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Abstract. SPARK is both a deductive verification tool for the Ada
language and the subset of Ada on which it operates. In this paper, we
present a recent extension of the SPARK language and toolset to support
pointers. This extension is based on an ownership policy inspired by
Rust to enforce non-aliasing through a move semantics of assignment.
In particular, we consider pointer-based recursive data structures, and
discuss how they are supported in SPARK. We explain how iteration
over these structures can be handled using a restricted form of aliasing
called local borrowing. To avoid introducing a memory model and to stay
in the first-order logic background of SPARK, the relation between the
iterator and the underlying structure is encoded as a predicate which
is maintained throughout the program control flow. Special first-order
contracts, called pledges, can be used to describe this relation. Finally,
we give examples of programs that can be verified using this framework.
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1 Introduction

The programming language SPARK has been designed to be amenable to formal
verification, and one of the most impactful design choices was the exclusion of
aliasing. While this choice vastly simplified the tool design and improved the
expected proof performance, it also meant that pointers, as a major source of
aliasing, were excluded from the language. While SPARK over the years had seen
the addition of many language features, adding pointers just seemed impossible
without violating the non-aliasing property. Then came Rust [2] democratizing
a type system based on ownership [1]. Taking inspiration from it, it was possible
to add pointers to the language in a way that still excludes aliasing. We will give
an overview over the rules in this paper.

However, it was unclear if programs traversing recursive data structures such
as lists and trees could be supported in this setting. In particular, iteration using
a loop requires an alias between the traversed structure and the iterator. In this
paper, we detail an approach, inspired by recent work by Astrauskas et al. [6],
that enables proofs about recursive pointer-based data structures in SPARK.
We have implemented this approach in the industrial formal verification tool
SPARK, and, using this tool, developed a number of examples. Some important
restrictions remain - we will also discuss them in this paper.
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Ada is a general-purpose procedural programming language. The design of
the Ada language puts great emphasis on the safety and correctness of the pro-
gram. This objective is realized by using a readable (if verbose) syntax that uses
keywords instead of symbols where reasonable. The type system is strong and
strict and many potential violations of type constraints can be detected stati-
cally by the compiler. If not, a run-time check is inserted into the program, to
guarantee the detection of incorrect situations.

declare -- Block introducing new declarations
type My_Int is range -100 .. 100;
-- User -defined integer type ranging from -100 to 100
subtype My_Nat is My_Int range 0 .. My_Int ’Last;
-- Subtype of My_Int with additional constraints

X : My_Int := 50; -- Static check that 50 is in the bounds of My_Int
Y : My_Nat;

begin -- Part of the block containing statements
...
Y := X; -- Dynamic check that X is in the bounds of My_Nat

end; -- End of scope of the entities declared in the block

Ada 2012 introduced contract based programming to Ada. In particular, it is
possible to attach pre- and postconditions to subprograms1. These conditions
can be checked during the execution of the program, just like assertions.

SPARK is the name of a tool that provides formal verification for Ada. It
uses the user-provided contracts and attempts to prove that the runtime checks
cannot fail and that postconditions are established by the corresponding subpro-
grams. As formal verification for the whole Ada language would be intractable,
SPARK is also the name of the subset of the Ada language that is supported
by the SPARK tool2. This subset contains almost all features of Ada, though
sometimes in a restricted form. In particular, expressions should be free from
side effects, and aliasing is forbidden (no two variables should share the same
memory location or overlap in memory). This restriction greatly simplifies the
memory model used in the SPARK tool: any program variables can be reasoned
about independently from other variables.

The SPARK tool uses the Why3 platform to generate verification conditions
for SMT solvers via a weakest-precondition calculus [3].

2 Support for Pointers

Pointers in Ada are called access types. It is possible to declare an access type
using the access keyword. Objects of an access type are null if no initial values
are supplied. It is possible to allocate an object on the heap using the keyword
new. An initial value can be supplied for the allocated object. A dereference of
a pointer is written as a record component access, but using the keyword all.

declare
type Int_Acc is access Integer; -- Declare a new access type

1 In Ada, a distinction is made between functions that return a value, and procedures,
which do not. Subprogram is the term that designates both.

