
11

Real-Time Convergence of Ada and Java!

Ben Brosgol
Ada Core Technologies,

79 Tobey Road,
Belmont, MA 02478

United States of America
brosgol@gnat.com

Brian Dobbing
Praxis Critical Systems,

20 Manvers Street,
Bath BA1 1PX

United Kingdom
brian@praxis-cs.co.uk

1 ABSTRACT
Two independent recent efforts have defined
extensions to the Java platform that intend to
satisfy real-time requirements. This paper
summarizes the major features of these
efforts, compares them to each other and to
Ada 95’s Real-Time Annex, and argues that
their convergence with Ada95 may serve to
complement rather than compete with Ada in
the real-time domain.

1.1 Keywords
Real-Time, Ada, Java, threads, scheduling,
garbage collection, asynchrony

2 INTRODUCTION
Over the past several years the computing community has
been coming to grips with the Java platform, a technology
triad comprising a relatively simple Object-Oriented
Language, an extensive and continually growing set of
class libraries, and a virtual machine architecture and
class file format that provide portability at the binary
level. Java was first introduced as a technology that could
be safely exploited on “client” machines on the Internet,
with various levels of protection against malicious or
mischievous applets. However, as interest in Java’s
promise of “write once, run anywhere” has increased, the

platform’s application domain has been expanding
dramatically.
One area that has been attracting attention is real-time
systems. On the one hand, that should not be completely
surprising. The research project at Sun Microsystems that
spawned Java was attempting to design a technology for
embedded systems in home appliances, and embedded
systems typically have real-time constraints. Moreover,
Java is more secure than C and simpler than C++, and it
has found a receptive audience in users dissatisfied with
these languages. And unlike C and C++, Java has a built-
in model for concurrency (threads) with low-level
“building blocks” for mutual exclusion and
communication that seem to offer flexibility in the design
of multi-threaded programs. Parts of the Java API
address some real-time application areas (for example
javax.comm for manipulating serial and parallel
devices), and V1.3 of the Java Software Development Kit
has introduced a couple of utility classes for timed events.
Java therefore may seem a viable candidate for real-time
systems, especially to an organization that has adapted
Java as an enterprise language.
However, even a casual inspection of Java reveals a
number of obstacles that interfere with real-time
programming. In this introductory section we will
summarize these issues and then briefly describe how
they have been addressed.

2.1 Challenges
The main problems for Java as a real-time technology fall
into several areas, mostly related to predictability.
• Thread model
Although Java semantics are consistently deterministic for
the sequential parts of the language (e.g. the order of
expression evaluation is defined as left-to-right,
references to uninitialized variables are prevented) they
are largely implementation-dependent for thread
scheduling. The Java Language Specification explicitly
states [JLS00, Section 17.12]:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda 2001 09/01 Bloomington, MN, USA
© 2001 ACM 1-58113-392-8/01/0009...$5.00

12

“... threads with higher priority are generally executed
in preference to threads with lower priority. Such
preference is not, however, a guarantee that the
highest priority thread will always be running, and
thread priorities cannot be used to reliably implement
mutual exclusion.”

This flexibility makes it impossible to ensure that real-
time threads will meet their deadlines. The
implementation may or may not use priority as the
criterion for choosing a thread to make ready when a lock
is released. Even if it did, unbounded priority inversions
could still occur since there is no requirement for the
implementation to provide priority inversion avoidance
policies such as priority inheritance or priority ceiling
emulation. There is also no guarantee that priority is used
for selecting which thread is awakened by a notify(),
or which thread awakened by a notifyAll() is
selected to run.
Other facets of the thread model also interfere with real-
time requirements. The priority range (1 through 10) is
too narrow, and the relative sleep() method is not
sufficient: the standard idiom for simulating periodicity
with this method can lead to a missed deadline if the
thread is preempted after computing the relative delay but
before being suspended.
A more detailed analysis of Java threads, with a
comparison to Ada’s tasking model, may be found in
[Brosgol98].
• Memory management
Despite its C-like syntax, Java belongs semantically to a
family of Object Oriented languages including Simula,
Smalltalk, and Eiffel: languages that provide no
mechanism for programmers to reclaim storage but which
instead are implemented with automatic memory
reclamation (“Garbage Collection” or “GC”). The idea of
garbage collection in a real-time program may sound like
a contradiction in terms, but there have been a number of
incremental and concurrent collectors that attempt to
address the predictability problems of a classical mark-
and-sweep strategy [Jones97]. Nevertheless, efficient
real-time garbage collection is still more a research topic
than a mainstream technology. This is a particular issue
for Java, since all objects (including arrays) go on the
heap.
• Dynamic Semantics
One of the main attractions of Java is its run-time
flexibility. For example, classes are loaded dynamically,
intraspection allows the run-time interrogation of a class’s
properties, and cutting-edge compiler technology allows
optimized code to be generated during program execution.
Unfortunately, all of these capabilities conflict with the
traditional static environment (“compile, download, run”)
for real-time programs. Implementing Java with static

linking is possible but difficult, and necessitates
restrictions on the use of certain language features.
• Asynchrony
A real-time program typically needs to respond to
asynchronous events generated by either hardware or
software, and sometimes needs to undergo asynchronous
transfer of control (“ATC”), for example to time out if an
operation is taking too long. The Java Beans and AWT
event registration and listener model is a reasonable
framework for asynchronous events but omits semantic
details critical to real-time programs, such as the
scheduling of event handlers. The interrupt()
method requires polling and thus is not an ATC
mechanism. The methods related to ATC have either
been deprecated (stop, suspend, resume) or are
discouraged because of their proneness to error
(destroy). Thus Java is rather weak in the area of
asynchrony.
• Object-Oriented Programming
OOP support is one of Java’s most highly touted
strengths, but the real-time community has traditionally
been very conservative in its programming style and still
views OOP with some skepticism. The dynamic nature of
OOP (for example the dynamic binding of instance
methods) interferes with static analyzability, and Garbage
Collection introduces unpredictability or high latency.
• Application Program Interface
Class libraries that are to be used in real-time programs
need to be implemented specially in order to ensure that
their execution time be predictable. This is partly a
programming issue (e.g. choice of algorithms and data
structures) and partly a JVM implementation issue
(Garbage Collection strategy).
• Missing functionality
With the goal of language simplicity, the Java designers
intentionally omitted a number of features that might be
useful in a real-time program, such as general unsigned
integral types, strongly-typed scalars, and enumeration
types. Other omissions impinge on programming in
general, such as generic templates and operator symbol
overloading. The language and API also lack system
programming facilities for accessing the underlying
hardware (such as “peek” and “poke” to access numeric
data at physical addresses).
• Performance
Although “real time” does not mean “real fast”, run-time
performance cannot be ignored. Java has several
challenges in this area. The key to “write once, run
anywhere” is the JVM and the binary portability of class
files. But a software interpreter introduces overhead, and
hardware implementations are not mainstream
technology. Garbage Collection and the absence of stack-

13

resident objects have an obvious performance impact, and
there is also the problem that array initializers result in
run-time bytecodes to be performed, versus having a
ROMable image in the class file.

