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1 ABSTRACT 
Two independent recent efforts have defined 
extensions to the Java platform that intend to 
satisfy real-time requirements.  This paper 
summarizes the major features of these 
efforts, compares them to each other and to 
Ada 95’s Real-Time Annex, and argues that 
their convergence with Ada95 may serve to 
complement rather than compete with Ada in 
the real-time domain. 

1.1 Keywords 
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2 INTRODUCTION 
Over the past several years the computing community has 
been coming to grips with the Java platform, a technology 
triad comprising a relatively simple Object-Oriented 
Language, an extensive and continually growing set of 
class libraries, and a virtual machine architecture and 
class file format that provide portability at the binary 
level.  Java was first introduced as a technology that could 
be safely exploited on “client” machines on the Internet, 
with various levels of protection against malicious or 
mischievous applets.  However, as interest in Java’s 
promise of “write once, run anywhere” has increased, the 

platform’s application domain has been expanding 
dramatically. 
One area that has been attracting attention is real-time 
systems.  On the one hand, that should not be completely 
surprising.  The research project at Sun Microsystems that 
spawned Java was attempting to design a technology for 
embedded systems in home appliances, and embedded 
systems typically have real-time constraints.  Moreover, 
Java is more secure than C and simpler than C++, and it 
has found a receptive audience in users dissatisfied with 
these languages.  And unlike C and C++, Java has a built-
in model for concurrency (threads) with low-level 
“building blocks” for mutual exclusion and 
communication that seem to offer flexibility in the design 
of multi-threaded programs.  Parts of the Java API 
address some real-time application areas (for example 
javax.comm for manipulating serial and parallel 
devices), and V1.3 of the Java Software Development Kit 
has introduced a couple of utility classes for timed events.  
Java therefore may seem a viable candidate for real-time 
systems, especially to an organization that has adapted 
Java as an enterprise language. 
However, even a casual inspection of Java reveals a 
number of obstacles that interfere with real-time 
programming.  In this introductory section we will 
summarize these issues and then briefly describe how 
they have been addressed. 

2.1 Challenges 
The main problems for Java as a real-time technology fall 
into several areas, mostly related to predictability. 
• Thread model 
Although Java semantics are consistently deterministic for 
the sequential parts of the language (e.g. the order of 
expression evaluation is defined as left-to-right, 
references to uninitialized variables are prevented) they 
are largely implementation-dependent for thread 
scheduling.  The Java Language Specification explicitly 
states [JLS00, Section 17.12]:  
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“... threads with higher priority are generally executed 
in preference to threads with lower priority.  Such 
preference is not, however, a guarantee that the 
highest priority thread will always be running, and 
thread priorities cannot be used to reliably implement 
mutual exclusion.” 

This flexibility makes it impossible to ensure that real-
time threads will meet their deadlines.  The 
implementation may or may not use priority as the 
criterion for choosing a thread to make ready when a lock 
is released.  Even if it did, unbounded priority inversions 
could still occur since there is no requirement for the 
implementation to provide priority inversion avoidance 
policies such as priority inheritance or priority ceiling 
emulation.  There is also no guarantee that priority is used 
for selecting which thread is awakened by a notify(), 
or which thread awakened by a notifyAll() is 
selected to run.  
Other facets of the thread model also interfere with real-
time requirements.  The priority range (1 through 10) is 
too narrow, and the relative sleep() method is not 
sufficient: the standard idiom for simulating periodicity 
with this method can lead to a missed deadline if the 
thread is preempted after computing the relative delay but 
before being suspended. 
A more detailed analysis of Java threads, with a 
comparison to Ada’s tasking model, may be found in 
[Brosgol98]. 
• Memory management 
Despite its C-like syntax, Java belongs semantically to a 
family of Object Oriented languages including Simula, 
Smalltalk, and Eiffel: languages that provide no 
mechanism for programmers to reclaim storage but which 
instead are implemented with automatic memory 
reclamation (“Garbage Collection” or “GC”).  The idea of 
garbage collection in a real-time program may sound like 
a contradiction in terms, but there have been a number of 
incremental and concurrent collectors that attempt to 
address the predictability problems of a classical mark-
and-sweep strategy [Jones97].  Nevertheless, efficient 
real-time garbage collection is still more a research topic 
than a mainstream technology.  This is a particular issue 
for Java, since all objects (including arrays) go on the 
heap. 
• Dynamic Semantics 
One of the main attractions of Java is its run-time 
flexibility.  For example, classes are loaded dynamically, 
intraspection allows the run-time interrogation of a class’s 
properties, and cutting-edge compiler technology allows 
optimized code to be generated during program execution.  
Unfortunately, all of these capabilities conflict with the 
traditional static environment (“compile, download, run”) 
for real-time programs.  Implementing Java with static 

linking is possible but difficult, and necessitates 
restrictions on the use of certain language features.   
• Asynchrony 
A real-time program typically needs to respond to 
asynchronous events generated by either hardware or 
software, and sometimes needs to undergo asynchronous 
transfer of control (“ATC”), for example to time out if an 
operation is taking too long.  The Java Beans and AWT 
event registration and listener model is a reasonable 
framework for asynchronous events but omits semantic 
details critical to real-time programs, such as the 
scheduling of event handlers.  The interrupt() 
method requires polling and thus is not an ATC 
mechanism.  The methods related to ATC have either 
been deprecated (stop, suspend, resume) or are 
discouraged because of their proneness to error 
(destroy).  Thus Java is rather weak in the area of 
asynchrony. 
• Object-Oriented Programming 
OOP support is one of Java’s most highly touted 
strengths, but the real-time community has traditionally 
been very conservative in its programming style and still 
views OOP with some skepticism.  The dynamic nature of 
OOP (for example the dynamic binding of instance 
methods) interferes with static analyzability, and Garbage 
Collection introduces unpredictability or high latency.  
• Application Program Interface 
Class libraries that are to be used in real-time programs 
need to be implemented specially in order to ensure that 
their execution time be predictable.  This is partly a 
programming issue (e.g. choice of algorithms and data 
structures) and partly a JVM implementation issue 
(Garbage Collection strategy). 
• Missing functionality 
With the goal of language simplicity, the Java designers 
intentionally omitted a number of features that might be 
useful in a real-time program, such as general unsigned 
integral types, strongly-typed scalars, and enumeration 
types.  Other omissions impinge on programming in 
general, such as generic templates and operator symbol 
overloading.  The language and API also lack system 
programming facilities for accessing the underlying 
hardware (such as “peek” and “poke” to access numeric 
data at physical addresses). 
• Performance 
Although “real time” does not mean “real fast”, run-time 
performance cannot be ignored.  Java has several 
challenges in this area.  The key to “write once, run 
anywhere” is the JVM and the binary portability of class 
files.  But a software interpreter introduces overhead, and 
hardware implementations are not mainstream 
technology. Garbage Collection and the absence of stack-
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resident objects have an obvious performance impact, and 
there is also the problem that array initializers result in 
run-time bytecodes to be performed, versus having a 
ROMable image in the class file. 

