SPARKSKkein: A Formal and Fast Reference
Implementation of Skein

Roderick Chapman', Eric Botcazou®, Angela Wallenburg'

! Altran UK Limited, 22 St Lawrence Street
Southgate, Bath BA1 1AN, U.K.
2 AdaCore, 46 rue d’Amsterdam,
75009 Paris, France.

rod.chapman(@altran.com
botcazou@adacore.com, angela.wallenburg@altran.com

Abstract. This paper describes SPARKSkein! - a new reference
implementation of the Skein cryptographic hash algorithm, written and verified
using the SPARK language and toolset. The new implementation is readable,
completely portable to a wide-variety of machines of differing word-sizes and
endian-ness, and “formal” in that it is subject to a proof of type safety. This
proof also identified a subtle bug in the original reference implementation
which persists in the C version of the code. Performance testing has been
carried out using three generations of the GCC compiler. With the latest
compiler, the SPARK code offers identical performance to the existing C
reference implementation. As a further result of this work, we have identified
several opportunities to improve both the SPARK tools and GCC.

Keywords: Skein, Hash, SHA-3, SPARK, Theorem Proving, GCC,
Optimization, Verification, Security.

1 Introduction

This paper describes SPARKSkein — a new reference implementation of the Skein
cryptographic hash algorithm [1], written and verified using the SPARK? language
and toolset.

This work started out as an informal experiment to see if a hash algorithm like
Skein could be realistically implemented in SPARK. The goals of the implementation
were as follows:

e Readability. We aimed to strike a reasonable balance of readability and
performance. The code should be “obviously correct” to anyone familiar with the

Skein specification and/or the existing C reference implementation.

! The full version of this paper appears here: http:/link.springer.com/chapter/10.1007/978-3-
642-25032-3 2

2 The SPARK Programming Language is not sponsored by or affiliated with SPARC
International Inc and is not based on the SPARC® architecture.

mailto:rod.chapman@altran.com
mailto:botcazou@adacore.com
mailto:angela.wallenburg@altran.com
http://link.springer.com/chapter/10.1007/978-3-642-25032-3_2
http://link.springer.com/chapter/10.1007/978-3-642-25032-3_2

e Portability. SPARK has a truly unambiguous semantics, making it a very portable
language. Therefore, we aimed for a single code-base that was portable and correct
on all target machines of any word-size and endian-ness.

e Performance. We hoped that the performance of the SPARK code would be close
to or better than the existing C reference implementation. The conjecture here is
that code that is both correct and type-safe can also be fast. If we failed on the
performance front, then we hoped to at least understand why as a way of promoting
further work on compiler optimization for SPARK.

e Formality. The SPARK verification tools offer a full-blown implementation of
Hoare-Logic style verification, supported by both an automatic and an interactive
theorem prover. We aimed to prove at least type-safety (i.e. “no exceptions”) on
the SPARKSkein code. There seems to be a belief that “formal is slow” in
programming languages, thus justifying the continued use of low-level and type-
unsafe languages like C in anything that is thought to be in any way real-time or
performance critical. This work aims to provide evidence to refute this view.

e Empirical. We aimed to make the experiment empirical in that all the code, data,
and tools are freely available to the scientific community.

Could we do it? Could we produce code that is formal, provable, readable, portable

and fast?

2 Skein

Skein [1] is one of the candidate algorithms in the third and final round of the
competition to design the future standard hash algorithm that will become known as
SHA-3 [12]. Skein is designed for cryptographic strength, portability, and
performance, although it is particularly designed for efficiency on 64-bit little-endian
machines, such as x86 64, which dominate in desktop computing. Skein is fully
defined in [13] using an algorithmic specification accompanied by proofs of a number
of key security properties.

3 SPARK

This section provides a brief overview of SPARK and its capabilities. SPARK-aware
readers may skip ahead.