2.2 The NIST Requirements and the Two
Real-Time Java Efforts
The problems with Java as a real-time technology are
steep but not insurmountable. Given the potential market
and the fascinating technical issues it is not surprising that
real-time Java has been a topic of active investigation.
Probably the earliest work was by Kelvin Nilsen in late
1995 and early 1996 [Nilsen96]. Subsequently Lisa
Carnahan from the National Institute for Standards and
Technology in the U.S. (NIST) took the lead in
organizing a series of workshops to identify the issues and
to develop consensus-based requirements for real-time
extensions to the Java platform. The culmination of this
group’s efforts, which ultimately included participation
by 38 different entities, was a document titled
“Requirements for Real-Time Extensions for the Java
Platform”, published in September 1999 [NIST99].
The NIST-sponsored effort focused on defining the
requirements for real-time Java extensions. That group
made a conscious choice not to develop a specification for
such extensions.
Two independent groups have undertaken to define such
specifications. One is the Real-Time Java Working
Group under Kelvin Nilsen from Newmonics; this group
was formed in November 1998 and is under the auspices
of a set of companies and individuals known as the J-
Consortium. The other effort is from the Real-Time for
Java Expert Group (“RTJEG”) under Greg Bollella (then
with IBM, now at Sun Microsystems). The RTJEG was
established under the terms of Sun’s Java Community
Process; the product of this effort is a specification, a
reference implementation, and a conformance test suite.
As of early 2001, the first draft of the specification has
been published [Bollella00], while the reference
implementation and the test suite formulation are in
progress.
The split into two efforts versus a single undertaking was
motivated by business considerations rather than technical
factors. Participation in the RTJEG required signing an
agreement with Sun Microsystems that some
organizations found problematic. However, the two
efforts ended up taking technical approaches that are more
complementary than duplicative. As will be seen below
when we cover the specifications in more detail, the J-
Consortium has focused on defining real-time “core”
kernel facilities external to a JVM, whereas the RTJEG
has defined an API that needs to be supported within a
JVM implementation. Indeed the J-Consortium

specification can be regarded as providing a set of kernel
services as might be found in an RTOS for Java.

3 REAL-TIME CORE SPECIFICATION

3.1 Summary
In order to establish a foundation upon which its Real-
Time Core Extensions to the Java platform specification
[JCons00] would be built, the J Consortium’s Real-Time
Java Working Group (RTJWG) established a number of
clarifying principles to augment the full list of key
requirements identified in the NIST requirements
document for real-time extensions to Java [NIST99].
These working principles follow. For purposes of this
discussion, the term “Baseline Java” refers to the 1.1
version of the Java language, as it has been defined by
Sun Microsystems, Inc, and “Core Java” refers to an
implementation of the Real-Time Core Specification.

• The Core Java execution environment shall exist in
two forms: the dynamic one that is integrated with a Java
virtual machine and supports dynamic loading and
unloading of Core classes, and the static one that is stand-
alone and does not supporting dynamic class loading.

• The Core Java dynamic execution environment shall
support limited cooperation with Baseline Java programs
running on the same Java virtual machine, with the
integration designed so that neither environment needs to
degrade the performance of the other.

• The Core Java specification shall define distinct class
hierarchies from those defined by Baseline Java.

• The Core Java specification shall enable the creation
of profiles which expand or subtract from the capabilities
of the Core Java foundation.

• The Core Java system shall support limited
cooperation with programs written according to the
specifications of these profiles, with the integration
designed so that neither environment needs to degrade the
performance of the other.

• The semantics of the Core Java specification shall be
sufficiently simple that interrupt handling latencies and
context switching overheads for Core Java programs can
match the latencies and context switching overheads of
today’s RTOS products running programs written in C,
C++ and Ada.

• The Core Java specification shall enable
implementations that offer throughputs comparable to
those offered by today’s optimizing C++ compilers,
except for semantic differences required, for example, to
check array subscripts.

14

• Core Java programs need not incur the run-time
overhead of coordinating with a garbage collector.

• Baseline Java components and components written
according to the specifications of profiles, shall be able to
read and write the data fields of objects that reside in the
Core Java object space.

• Security mechanisms shall prevent Baseline Java and
other external profile components from compromising the
reliability of Core Java components.

• Core Java programs shall be runnable on a wide
variety of different operating systems, with different
underlying CPUs, and integrated with different supporting
Baseline Java virtual machines. There shall be a standard
way for Baseline Java components to load and execute
Core Java components.

• The Core Java specification shall support the ability
to perform memory management of dynamic objects
under programmer control.

• The Core Java specification shall support a
deterministic concurrency and synchronization model
with features comparable to those in Real-Time Operating
Systems.

• The Core Java specification shall be designed to
support a small footprint, requiring no more than 100K
bytes for a typical static Core Java execution
environment.

• All Core Java classes shall be fully resolved and
initialized at the time they are loaded.

In summary, the Core Java execution environment:

• either is a plug-in module that can augment any
Baseline Java virtual machine. This allows users of the
Core Java execution environment to leverage the large
technology investment in current virtual machine
implementations, including byte-code verifiers, garbage
collectors, JustInTime compilers, dynamic loaders, and
symbolic debuggers;

• or can be configured to run without a Baseline Java
virtual machine. This allows users of the Core Java
execution environment to develop high performance
kernels deployed in very small memory footprints.

3.2 Concurrency and Synchronization

3.2.1 Scheduling and Priorities
The Core Java specification supports a large range of
priorities. Each implementation is required to support a
minimum of 128 distinct values, with the highest N being

used as interrupt priorities, where N is implementation-
defined. In addition, the Core Java semantics require
preemptive priority-based scheduling as defined by the
FIFO_Within_Priorities policy. Support for time-slicing
is also defined but not required. This model is in marked
contrast to Baseline Java’s small priority range (10 values)
and absence of guarantee that a higher priority task will
preempt a low priority task when it is ready to run.
Alternative scheduling policies may be specified via
profiles.
The Core task class hierarchy is rooted at CoreTask. A
CoreTask object must be explicitly started via the
start() method. There are two specialized extensions
of CoreTask:

• The SporadicTask class defines tasks that are
readied by the occurrence of an event that is triggered
either periodically or via an explicit call to its fire()
method.

• The InterruptTask class defines tasks that are
readied by the occurrence of an interrupt event, making
them analogous to interrupt service routines.

3.2.2 Task Synchronization Primitives
Task synchronization is provided in the Core Java
specification via a number of different features, a first
group of which supports priority inversion avoidance and
a second group of which does not.
In the first group, Baseline Java-style usage of
synchronized methods and synchronized(this) constructs
are both supported and define transitive priority
inheritance to limit the effects of priority inversion. In
addition, traditional POSIX-style mutexes are supported,
and these also define transitive priority inheritance to be
applied when there is contention for the lock. Finally
there is support for Ada-style protected objects that are
locked using priority ceiling protocol (actually, the same
emulation using immediate ceiling locking that is defined
in Ada95), and that prohibit execution of suspending
operations, e.g. wait(). An extension of the priority
ceiling protocol interface, known as the Atomic
interface, is defined for InterruptTask work() methods.
This interface implies that all the code (at the bytecode
level) must be statically execution-time-analyzable. The
intent is to be able to guarantee the static worst case
execution time bounds on interrupt handler execution.
In the second group, POSIX-style counting and signaling
semaphores are supported. There is no concept of a
single owner of a semaphore and hence there is no
priority inheritance on contention (and unbounded priority
inversion may result). A counting semaphore may have
count concurrent owners. A signaling semaphore is
similar to Ada’s suspension object except that multiple

15

tasks can be waiting for the signal. A signal that occurs
when there are no waiting tasks is a no-op.