2 http://docs.adacore.com/spark2014-docs/html/ug/
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X : Int_Acc; -- Declare an object of this type
pragma Assert (X = null); -- No initial values provided , X is null
Y : Integer;

begin
X := new Integer; -- Allocation of uninitialized data
X := new Integer ’(3); -- Allocation of initialized data
Y := X.all; -- Dereference the access

end;

When a pointer is dereferenced, a runtime check is introduced to make sure that
it is not null. Ada does not mandate garbage collection. Memory allocated on
the heap can be reclaimed manually by the user using a generic function named
Unchecked Deallocation, which also sets its argument pointer to null. There
are several kinds of access types. The basic access types, like Int Acc defined
above, are called pool specific access types. They can only designate objects
allocated on the heap. General access types, introduced by the keyword all,
can also be used to designate objects allocated on the stack or global data.

Pointers were excluded from the SPARK subset until recently. Indeed, al-
lowing pointers in a straightforward way would break the absence of aliasing in
SPARK. In addition, pointers are associated with a list of classes of bugs such
as memory leaks, use-after-free and dereferencing a null-pointer.

To support pointers in SPARK, we designed a subset of Ada’s access types
which does not introduce aliasing and avoids some pointer-specific issues, while
retaining as much expressivity as possible. The first restriction we selected is
the exclusion of general access types. This means that SPARK can only create
pointers designating memory allocated on the heap, and not on the stack. As
a result, pointers can only be made invalid by explicit deallocation, and deal-
location of a valid pointer is always legal. To eliminate aliasing between (heap)
pointers, ownership rules inspired by Rust have been added on top of Ada’s
legality rules. These rules enforce a single writer/multiple readers policy. They
ensure that, when a value designated by a pointer is modified, all other objects
can be considered to be preserved.

The basis of the ownership policy of SPARK is the move semantics of as-
signments. When a pointer is assigned to a variable, both the source and the
target of the assignment designate the same memory region: assigning an object
containing a pointer creates an alias. To alleviate this problem, when an object
containing a pointer is assigned, the memory region designated by the pointer is
said to be moved. The source of the assignment loses the ownership of the desig-
nated data while the target of the assignment gains it. The tool makes sure that
the designated data is not accessed again through the source of the assignment.

Y : Int_Acc := X; -- Ownership of the data designated by X is moved to Y
Y.all := Y.all + 1; -- The data can be read and modified through Y
Z := X.all; -- Illegal: Reading or modifying X.all is not allowed

As the ownership policy ensures that no aliasing can occur between access ob-
jects, it is possible to reason about the program almost as if the pointer was
replaced by the data it points to. When an object containing a pointer is as-
signed to another variable, it is safe to consider that the designated data is
copied by the assignment. Indeed, any effects that could occur because variables
are sharing a substructure cannot be observed because of the ownership rules.
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Pointers are handled in SPARK as maybe, or option types: access objects are
either null, or they contain a value. In addition, access objects also contain an
address, which can be used to handle comparison (two pointers may not be equal
even if the values they designate are equal). When a pointer is dereferenced, a
verification condition is generated to make sure that the pointer is not null, so
that its value can be accessed.

X : Int_Acc; -- X is null
X := new Integer ’(3); -- X has a value which is 3
Y := X; -- Y has a value which is 3
Z := Y.all; -- Check that Y is not null , Z is 3

Note that the ownership policy is key for this translation to be correct, as it
prevents the program from observing side-effects caused by the modification of
a shared reference, which would not be accounted for in the verification model.

