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Abstract. Handling memory in a correct and efficient way is a step to-
ward safer, less complex, and higher performing software-intensive sys-
tems. However, languages used for critical software development such
as Ada, which supports formal verification with its SPARK subset, face
challenges regarding any use of pointers due to potential pointer alias-
ing. In this work, we introduce an extension to the Ada language, and
to its SPARK subset, to provide pointer types (“access types” in Ada)
that provide provably safe, automatic storage management without any
asynchronous garbage collection, and without explicit deallocation by
the user. Because the mechanism for these safe pointers relies on strict
control of aliasing, it can be used in the SPARK subset for formal verifi-
cation, including both information flow analysis and proof of safety and
correctness properties. In this paper, we present this proposal (which has
been submitted for inclusion in the next version of Ada), and explain how
we are able to incorporate these pointers into formal analyses.
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1 Introduction

Standard Ada supports safe use of pointers (“access types” in Ada) via strong
type checking, but safety is guaranteed only for programs where there is no
explicit deallocation of pointed-to objects – explicit deallocation is considered
“unchecked” programming in Ada, meaning that the programmer is responsible
for ensuring that the deallocation is not performed prematurely. Ada can provide
automatic reclamation of the entire memory pool associated with a particular
pointer type when the pointer type goes out of scope, but it does not automat-
ically reclaim storage prior to that point. It is possible for a user to implement
abstract data types that do some amount of automatic deallocation at the object
level, but this requires additional programming, and typically has certain limita-
tions. As part of its strong type checking, Ada also prevents dangling references
to objects on the stack or the heap, by providing automatic compile-time check-
ing of “accessibility” levels, which reflect the lifetimes of stack and heap objects.
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Conversions between pointer types are restricted to ensure pointers never outlive
the objects they designate. Values of a pointer type are by default initialized to
null to prevent use of uninitialized pointers, and run-time checks verify that a
null pointer is never dereferenced.

SPARK is a subset of the Ada programming language, targeted at the most
safety- and security-critical applications. SPARK starts with the basic Ada fea-
tures oriented toward building reliable and long-lived software, then adds re-
strictions that ensure that the behavior of a SPARK program is unambiguously
defined, and simple enough that formal verification tools can perform an auto-
matic assessment of conformance between a program specification and its imple-
mentation. The SPARK language and toolset for formal verification have been
applied over many years to on-board aircraft systems, air traffic control systems,
cryptographic systems, and rail systems [9,8].

As a consequence of our focus in SPARK on proof automation and usability,
we have forbidden the use in SPARK of programming language features that
either prevent automatic proof, or require extensive user effort in annotating
the program. Pointer types are the main example of this for SPARK. SPARK
supports many Ada features that can make up for the lack of pointers: by-
reference parameter passing, the ability to specify the address of objects, and
the support for arrays as first-class objects. On the other hand, pointers are
sometimes desirable, which forces one to exclude from formal SPARK analysis
the parts of a program that make use of pointers. While there are idioms that
facilitate this isolation of pointers in non-SPARK parts of a program [2], it would
be desirable to provide some level of support for pointers in SPARK.

In this work, we propose a restricted form of pointers for Ada that is safe
enough to be included in the SPARK subset. As our main contribution, we
show how to adapt the ideas underlying the safe pointers from permission-based
languages like Rust [3] or ParaSail [13], to safely restrict the use of pointers in
more traditional imperative languages like Ada. In section 2, we provide rationale
for the rules that we propose to include in the next version of Ada, which takes
into account specifics of Ada such as by-copy/by-reference parameter passing
and exception handling. In section 3, we outline how these rules make it possible
to formally verify SPARK programs using such pointers. Finally, we present
related work and conclude.

2 A Proposal for Ownership Types in Ada

Pointers (access types) are essential to many complex Ada data structures, but
they also have downsides, and can create various safety and security problems.
When attempting to prove properties of a program, particularly those with mul-
tiple threads of control, the enemy is often the unknown “aliasing” of names
introduced by access types and certain uses of (potentially) by-reference param-
eters. We say that two names may alias if they have the possibility to refer to
overlapping memory regions. By unknown aliasing of names, we mean the case
where two distinct names might refer to the same object, without the compiler
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being aware of it. A rename introduces an alias, but not an “unknown alias,”
because the compiler is fully aware of such an alias. However, if a global variable
is passed by reference as a parameter to a subprogram that also has direct access
to the same global, the by-reference parameter and the global are now aliases
within the subprogram, and the compiler generating its code has no way of know-
ing this, hence they are “unknown aliases.” One approach is to always assume
the worst, but that makes analyses much harder, and in some cases infeasible.
Access types also introduce unknown aliasing, and in most cases, an analysis tool
will not be sure whether the aliases exist, and will again have to make worst-case
assumptions, which again may make any interesting proof infeasible.