3.3 Memory Management

3.3.1 Core Object Space
The Core Java requirements include the provision of
security measures to ensure that the Baseline Java domain
cannot compromise the integrity of Core objects in the
dynamic Core execution environment. This is realized in
the specification by segregating Core objects into their
own object space that is quite separate from the Baseline
Java heap.
However another requirement of the dynamic Core Java
execution environment is to provide limited and
controlled communication with the Baseline Java domain.
This is achieved via the CoreRegistry class that
includes a publish() method to publish the names of
externally-visible Core objects. A lookup() method is
also provided for the Baseline Java domain to obtain a
reference to the published Core object. However the
Baseline Java domain is only permitted to call special
core-baseline methods that are explicitly identified within
the published object, and so access to the Core object
space is totally defined and controlled by the operation of
these methods.

3.3.2 Garbage Collection
A key requirement of the Core Java specification is that
the system need not incur the overhead of traditional
automatic garbage collection. This is intended to provide
the necessary performance and predictability, avoiding
overheads such as read/write barriers, object relocation
due to compaction, stack/object scanning and object
description tables, as well as avoiding the determinism
problems associated with executing the garbage collector
thread.

3.3.3 Core Object Allocation / Deallocation
A garbage collector is an essential component of a
Baseline Java VM due to Java’s object lifetime model,
which does not provide an explicit deallocation operation,
nor do the semantics provide known points for an
implementation to perform guaranteed implicit
deallocation. Hence the Core specification defines an
alternative strategy for memory allocation and
reclamation under programmer control. This is achieved
via the following:

• An object whose reference is declared locally within
a method can be explicitly identified as stackable, which
means that the object lifetime is asserted to be no greater
than that of the enclosing method. Various restrictions
are defined for stackable objects to prevent dangling

references. Thus an implementation may allocate
stackable objects on the runtime method stack in the same
way as Ada implementations of local variables.

• A class called AllocationContext is defined in the
Core specification that is somewhat analogous to Ada’s
Root_Storage_Pool type in that it provides a facility for
declaring an area for dynamic memory allocation
(including at a specific memory address) and the means to
control it programmatically. Each task automatically
implicitly allocates an allocation context upon creation,
and this storage area is used by default for allocation of its
non-stackable objects.
The base AllocationContext class provides a release()
method that reclaims all the objects in the context in an
unchecked way that could lead to dangling references as
for Ada’s Unchecked_Deallocation. The model of
allocation contexts allows an application to implement
various paradigms such as mark/release heaps, and
factory methods that construct objects in a known storage
area. In addition, all objects (with one exception) that are
allocated in implicit task-specific allocation contexts are
automatically reclaimed when the task terminates either
normally or via an external call to its stop() method.
The exceptional case is for objects (and those they
reference) that are published to the Baseline Java domain.
This ensures that the Baseline Java domain cannot get a
dangling reference from the use of a published Core Java
object. An implementation of the dynamic Core Java
execution environment is therefore required to detect
when published objects are no longer accessible by the
Baseline Java domain such that they can become
candidates for automatic reclamation at task termination.
Stackable objects are not permitted to be published to
Baseline Java.

3.4 Asynchrony
Asynchronous interaction between Core tasks is achieved
in the Core Java specification via events. There is also the
abort() method to kill a task. Two event models are
defined:

a) the firing and handling of asynchronous events

b) asynchronous transfer of control.

3.4.1 Asynchronous Events
Three kinds of asynchronous event are defined by the
Core Java specification:

• PeriodicEvent is defined to support periodic tasks.
The event fires at the start of each period which causes
the associated periodic event handler task to become
ready to execute its work() method.

16

• SporadicEvent is defined to support sporadic tasks
that are triggered by software. The event is explicitly
fired by a task which causes the associated sporadic event
handler task to become ready to execute its work()
method

• InterruptEvent is defined to support interrupt
handling. The event can be explicitly fired by a task (to
achieve a software interrupt) or implicitly fired by a
hardware interrupt. This causes the associated interrupt
event handler task to become ready to execute its
work() method, which must implement the Atomic
interface as described in section 3.2.2.

3.4.2 Asynchronous Transfer of Control
Asynchronous transfer of control is supported in the Core
Java specification by building upon the asynchronous
event model. A special ATCEvent class is defined for
the event itself. Each task construction may specify a
handler for ATCEvent that is invoked whenever another
task calls the signalAsync() method, unless the task
is currently in an abort-deferred region. If the handler
returns normally, the ATCEvent is handled without
causing a transfer of control, i.e. the task resumes at the
point at which it was interrupted. This is useful in
situations where the ATCEvent is to have minimal or no
effect, such as ignoring a missed soft deadline.
Otherwise, if the handler returns by raising a special
ScopedException object and the task is in an ATC-
enabled execution scope, then the exception causes the
transfer of control in the task. An ATC-enabled scope is
created by constructing a ScopedException object and
having a try-catch clause that includes a handler for the
exception class.
The Core Java specification also defines certain abort-
deferred regions that defer the transfer of control action,
in particular Atomic scopes and finally clauses. Note
however that once an ATC-enabled region has been
entered, all method calls are susceptible to ATC other
than the abort-deferred regions mentioned above. Since
the Core Java specification rules prevent a Core program
from making direct method calls to the Baseline Java
domain, the problem does not arise of an ATC occurring
at any point within “legacy” Baseline Java code that was
not designed to expect that eventuality.
The ATC construct can be used for several common
idioms, such as preventing overrun by timing out a
sequence of actions, and for mode change. Special rules
apply to the handlers for ScopedException to ensure
that nested ATC scopes can be created without the danger
of an outer ATC triggering exception being caught by an
inner ATC catch clause.

3.5 Time
The Core Java specification defines a Time class that
includes methods to construct times in all granularities
from nanoseconds through to days. These can be used to
program periodic timer events to trigger cyclic tasks or to
timeout overrunning task execution.
In addition, the relative delay sleep() method and the
absolute delay sleepUntil() method provide a
programmatic means of coding periodic activity. In both
cases, the time quantum can be specified to the
nanosecond level.
There is also a method tickDuration() to return the
length of a clock tick.

3.6 Other Features
The Core Java specification also includes a
comprehensive low-level I/O interface for access to I/O
ports, and a class Unsigned for unsigned relational
operations. (Note that Baseline Java integral types are
signed with regard to relational operations, but unsigned
with regard to arithmetic.)

