in OOP version. 

                      -- Statically bound cal in SP version. 

  T2 := Time_Last_Alert_Handled; 

  --  Compute T2 - T1 and do something according to the time span 

  … 

end Process_Alert; 

In the SP version the code to log an alert is shared by the alerts for all device kinds. As a 

result, had we forgotten the log alerts inside the SP version of procedure Handle, testing 

Process_Alert with any type of alert would demonstrate the error. This is not so in the 

OOP version because the common code to log alerts, which is factored inside the Handle 

operation of the root Alert type, needs to be called by each Handle routines for each 

different type of alert. If, as we did in this example, forgot to call the Handle of Alert in 

the implementation of Handle for Rudder_Alert we have a bug because we do not log 

rudder alerts.  

Now if we look at the Process_Alert routine, the dynamically bound call to Handle: 

Handle (Get_Alert);  -- Can be written Get_Alert.Handle in Ada 2005 

will show the bug if and only if it is called with an Rudder_Alert object, thereby showing 

that to detect this type of error by testing we may need to test all Handle calls at this 

calling point in the OOP version. 

The problem shown above is related to the issue of concerns that cut across class types 

[ASPECT], specifically the fact that all alerts need to be logged when they are handled. 

This concern can be located in a single subprogram in the SP version but not 

conveniently in the OOP version. Generally speaking, the style of coding where a method 

in a child class needs to invoke the method in the parent class is fairly frequent. It 

happens with constructors, destructors, finalization routines, etc. In these instances a 

simple 100% method coverage testing approach may not produce the same level of 

safety and security confidence than in the SP case. 
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5.2 Dynamic Binding, Testing, and Case Statements 
In 4.3 we have shown how a dynamically bound call can be converted into a case 

statement to increase the safety and security of OO applications. Section 4.3 left open 

the issue of whether a single case statement should be generated for a whole class of 

dispatching operations, or whether a case statement should be generated on a call by 

call basis. Whatever the answer, it is worth pointing out that the conversion of 

dynamically bound calls to case statements allows for both 100% dispatching coverage 

and 100% method coverage testing. 

What the previous example seems to indicate is that in certain instances it may be useful 

to generate case statements on a call by call basis. What are those instances is still an 

open question. 

6 Conclusion 
This paper looks at some of the issues when using OOP in S3 applications. The paper just 

scratches the surface. For airborne safety-critical software the effort on DO-178C [DO-

178C] is undertaking a thorough investigation of the issues. It would be beneficial if 

efforts from members of all S3 communities were pulled together. 
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