The question that emerges in this context is: can we create a subset of
access-type functionality that supports the creation of interesting data struc-
tures without bringing along the various problems associated with unknown
aliasing? The notion of pointer “ownership” has emerged as one way to “tame”
pointer problems, while preserving flexibility [12]. The goal is to allow a pattern
of use of pointers that avoids dangling references as well as storage leaks, by
providing safe, immediate, automatic reclamation of storage rather than relying
on unchecked deallocation, while also not having to fall back on the time and
space vagaries of garbage collection. As a side benefit, we can also get safer use of
pointers in the context of parallelism. We propose the use of pointer ownership
(as well as additional rules, detailed in [1], disallowing “aliasing” involving param-
eters) to provide safe, automatic, parallelism-friendly heap storage management
while allowing the flexible construction of pointer-based data structures, such as
trees, linked lists, hash tables, etc.

Although we took inspiration from Rust and ParaSail to produce this pro-
posal, it is also different in many ways, due to the different objectives pursued in
Ada and SPARK. Firstly, this proposal is designed to work with existing features
of Ada such as by-copy/by-reference parameter passing and exception handling:
raising an exception should not lead to memory leaks, and upon handling of a
raised exception, objects should not be left in an inconsistent state. Secondly,
this proposal relies on Ada’s exiting mechanisms for avoiding uninitialized or
dangling pointers: uninitialized and freed pointers should be set to null so that
dereferencing such pointers results in a run-time error.

By relying on pointer ownership, we can ensure that pointer-based struc-
tures in SPARK can be supported while preserving SPARK’s strict anti-aliasing
parameter passing rules, thereby allowing the SPARK proof tools to prove the
same range of safety and correctness properties, including freedom from data
races, even in programs that use pointer-based structures in conjunction with
concurrent and parallel programming constructs (see section 3).

2.1 Ownership Types

In this section, we describe the Ownership aspect, a Boolean value that can be
specified True for an Ada access type, with the effect that the compiler enforces
an additional set of rules to ensure that there can be at most one writable access
path to the data designated (i.e. pointed to) by an object of such an access type,
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or alternatively one or more read-only access paths via such access objects,
but never both concurrently. This is known as the Concurrent-Read-Exclusive-
Write (CREW) access policy [11]. The CREW policy prevents multiple access
via different objects to the same memory area whenever one of those access
objects is modifying that area.

In addition to access types, Ownership can also be specified True for compos-
ite types, allowing for a record, an array, or even a private type with potentially
multiple components that are access objects with Ownership True. Any object
of a type with Ownership True is called an ownership object. In addition, we use
the more general term managed object to refer to any object that is reachable
by following ownership access objects. Here is the overall taxonomy:
– Ownership objects: objects of a type with Ownership aspect True, including:

• Owning access objects: access-to-variable objects with Ownership aspect
True;

• Observing access objects: access-to-constant objects with Ownership as-
pect True;

• Composite ownership objects: records and arrays with Ownership aspect
True;

– Other managed objects: non-ownership objects that are pointed to by an
owning or observing access object.
In the remainder, we presume that all objects in the code samples we present

are managed objects; we refer the reader to [1] for further details on the Owner-
ship aspect specification, and specific rules that apply to non-ownership managed
objects. Note also that some of the Ownership rules will be expressed in terms of
“names” rather than “objects,” since objects do not really exist at compile-time,
when these rules are intended to be enforced.

In the next section, we will focus on owning and observing access objects,
which as parameters are passed by copy in Ada, before we consider the situation
of composite ownership objects, for which we require pass-by-reference. As it
turns out, when worrying about the number of ways one can reach an object,
passing a parameter by copy or by reference can make a difference, particularly
in the context of propagating and handling exceptions.