3.7 Profiles
A number of profiles of the Core specification are under
development. One of the most interesting to the Ada
community is the High Integrity Profile [Dobbing00]
which is designed to meet the requirements of:

• Safety Critical / High Integrity, for which all the data
and executable code must undergo thorough analysis and
testing, and must be guaranteed not to be corruptible by
less trusted code;

• High Reliability / Fault Tolerance, for which the code
must be resilient enough to detect faults and to recover
with minimal disturbance to the overall system;

• Hard Real-Time, for which the timing of code
execution must be deterministic to ensure that deadlines
are met;

• Embedded, for which a small footprint and fast
execution are required.
These requirements are very similar to those that steered
the definition of the Ravenscar Profile [Dobbing98] and
hence it is not surprizing that the high integrity profile
provides similar functionality:

• The dynamic Core Java execution environment is not
supported (i.e. no direct interaction with a JVM);

• All tasks are constructed during program startup;

• sleepUntil() is supported, but sleep() is not;

17

• Periodic, sporadic and interrupt event handler tasks
are supported;

• Signaling semaphores are supported, but counting
semaphores and mutexes are not;

• Protected objects are supported;

• All synchronized code is locked using priority ceiling
emulation (i.e. no priority inheritance)

• The scheduling policy is FIFO_Within_Priorities;

• Asynchronous abort is not supported;

• Asynchronous dynamic priority change is not
supported;

• Asynchronous suspension is not supported;

• Asynchronous transfer of control is not supported.
This profile allows the construction of a very small, fast,
deterministic runtime system that could ultimately be a
candidate even for formal certification.
A sub-group of the High Integrity Profile working group
has been set up to examine how to apply and extend the
profile to meet the needs of automotive control systems.
This work is underpinned by the AJACS project
(“Applying Java to Automotive Control Systems”). This
is a two-year project partially funded by the European
Commission to specify, develop and demonstrate an open
technology that implements Java in deeply embedded
interconnected Electronic Control Units in automotive
applications such as engine control systems (see
http://www.ajacs.org). The implementation of this
technology is key to ensuring that the goals of the High
Integrity Profile can be realized in practice."

4 RT JAVA EXPERT GROUP
SPECIFICATION

4.1 Summary
Before setting out on the design of the real-time
specification for Java (“RTSJ”), the RTJEG established
the following guiding principles:

• Applicability to particular Java environments. Usage
is not to be restricted to particular versions of the Java
Software Development Kit.

• Backward compatibility. Existing Java code can run
on any implementation of the RTSJ.

• “Write Once, Run Anywhere”. This is an important
goal but difficult to achieve for real-time systems (as a
trivial example of the difficulties, the correctness of a
real-time program depends on the timing properties of the

executing code, but different hardware platforms have
different performance characteristics).

• Current practice versus advanced features. The
RTSJ attempts to address current real-time practice but
also includes extensibility hooks to allow exploitation of
new technologies.

• Predictable execution. This is the highest priority
goal; performance or throughput may need to be
compromised in order to achieve it.

• No syntactic extension. The RTSJ does not define
new keywords or new syntactic forms.

• Allow variation in implementation decisions. The
RTSJ recognizes that different implementations will make
different decisions (for example a tradeoff between
performance and simplicity) and thus does not require
specific algorithms.
The resulting specification consists of the
javax.realtime package, an API whose
implementation requires specialized support in the JVM.
In summary, the design provides real-time functionality in
several areas:

• Thread scheduling and dispatching. The RTSJ
introduces the concept of a real-time thread and defines
both a traditional priority-based dispatching mechanism
and an extensible framework for implementation-defined
(and also user-defined) scheduling policies.

• Memory management. The RTSJ provides a general
concept of a memory area that may be used either
explicitly or implicitly for object allocations. Examples
of memory areas are the (garbage-collected) heap, and
also “immortal” memory whose objects persist for the
duration of an application’s execution. Another important
special case is a memory area that is used for object
allocations during the execution of a dynamically
determined “scope”, and which is automatically emptied
at the end of the scope. The RTSJ defines the concept of
a “no-heap real-time thread” which is not allowed to
reference the heap; this restriction means that such a
thread can safely preempt the Garbage Collector.

• Synchronization and resource sharing. The RTSJ
requires the implementation to supply one or more
mechanisms to avoid unbounded priority inversion, and it
defines two monitor control policies to meet this
requirement: priority inheritance and priority ceiling
emulation. The specification also defines several “wait
free queues” to allow a no-heap real-time thread and a
Baseline Java thread to safely synchronize on shared
objects.

• Asynchrony. The RTSJ defines a general event
model based on the framework found in the AWT and

18

Java Beans. An event can be generated from software or
from an interrupt handler. Event handlers behave like
threads and are schedulable entities. The design is
intended to be scalable to very large numbers of events
and event handlers (tens of thousands), although only a
small number of handlers are expected to be active
simultaneously. The RTSJ also defines a mechanism for
asynchronous transfer of control (“ATC”), supporting
common idioms such as timeout and mode change. The
affected code needs to explicitly permit ATC; thus code
that is not written to be asynchronously interruptible will
work correctly.

• Physical and “raw” memory access. The RTSJ
provides mechanisms for specialized and low-level
memory access. Physical memory is a memory area with
special hardware characteristics (for example flash
memory) and can contain arbitrary objects. Raw memory
allows “peek” and “poke” of integral and floating-point
variables at offsets from a given base address.

4.2 Concurrency and Synchronization
The basis of the RTSJ’s approach to concurrency is the
class RealtimeThread, a subclass of Thread.

4.2.1 Scheduling and Priorities
The RTSJ requires a base scheduler that is fixed-priority
preemptive with at least 28 distinct priority levels, above
the 10 Baseline Java levels. An implementation must
map the 28 real-time priorities to distinct values, but the
10 non-real-time levels are not necessarily distinct.
Constructors for the RealtimeThread class allow the
programmer to supply scheduling parameters, release
parameters, memory parameters, a memory area, and
processing group parameters. The scheduling parameters
characterize the thread’s execution eligibility (for
example, its priority). A real-time thread can have a
priority in either the real-time range or the Baseline Java
range.
The release parameters identify the real-time thread’s
execution requirements and properties (whether it is
periodic, aperiodic or sporadic). Memory parameters
identify the maximum memory consumption allowed and
an upper bound on the heap allocation rate (used for
Garbage Collector pacing). Processing group parameters
allow modeling a collection of aperiodic threads with
bounded response time requirements.
Several release parameters classes are provided,
corresponding to the kinds of real-time threads that are
supported. A periodic parameters object specifies the
period, the cost (maximum computation time per period),
the deadline (which may be before the end of the period),
and handlers for cost overrun and missed deadline. To
create a periodic thread, the programmer constructs a real-

time thread with a periodic parameters object as its
release parameters. The run() method for such a thread
should invoke the method waitForNextPeriod() to
suspend itself after its per-period work. The programmer
may supply overrun handlers to respond to two kinds of
abnormality: overrunning the budgeted cost (detecting
this situation requires support from the underlying
platform and is therefore not required of the
implementation unless such support exists), and missing a
deadline. The overrun or miss handlers can invoke the
schedulePeriodic() method to resume scheduling
of the periodic thread.
An aperiodic parameters object is used for schedulable
entities that may become active based on the occurrence
of an asynchronous event or the invocation of a
notify() or notifyAll(). The aperiodic
parameters define the cost, deadline, overrun handler, and
miss handler analogously to periodic parameters.
A special case of aperiodic parameters is sporadic
parameters. A schedulable entity constructed with
sporadic parameters has a minimum inter-arrival time
between releases.
One of the RTSJ’s distinguishing capabilities is a general-
purpose extensible scheduling framework. An instance of
the Scheduler class manages the execution of
schedulable entities and may implement a feasibility
analysis algorithm. Through method calls a real-time
thread can be added to, or removed from, the scheduler’s
feasibility analysis; the release parameters are used in this
analysis. The scheduler’s isFeasible() method
returns true if the existing schedulable entities are
schedulable (i.e., will always meet their deadlines) and
false otherwise.
The priority-based scheduler is required to be the default
scheduler at system startup, but the programmer can
modify this at run time (for example setting an Earliest-
Deadline First scheduler, if one is supplied by the
implementation).
The priority-based scheduler is FIFO within priorities and
manages Baseline Java threads as well as real-time
threads. When a thread blocks it goes to the tail of the
blocked queue for its priority level, for the resource on
which it is blocked. When a blocked thread becomes
ready to run, or when a running thread invokes
yield(), it goes to the tail of the ready queue for its
priority level. When a thread’s priority is modified
explicitly through a method call the thread goes to the tail
of the relevant queue for its new priority level. When a
thread is preempted, the RTSJ does not specify where in
the ready queue for its priority the thread is placed. This
nondeterminism does not affect feasibility analysis.
The priority-based scheduler is said to be fixed-priority
since it is not allowed to modify thread priorities