3 Recursive Data Structures

In Ada, it is not possible to declare a recursive data structure directly. Recur-
sivity can only be introduced through pointers. The idea is to first declare a
type, but without giving its definition. This declaration, called an incomplete
declaration, introduces a place-holder for the type, which can only be used in
restricted circumstances. In particular, this place-holder can be used to declare
an access type designating pointers to values of this type. Using this mechanism,
it is possible to declare a recursive data structure, since the access type can be
used in the type definition as it comes afterward.

type List_Cell;
type List is access List_Cell;
type List_Cell is record

Data : Integer;
Next : List;

end record;

There are no specific restrictions concerning recursive types in SPARK. However,
the ownership policy of SPARK implies that it will not be possible to create a
structure which has either cycles (e.g. doubly linked lists) or shared substructures
(e.g. DAGs) in it. The ownership policy may also impact how recursive structures
can be manipulated. In general, working with such structures involves a traversal,
which can be done either recursively, or iteratively using a loop. Algorithms
working in a recursive way are generally compliant with the ownership policy of
SPARK. Indeed, the recursive calls will allow reading or modifying the structure
in depth without having to deconstruct it3.

function Length (L : access constant List_Cell) return My_Nat is
(if L = null then 0 else Length (L.Next) + 1);

function Nth (L : access constant List_Cell; N : My_Pos) return Integer is
(if N = 1 then L.Data else Nth (L.Next , N - 1))

with Pre ⇒ N ≤ Length (L);

3 In Length and Nth, addition on My Nat and My Pos has been redefined to saturate
so as to avoid the overflow checking mandated by Ada.
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Algorithms involving loops are trickier. The declaration of the iterator used
for the loop creates an alias of the traversed data structure. As per SPARK’s
ownership policy, this is considered to be a move, so it makes it illegal to access
the initial structure. Further assignments to the iterator during the traversal
contribute to losing definitively one by one the ownership of every node in the
structure, making it impossible to restore the ownership at the end.

procedure Set_All_To_Zero (X : in out List) is
Y : List := X; -- The ownership of X is transferred to Y

begin
while Y 6= null loop

Y.Data := 0;
Y := Y.Next; -- Ownership of the first cell of Y is lost for good

end loop; -- The ownership of X cannot be restored
end Set_All_To_Zero;

To traverse recursive data structures, a move is not what we want. Here we
need a way to lend the ownership of a memory region for a period of time and
automatically restore it at the end. A similar mechanism, called borrowing, is
available in the Rust language. We have adapted it to SPARK.

4 Borrowing Ownership

As Ada is an imperative language, losing the possibility to traverse a linked data
structure using a loop was deemed too restrictive. To alleviate this problem, a
notion of ownership borrowing was introduced in SPARK. It allows the users to
declare a variable, called a borrower, which is initialized with a reference to a
part of an existing data structure. To state that this initialization should not be
considered a move, an anonymous access type is used for the borrower. During
the scope of the borrower, the borrowed part of the underlying structure is frozen,
meaning that it is illegal to both read and modify it. Once the borrower has gone
out of scope, the ownership automatically returns to the borrowed object, so that
it is again fully accessible.

X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Y has an anonymous access type.
-- Ownership of X is transferred to Y for the duration of its lifetime.

begin
Y.Data := Y.Data + 1; -- Y can be used to read or modify X
pragma Assert (X.Data = 2); -- Illegal , during the lifetime of Y, X

-- cannot be read or modified directly
end;
pragma Assert (X.Data = 2); -- Afterwards , the ownership returns to X

A borrower can be used to modify the underlying structure. This makes it effec-
tively an alias of the borrowed object. To allow the tool to statically determine
the cases of aliasing, SPARK restricts the initial value of a local borrower to be
the name of a part of an existing object. This forbids for example borrowing one
of two structures depending on a condition.

It is possible to update a borrower to change the part of the object it desig-
nates (as opposed to modifying the designated object). This is called a reborrow.
In SPARK, the value assigned to the borrower in a reborrow should be rooted
at the borrower. This means that reborrows only go deeper into the structure.
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declare
Y : access List_Cell := X; -- Y is X

begin
Y := Y.Next; -- This is a reborrow , Y is now X.Next

end;

Borrowing can be used to allow simple iterative traversals of a recursive data
structure like the loop of Set All To Zero. More complex traversals, involving
stacks for example, cannot be written iteratively in SPARK.