SPARK is a contractualized subset of Ada. The contracts embody data- and
information-flow, plus the classical notions of pre-condition, post-condition and
assertions in code. The language is designed to have a wholly unambiguous semantics
— there are no unspecified or undefined language features in SPARK — meaning that
static analysis can be both fast and sound. The contract language is designed for
wholly static verification through the generation of Verification Conditions (VCs) and
the use of theorem proving tools. SPARK is well-known in the development of
safety-critical systems, but is also being used in some high-grade secure applications,
where its properties and verification system have proven useful.

As a subset of Ada, SPARK can be compiled by any standard Ada compiler. The
contracts look like comments to an Ada compiler, but are an inherent part of the
language as far as the verification tools are concerned. The unambiguous semantics
also means that a SPARK program has the same meaning regardless of choice of
compiler or target machine — endian-ness, word-size, and so on just don’t matter at
all.

There are four main tools. The Examiner is the main static analysis engine — it
enforces the language subset and static semantics, and then goes on to perform
information-flow analysis [2]. The Examiner includes a Verification Condition
Generator (VCG) — essentially an implementation of Hoare’s assignment axiom — that
produces VCs in a logic suitable for an automated theorem prover called the
Simplifier?. This is an heuristics-driven automated prover. For VCs that the Simplifier
can’t prove, we have the Checker — an interactive proof assistant based on the same
core inference engine. Finally, a tool called POGS collates and reports the status of
each VC for the entire program.

Further details about SPARK can be found in the SPARK textbook [3] and the
Tokeneer on-line tutorial [4]. The GPL edition of the SPARK toolset is freely
available under the terms of the GPL [5].

4 Implementing SPARKSKkein

The current implementation delivers the main Skein hash algorithm with a 512-bit
block-size. For the purposes of this exercise, the other block-sizes and uses of Skein
were not relevant.

The coding was straightforward. The main challenge was in understanding the
Skein specification and the existing C implementation in sufficient detail to produce a
correct SPARK implementation.

One challenge arises in laying out the structure of the Skein “Tweak Words”
record. In the C implementation, these are just an array of two 64-bit words, but in
SPARK we chose to declare this as a record type with named fields for ease of
reading. This means that the layout of this record type has to be different on big-
endian and little-endian machines. To do this, a representation clause specifies the bit-
numbering required, but depends on the constant System.Default Bit Order to get the
correct order and layout for the target machine.

To illustrate the difference in coding style, consider the initialization of the hash
context in Skein 512 Init. In the C reference implementation, this looks like a
function call:

Skein_Start New_Type(ctx,CFG_FINAL);

Closer inspection, though, reveals that this is actually a pre-processor macro:

3 Not to be confused with Greg Nelson’s better-known Simplify prover.

#define Skein_Start New_Type(ctxPtr,BLK_TYPE)
{ Skein_Set_TO_T1(ctxPtr,0,SKEIN_T1 FLAG_FIRST |
SKEIN_T1 BLK_TYPE_##BLK_TYPE); (ctxPtr) - >h.bCnt=0; }

This, in turn, refers to the macro Skein Set TO T1. The whole thing expands out
into:

{{{(ctx) - >h.T[0] = ((0)):};

{(ctx) ->h.T[1] = (((((u64b_t) 1) << ((126) - 64)) |
((((uB4db_t) ((4))) << ((120) - 64)) | ((ubdb_t) 1) <<
(Azr) - e4)))k k

(ctx) ->h.bCnt=0;

2

which is actually 3 assignment statements, with the various shifting/masking
constants picked to get the correct endian-ness for the target machine.

In SPARK, this code becomes a procedure, which treats the Context as a record
object that can be assigned to. The whole thing comes out as two assignment
statements:

Ctx.Tweak_Words :=
Tweak_Value'(Byte_Count LSB => 0,
Byte_Count_MSB => 0,

Reserved => 0,
Tree_Level =>0,
Bit_Pad => False,

Field Type => Field _Type,

First_Block => First_Block,

Final_Block => Final_Block);
Cix.Byte_Count :=0;

which we argue is more readable. All the complexity of the endian-ness and the
layout of the record are hidden in the representation clause, and the compiler takes
care of generating the required shifting and masking instructions to construct the
correct value.