19

implicitly except for priority inversion avoidance (see
below). Thus schemes such as “priority aging” are not
allowed. Time slicing of the highest-priority threads is
permitted, although the implementation provides no
explicit support for such a policy.
The general scheduling framework was motivated by
several considerations. First and foremost was the user
requirement: the RTSJ is intended for a large variety of
applications, and limiting the scheduling policies would
have been too constraining. Second, the flexibility fits in
well with Java’s dynamic model. Third, several members
of the RTJEG, in particular the original spec lead Greg
Bollella (then at IBM), were experts in this area on both
the theoretical and practical sides.

4.2.2 Synchronization
An unbounded priority inversion in a thread
synchronizing on a locked object can lead to missed
deadlines, and the RTSJ accordingly requires that the
implementation supply one or more monitor control
policies to avoid this problem. By default the policy is
priority inheritance, but the RTSJ also defines a priority
ceiling emulation policy. Each policy can be selected
either globally or per-object and the choice can be
modified at run time. An implementation can supply a
specialized form of priority ceiling emulation that
prohibits a thread from blocking while holding a lock; this
avoids the need for mutexes and queues in the
implementation.
A subtle problem seems to arise if a Baseline Java thread
and a no-heap real-time thread attempt to communicate
through a synchronized object (such an object cannot be
in the heap, but it may be in immortal memory). The
apparently troublesome scenario is the following:

1. The regular thread locks the object.
2. The garbage collector preempts and starts to run.
3. The no-heap real-time thread preempts the

garbage collector, with the heap possibly in an
inconsistent state.

4. The no-heap real-time thread attempts to
synchronize on the object currently locked by the
regular thread.

5. The regular thread inherits the no-heap real-time
thread’s priority and resumes execution.

6. The regular thread allocates an object in the heap,
but this can corrupt the heap (which might be in
an inconsistent state).

In fact the RTSJ semantics prevent this problem although
at the price of extra latency for the no-heap real-time
thread. When the regular thread attempts to allocate an
object at step 6, it will not be able to do so since the
garbage collector holds the lock on the heap. Thus the

garbage collector will have its priority boosted (by
priority inheritance), and when it releases the lock the
heap will be in a consistent state so that the Baseline Java
thread can continue in its “critical section” of code
synchronized on the object it is sharing with the no-heap
real-time thread.
The price for a consistent heap is extra latency, since the
no-heap real-time thread now needs to wait for the
Garbage Collector. The RTSJ allows the programmer to
avoid this latency through wait-free queues; Baseline
threads and no-heap real-time threads can use such queues
to communicate without blocking.

4.3 Memory Management
Perhaps the most difficult issue for the RTSJ was the
question of how to cope with garbage collection (“GC”).
Requiring specific GC performance or placing constraints
on GC-induced thread latency would have violated
several guiding principles. Instead the opposite approach
was taken: the RTSJ makes no assumptions about the GC
algorithm; indeed in some environments there might not
even be a garbage collector.
The key concept is the notion of a memory area, a region
in which objects are allocated. The garbage-collected
heap is an example of a memory area. Another memory
area is immortal memory: a region in which objects are
not garbage collected or relocated and thus persist for the
duration of the program’s execution. More flexibility is
obtained through scoped memory areas, which can be
explicitly constructed by the programmer. Each scoped
memory area contains objects that exist only for a fixed
duration of program execution. The heap and immortal
memory can be used by either regular threads or real-time
threads; scoped memory can be used only by real-time
threads.
Common to any memory area is an enter() method
which takes a Runnable as a parameter. When
enter() is invoked for a memory area, that area
becomes active, and the Runnable object’s run()
method is invoked synchronously. The memory area is
then used for all object allocations through “new”
(including those in methods invoked from run()
whether directly or indirectly) until either another
memory area becomes active or the enter() method
returns. When enter() returns, the previous active area
again becomes active.
A memory area may be provided to a real-time thread
constructor; it is then made active for that real-time
thread’s run() method when the thread is started.
Memory areas may also be used for “one shot” allocation,
through factory methods that construct objects or arrays in
the associated area.

20

Scoped memory may be viewed as a generalization of a
method’s stack frame. Indeed, early in the design the
RTJEG considered providing a mechanism through which
objects allocated in a method would be stored on the stack
instead of the heap, with automatic reclamation at method
exit instead of garbage collection. Standard class libraries
could then be rewritten with the same external
specifications (public members, method signatures and
return type) but with an implementation that used the
stack versus the heap for objects used only locally. To
prevent dangling references a check would be needed (no
assignment of a stack object reference where the target
reference is longer lived than the source). Some sort of
check (either at compile time or run time) is inevitable.
However, the reason that a simple stack-based object
scheme was eventually rejected is that a reference to a
local object could not be safely returned to a caller. Thus
the goal of using specially-implemented versions of
existing APIs would not be achievable.
Instead the RTSJ has generalized the concept of storing
local objects on the stack. A scoped memory area is used
not just for one method invocation but for the “closure” of
all methods invoked from a Runnable’s run()
method. The objects within the memory area are not
subject to relocation or collection, and an assignment of a
scoped reference to another reference is checked (in
general at run time) to prevent dangling references.
Scopes may be nested: while one scoped memory area is
active, another may be entered, and in fact the same
scoped memory area may be entered while in use by an
outer scope. When the outermost scope is exited (i.e.,
when the earliest enter() for a given scoped memory
area returns) the area is reset so that it contains no objects.
A common idiom is a while or for loop that invokes
enter() on a scoped memory area at each iteration. All
objects allocated during the iteration are effectively
flushed when enter() returns, so there is no storage
leakage. The entire memory area is released when it is no
longer accessible. In general the implementation needs to
use a reference count scheme or its equivalent for this
purpose.
The RTSJ provides two main non-abstract classes for
scoped memory: “LT” memory (linear time) and “VT”
memory (“variable time”). Object allocation and default
initialization for LT memory must be implemented to be
linear in the size of the object; no such constraint is
imposed on VT memory. In practice, the difference
between the two is that the implementation must allocate
the entire memory region used for LT memory (although
not necessarily contiguously) whereas for VT memory
only an initial region needs to be allocated in advance,
with further chunks added as necessary.
The RTSJ also provides several more specialized kinds of
memory area. Support for physical memory (i.e. memory

with special characteristics) is offered through immortal
physical memory and scoped physical memory. This can
be useful for efficiency; for example the programmer may
want to allocate a set of objects in a fast-access cache.
The raw memory access and raw memory float access
memory areas offer low-level access (“peek” and “poke”)
to integral and floating-point data, respectively.

4.4 Asynchrony
The RTSJ supplies two mechanisms relevant to
asynchronous communication: asynchronous event
handling, and asynchronous transfer of control.