procedure Set_All_To_Zero (X : in out List) is
Y : access List_Cell := X;
-- The ownership of X is transferred to Y for the duration of its lifetime

begin
while Y 6= null loop

Y.Data := 0;
Y := Y.Next; -- Reborrow: Y designates something deeper

end loop;
end Set_All_To_Zero; -- The ownership of X is restored

Using reborrows, local borrowers allow one to indirectly modify a data structure
at an arbitrarily-deep position, which may not be statically-known. While in the
scope of the borrower, these indirect modifications can be ignored by the analysis,
as the ownership policy makes them impossible to observe. However, after the
end of the borrow, ownership is transferred back to the borrowed object, and
SPARK needs to take into account whatever modifications may have occurred
through the borrower.

X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Y is X
begin

Y := Y.Next.Next;
-- Through reborrows , Y designates an arbitrarily -deep part of X
Y.Data := 42; -- Y is used to indirectly modify X

end;
pragma Assert (X.Next.Next.Data = 42); -- The assertion should hold

To be able to reconstruct the borrowed object from the value of the borrower,
we must track the relation between them. As this relation cannot be statically
determined because of reborrows, SPARK handles it as an additional object
in the program. This allows us to take advantage of the normal mechanism
for handling value dependent control-flow in SPARK (the weakest-precondition
calculus of Why3). The idea is the following. When a borrower is declared in Ada,
we create two objects: the borrower itself, which is considered as a stand-alone
structure, independent of the borrowed object, and a predicate. The predicate,
which we call the borrow relation, encodes the most precise relation between the
borrower and the borrowed object which does not depend on the actual value
designated by the borrower. The value of the borrow relation is computed by
the tool from the definition of the borrower, and is updated at each reborrow.
Modifications of the underlying data structure don’t impact this relation. At the
end of the borrow, the borrowed object is reconstructed using both the borrow
relation and the current value of the borrower.

X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X; -- Create borrow relation to relate X and Y
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-- b_rel := λ new_x , new_y. new_x 6= null ∧ new_x = new_y
begin

Y := Y.Next.Next; -- Update the predicate to model the new relation
-- b_rel := λ new_x , new_y. new_x 6= null ∧ new_x.data = 1 ∧
-- new_x.next 6= null ∧ new_x.next.data = 2 ∧ new_x.next.next 6= null
-- ∧ new_x.next.next = new_y
Y.Data := 42; -- The borrow relation is not modified

end;
pragma Assert (X.Next.Next.Data = 42);
-- Follows from the fact that X.Next.Next = Y and Y.Data = 42

5 Describing the Borrow Relation

SPARK performs deductive verification, which relies on user-specified invariants
to handle loops. When traversing a linked data structure, the loop body contains
a reborrow, which means that the borrow relation is modified in the loop. As
a general rule, if a variable is modified in a loop, it should be described in the
loop invariant, lest nothing is known about its value afterward. Thus, we need
a way to describe the borrow relation in the loop invariant.

As part of their work on the Prusti proof tool for Rust, Astrauskas et al. found
the need for a similar annotation that they call pledges [6]. In Rust, a pledge is
an assertion associated with a borrower which is guaranteed to hold at the time
when the borrow expires, no matter what may happen in between. In SPARK, a
property guaranteed to hold at the end of the borrow must be a consequence of
the borrow relation, since the borrow relation is the most precise relation which
does not depend on the actual value of the borrower. Therefore, the user-visible
notion of a pledge is suitable to approximate the internally computed borrow
relation. Similar to user-provided postconditions, which must be implied by the
strongest postcondition computed by a verifying tool, the user-provided pledge
should follow from the borrow relation.