2.2 The NIST Requirements and the Two 
Real-Time Java Efforts 
The problems with Java as a real-time technology are 
steep but not insurmountable. Given the potential market 
and the fascinating technical issues it is not surprising that 
real-time Java has been a topic of active investigation.  
Probably the earliest work was by Kelvin Nilsen in late 
1995 and early 1996 [Nilsen96].  Subsequently Lisa 
Carnahan from the National Institute for Standards and 
Technology in the U.S. (NIST) took the lead in 
organizing a series of workshops to identify the issues and 
to develop consensus-based requirements for real-time 
extensions to the Java platform.  The culmination of this 
group’s efforts, which ultimately included participation 
by 38 different entities, was a document titled 
“Requirements for Real-Time Extensions for the Java 
Platform”, published in September 1999 [NIST99]. 
The NIST-sponsored effort focused on defining the 
requirements for real-time Java extensions.  That group 
made a conscious choice not to develop a specification for 
such extensions. 
Two independent groups have undertaken to define such 
specifications.  One is the Real-Time Java Working 
Group under Kelvin Nilsen from Newmonics; this group 
was formed in November 1998 and is under the auspices 
of a set of companies and individuals known as the J-
Consortium. The other effort is from the Real-Time for 
Java Expert Group (“RTJEG”) under Greg Bollella (then 
with IBM, now at Sun Microsystems).  The RTJEG was 
established under the terms of Sun’s Java Community 
Process; the product of this effort is a specification, a 
reference implementation, and a conformance test suite.  
As of early 2001, the first draft of the specification has 
been published [Bollella00], while the reference 
implementation and the test suite formulation are in 
progress. 
The split into two efforts versus a single undertaking was 
motivated by business considerations rather than technical 
factors.  Participation in the RTJEG required signing an 
agreement with Sun Microsystems that some 
organizations found problematic.  However, the two 
efforts ended up taking technical approaches that are more 
complementary than duplicative.  As will be seen below 
when we cover the specifications in more detail, the J-
Consortium has focused on defining real-time “core” 
kernel facilities external to a JVM, whereas the RTJEG 
has defined an API that needs to be supported within a 
JVM implementation.  Indeed the J-Consortium 

specification can be regarded as providing a set of kernel 
services as might be found in an RTOS for Java. 

3 REAL-TIME CORE SPECIFICATION 

3.1 Summary 
In order to establish a foundation upon which its Real-
Time Core Extensions to the Java platform specification 
[JCons00] would be built, the J Consortium’s Real-Time 
Java Working Group (RTJWG) established a number of 
clarifying principles to augment the full list of key 
requirements identified in the NIST requirements 
document for real-time extensions to Java [NIST99].  
These working principles follow.  For purposes of this 
discussion, the term “Baseline Java” refers to the 1.1 
version of the Java language, as it has been defined by 
Sun Microsystems, Inc, and “Core Java” refers to an 
implementation of the Real-Time Core Specification. 

• The Core Java execution environment shall exist in 
two forms: the dynamic one that is integrated with a Java 
virtual machine and supports dynamic loading and 
unloading of Core classes, and the static one that is stand-
alone and does not supporting dynamic class loading. 

• The Core Java dynamic execution environment shall 
support limited cooperation with Baseline Java programs 
running on the same Java virtual machine, with the 
integration designed so that neither environment needs to 
degrade the performance of the other. 

• The Core Java specification shall define distinct class 
hierarchies from those defined by Baseline Java. 

• The Core Java specification shall enable the creation 
of profiles which expand or subtract from the capabilities 
of the Core Java foundation. 

• The Core Java system shall support limited 
cooperation with programs written according to the 
specifications of these profiles, with the integration 
designed so that neither environment needs to degrade the 
performance of the other. 

• The semantics of the Core Java specification shall be 
sufficiently simple that interrupt handling latencies and 
context switching overheads for Core Java programs can 
match the latencies and context switching overheads of 
today’s RTOS products running programs written in C, 
C++ and Ada. 

• The Core Java specification shall enable 
implementations that offer throughputs comparable to 
those offered by today’s optimizing C++ compilers, 
except for semantic differences required, for example, to 
check array subscripts. 
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• Core Java programs need not incur the run-time 
overhead of coordinating with a garbage collector. 

• Baseline Java components and components written 
according to the specifications of profiles, shall be able to 
read and write the data fields of objects that reside in the 
Core Java object space. 

• Security mechanisms shall prevent Baseline Java and 
other external profile components from compromising the 
reliability of Core Java components. 

• Core Java programs shall be runnable on a wide 
variety of different operating systems, with different 
underlying CPUs, and integrated with different supporting 
Baseline Java virtual machines. There shall be a standard 
way for Baseline Java components to load and execute 
Core Java components. 

• The Core Java specification shall support the ability 
to perform memory management of dynamic objects 
under programmer control. 

• The Core Java specification shall support a 
deterministic concurrency and synchronization model 
with features comparable to those in Real-Time Operating 
Systems. 

• The Core Java specification shall be designed to 
support a small footprint, requiring no more than 100K 
bytes for a typical static Core Java execution 
environment. 

• All Core Java classes shall be fully resolved and 
initialized at the time they are loaded. 
 
In summary, the Core Java execution environment:  

• either is a plug-in module that can augment any 
Baseline Java virtual machine.  This allows users of the 
Core Java execution environment to leverage the large 
technology investment in current virtual machine 
implementations, including byte-code verifiers, garbage 
collectors, JustInTime compilers, dynamic loaders, and 
symbolic debuggers; 

• or can be configured to run without a Baseline Java 
virtual machine.  This allows users of the Core Java 
execution environment to develop high performance 
kernels deployed in very small memory footprints. 