2.2 Ownership for Access Objects

To ensure safe memory management, the basic rule is that at most one object
that gives update access may be used at one time to refer to a designated object,
and while such an updater exists, access via any other object is disallowed. There
might be multiple access objects that designate the same object (or some part
of it) at certain times, but all of them must provide only read access.

The manipulation of ownership access objects in the program is limited to
the following three kinds of operations:
– Moving : An assignment operation that leads to moving the value of one

access object into another, leaving behind a null;
– Borrowing : The declaration of a short-term read-write reference by copying

an existing access object, borrowing its value for the lifetime of the borrower.
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– Observing : The declaration of a short-term object that gives read-only access,
by copying an existing access object, observing the object(s) reachable from
it for the lifetime of the observer.
Given an access object, it should have one of three possible states at any

point in its scope:
– Unrestricted : the object may be dereferenced and used to read or update the

designated object;
– Observed : the object may be used for read-only access to all or part of the

designated object, or part of some object directly or indirectly reachable via
a chain of owning access objects from the designated object;

– Borrowed : the object’s ownership has been temporarily transferred to an-
other object, and while in such a state the original access object is not usable
for reading or updating the designated object (nor for any other purpose).

Moving Access Values The move operation involves a complete transfer of
the ownership from the right hand side to the left hand side in an assignment
operation, where both left- and right-hand-side objects are owning access vari-
ables in the unrestricted state. After the assignment, the right-hand side gets
set to null, and the newly assigned object becomes the (unrestricted) owner. By
setting the original access object to null, any name that starts with a dereference
of that original access object is effectively “destroyed”; even if an exception is
raised before we explicitly assign a new value to the right-hand side, there is
no danger a handler for the exception will be able to dereference the old value
of the right-hand side. Being able to use the old value to reach the designated
object would, at a minimum, violate our CREW policy, and could cause havoc
if the designated object had been deallocated after the move, but prior to the
exception being raised.

In addition to setting the right-hand side to null, a move also finalizes and
deallocates the object, if any, designated by the left-hand side prior to the as-
signment. This automatic deallocation means memory is reclaimed as soon as it
is no longer accessible, thereby preventing memory leaks, without the need for
an asynchronous garbage collector. This is safe to do, because a move requires
the left-hand side to be in the unrestricted state, meaning that it is the only
access object pointing to the object about to be deallocated.

In addition to considering certain assignment statements to be moves, we
also consider the assignments inherent in passing by copy an out or in out pa-
rameter to be moves, as well as returning a value from a function. Updating a
subcomponent of a composite object is also considered a move, but we consider
these in the section focused on composite types (see below).

Figure 1 illustrates an example of “move” operations. Objects X and Y are
access-to-variable objects of the named type Int_Ptr. At a Swap procedure call
site, the actual parameter X, which is required to be in the unrestricted state,
is copied in to the formal X_Param. The ownership of X.all (X.all is Ada’s
notation for dereferencing X – X.all denotes the object designated by X) is
similarly moved from X to X_Param. This requires setting X to null until the
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subprogram returns (to ensure safety in the presence of an exception), at which
point the final value of X_Param is copied back to X. Variable X then reasserts
its ownership over X.all. Similar state transitions apply for Y and Y_Param.
At lines `4, `6, and `7, we have additional move operations, which consist of
moving, respectively, the objects X_Param, Y_Param, and Tmp. Thanks to our
move-related rules, even such a straightforward implementation of the Swap
procedure for access types is nevertheless guaranteed to be alias safe while Swap
is executing, both from the caller perspective and from inside Swap itself, since
the ownership is transferred as part of each access-to-variable object assignment.

1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 p r o c e d u r e Swap ( X Param , Y Param : i n o u t I n t P t r ) i s
4 Tmp : I n t P t r := X Param ;
5 b e g i n
6 X Param := Y Param ;
7 Y Param := Tmp ;
8 end Swap ;
9

10 X : I n t P t r := new I n t e g e r ’ ( 7 ) ;
11 Y : I n t P t r := new I n t e g e r ’ ( 1 1 ) ;
12

13 Swap (X, Y) ;

Fig. 1: Example of moving the ownership of an object.