Since the Ada language has no support for pledges, we have resorted in
SPARK to introducing special functions (dedicated to each access type) called
pledge functions, which mark expressions which should be considered as pledge
expressions by the tool. A pledge function is a ghost function (meaning that it
is not allowed to have any effect on the output of the program) which has two
parameters. The first one is used to identify the borrower on which the pledge
should apply, while the second holds the assertion. Note that a call to a pledge
function isn’t really a call for the SPARK analyzer. It is simply a marker that
the expression in argument is a pledge. As assertions in SPARK are executable,
we need to give an implementation to the pledge function: the function simply
returns its second parameter.

function Pledge
(L : access constant Cell; -- The borrower to which the pledge applies
P : Boolean) -- The property we want to assert in the pledge

return Boolean
is (P) -- For execution , the function evaluates the property
with Ghost ,

Annotate ⇒ (GNATprove , Pledge); -- Identifies a pledge function for SPARK
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When a pledge function is called in an assertion, SPARK recognizes it and iden-
tifies its parameter as a pledge. It therefore attempts to show that the property
is implied by the borrow relation (as opposed to implied by the current value of
the borrower).

X := ...; -- X is initialized to the list {1,2,3,4}
declare

Y : access List_Cell := X;
begin

Y := Y.Next.Next;
pragma Assert (Pledge (Y, Y = X.Next.Next));
-- True as this is implied by borrow relation
pragma Assert (Pledge (Y, X.Data = 1 and X.Next.Data = 2));
-- True again as the first 2 elements of X are frozen
pragma Assert (Pledge (Y, X.Next.Next.Data = 3));
-- False , though this is true at the current program point , as it is not
-- guaranteed to hold at the end of the borrow.
...

end;

Using pledges, we can formally verify the Set All To Zero procedure. Its post-
condition states that all elements of the list have been set to 0 using the Nth
function. To be able to express the loop invariant in a similar way, we have in-
troduced a ghost variable C to count the number of iterations. Its value is main-
tained by the first loop invariant. The second and third invariants are pledges,
describing how the value of X can be reconstructed from the value of the iterator
Y. The second invariant gives the length of the list, while the third describes
the value of its elements using the Nth function. Elements which have already
been processed are frozen by the borrow. Their value is known to be 0. Other
elements can be linked to the corresponding position in the iterator Y.

procedure Set_All_To_Zero (X : List) with
Pre ⇒ Length (X) < My_Nat ’Last ,
Post ⇒ Length (X) = Length (X)’Old

and (for all I in 1 .. Length (X) ⇒ Nth (X, I) = 0);
-- All elements of X are 0 after the call

procedure Set_All_To_Zero (X : List) is
C : My_Nat := 0 with Ghost;
Y : access List_Cell := X;

begin
while Y 6= null loop

pragma Loop_Invariant (C = Length (Y)’Loop_Entry - Length (Y));
-- C elements have been traversed
pragma Loop_Invariant

(Pledge (Y, Length (X) = Length (Y) + C));
pragma Loop_Invariant

(Pledge (Y, (for all I in 1 .. Length (X) ⇒
Nth (X, I) = (if I ≤ C then 0 else Nth (Y, I - C)))));

-- All elements are 0 up to C, others are elements of Y
Y.Data := 0;
Y := Y.Next;
C := C + 1;

end loop;
end Set_All_To_Zero;

Note that, in general, it is not necessary to write a pledge to verify a program
using a local borrower. Indeed, the analysis tool is able to precisely track the bor-
row relation through successive reborrows. Pledges need only be provided when
the borrow relation itself cannot be tracked by the tool, for example because of
a loop, like in our example.
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6 Evaluation

We could not try the tool on any pre-existing benchmark since SPARK codebases
do not have pointers, and Ada codebases usually violate some SPARK rules. In
particular, Ada codebases have no reason to abide by the ownership policy of
SPARK. So instead, we mostly had to write new tests to assess the correctness
and performance of our implementation. The public testsuite of SPARK contains
more than 150 tests mentioning access types, be they supported cases or not.

To assess expressivity and provability on programs dealing with recursive
data structures, we have written 6 examples, none of them very big, but ranging
over various levels of complexity. On all of these examples, we have shown that
the runtime checks imposed by the Ada language are guaranteed to pass and
that no uninitialized value can be read. In addition, we have manually supplied
functional properties.