3.2 Concurrency and Synchronization 

3.2.1 Scheduling and Priorities 
The Core Java specification supports a large range of 
priorities.  Each implementation is required to support a 
minimum of 128 distinct values, with the highest N being 

used as interrupt priorities, where N is implementation-
defined.  In addition, the Core Java semantics require 
preemptive priority-based scheduling as defined by the 
FIFO_Within_Priorities policy.  Support for time-slicing 
is also defined but not required.  This model is in marked 
contrast to Baseline Java’s small priority range (10 values) 
and absence of guarantee that a higher priority task will 
preempt a low priority task when it is ready to run.  
Alternative scheduling policies may be specified via 
profiles. 
The Core task class hierarchy is rooted at CoreTask.  A 
CoreTask object must be explicitly started via the 
start() method.  There are two specialized extensions 
of CoreTask: 

• The SporadicTask class defines tasks that are 
readied by the occurrence of an event that is triggered 
either periodically or via an explicit call to its fire() 
method. 

• The InterruptTask class defines tasks that are 
readied by the occurrence of an interrupt event, making 
them analogous to interrupt service routines. 

3.2.2 Task Synchronization Primitives 
Task synchronization is provided in the Core Java 
specification via a number of different features, a first 
group of which supports priority inversion avoidance and 
a second group of which does not. 
In the first group, Baseline Java-style usage of 
synchronized methods and synchronized(this) constructs 
are both supported and define transitive priority 
inheritance to limit the effects of priority inversion.  In 
addition, traditional POSIX-style mutexes are supported, 
and these also define transitive priority inheritance to be 
applied when there is contention for the lock.  Finally 
there is support for Ada-style protected objects that are 
locked using priority ceiling protocol (actually, the same 
emulation using immediate ceiling locking that is defined 
in Ada95), and that prohibit execution of suspending 
operations, e.g. wait().  An extension of the priority 
ceiling protocol interface, known as the Atomic 
interface, is defined for InterruptTask work() methods.  
This interface implies that all the code (at the bytecode 
level) must be statically execution-time-analyzable.  The 
intent is to be able to guarantee the static worst case 
execution time bounds on interrupt handler execution. 
In the second group, POSIX-style counting and signaling 
semaphores are supported.  There is no concept of a 
single owner of a semaphore and hence there is no 
priority inheritance on contention (and unbounded priority 
inversion may result).  A counting semaphore may have 
count concurrent owners.  A signaling semaphore is 
similar to Ada’s suspension object except that multiple 
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tasks can be waiting for the signal.  A signal that occurs 
when there are no waiting tasks is a no-op. 

3.3 Memory Management 

3.3.1 Core Object Space 
The Core Java requirements include the provision of 
security measures to ensure that the Baseline Java domain 
cannot compromise the integrity of Core objects in the 
dynamic Core execution environment.  This is realized in 
the specification by segregating Core objects into their 
own object space that is quite separate from the Baseline 
Java heap. 
However another requirement of the dynamic Core Java 
execution environment is to provide limited and 
controlled communication with the Baseline Java domain.  
This is achieved via the CoreRegistry class that 
includes a publish() method to publish the names of 
externally-visible Core objects.  A lookup() method is 
also provided for the Baseline Java domain to obtain a 
reference to the published Core object.  However the 
Baseline Java domain is only permitted to call special 
core-baseline methods that are explicitly identified within 
the published object, and so access to the Core object 
space is totally defined and controlled by the operation of 
these methods. 

3.3.2 Garbage Collection 
A key requirement of the Core Java specification is that 
the system need not incur the overhead of traditional 
automatic garbage collection.  This is intended to provide 
the necessary performance and predictability, avoiding 
overheads such as read/write barriers, object relocation 
due to compaction, stack/object scanning and object 
description tables, as well as avoiding the determinism 
problems associated with executing the garbage collector 
thread. 

3.3.3 Core Object Allocation / Deallocation 
A garbage collector is an essential component of a 
Baseline Java VM due to Java’s object lifetime model, 
which does not provide an explicit deallocation operation, 
nor do the semantics provide known points for an 
implementation to perform guaranteed implicit 
deallocation.  Hence the Core specification defines an 
alternative strategy for memory allocation and 
reclamation under programmer control.  This is achieved 
via the following: 

• An object whose reference is declared locally within 
a method can be explicitly identified as stackable, which 
means that the object lifetime is asserted to be no greater 
than that of the enclosing method.  Various restrictions 
are defined for stackable objects to prevent dangling 

references.  Thus an implementation may allocate 
stackable objects on the runtime method stack in the same 
way as  Ada implementations of local variables. 

• A class called AllocationContext is defined in the 
Core specification that is somewhat analogous to Ada’s 
Root_Storage_Pool type in that it provides a facility for 
declaring an area for dynamic memory allocation 
(including at a specific memory address) and the means to 
control it programmatically.  Each task automatically 
implicitly allocates an allocation context upon creation, 
and this storage area is used by default for allocation of its 
non-stackable objects. 
The base AllocationContext class provides a release() 
method that reclaims all the objects in the context in an 
unchecked way that could lead to dangling references as 
for Ada’s Unchecked_Deallocation.  The model of 
allocation contexts allows an application to implement 
various paradigms such as mark/release heaps, and 
factory methods that construct objects in a known storage 
area.  In addition, all objects (with one exception) that are 
allocated in implicit task-specific allocation contexts are 
automatically reclaimed when the task terminates either 
normally or via an external call to its stop() method.  
The exceptional case is for objects (and those they 
reference) that are published to the Baseline Java domain.  
This ensures that the Baseline Java domain cannot get a 
dangling reference from the use of a published Core Java 
object.  An implementation of the dynamic Core Java 
execution environment is therefore required to detect 
when published objects are no longer accessible by the 
Baseline Java domain such that they can become 
candidates for automatic reclamation at task termination.  
Stackable objects are not permitted to be published to 
Baseline Java. 

3.4 Asynchrony 
Asynchronous interaction between Core tasks is achieved 
in the Core Java specification via events.  There is also the 
abort() method to kill a task.  Two event models are 
defined: 

a) the firing and handling of asynchronous events 

b) asynchronous transfer of control. 