Borrowing Access Values We say that an access value has been “borrowed” if
that value has been copied into a short-lived (owning) access-to-variable object.
A borrowing operation is a temporary transfer of the ownership of the said
borrowed object until the end of the scope of the borrower. We want the original
access object to still designate the same object until the borrower goes away.
As a result, while an access object is in the borrowed state, its value may not
be changed; furthermore, to preserve our CREW policy, we disallow using or
copying it again until the current borrower goes away; in the borrowed state,
the original access object is completely “dead” – it cannot be read nor be the
target of an assignment. Furthermore, borrowing applies recursively down the
tree rooted at the original access object, meaning that at the point where a name
is borrowed, every name with that name as a prefix, is similarly borrowed.

The assignment operations that are considered borrowing are those that ini-
tialize a stand-alone object of an anonymous access-to-variable type, or a con-
stant or an in parameter of a (named or anonymous) access-to-variable type. We
also consider as borrowing passing an object of a composite ownership type as
a parameter of mode out or in out – see Section 2.3 below. The code snippet of
Figure 2 is a simple example of borrowing. X and Y are both access-to-variable
objects. We want to swap the objects designated by the two pointers (their “con-
tents”) using the Swap_Contents procedure. To that end, we declare X_Param
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and Y_Param as formal parameters of mode in. Objects X and Y become bor-
rowed in the caller, and inside Swap_Contents X_Param and Y_Param are the
borrowers, in the unrestricted state. This state allows reading and updating via
these formal parameters, which enables swapping the value of their designated
objects. Note that we allow an in parameter or a constant of an owning ac-
cess type to provide read/write access to its designated object to accommodate
existing Ada practice in the use of such “constant” access-to-variable values to
nevertheless update their designated objects.

1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 p r o c e d u r e Swap Conten t s ( X Param , Y Param : i n I n t P t r ) i s
4 Tmp : i n t e g e r := X Param . a l l ;
5 b e g i n
6 X Param . a l l := Y Param . a l l ;
7 Y Param . a l l := Tmp ;
8 end Swap Conten t s ;
9

10 X : I n t P t r := new I n t e g e r ’ ( 1 3 ) ;
11 Y : I n t P t r := new I n t e g e r ’ ( 1 7 ) ;
12

13 Swap Conten t s (X, Y) ;

Fig. 2: Example of borrowing via in parameters.

Observing Access Values We say an access-to-variable object is “observed”
when its value has been copied into an “observer,” and both the original access
object and the copy, starting at that point, can only be used for read access to
the designated object. The original object remains in the observed state until
the end of the scope of the observer. While being observed, neither the observed
object nor the observer is allowed to be moved or borrowed. The original access
object cannot be used as the target of an assignment since we need the observed
object to continue to designate the same object as long as any observers exist.
As with borrowing, observing applies recursively down the tree rooted at the
original access object, meaning that at the point where a name is observed,
every name with that name as a prefix, is similarly observed.

We consider as observing the assignment operations used to initialize stand-
alone objects of an anonymous access-to-constant type, as well as in parameters
of such a type. In the code snippet of Figure 3, X_Param and Y_Param are
access-to-constant objects of an anonymous type. Since the assignment of the
value of X to X_Param as well as to Y_Param are part of the initialization of
the target objects, this initiates the observing, and while X_Param and Y_Param
exist they provide read-only access. Note that this allows us to call the function
Sum using X as a first and second parameter – upon the first occurrence of X it
enters the observed state, but we can still observe it further.
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1 t y p e I n t P t r i s a c c e s s i n t e g e r ;
2

3 f u n c t i o n Sum ( X Param , Y Param : a c c e s s c o n s t a n t I n t e g e r ) r e t u r n
4 I n t e g e r i s
5 b e g i n
6 r e t u r n X Param . a l l + Y Param . a l l ;
7 end Sum ;
8

9 X : I n t P t r := new I n t e g e r ’ ( 4 2 ) ;
10

11 Y : c o n s t a n t I n t e g e r := Sum (X, X) ;

Fig. 3: Example of observing via access-to-constant parameters.

Preventing Read-Write Aliasing We have seen that the observing rules allow
multiple access objects to observe the same designated object. In the scope of
these objects, the original object is in the observed state; its designated object
cannot be written, so there is no read-write aliasing problem here.

We have seen that after borrowing an object, its name allows neither reading
nor updating until the borrowing ends. For example, this prevents a call to
Swap_Contents(X, X), as borrowing X via parameter X_Param makes it illegal
to borrow it again via parameter Y_Param. The actual order of evaluation does
not matter here, as any other order would also be illegal.