4.4.1 Asynchronous Event Handling
The RTSJ defines the concepts of an asynchronous event
and an asynchronous event handler, and it specifies the
relationship between the two.
An async event can be triggered either by a software
thread or by a “happening” external to the JVM. The
programmer can associate any number of async event
handlers with an async event, and the same handler can be
associated with any number of events. Async event
handlers are schedulable entities and are constructed with
the same set of parameters as a real-time thread; thus they
can participate in feasibility analysis, etc. However, there
is not necessarily a distinct thread associated with each
handler. The programmer can use a bound async event
handler if it is necessary to dedicate a unique thread to a
handler.
When an async event is fired, all associated handlers are
scheduled. A programmer-overridable method on the
handler establishes the behavior. If the same event is
fired multiple times, the handler’s actions are
sequentialized. In the interest of efficiency and
simplicity, no data are passed automatically from the
event to the handler. The programmer can define the
logic necessary to buffer data, or to deal with overload
situations where not all events need to be processed.
The async event model uses the same framework as event
listeners in Java Beans and the AWT but generalizes and
formalizes the handler semantics with thread-like
behavior.

4.4.2 Asynchronous Transfer of Control
Asynchronous Transfer of Control (“ATC”) is a
mechanism whereby a triggering thread (possibly an
async event handler) can cause a target thread to branch
unconditionally, without any explicit action from the
target thread. It is a controversial capability. The
triggering thread does not know what state the target
thread is in when the ATC is initiated while, on the other
side, the target thread needs to be coded very carefully if
it is susceptible to ATC. ATC also imposes a run-time

21

cost even for programs that do not use the functionality.
Nevertheless, there are situations in real-time programs
where the alternative style (polling for a condition that
can be asynchronously set) induces unwanted latency, and
the user community identified several situations (timing
out on an operation, or mode change) where ATC offers
the appropriate semantic framework.
A rudimentary ATC mechanism was present in the initial
version of the Java language: the Thread methods
stop(), destroy(), suspend() and resume().
Unfortunately a conflict between the ATC semantics and
program reliability led to these methods’ deprecation
(stop(), suspend(), resume()) or stylistic
discouragement (destroy()). If a thread is stopped
while it holds a lock, the synchronized code is exited and
the lock is released, but the object may be in an
inconsistent state. If a thread is destroyed while it
holds a lock, the lock is not released, but then other
threads attempting to acquire the lock will be deadlocked.
If a thread is suspended while it holds a lock, and the
resuming thread needs that lock, then again a deadlock
will ensue.
The problem is that Baseline Java does not have the Ada
concept of an “abort-deferred region”. The RTSJ has
introduced this concept, together with other semantic
constraints, in the interest of providing ATC that is safe to
use.
Several guiding principles underlie the ATC design:

• Susceptibility to ATC must be explicit in the affected
code.

• Even if code allows ATC, in some sections ATC
must be deferred — in particular, in synchronized code.

• An ATC does not return to the point where it was
triggered (i.e. it is a “goto” rather than a subroutine call),
since with resumptive semantics an arbitrary action could
occur at arbitrary points.

• If ATC is modeled through exception handling, the
design needs to ensure that the exception is not caught by
an unintended handler (for example a method with a catch
clause for Throwable)

• ATC needs to be expressive enough to capture
several common idioms, including time-out, nested time-
out (with correct disposition when an “outer” timer
expires before an “inner” timer),mode change, and thread
termination.
From the viewpoint of the target thread, ATC is modeled
by exception handling. The class
AsynchronouslyInterruptedException (ab-
breviated “AIE”) extends InterruptedException
from java.lang. An ATC is initiated in the target

thread by a triggering thread causing an instance of AIE
to be thrown. This is not done directly, since there is no
guarantee that the target thread is executing in code
prepared to catch the exception. In any event there is no
syntax in Java for one thread to asynchronously throw an
exception in another thread1.
ATC only occurs in code that explicitly permits it. The
permission is the presence of a “throws AIE” clause on a
method or constructor. ATC is deferred in methods or
constructors lacking such a clause, and is also deferred in
synchronized code.
The basic ATC construct is the doInterruptible()
method of AIE. This method takes an Interruptible
as parameter; the Interruptible interface defines the
abstract methods run() (which has a “throws AIE”
clause) and interruptAction(). The target thread
constructs an AIE instance aie, makes this instance
available to a triggering thread, and then invokes
aie.doInterruptible(obj)on an Interruptible
object obj; this causes obj.run()to be invoked
synchronously. If the triggering thread invokes
aie.fire() while the target thread is still executing
run(), the target thread will be asynchronously
interrupted as soon as it is outside of ATC-deferred code,
run() will return, and the target thread will invoke
obj.interruptAction(). Note that the throwing and
handling of the AIE are encapsulated in the
implementation of the fire and doInterruptible
method. Calling fire() too early (before doInter-
ruptible has been invoked) or too late (after run has
returned) has no effect on the target thread.
The Timed class (a subclass of AIE) is provided as a
convenience to deal with time out; the firing of the AIE is
done by an implementation-provided async event handler
rather than an explicit user thread.
The RTSJ’s analog of Thread.stop is for a triggering
thread to invoke interrupt() on a real-time thread
that is to be terminated. The effect of interrupt() on
a real-time thread is a generalization of the effect on a
regular thread. If interrupt() is invoked on a regular
thread, an Interrupted-Exception will be thrown
when the thread is blocked. If interrupt() is invoked
on a real-time thread, an AIE will be thrown when the
thread is in asynchronously interruptible code. (Deferring
the interruption in synchronized code avoids the problem
that led to the deprecation of Thread.stop.)
Moreover, since the AIE remains pending even if the
exception is caught (unless logic in the handler explicitly
disables the propagation) the effect of invoking

1 The functionality is actually present in
Thread.stop(), but this method is now deprecated.

22

interrupt() on a real-time thread will be to terminate
the thread; the latency depends on the duration of non-
ATC code in the method call stack.

4.5 Time and Timers
The RTSJ provides several ways to specify high-
resolution (nanosecond accuracy) time: as an absolute
time, as a relative number of milliseconds and
nanoseconds, and as a rational time (a frequency, i.e. a
number of occurrences of an event per relative time). In a
relative time 64 bits (a long) are used for the
milliseconds, and 32 bits (an int) for the nanoseconds.
The rational time class is designed to simplify application
logic where a periodic thread needs to run at a given
frequency. The implementation, and not the programmer,
needs to account for round-off error in computing the
interval between release points.
The time classes provide relevant constructors, arithmetic
and comparison methods, and utility operations. These
classes are used in constructors for the various release
parameters classes.
The RTSJ defines a default real-time clock which can be
queried (for example to obtain the current time) and
which is the basis for two kinds of timers: a one-shot
timer, and a periodic timer. Timer objects are instances of
async events; the programmer can register an async event
handler with a timer to obtain the desired behavior when
the event is fired. A handler for a periodic timer is similar
to a real-time thread with periodic release parameters but
is likely to be more efficient.

4.6 Other Features
The RTSJ provides a real-time system class analogous to
java.lang.System, with “getter” and “setter”
methods to access the real-time security manager and the
maximum number of concurrent locks. It also supplies a
binding to Posix signal handlers (required of the
implementation if the underlying system supports Posix
signals).

4.7 Status
The initial version of the RTSJ was published in June
2000 after a 15-month design. A Reference
Implementation was initiated by Timesys in early 2001,
and experience from that effort has resulted in some
suggested modifications to the specification. Work on a
final version of the specification, with accompanying
Reference Implementation and Compatibility Test Suite,
are currently in progress.