3.4.1 Asynchronous Events 
Three kinds of asynchronous event are defined by the 
Core Java specification: 

• PeriodicEvent is defined to support periodic tasks.  
The event fires at the start of each period which causes 
the associated periodic event handler task to become 
ready to execute its work() method. 
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• SporadicEvent is defined to support sporadic tasks 
that are triggered by software.  The event is explicitly 
fired by a task which causes the associated sporadic event 
handler task to become ready to execute its work() 
method 

• InterruptEvent is defined to support interrupt 
handling.  The event can be explicitly fired by a task (to 
achieve a software interrupt) or implicitly fired by a 
hardware interrupt.  This causes the associated interrupt 
event handler task to become ready to execute its 
work() method, which must implement the Atomic 
interface as described in section 3.2.2. 

3.4.2 Asynchronous Transfer of Control 
Asynchronous transfer of control is supported in the Core 
Java specification by building upon the asynchronous 
event model.  A special ATCEvent class is defined for 
the event itself.  Each task construction may specify a 
handler for ATCEvent that is invoked whenever another 
task calls the signalAsync() method, unless the task 
is currently in an abort-deferred region.  If the handler 
returns normally, the ATCEvent is handled without 
causing a transfer of control, i.e. the task resumes at the 
point at which it was interrupted.  This is useful in 
situations where the ATCEvent is to have minimal or no 
effect, such as ignoring a missed soft deadline. 
Otherwise, if the handler returns by raising a special 
ScopedException object and the task is in an ATC-
enabled execution scope, then the exception causes the 
transfer of control in the task.  An ATC-enabled scope is 
created by constructing a ScopedException object and 
having a try-catch clause that includes a handler for the 
exception class. 
The Core Java specification also defines certain abort-
deferred regions that defer the transfer of control action, 
in particular Atomic scopes and finally clauses.  Note 
however that once an ATC-enabled region has been 
entered, all method calls are susceptible to ATC other 
than the abort-deferred regions mentioned above.  Since 
the Core Java specification rules prevent a Core program 
from making direct method calls to the Baseline Java 
domain, the problem does not arise of an ATC occurring 
at any point within “legacy” Baseline Java code that was 
not designed to expect that eventuality. 
The ATC construct can be used for several common 
idioms, such as preventing overrun by timing out a 
sequence of actions, and for mode change.  Special rules 
apply to the handlers for ScopedException to ensure 
that nested ATC scopes can be created without the danger 
of an outer ATC triggering exception being caught by an 
inner ATC catch clause. 

3.5 Time 
The Core Java specification defines a Time class that 
includes methods to construct times in all granularities 
from nanoseconds through to days.  These can be used to 
program periodic timer events to trigger cyclic tasks or to 
timeout overrunning task execution. 
In addition, the relative delay sleep() method and the 
absolute delay sleepUntil() method provide a 
programmatic means of coding periodic activity.  In both 
cases, the time quantum can be specified to the 
nanosecond level. 
There is also a method tickDuration() to return the 
length of a clock tick. 

3.6 Other Features 
The Core Java specification also includes a 
comprehensive low-level I/O interface for access to I/O 
ports, and a class Unsigned for unsigned relational 
operations.  (Note that Baseline Java integral types are 
signed with regard to relational operations, but unsigned 
with regard to arithmetic.) 

3.7 Profiles 
A number of profiles of the Core specification are under 
development.  One of the most interesting to the Ada 
community is the High Integrity Profile [Dobbing00] 
which is designed to meet the requirements of: 

• Safety Critical / High Integrity, for which all the data 
and executable code must undergo thorough analysis and 
testing, and must be guaranteed not to be corruptible by 
less trusted code; 

• High Reliability / Fault Tolerance, for which the code 
must be resilient enough to detect faults and to recover 
with minimal disturbance to the overall system; 

• Hard Real-Time, for which the timing of code 
execution must be deterministic to ensure that deadlines 
are met; 

• Embedded, for which a small footprint and fast 
execution are required. 
These requirements are very similar to those that steered 
the definition of the Ravenscar Profile [Dobbing98] and 
hence it is not surprizing that the high integrity profile 
provides similar functionality:  

• The dynamic Core Java execution environment is not 
supported (i.e. no direct interaction with a JVM); 

• All tasks are constructed during program startup; 

• sleepUntil() is supported, but sleep() is not; 
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• Periodic, sporadic and interrupt event handler tasks 
are supported; 

• Signaling semaphores are supported, but counting 
semaphores and mutexes are not; 

• Protected objects are supported; 

• All synchronized code is locked using priority ceiling 
emulation (i.e. no priority inheritance) 

• The scheduling policy is FIFO_Within_Priorities; 

• Asynchronous abort is not supported; 

• Asynchronous dynamic priority change is not 
supported; 

• Asynchronous suspension is not supported; 

• Asynchronous transfer of control is not supported. 
This profile allows the construction of a very small, fast, 
deterministic runtime system that could ultimately be a 
candidate even for formal certification. 
A sub-group of the High Integrity Profile working group 
has been set up to examine how to apply and extend the 
profile to meet the needs of automotive control systems. 
This work is underpinned by the AJACS project 
(“Applying Java to Automotive Control Systems”).  This 
is a two-year project partially funded by the European 
Commission to specify, develop and demonstrate an open 
technology that implements Java in deeply embedded 
interconnected Electronic Control Units in automotive 
applications such as engine control systems (see 
http://www.ajacs.org). The implementation of this 
technology is key to ensuring that the goals of the High 
Integrity Profile can be realized in practice." 

4 RT JAVA EXPERT GROUP 
SPECIFICATION 

4.1 Summary 
Before setting out on the design of the real-time 
specification for Java (“RTSJ”), the RTJEG established 
the following guiding principles: 

• Applicability to particular Java environments.  Usage 
is not to be restricted to particular versions of the Java 
Software Development Kit. 

• Backward compatibility.  Existing Java code can run 
on any implementation of the RTSJ. 

• “Write Once, Run Anywhere”.  This is an important 
goal but difficult to achieve for real-time systems (as a 
trivial example of the difficulties, the correctness of a 
real-time program depends on the timing properties of the 

executing code, but different hardware platforms have 
different performance characteristics).  

• Current practice versus advanced features.  The 
RTSJ attempts to address current real-time practice but 
also includes extensibility hooks to allow exploitation of 
new technologies. 

• Predictable execution.  This is the highest priority 
goal; performance or throughput may need to be 
compromised in order to achieve it. 

• No syntactic extension.  The RTSJ does not define 
new keywords or new syntactic forms. 