We have also seen that after moving an object, its value is set to null, which
prevents accessing the designated object again through the original name. This
rule by itself does not prevent a call to Swap(X, X), but moving X into parameter
X_Param makes X null, so that if it is then moved into parameter Y_Param,
the value null will be passed, ensuring that a run-time check will prevent read-
write aliasing. In fact, in current Ada, passing the same object twice in the same
call as an out or in out parameter is illegal, so this existing Ada rule will catch
simple cases such as this at compile time. Furthermore, as part of our proposed
extension to Ada, an additional restriction No_Parameter_Aliasing is defined,
which prevents at compile time the more complex cases as well. We refer the
reader to [1] for further details on the No_Parameter_Aliasing restriction.

2.3 Extension to Composite Types

The rules presented previously for access objects are extended in natural ways
to composite ownership objects (records or arrays with owning access objects as
subcomponents) to enforce the Concurrent-Reads-Exclusive-Write principle.

Moving Composite Values As with access objects, the composite move oper-
ation is a complete transfer of the ownership from the right hand side composite
object to the left hand side object as part of an assignment operation. And as
with access objects, a composite object to be moved must be in the unrestricted
state before the assignment. The rules that apply for moving an access object
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are applied here to each access subcomponent of the composite type: access sub-
components of the moved objects are set to null after being copied, and to avoid
memory leaks, if the prior value of the subcomponent in the target composite
object is different from the new value, the object designated by this prior value
is finalized and its storage deallocated.

As before, we consider as a move each assignment operation for a composite
ownership type where the target is a variable (or the “return object” of a func-
tion), but this time we do not consider passing of out or in out parameters to be
moves, because for composite ownership objects, parameters are passed by refer-
ence and no true copying is occurring. Composite parameter passing is described
further below. In the code snippet of Figure 4, Rec is a record with components
of an owning access type. The move operation occurs at line `9 where R is moved
to S, which involves moving R.X into S.X and moving R.Y into S.Y. As a result,
the objects originally designated by S.X and S.Y are deallocated and R.X and R.Y
end up null after the assignment.

1 t y p e I n t P t r i s a c c e s s I n t e g e r ;
2 t y p e Rec i s r e c o r d
3 X, Y : I n t P t r ;
4 end r e c o r d ;
5

6 R : Rec := ( . . . ) ;
7 S : Rec := ( . . . ) ;
8

9 S := R ;

Fig. 4: Example of moving a composite object.

Borrowing Composite Values Borrowing composite ownership objects oc-
curs when passing such an object as an out or in out parameter, consistent with
these composite ownership objects being passed by reference. Note how this dif-
fers from out or in out parameters of an access type, which are passed by copy
and are thus considered as being moved as part of parameter passing. Ada nor-
mally allows composite objects to be passed either by copy or by reference, but
for ownership composite types, we specify that they must always be passed by
reference, to avoid having two different sets of rules for composite objects that
would depend on whether the type is passed by copy or by reference.

In the code snippet of Figure 5, procedure Swap_Rec has an in out formal
parameter R of a record type. At the point of call to Swap_Rec, the actual
parameter name R1 becomes borrowed until returning from Swap_Rec, with
the borrower being the formal parameter name R. Inside Swap_Rec, the formal
parameter R is initially in the unrestricted state, hence its components R.X and
R.Y can be successively moved in and out through the call to Swap, and then
borrowed through the call to Swap_Contents. Note that subcomponents of a
composite type can be individually moved and borrowed, without impacting the
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state of other non-overlapping subcomponents of the same composite object. We
refer the reader to [1] for further details.

1 p r o c e d u r e Swap Rec (R : i n o u t Rec ) i s −− R1 i s borrowed
2 b e g i n
3 Swap (R . X, R .Y) ;
4 Swap Conten t s (R . X, R .Y) ;
5 end Swap Rec ;
6

7 R1 : Rec := ( . . . ) ;
8

9 Swap Rec ( R1 ) ;

Fig. 5: Example of borrowing via a composite in out parameter.

Observing Composite Values Observing composite ownership objects occurs
when passing such an object as an in parameter, or initializing a stand-alone
constant object of such a type.

In the code snippet of Figure 6, procedure Sum_Rec has an in formal param-
eter R of a record type. At the point of call to Sum_Rec, the actual parameter
name R1 becomes observed, with the formal parameter R as the observer, until
returning from Sum_Rec. Inside Sum_Rec, the formal parameter R is initially in
an observed state, hence its components R.X and R.Y can only be read (observed)
through the call to Sum.