Fig. 1 gives some metrics over these examples. Under the tab Loc are listed
the total number of lines of code in the example, the number of lines of spec-
ification (including contracts and specification functions), and the number of
additional ghost annotations (assertions, loop invariants, ghost variables). The
#Checks column gives the number of checks generated by the tool (contracts,
assertions, invariants, language defined checks...). In the last three columns, we
can see the total running time of SPARK, both from scratch using its default
strategy and only replaying the proofs through the replay facility, as well as the
maximal time needed to prove a single verification condition.

Example #Subp
LOC

#Checks
Analysis time (s)

All Spec Ghost Default Replay Max VC

set all to zero 5 57 19 (33%) 8 (14%) 25 4 3 < 1

linear search 7 136 67 (49%) 24 (17%) 109 10 9 < 1

pointer-based maps 7 130 38 (29%) 12 (9%) 64 6 5 < 1

route shift 8 99 50 (50%) 3 (3%) 64 9 6 < 1

binary search 13 239 99 (41%) 42 (17%) 129 24 17 4

red black trees 37 611 107 (17%) 384 (63%) 920 258 152 16

Fig. 1. Overview of the examples involving recursive data structures

Though these examples are small, we think they demonstrate that it is pos-
sible to define recursive data structures in SPARK, and to verify iterative pro-
grams using them. When writing the algorithms, we found that the limitations
mostly come from the ownership policy of SPARK. Some data structures are not
supported, requiring either to switch to full Ada for their implementations, or
to change the algorithm to work around the missing links. In general, we found
that the annotation effort required to describe the borrow relations, though
non-negligible, was acceptable. In particular, it uses the standard SPARK ex-
pressions, with no mentions of memory separation or permission.
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7 Related Work

Because in mainstream languages like C or Java the concept of pointer or refer-
ence is more central, other program verification tools generally support aliasing.
They deal with it by modeling the heap. The WP plugin of Frama-C uses by de-
fault a typed memory model where different arrays are used for the basic types of
C [4]. The VerCors [5] toolset handles high-level programming languages, such as
Java, by extending the annotation language with separation logic with permis-
sion [9]. In SPARK we have chosen a different approach, as we avoid modeling
the heap completely by using ownership rules to enforce non-aliasing.

The ownership rules introduced in SPARK are largely inspired by the Rust
language [2]. The differences are mostly motivated by the need to comply with
the preexisting Ada semantics of pointers. In addition, SPARK was aiming at
coming up with a subset as easy to verify as possible. The resulting model is
simpler, in particular, it does not make lifetime of borrowers explicit, and aliases
created through borrows are always statically known.

The Prusti verification tool for Rust [6] allows users to verify that a Rust
program annotated with pre- and postconditions complies with its specification.
From a user perspective, both tools are close. They provide similar guaranties
and induce a similar annotation burden. However, they differ in their implemen-
tation. Indeed, Prusti works by translating both the user provided annotations
and separation constraints enforced by the Rust type system to the intermediate
verification language of the Viper tool [8]. So even if the input Rust program
does not contain annotations related to the memory model, these annotations
are present in the generated Viper program, and the verification process (here
symbolic execution) takes them into account. Our work differs here, as we use
the ownership system to abstract away memory related concerns, so that the
verification process does not need to be aware of them.

8 Conclusion

We have presented a recent extension of the SPARK language and toolset to
support pointers. It is based on an ownership policy enforcing non-aliasing. To
support pointer based recursive data structures, a restricted form of aliasing is
introduced in SPARK through local borrowers, which can be used to iterate
through a linked data structure in an imperative way. We have described how
local borrowers can be supported by the verification tool without introducing
a memory model by using a mutable predicate, named the borrow relation.
This borrow relation can be described when necessary using special annotations
named pledges, which solely consist of SPARK standard expressions, and do not
expose the underlying verification technique. Our work is available in the 20.1
release of SPARK Pro and will be part of the next community release.

As for future work, we would like to extend the subset of Ada pointers sup-
ported in SPARK. In particular, we would like to introduce function pointers to
model callbacks, pointers to constants with a more permissive ownership policy,
and local borrowing of objects allocated on the stack.
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