• Allow variation in implementation decisions.  The 
RTSJ recognizes that different implementations will make 
different decisions (for example a tradeoff between 
performance and simplicity) and thus does not require 
specific algorithms. 
The resulting specification consists of the 
javax.realtime package, an API whose 
implementation requires specialized support in the JVM.  
In summary, the design provides real-time functionality in 
several areas: 

• Thread scheduling and dispatching.  The RTSJ 
introduces the concept of a real-time thread and defines 
both a traditional priority-based dispatching mechanism 
and an extensible framework for implementation-defined 
(and also user-defined) scheduling policies.    

• Memory management.  The RTSJ provides a general 
concept of a memory area that may be used either 
explicitly or implicitly for object allocations.  Examples 
of memory areas are the (garbage-collected) heap, and 
also “immortal” memory whose objects persist for the 
duration of an application’s execution.  Another important 
special case is a memory area that is used for object 
allocations during the execution of a dynamically 
determined “scope”, and which is automatically emptied 
at the end of the scope.  The RTSJ defines the concept of 
a “no-heap real-time thread” which is not allowed to 
reference the heap; this restriction means that such a 
thread can safely preempt the Garbage Collector. 

• Synchronization and resource sharing.  The RTSJ 
requires the implementation to supply one or more 
mechanisms to avoid unbounded priority inversion, and it 
defines two monitor control policies to meet this 
requirement: priority inheritance and priority ceiling 
emulation.  The specification also defines several “wait 
free queues” to allow a no-heap real-time thread and a 
Baseline Java thread to safely synchronize on shared 
objects. 

• Asynchrony.  The RTSJ defines a general event 
model based on the framework found in the AWT and 
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Java Beans.  An event can be generated from software or 
from an interrupt handler.  Event handlers behave like 
threads and are schedulable entities.  The design is 
intended to be scalable to very large numbers of events 
and event handlers (tens of thousands), although only a 
small number of handlers are expected to be active 
simultaneously.  The RTSJ also defines a mechanism for 
asynchronous transfer of control (“ATC”), supporting 
common idioms such as timeout and mode change.  The 
affected code needs to explicitly permit ATC; thus code 
that is not written to be asynchronously interruptible will 
work correctly. 

• Physical and “raw” memory access.  The RTSJ 
provides mechanisms for specialized and low-level 
memory access.  Physical memory is a memory area with 
special hardware characteristics (for example flash 
memory) and can contain arbitrary objects.  Raw memory 
allows “peek” and “poke” of integral and floating-point 
variables at offsets from a given base address. 

4.2 Concurrency and Synchronization 
The basis of the RTSJ’s approach to concurrency is the 
class RealtimeThread, a subclass of Thread. 

4.2.1 Scheduling and Priorities 
The RTSJ requires a base scheduler that is fixed-priority 
preemptive with at least 28 distinct priority levels, above 
the 10 Baseline Java levels.  An implementation must 
map the 28 real-time priorities to distinct values, but the 
10 non-real-time levels are not necessarily distinct. 
Constructors for the RealtimeThread class allow the 
programmer to supply scheduling parameters, release 
parameters, memory parameters, a memory area, and 
processing group parameters.  The scheduling parameters 
characterize the thread’s execution eligibility (for 
example, its priority).  A real-time thread can have a 
priority in either the real-time range or the Baseline Java 
range. 
The release parameters identify the real-time thread’s 
execution requirements and properties (whether it is 
periodic, aperiodic or sporadic).  Memory parameters 
identify the maximum memory consumption allowed and 
an upper bound on the heap allocation rate (used for 
Garbage Collector pacing).  Processing group parameters 
allow modeling a collection of aperiodic threads with 
bounded response time requirements. 
Several release parameters classes are provided, 
corresponding to the kinds of real-time threads that are 
supported.  A periodic parameters object specifies the 
period, the cost (maximum computation time per period), 
the deadline (which may be before the end of the period), 
and handlers for cost overrun and missed deadline.  To 
create a periodic thread, the programmer constructs a real-

time thread with a periodic parameters object as its 
release parameters.  The run() method for such a thread 
should invoke the method waitForNextPeriod() to 
suspend itself after its per-period work.  The programmer 
may supply overrun handlers to respond to two kinds of 
abnormality: overrunning the budgeted cost (detecting 
this situation requires support from the underlying 
platform and is therefore not required of the 
implementation unless such support exists), and missing a 
deadline.  The overrun or miss handlers can invoke the 
schedulePeriodic() method to resume scheduling 
of the periodic thread. 
An aperiodic parameters object is used for schedulable 
entities that may become active based on the occurrence 
of an asynchronous event or the invocation of a 
notify() or notifyAll().  The aperiodic 
parameters define the cost, deadline, overrun handler, and 
miss handler analogously to periodic parameters. 
A special case of aperiodic parameters is sporadic 
parameters.  A schedulable entity constructed with 
sporadic parameters has a minimum inter-arrival time 
between releases. 
One of the RTSJ’s distinguishing capabilities is a general-
purpose extensible scheduling framework.  An instance of 
the Scheduler class manages the execution of 
schedulable entities and may implement a feasibility 
analysis algorithm.  Through method calls a real-time 
thread can be added to, or removed from, the scheduler’s 
feasibility analysis; the release parameters are used in this 
analysis.  The scheduler’s isFeasible() method 
returns true if the existing schedulable entities are 
schedulable (i.e., will always meet their deadlines) and 
false otherwise. 
The priority-based scheduler is required to be the default 
scheduler at system startup, but the programmer can 
modify this at run time (for example setting an Earliest-
Deadline First scheduler, if one is supplied by the 
implementation). 
The priority-based scheduler is FIFO within priorities and 
manages Baseline Java threads as well as real-time 
threads.  When a thread blocks it goes to the tail of the 
blocked queue for its priority level, for the resource on 
which it is blocked.  When a blocked thread becomes 
ready to run, or when a running thread invokes 
yield(), it goes to the tail of the ready queue for its 
priority level.  When a thread’s priority is modified 
explicitly through a method call the thread goes to the tail 
of the relevant queue for its new priority level.  When a 
thread is preempted, the RTSJ does not specify where in 
the ready queue for its priority the thread is placed.  This 
nondeterminism does not affect feasibility analysis. 
The priority-based scheduler is said to be fixed-priority 
since it is not allowed to modify thread priorities 
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implicitly except for priority inversion avoidance (see 
below).  Thus schemes such as “priority aging” are not 
allowed.  Time slicing of the highest-priority threads is 
permitted, although the implementation provides no 
explicit support for such a policy. 
The general scheduling framework was motivated by 
several considerations.  First and foremost was the user 
requirement: the RTSJ is intended for a large variety of 
applications, and limiting the scheduling policies would 
have been too constraining.  Second, the flexibility fits in 
well with Java’s dynamic model.  Third, several members 
of the RTJEG, in particular the original spec lead Greg 
Bollella (then at IBM), were experts in this area on both 
the theoretical and practical sides. 