1 f u n c t i o n Sum Rec (R : i n Rec ) r e t u r n I n t e g e r i s
2 b e g i n
3 r e t u r n Sum (R . X, R .Y) ;
4 end Sum Rec ;
5

6 R1 : Rec := ( . . . ) ;
7

8 Y : I n t e g e r := Sum Rec ( R1 ) ;

Fig. 6: Example of read only access to an object of a composite type.

Traversing Data Structures with Local Variables In the rules for borrow-
ing access values (Section 2.2), initializing a stand-alone object of an anonymous
access-to-variable type corresponds to borrowing the access object being copied.
Similarly, in the rules for observing access values (Section 2.2), initializing a
stand-alone object of an anonymous access-to-constant type corresponds to ob-
serving the object being copied. Without these special cases, such initializations
might be treated as moves, which would not allow for a non-destructive traversal
of a recursive data structure, since every assignment to such a “handle” would
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deallocate its prior designated object and set to null the object that was moved.
Hence, such an object of an anonymous access type acts as a kind of short-term
“handle” on the tree of objects rooted at the original access object.

We also allow certain kinds of updates to such “handles,” in order to al-
low traversing the data structure by changing where the handle points. In the
borrowing case (for an access-to-variable object), we allow the borrower to be
updated to point to an object within the tree rooted at the prior value of the
borrower; this is not considered a new borrowing action, as the existing borrower
remains the only object providing any read or write access to the subtree rooted
at its original value. By limiting the initial borrowing to the initialization of a
new stand-alone object, we ensure that borrowing lasts only as long as the life-
time of the “handle.” If we allowed any given assignment statement to initiate a
new borrowing action, tracking when such borrowing would end might require
complex data-flow analysis, potentially across conditional and iterative paths in
the program. Somewhat less stringent restrictions are applied when updating
an observer – the observer may be updated to point to an already observed
object with a compatible scope. Again, doing otherwise might require complex
data-flow analysis to determine the extent of the observing action.

In the code snippet of Figure 7, local variable Walker is a stand-alone object
of an anonymous access-to-constant type, which allows traversing the input bi-
nary search tree, so as to find the maximal value (obtained by searching for the
rightmost leaf of the tree). After initializing Walker with the value of parameter
T, T becomes observed, and Walker starts in the observed state (thus preventing
updates to T.all through Walker). The data structure traversal is performed by
the instruction of line `16.

1 t y p e Rec ;
2 t y p e Tree i s a c c e s s Rec ;
3 t y p e Rec i s r e c o r d
4 Data : N a t u r a l ;
5 Lef t , R i g h t : Tree ;
6 end r e c o r d ;
7

8 f u n c t i o n Max ( T : i n Tree ) r e t u r n I n t e g e r i s
9 Walker : a c c e s s c o n s t a n t Rec := T ; −− Walker o b s e r v e s T

10 Max Value : N a t u r a l := 0 ;
11 b e g i n
12 w h i l e Walker /= n u l l l oop
13 i f Walker . Data > Max Value t h e n
14 Max Value := Walker . Data ;
15 end i f ;
16 Walker := Walker . R i g h t ; −− a s s i g n m e n t t o Walker
17 end loop ;
18 r e t u r n Max Value ;
19 end Max ;

Fig. 7: Example of traversing a data structure with read-only access:
Max on a Binary Search Tree.
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In the code snippet of Figure 8, local variable Walker is a stand-alone ob-
ject of an anonymous access-to-variable type, which allows traversing the input
binary search tree to insert the input value V at the correct leaf position (ob-
tained by searching for the branch where this value would be stored, if it were
already present). After initializing Walker with a copy of the value of parameter
T, T becomes borrowed, and Walker starts its life in the unrestricted state (thus
allowing updates via Walker to the tree pointed to by T). The data structure
traversal is performed by the instruction of line `8 and `15. Insertion in the tree
is performed at lines `10 and `17.