5 COMPARATIVE ANALYSIS

5.1 The Two RT Java Specifications
The main distinction between the two specifications is in
their execution environment models.
The Core Java specification approach is to build a Core
program as a distinct entity from a Java virtual machine.
The intent is for the Core Java specification to be used to
build small, fast, high performance stand-alone programs
that have been traditionally written in C, C++ and Ada.
These programs may communicate with a virtual machine
in a controlled way.
The RTSJ approach is to define an API with real-time
functionality that can be implemented by a specially
constructed Java virtual machine. The intent is for the
RTSJ specification to be used to build predictable real-
time threads that execute in the same environment as non-
real-time threads within one virtual machine.
It is interesting to conclude that a system could be
composed of sub-systems that are implemented using
both specifications. For example, a system may require a
high-performance micro kernel implemented using the
Core Java specification, executing in conjunction with a
JVM that is executing some predictable real-time threads,
as well as using a wide range of standard APIs within
background threads.
This distinction in the execution environment model is
also reflected in the goals and semantics of the
specifications, for example:

• The RTSJ specification is more of a scalable
framework that can be implemented by a wide variety of
virtual machines with differing characteristics, and
executing over a variety of operating systems. In
contrast, the Core specification has more precise and
fixed semantics that match the characteristics of
traditional real-time kernels.

• The RTSJ specification retains security of operation,
for example by preventing dangling references, and by
ensuring that ATC is deferred in synchronized code. This
is consistent with Java design philosophy and the safety
model of JVMs. In contrast, the Core specification
assumes that the Core programmer is a “trusted expert”
and so provides more freedom and less safety; for
example a dangling reference to an object in a released
allocation context can occur; an ATC can trigger
immediately within a priority-ceiling-locked protected
object; and the stop() method does not unlock mutexes
or release semaphores.

• The RTSJ specification concentrates on adding
predictability to JVM thread operations, but does not aim
to deal with memory footprint, performance, or interrupt

23

latency. In contrast, the Core specification has been
designed to optimize on performance, footprint and
latency. Kelvin Nilsen has summarized this distinction as
follows: “The RTSJ makes the Java platform more real-
time, whereas the Core Java specification makes real-
time more Java-like.”

The other major distinction between the two
specifications is in their licensing models. The RTSJ
specification is an extension to the trademarked Java
definition and hence is subject to Sun Microsystems, Inc
licensing requirements. However the Core specification
is independent of the trademark (and hence licensing
requirements) and is being put forward as an ISO standard
specification via the J Consortium’s approval to be a
submitter of ISO Publicly Available Specifications.

5.2 Comparison with Ada95

5.2.1 Similarity to Ada Real-Time Annex
Almost all new elements in the two real-time Java
specifications can be found in either the Ada95 core
language definition, or its Systems Programming or Real-
Time Annex [Ada95]. These include:

• A guaranteed large range of priority values;

• Well-defined thread scheduling that must include
FIFO_Within_Priorities policy;

• Addition of Protected Objects to the existing
Synchronized objects and methods, that (may) prohibit
voluntary suspension operations, and that define a Ceiling
Priority for implementation of mutual exclusion (c.f.
Ceiling_Locking policy);

• Addition of asynchronous transfer of control
triggered by either time expiry or an asynchronous event;

• Allocation of, and access to, objects at fixed physical
memory locations, or in the current stack frame;

• Suspend / Resume primitives for threads (c.f.
suspension objects);

• Dynamic priority change for threads (c.f.
Ada.Dynamic_Priorities);

• Absolute time delay (c.f. delay_until statement);

• Use of nanosecond precision in timing operations
(c.f. Ada.Real_Time.Time);

• Definition of interrupt handlers and operations for
static and dynamic attachment.

In addition, the High Integrity Profile of the Core Java
specification has the same execution model as that of the
Ravenscar Profile, as discussed in section 3.7.
Thus the real time extensions for Java are quite
compatible with the Ada95 Real-Time Annex and
Ravenscar Profile execution models, which encourages
the view that both Ada and Real-Time Java
implementations could be used to develop parallel
subsystems that execute in a common underlying
environment.

5.2.2 Dissimilarity to Ada R-T Annex
The following design decisions were taken during the
development of the Core Java specification that conflict
with those taken for Ada95:

• Low-level POSIX-like synchronization primitives,
such as mutexes and signaling and counting semaphores,
are included as well as the higher-level of abstraction
provided by synchronized objects (mutual exclusion
regions), monitors and protected objects. Ada95 chose to
provide only the higher level of abstraction such as the
protected object and the suspension object. There is
therefore greater scope for application error using the
Core Java specification, such as accidentally leaving a
mutex locked.

• More than one locking policy is present.
Synchronized objects and semaphores require only mutual
exclusion properties and so are subject to priority
inversion problems. Mutex locks and monitors require
priority inheritance to be applied in addition to mutual
exclusion. Protected objects require instead the priority
ceiling protocol to be applied as for
Ceiling_Locking in Ada95. The requirement on the
underlying environment to support both priority
inheritance and ceiling locking was one that Ada95 chose
not to impose. Also the introduction of protected objects
with Ceiling_Locking in Ada95 has implicitly
deprecated the Ada83 rendezvous that was prone to
priority inversion problems, thereby providing a single
mutual exclusion mechanism that is optimal for static
timing analysis.

• The only mutual exclusion region that is abort-
deferred is the Atomic interface used by interrupt
handlers. In particular, protected object and monitor
operations are not abort-deferred regions. This removes
the integrity guarantees that a designer may well be
relying on in a protected operation. Use of the Atomic
interface introduces a number of coding restrictions that
limit its general applicability (in particular all the code
must be execution-time analyzable) and so this may not
be appropriate for all protected object scenarios. In
Ada95, all protected operations are abort-deferred and

24

there is no restriction on the content of the code other than
that it does not voluntarily suspend.

• There is no notion of requeue in the Core Java
specification. Ada95 requeue has been found to be useful
in designing scenarios such as servers that provide multi-
step service.

• Asynchronous transfer of control includes the ability
to resume execution at the point of interruption (i.e.
effectively discarding the transfer of control) which could
be useful for example to ignore an execution time overrun
signal in certain context-specific situations. This option is
not provided by Ada95.

• Dangling references to objects within allocation
contexts can occur in the Core Java specification. Ada95
semantics were carefully crafted to prevent dangling
references except via unchecked programming.

Some of the RTSJ design decisions that conflict with the
Ada 95 core language and Real-Time Annex follow:

• The RTSJ has a more general view of scheduling and
dispatching, with feasibility analysis, overrun and
deadline miss handlers, rational time, etc.

• For the fixed-priority preemptive policy, the RTSJ
does not dictate where in the ready queue a preempted
thread is placed. In the Ada Real-Time Annex, this is
deterministic (the preempted task is placed at the head of
the queue for its priority).

• The RTSJ’s priority ceiling emulation monitor
control policy requires queuing in one supported model
that allows a thread holding a priority ceiling lock to
block.

• There is no direct Ada analog to the RTSJ’s async
event model (in particular the many-to-many relationship
between events and handlers).

• In the RTSJ, an ATC is not deferred in finally clauses
(this is because the bytecodes do not directly reflect
where finally clauses were present in the source code). In
Ada, abort is deferred during finalization.