4.2.2 Synchronization 
An unbounded priority inversion in a thread 
synchronizing on a locked object can lead to missed 
deadlines, and the RTSJ accordingly requires that the 
implementation supply one or more monitor control 
policies to avoid this problem.  By default the policy is 
priority inheritance, but the RTSJ also defines a priority 
ceiling emulation policy.  Each policy can be selected 
either globally or per-object and the choice can be 
modified at run time.  An implementation can supply a 
specialized form of priority ceiling emulation that 
prohibits a thread from blocking while holding a lock; this 
avoids the need for mutexes and queues in the 
implementation. 
A subtle problem seems to arise if a Baseline Java thread 
and a no-heap real-time thread attempt to communicate 
through a synchronized object (such an object cannot be 
in the heap, but it may be in immortal memory).  The 
apparently troublesome scenario is the following: 

1. The regular thread locks the object. 
2. The garbage collector preempts and starts to run. 
3. The no-heap real-time thread preempts the 

garbage collector, with the heap possibly in an 
inconsistent state. 

4. The no-heap real-time thread attempts to 
synchronize on the object currently locked by the 
regular thread. 

5. The regular thread inherits the no-heap real-time 
thread’s priority and resumes execution. 

6. The regular thread allocates an object in the heap, 
but this can corrupt the heap (which might be in 
an inconsistent state). 

In fact the RTSJ semantics prevent this problem although 
at the price of extra latency for the no-heap real-time 
thread.  When the regular thread attempts to allocate an 
object at step 6, it will not be able to do so since the 
garbage collector holds the lock on the heap.  Thus the 

garbage collector will have its priority boosted (by 
priority inheritance), and when it releases the lock the 
heap will be in a consistent state so that the Baseline Java 
thread can continue in its “critical section” of code 
synchronized on the object it is sharing with the no-heap 
real-time thread. 
The price for a consistent heap is extra latency, since the 
no-heap real-time thread now needs to wait for the 
Garbage Collector.  The RTSJ allows the programmer to 
avoid this latency through wait-free queues; Baseline 
threads and no-heap real-time threads can use such queues 
to communicate without blocking.   

4.3 Memory Management 
Perhaps the most difficult issue for the RTSJ was the 
question of how to cope with garbage collection (“GC”).  
Requiring specific GC performance or placing constraints 
on GC-induced thread latency would have violated 
several guiding principles.  Instead the opposite approach 
was taken: the RTSJ makes no assumptions about the GC 
algorithm; indeed in some environments there might not 
even be a garbage collector. 
The key concept is the notion of a memory area, a region 
in which objects are allocated.  The garbage-collected 
heap is an example of a memory area.  Another memory 
area is immortal memory: a region in which objects are 
not garbage collected or relocated and thus persist for the 
duration of the program’s execution.  More flexibility is 
obtained through scoped memory areas, which can be 
explicitly constructed by the programmer.  Each scoped 
memory area contains objects that exist only for a fixed 
duration of program execution.  The heap and immortal 
memory can be used by either regular threads or real-time 
threads; scoped memory can be used only by real-time 
threads.   
Common to any memory area is an enter() method 
which takes a Runnable as a parameter.  When 
enter() is invoked for a memory area, that area 
becomes active, and the Runnable object’s run() 
method is invoked synchronously.  The memory area is 
then used for all object allocations through “new” 
(including those in methods invoked from run() 
whether directly or indirectly) until either another 
memory area becomes active or the enter() method 
returns.  When enter() returns, the previous active area 
again becomes active.   
A memory area may be provided to a real-time thread 
constructor; it is then made active for that real-time 
thread’s run() method when the thread is started. 
Memory areas may also be used for “one shot” allocation, 
through factory methods that construct objects or arrays in 
the associated area. 
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Scoped memory may be viewed as a generalization of a 
method’s stack frame.  Indeed, early in the design the 
RTJEG considered providing a mechanism through which 
objects allocated in a method would be stored on the stack 
instead of the heap, with automatic reclamation at method 
exit instead of garbage collection.  Standard class libraries 
could then be rewritten with the same external 
specifications (public members, method signatures and 
return type) but with an implementation that used the 
stack versus the heap for objects used only locally.  To 
prevent dangling references a check would be needed (no 
assignment of a stack object reference where the target 
reference is longer lived than the source).  Some sort of 
check (either at compile time or run time) is inevitable.  
However, the reason that a simple stack-based object 
scheme was eventually rejected is that a reference to a 
local object could not be safely returned to a caller.  Thus 
the goal of using specially-implemented versions of 
existing APIs would not be achievable. 
Instead the RTSJ has generalized the concept of storing 
local objects on the stack.  A scoped memory area is used 
not just for one method invocation but for the “closure” of 
all methods invoked from a Runnable’s run() 
method. The objects within the memory area are not 
subject to relocation or collection, and an assignment of a 
scoped reference to another reference is checked (in 
general at run time) to prevent dangling references.  
Scopes may be nested: while one scoped memory area is 
active, another may be entered, and in fact the same 
scoped memory area may be entered while in use by an 
outer scope.  When the outermost scope is exited (i.e., 
when the earliest enter() for a given scoped memory 
area returns) the area is reset so that it contains no objects.  
A common idiom is a while or for loop that invokes 
enter() on a scoped memory area at each iteration.  All 
objects allocated during the iteration are effectively 
flushed when enter() returns, so there is no storage 
leakage.  The entire memory area is released when it is no 
longer accessible. In general the implementation needs to 
use a reference count scheme or its equivalent for this 
purpose.  
The RTSJ provides two main non-abstract classes for 
scoped memory: “LT” memory (linear time) and “VT” 
memory (“variable time”).  Object allocation and default 
initialization for LT memory must be implemented to be 
linear in the size of the object; no such constraint is 
imposed on VT memory.  In practice, the difference 
between the two is that the implementation must allocate 
the entire memory region used for LT memory (although 
not necessarily contiguously) whereas for VT memory 
only an initial region needs to be allocated in advance, 
with further chunks added as necessary. 
The RTSJ also provides several more specialized kinds of 
memory area.  Support for physical memory (i.e. memory 

with special characteristics) is offered through immortal 
physical memory and scoped physical memory.  This can 
be useful for efficiency; for example the programmer may 
want to allocate a set of objects in a fast-access cache.  
The raw memory access and raw memory float access 
memory areas offer low-level access (“peek” and “poke”) 
to integral and floating-point data, respectively. 