1 p r o c e d u r e I n s e r t ( T : i n Tree ; V : N a t u r a l ) i s
2 Walker : a c c e s s Rec := T ;
3 b e g i n
4 l oop
5 i f V < Walker . Data t h e n
6 i f Walker . L e f t /= n u l l t h e n
7 Walker := Walker . L e f t ;
8 e l s e
9 Walker . L e f t := B u i l d L e a f (V) ;

10 e x i t ;
11 end i f ;
12 e l s i f V > Walker . Data t h e n
13 i f Walker . R i g h t /= n u l l t h e n
14 Walker := Walker . R i g h t ;
15 e l s e
16 Walker . R i g h t := B u i l d L e a f (V) ;
17 e x i t ;
18 end i f ;
19 end i f ;
20 end loop ;
21 end I n s e r t ;

Fig. 8: Example of traversing a data structure with read and update
access: Insert into a Binary Search Tree. Build_Leaf(V) creates a node

with Data = V, and Left, and Right components both null.

3 Formal Verification with Ownership Types in SPARK

The existing SPARK restrictions imposed on its current subset of Ada ensure
that an assignment to one variable cannot change the value of some other visible
variable. This property is essential to allow sound modular static analysis, where
each subprogram can be analyzed independently while detecting all possible
violations of the kinds targeted by the analysis.

This is currently enforced by forbidding all use of access types in SPARK,
and by restricting aliasing between parameters and global variables so that only
benign aliasing is permitted (i.e. aliasing that does not cause interference). The
aliasing restrictions are as follows:
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– Two output parameters should never be aliased.
– An input and an output parameter should not be aliased, unless the input

parameter is always passed by copy.
– An output parameter should never be aliased with a global variable refer-

enced by the subprogram.
– An input parameter should not be aliased with a global variable updated by

the subprogram, unless the input parameter is always passed by copy.
To understand why aliasing matters in SPARK, consider procedure Add_One

in Figure 9. If X_Param and Y_Param are not aliased, then the result of calling
Add_One on actual parameters X and Y will increase their contents by one. If X
and Y are aliased, then calling Add_One on X and Y will increment the underlying
content by two.

1 p r o c e d u r e Add One ( X Param , Y Param : i n I n t P t r ) i s
2 b e g i n
3 X Param . a l l := X Param . a l l + 1 ;
4 Y Param . a l l := Y Param . a l l + 1 ;
5 end Add One ;

Fig. 9: A simple procedure where aliasing would create problems in SPARK.

If SPARK ignored aliasing, it would conclude that procedure Add_One al-
ways increments by exactly one the content of each of its parameters X_Param
and Y_Param. In particular, it could prove the following postcondition on the
procedure.

1 p r o c e d u r e Add One ( X Param , Y Param : i n I n t P t r ) w i th
2 P o s t => X Param . a l l = X Param . a l l ’ Old + 1
3 and Y Param . a l l = Y Param . a l l ’ Old + 1 ;

Indeed, by presuming that the assignment to X_Param.all on line `2 does
not influence the value of Y_Param.all, proof would be able to derive that the
values Y_Param.all has been incremented by 1. Similarly, flow analysis could
derive wrong data dependencies if possible aliasing is not taken into account.

This wrong postcondition would allow a proof that an incorrect assertion
is satisfied in the code snippet of Figure 10, while in fact it fails at run time.
Thus, normal Ada pointers could not be treated like any other component in
SPARK, given the possibility for aliasing. But the rules we have described for
ownership objects precisely prevent aliasing when one of the objects can be
written. This is analogous to the rules in SPARK for preventing aliasing between
by-reference parameters, and these rules allow SPARK to treat such pointers like
other components.

In the case of Add_One, this means that SPARK analysis will be able to
conclude that the postcondition above is satisfied by the implementation of
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1 X : I n t P t r := new I n t e g e r ’ ( 1 ) ;
2 ( . . . )
3

4 Add One (X, X) ;
5 pragma A s s e r t (Y. a l l = 2 ) ; −− i n c o r r e c t a s s e r t i o n

Fig. 10: Example of proof of an incorrect assertion due to the presence
of aliasing in SPARK.

Add_One. But unsafe calls such as Add_One(X, X) will be rejected both by com-
pilation and analysis.

The SPARK tools also provide detection of potential data races in programs
that use concurrent and parallel programming constructs. This detection de-
pends on the strict anti-aliasing conditions on parameters, and provides a sound
assurance that no two threads concurrently manipulate the same data, if either
has update access. This matches the CREW condition imposed on access ob-
jects through the proposed ownership rules, and means that the SPARK tools
can handle pointer-based structures that obey these rules, in the same way it
already handles record- and array-based structures, enabling provably safe con-
current and parallel programming in SPARK even when enhanced with this more
flexible data structuring capability.