6 LOOKING AHEAD
We can look back on the ’90s as the decade of
revolutionary communication for individuals and for
business, primarily via the internet. Use of e-mail, the
web, mobile phones, e-banking etc has become part of
everyday life, and e-business is an extremely rapidly
growing industry. The Java execution environment has
been most prominent in the software part of this new
technology, with its write-once-run-anywhere capability
inherent in its bytecodes and in the JVM, and with its

abundant highly practical and portable APIs. But many of
today’s Java applications do not have demanding size and
performance constraints.
So what will the next decade bring us? The next
revolution could well be in communicating embedded
devices. Some have predicted a trillion communicating
devices by 2025, affecting almost all aspects of our daily
lives. In at least some of these cases, an embedded device
application environment will have demanding size and
performance constraints, and will also require high
availability, high integrity and hard real time deadlines.
A growing number of these systems may even have safety
critical requirements.
The Real-Time Java initiatives presented in this paper
illustrate that the Java community as a whole, and its tool
vendors and those who promote international standards in
particular, are taking real-time requirements and
embedded system constraints very seriously, and are
preparing Java, its JVMs and its APIs for the next
revolution. So what of Ada95, or its next revision
Ada0Y?
Ada enthusiasts can argue quite validly that Ada95
environments can already meet the stringent requirements
of embedded systems better than any other, and that
Ada’s suitability for use in high integrity and safety
critical is second to none. However it is clear that Ada
did not figure in the communications revolution of the
90’s, and does not enter the new millennium with an
expanding community. So can Ada, with all its excellent
reputation within high integrity and safety critical
embedded systems, find a role in the new revolution as
the battleground moves into Ada’s own strongholds?
The key to Ada’s successful future almost certainly lies in
seamless co-operation with the Java environment, rather
than in competing with it. It is interesting to see how the
two language environments are starting to converge
somewhat. This cross-fertilization could be known as the
“Jada effect”.
We have already seen in this paper that many of the new
ideas for Real-Time Java have been borrowed from Ada,
such as those needed for predictability and deterministic
schedulability analysis. Baseline Java had already used
Ada’s exception model, and now we see that the real-time
extensions have equivalents for protected objects
including entries, priority ceiling emulation, well-defined
thread scheduling policies, absolute delay, high precision
timers, suspension objects, dynamic priority change,
interrupt handlers, asynchronous transfer of control,
access to physical memory, abort-deferred regions etc. So
Java is definitely evolving towards Ada in the real-time
domain.
In similar fashion, Ada is evolving towards Java. The
Ada95 revision already brought in support for a
comprehensive object oriented programming model not

25

dissimilar to that in Java, including single inheritance
hierarchies, constructors and finalizers etc. The next
revision of Ada (Ada0Y) may well see the addition of
support for Java-style interfaces, thereby providing the
same limited form of multiple inheritance as in Java (from
one class plus any number of interfaces). Furthermore,
Ada0Y may relax the rules that currently prevent
mutually-dependent package specifications, via a new
with type construct. This would allow mutually-
dependent Java classes to be modeled as Ada packages
that each define a tagged type plus its primitive
operations, without having kludges to workaround
circularities in the “with” dependencies. Finally there is
even some discussion about whether to allow a Java-like
OOP syntax for invoking the primitive operations of a
tagged type. This could be used instead of the traditional
procedure calling style that requires some rules to identify
which parameter is the object that controls the dynamic
dispatching, replacing it with an OOP style along the lines
of object’Operation(parameters).
So it seems that both Java and Ada are undergoing the
Jada effect. However as well as language convergence, it
is also very important to have execution environment
convergence if the two are going to co-exist happily. We
have already seen some worthy attempts at integration
between Java and Ada execution environments. A few
different approaches are mentioned below:

• Aonix’s AdaJNI [Flint00] makes use of the Java
Native Interface that is provided with the Java
Development Kit. This approach allows Ada native
programs to interact with Java classes and APIs that are
executed by a local or remote JVM via Ada-style
interface packages.

• Ada Core Technologies JGNAT [ACT00] compiles
Ada95 into Java bytecodes in standard class files. This
approach allows JVM-based programs to comprise a
mixture of Ada and Java code. Again, there is also the
capability for the Ada code to access Java classes and
APIs via Ada-style interface packages.

• Ada ORB vendors e.g. [OIS] provide access to
CORBA objects from Ada programs. This approach
allows a logically distributed, mixed-language (including
Ada and Java) system to communicate using the CORBA
client/server model.
If Ada is to gain any kind of foothold in the new
generation of communicating devices, we must build on
foundations such as these. The efforts of users and
vendors alike within the Ada community need to be
focused on developing and evolving Ada in ways that are
compatible with the emerging requirements, not least a
seamless co-existence with the new Real-Time Java
execution environments, their JVMs and their APIs. If
we can achieve this goal, this can give a whole new lease

of life to Lady Ada. We may even want to rename her
Lady Jada !.

7 ACKNOWLEDGEMENTS
The authors appreciate the helpful comments of two
anonymous referees.

26

8 REFERENCES
[ACT00] Ada Core Technologies, Inc; JGNAT User’s

Guide; 2000.
[Ada95] Ada95 Reference Manual, International Standard

ANSI/ISO/IEC-8652:1995, Jan 1995.
[Bollella00] Bollella G., Gosling J., Brosgol B., Dibble P.,

Furr S., Hardin D., and Turnbull M.; The Real-Time
Specification for Java; Addison-Wesley; 2000.

[Brosgol98] Brosgol B.; A Comparison of the
Concurrency and Real-Time Features of Ada and Java;
Proceedings of Ada U.K. Conference 1998; Bristol,
U.K.

[Dobbing98] Dobbing B. and Burns A., The Ravenscar
Tasking Profile for High Integrity Real_Time
Programs. In “Reliable Software Technologies – Ada-
Europe ’98”, Lecture Notes in Computer Science 1411,
Springer Verlag (June 1998).

[Dobbing00] Dobbing B. and Nilsen K., Real-Time and
High Integrity Extensions to Java, Embedded
Systems Conference West 2000 Proceedings,
September 2000.

[Flint00] Flint S. and Dobbing B., Using Java APIs
with Native Ada Compilers, In “Reliable Software
Technologies - Ada-Europe 2000”, Lecture Notes in
Computer Science 1845, Springer Verlag (June 2000).

 [JCons00] International J Consortium Specification,
Real-Time Core Extensions, Draft 1.0.14, September
2nd 2000. Available at http://www.j-consortium.org.

[JLS00] Gosling J., Joy B., Steele G., and Bracha G.; The
Java Language Specification (second edition);
Addison-Wesley; 2000.

[Jones97] Jones R. and Lins R.; Garbage Collection;
Wiley and Sons; 1997.

[Nilsen96] Nilsen K.; Issues in the Design and
Implementation of Real-Time Java, July 1996.
Published June 1996 in “Java Developers Journal”,
republished in Q1 1998 “Real-Time Magazine”,
http://www.newmonics.com/pdf/RTJI.pdf.

[NIST99] Nilsen K., Carnahan L., and Ruark M., editors.
Requirements for Real-Time Extensions for the Java
Platform. Published by National Institute of Standards
and Technology. September 1999. Available at
http://www.nist.gov/rt-java.

[OIS] Objective Interface Systems, Inc, ORBexpress,
http://www.ois.com