4.4 Asynchrony 
The RTSJ supplies two mechanisms relevant to 
asynchronous communication: asynchronous event 
handling, and asynchronous transfer of control. 

4.4.1 Asynchronous Event Handling 
The RTSJ defines the concepts of an asynchronous event 
and an asynchronous event handler, and it specifies the 
relationship between the two. 
An async event can be triggered either by a software 
thread or by a “happening” external to the JVM.  The 
programmer can associate any number of async event 
handlers with an async event, and the same handler can be 
associated with any number of events.  Async event 
handlers are schedulable entities and are constructed with 
the same set of parameters as a real-time thread; thus they 
can participate in feasibility analysis, etc.  However, there 
is not necessarily a distinct thread associated with each 
handler.  The programmer can use a bound async event 
handler if it is necessary to dedicate a unique thread to a 
handler. 
When an async event is fired, all associated handlers are 
scheduled.  A programmer-overridable method on the 
handler establishes the behavior.  If the same event is 
fired multiple times, the handler’s actions are 
sequentialized.  In the interest of efficiency and 
simplicity, no data are passed automatically from the 
event to the handler.  The programmer can define the 
logic necessary to buffer data, or to deal with overload 
situations where not all events need to be processed. 
The async event model uses the same framework as event 
listeners in Java Beans and the AWT but generalizes and 
formalizes the handler semantics with thread-like 
behavior. 

4.4.2 Asynchronous Transfer of Control 
Asynchronous Transfer of Control (“ATC”) is a 
mechanism whereby a triggering thread (possibly an 
async event handler) can cause a target thread to branch 
unconditionally, without any explicit action from the 
target thread.  It is a controversial capability.  The 
triggering thread does not know what state the target 
thread is in when the ATC is initiated while, on the other 
side, the target thread needs to be coded very carefully if 
it is susceptible to ATC.  ATC also imposes a run-time 
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cost even for programs that do not use the functionality.  
Nevertheless, there are situations in real-time programs 
where the alternative style (polling for a condition that 
can be asynchronously set) induces unwanted latency, and 
the user community identified several situations (timing 
out on an operation, or mode change) where ATC offers 
the appropriate semantic framework. 
A rudimentary ATC mechanism was present in the initial 
version of the Java language: the Thread methods 
stop(), destroy(), suspend() and resume().  
Unfortunately a conflict between the ATC semantics and 
program reliability led to these methods’ deprecation 
(stop(), suspend(), resume()) or stylistic 
discouragement (destroy()).  If a thread is stopped 
while it holds a lock, the synchronized code is exited and 
the lock is released, but the object may be in an 
inconsistent state.  If a thread is destroyed while it 
holds a lock, the lock is not released, but then other 
threads attempting to acquire the lock will be deadlocked.  
If a thread is suspended while it holds a lock, and the 
resuming thread needs that lock, then again a deadlock 
will ensue.   
The problem is that Baseline Java does not have the Ada 
concept of an “abort-deferred region”.  The RTSJ has 
introduced this concept, together with other semantic 
constraints, in the interest of providing ATC that is safe to 
use.  
Several guiding principles underlie the ATC design: 

• Susceptibility to ATC must be explicit in the affected 
code. 

• Even if code allows ATC, in some sections ATC 
must be deferred — in particular, in synchronized code. 

• An ATC does not return to the point where it was 
triggered (i.e. it is a “goto” rather than a subroutine call), 
since with resumptive semantics an arbitrary action could 
occur at arbitrary points. 

• If ATC is modeled through exception handling, the 
design needs to ensure that the exception is not caught by 
an unintended handler (for example a method with a catch 
clause for Throwable) 

• ATC needs to be expressive enough to capture 
several common idioms, including time-out, nested time-
out (with correct disposition when an “outer” timer 
expires before an “inner” timer),mode change, and thread 
termination. 
From the viewpoint of the target thread, ATC is modeled 
by exception handling.  The class 
AsynchronouslyInterruptedException (ab-
breviated “AIE”) extends InterruptedException 
from java.lang.  An ATC is initiated in the target 

thread by a triggering thread causing an instance of AIE 
to be thrown.  This is not done directly, since there is no 
guarantee that the target thread is executing in code 
prepared to catch the exception.  In any event there is no 
syntax in Java for one thread to asynchronously throw an 
exception in another thread1. 
ATC only occurs in code that explicitly permits it.  The 
permission is the presence of a “throws AIE” clause on a 
method or constructor.  ATC is deferred in methods or 
constructors lacking such a clause, and is also deferred in 
synchronized code.  
The basic ATC construct is the doInterruptible() 
method of AIE.  This method takes an Interruptible 
as parameter; the Interruptible interface defines the 
abstract methods run() (which has a “throws AIE” 
clause) and interruptAction().  The target thread 
constructs an AIE instance aie, makes this instance 
available to a triggering thread, and then invokes 
aie.doInterruptible(obj)on an Interruptible 
object obj; this causes obj.run()to be invoked 
synchronously.  If the triggering thread invokes 
aie.fire() while the target thread is still executing 
run(), the target thread will be asynchronously 
interrupted as soon as it is outside of ATC-deferred code, 
run() will return, and the target thread will invoke 
obj.interruptAction().  Note that the throwing and 
handling of the AIE are encapsulated in the 
implementation of the fire and doInterruptible 
method.  Calling fire() too early (before doInter-
ruptible has been invoked) or too late (after run has 
returned) has no effect on the target thread. 
The Timed class (a subclass of AIE) is provided as a 
convenience to deal with time out; the firing of the AIE is 
done by an implementation-provided async event handler 
rather than an explicit user thread. 
The RTSJ’s analog of Thread.stop is for a triggering 
thread to invoke interrupt() on a real-time thread 
that is to be terminated.  The effect of interrupt() on 
a real-time thread is a generalization of the effect on a 
regular thread.  If interrupt() is invoked on a regular 
thread, an Interrupted-Exception will be thrown 
when the thread is blocked.  If interrupt() is invoked 
on a real-time thread, an AIE will be thrown when the 
thread is in asynchronously interruptible code.  (Deferring 
the interruption in synchronized code avoids the problem 
that led to the deprecation of Thread.stop.)  
Moreover, since the AIE remains pending even if the 
exception is caught (unless logic in the handler explicitly 
disables the propagation) the effect of invoking 

                                                           
1 The functionality is actually present in 
Thread.stop(), but this method is now deprecated. 
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interrupt() on a real-time thread will be to terminate 
the thread; the latency depends on the duration of non-
ATC code in the method call stack. 