4 Related Work

C-like languages are mostly based on pointers and often sacrifice safety for per-
formance purposes. To overcome safety shortcoming and manage the storage of
a pointer, C++ introduces the notion of unique pointers. An object defined as a
unique_ptr has the ability to take ownership of an object. It becomes respon-
sible for its deletion at some point. Although these rules help provide greater
language safety, the unique pointer concept is limited because it prohibits pointer
arithmetic and copy assignments.

Separation logic [10] is an extension of Hoare-Floyd logic that allows reason-
ing about pointers. In general, it is not well integrated with deductive verifica-
tion, and, in particular, is not supported by most SMT provers.

Dafny associates each object with its dynamic frame, the set of pointers
that it owns [7]. This dynamic version of Ownership is enforced by modeling
the Ownership of pointers in logic, generating verification conditions to detect
violations of the single-owner model, and proving them using SMT provers. In
Spec#, Ownership is similarly enforced by proof, to detect violations of the
so-called Boogie methodology [4].

The inspiration for much of our work springs from the systems programming
languages Cyclone [5], Rust [3], and ParaSail [13], which achieve absence of
harmful aliasing by enforcing an Ownership type system on the memory pointed
to by objects. Rust and ParaSail are recent programming languages providing
safe systems programming, with a focus on memory safety for concurrent pro-
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grams. Rust and ParaSail also deal with the lifetime of allocated memory, while
preventing dangling pointer references.

The most closely related work to ours springs from Jaloyan et al. [6] anti-
aliasing rules. In [6], access-to-variable objects and composite objects with ac-
cess subcomponent objects are considered as deep variables and their ownership
states are transferred in the same way when used to call subprograms. Actual
deep parameters are considered as borrowed and the durations of borrows are
only limited to the duration of procedure calls. It turns out that their rules
do not allow traversing a linked data structure with read/write permission, or
even traversing with read-only permission. In our work, the distinction between
stand-alone access objects and composite ones and moving or observing compos-
ite objects instead of borrowing them has allowed us to support safely traversing
a data structure for read or update.

In our work, we use a permission-based mechanism for detecting potentially
harmful aliasing, in order to make the presence of pointers transparent for au-
tomated provers. Our approach does not require additional user annotations
required in some of the previously mentioned techniques. We instead rely on
the existing distinctions in Ada between in and in out parameters, and between
access-to-variables and access-to-constants. We thus achieve high automation
and usability, which was one of our goals in supporting pointers in SPARK.

5 Conclusion

We have presented an extension to the Ada language to provide pointer types
(“access types” in Ada) that provide provably safe, automatic storage manage-
ment without any asynchronous garbage collection, and without explicit deallo-
cation by the user. Although we took inspiration from Rust and ParaSail, the
extension we propose differs so as to work well with existing features of Ada such
as by-copy/by-reference parameter passing and exception handling, and because
we rely on the existing mechanisms in Ada for preventing access to uninitialized
pointers and freed memory.

This extension relies on the notion of ownership, where only one access object
can provide update access to the designated object at any given time. Owner-
ship of a designated object can be moved to another object through assignment,
which deallocates the object previously designated by the target of the assign-
ment and leaves the source of the assignment null. Ownership can also be bor-
rowed giving a short-term borrower read-write access to the designated object.
Finally, the value of a designated object can be observed by multiple read-only
observers, with limited lifetimes. Collectively, these mechanisms enforce a prin-
ciple of Concurrent-Reads-Exclusive-Write.

Because the mechanism for these safe pointers relies on a strict control of
aliasing, they can be used in the SPARK subset for formal verification, which
includes both analysis of flows and proof of properties, including in the presence
of multiple threads of control.
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This proposal has been formalized as Ada Issue [1] for inclusion in a future
version of Ada. We have also implemented a prototype of these permission rules
in the GNAT/GCC compiler for Ada developed at AdaCore. Our implementation
successfully proves the safety of all programs presented in this article.

Acknowledgements. We thank the anonymous reviewers for their remarks, and
Georges-Axel Jaloyan for his initial work on the design, formalization and im-
plementation of these ownership rules for Ada and SPARK.
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