SPARK naturally supports nesting of subprograms (as in all Pascal-family
languages) so this allows a natural top-down decomposition of the main operations
into local procedures. This decomposition aids readability, but has a negligible impact
on performance, assuming a compiler is able to inline the local procedures.

As far as possible, the implementation follows the structure of the reference C
implementation, so anyone familiar with that version should be able to read and
follow the SPARK code.

We also added a package Skein.Trace that produces debugging output in exactly
the same format as the functions in the C code’s skein _debug.c, so automatic

comparison of debug output would be possible. This proved very useful in testing the
output of the SPARK version side-by-side with the C.

5 Verification of SPARKSkein

We have verified SPARKSkein in various ways: using the SPARK static verification
tools, testing using the published reference test vectors, structural coverage analysis,
testing for portability on as many differing machines that we could lay our hands on,
and performance testing. These sections summarize the results of these activities.

5.1 Static Verification and Proof

The SPARKSkein code passes all the analyses and verification implemented by the
Examiner with no errors. Additionally, we generated VCs for #ype-safety. This means
we prove that a program could never raise an exception at run-time through the failure
of a type-safety check, such as a buffer overflow, division-by-zero, numeric overflow
and so on. The proof of type-safety essentially proves that a program remains in a
well-defined state and would never raise exceptions for any possible input data that
meets the stated top-level pre-conditions. A benefit of type-safety proof is that it can
detect subtle corner cases such as this.

The implementation produces 367 verification conditions, of which 344 (93.7%)
are proven automatically by the Examiner or Simplifier. Of these 344, 6 require the
insertion of user-defined lemmas into the theorem-prover. Such user-defined lemmas
must be subject to careful review, or validation with the Checker, as they have the
potential to introduce unsoundness into the proof. The remaining 23 verification
conditions are proved using the Checker, requiring some human assistance.

Prover Says No — a Bug is Discovered
The subprogram Skein 512 Final caused some problems, and led to the discovery of
a subtle corner-case bug.

The finalization algorithm uses the number of bits of hash requested to compute
how many bytes of hash are required, and therefore how many blocks of data are
needed. A loop then iterates to generate the required number of blocks. This loop has
to iterate at least once, or else no output would result. This requirement was expressed
as a type-invariant in SPARK in that the number of output blocks has to be at least
one.

The offending fragment of code is:

Byte Count := (Local_Ctx.H.Hash_Bit_Len + 7) / 8;

where the “+” operator is modulo 2.
The need to have at least one block comes out as a VC with conclusion:

((Local_Ctx.H.Hash_Bit_Len + 7) mod 2 /18>0

which the theorem prover refused to prove for our first implementation — most
obviously because it’s not true!

The problem is that if the requested Hash Bit Len set by Skein 512 Init is
sufficiently large (i.e. near 2°*), then the “+ 7” overflows to be near zero which, when
divided by 8, is zero.

This bug is unlikely to happen in reality, based on the assumption that no-one
would ask for a hash nearly 2°* bits long, but it does illustrate the theorem-prover’s
ability to sniff out such subtle corner cases that typically elude testing, review or other
forms of verification.

The correction is simple enough — we simply limit the range of acceptable hash bit
lengths to a maximum of 2** — 8, so the overflow is avoided. This is encoded in
SPARK as a subtype called Hash Bit Length, declared in the package specification
and then used as the parameter for Skein 512 Init.

In the C reference implementation, this bug persists and the code produces no
blocks of output (returning a pointer to an undefined block of memory) for this case.

Reflections on the Proof

The 344 automatically discharged proofs were harder (and slower) than expected.
This owes to the prevalence of “modulo N” arithmetic in the VCs. Crypto algorithms
tend to do most things using “unsigned” or (in SPARK terminology) “modular” types,
which exhibit modular operators like “+” that wrap-round. In the world of proof, this
generates VCs that have “mod N” appended to the end of nearly every expression. We
also chose to index array types with modular integers,