4.5 Time and Timers 
The RTSJ provides several ways to specify high-
resolution (nanosecond accuracy) time: as an absolute 
time, as a relative number of milliseconds and 
nanoseconds, and as a rational time (a frequency, i.e. a 
number of occurrences of an event per relative time).  In a 
relative time 64 bits (a long) are used for the 
milliseconds, and 32 bits (an int) for the nanoseconds. 
The rational time class is designed to simplify application 
logic where a periodic thread needs to run at a given 
frequency.  The implementation, and not the programmer, 
needs to account for round-off error in computing the 
interval between release points. 
The time classes provide relevant constructors, arithmetic 
and comparison methods, and utility operations.  These 
classes are used in constructors for the various release 
parameters classes. 
The RTSJ defines a default real-time clock which can be 
queried (for example to obtain the current time) and 
which is the basis for two kinds of timers: a one-shot 
timer, and a periodic timer.  Timer objects are instances of 
async events; the programmer can register an async event 
handler with a timer to obtain the desired behavior when 
the event is fired.  A handler for a periodic timer is similar 
to a real-time thread with periodic release parameters but 
is likely to be more efficient. 

4.6 Other Features 
The RTSJ provides a real-time system class analogous to 
java.lang.System, with “getter” and “setter” 
methods to access the real-time security manager and the 
maximum number of concurrent locks.  It also supplies a 
binding to Posix signal handlers (required of the 
implementation if the underlying system supports Posix 
signals).  

4.7 Status 
The initial version of the RTSJ was published in June 
2000 after a 15-month design.  A Reference 
Implementation was initiated by Timesys in early 2001, 
and experience from that effort has resulted in some 
suggested modifications to the specification.  Work on a 
final version of the specification, with accompanying 
Reference Implementation and Compatibility Test Suite, 
are currently in progress. 

5 COMPARATIVE ANALYSIS 

5.1 The Two RT Java Specifications 
The main distinction between the two specifications is in 
their execution environment models. 
The Core Java specification approach is to build a Core 
program as a distinct entity from a Java virtual machine.  
The intent is for the Core Java specification to be used to 
build small, fast, high performance stand-alone programs 
that have been traditionally written in C, C++ and Ada.  
These programs may communicate with a virtual machine 
in a controlled way. 
The RTSJ approach is to define an API with real-time 
functionality that can be implemented by a specially 
constructed Java virtual machine.  The intent is for the 
RTSJ specification to be used to build predictable real-
time threads that execute in the same environment as non-
real-time threads within one virtual machine. 
It is interesting to conclude that a system could be 
composed of sub-systems that are implemented using 
both specifications.  For example, a system may require a 
high-performance micro kernel implemented using the 
Core Java specification, executing in conjunction with a 
JVM that is executing some predictable real-time threads, 
as well as using a wide range of standard APIs within 
background threads. 
This distinction in the execution environment model is 
also reflected in the goals and semantics of the 
specifications, for example: 

• The RTSJ specification is more of a scalable 
framework that can be implemented by a wide variety of 
virtual machines with differing characteristics, and 
executing over a variety of operating systems.  In 
contrast, the Core specification has more precise and 
fixed semantics that match the characteristics of 
traditional real-time kernels. 

• The RTSJ specification retains security of operation, 
for example by preventing dangling references, and by 
ensuring that ATC is deferred in synchronized code.  This 
is consistent with Java design philosophy and the safety 
model of JVMs.  In contrast, the Core specification 
assumes that the Core programmer is a “trusted expert” 
and so provides more freedom and less safety; for 
example a dangling reference to an object in a released 
allocation context can occur; an ATC can trigger 
immediately within a priority-ceiling-locked protected 
object; and the stop() method does not unlock mutexes 
or release semaphores. 

• The RTSJ specification concentrates on adding 
predictability to JVM thread operations, but does not aim 
to deal with memory footprint, performance, or interrupt 
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latency.  In contrast, the Core specification has been 
designed to optimize on performance, footprint and 
latency.  Kelvin Nilsen has summarized this distinction as 
follows: “The RTSJ makes the Java platform more real-
time, whereas the Core Java specification makes real-
time more Java-like.” 
 
The other major distinction between the two 
specifications is in their licensing models.  The RTSJ 
specification is an extension to the trademarked Java 
definition and hence is subject to Sun Microsystems, Inc 
licensing requirements.  However the Core specification 
is independent of the trademark (and hence licensing 
requirements) and is being put forward as an ISO standard 
specification via the J Consortium’s approval to be a 
submitter of ISO Publicly Available Specifications. 

5.2 Comparison with Ada95 

5.2.1 Similarity to Ada Real-Time Annex 
Almost all new elements in the two real-time Java 
specifications can be found in either the Ada95 core 
language definition, or its Systems Programming or Real-
Time Annex [Ada95].  These include:  

• A guaranteed large range of priority values; 

• Well-defined thread scheduling that must include 
FIFO_Within_Priorities policy; 

• Addition of Protected Objects to the existing 
Synchronized objects and methods, that (may) prohibit 
voluntary suspension operations, and that define a Ceiling 
Priority for implementation of mutual exclusion (c.f. 
Ceiling_Locking policy); 

• Addition of asynchronous transfer of control 
triggered by either time expiry or an asynchronous event; 

• Allocation of, and access to, objects at fixed physical 
memory locations, or in the current stack frame; 

• Suspend / Resume primitives for threads (c.f. 
suspension objects); 

• Dynamic priority change for threads (c.f. 
Ada.Dynamic_Priorities); 

• Absolute time delay (c.f. delay_until statement); 

• Use of nanosecond precision in timing operations 
(c.f. Ada.Real_Time.Time); 

• Definition of interrupt handlers and operations for 
static and dynamic attachment. 
 

In addition, the High Integrity Profile of the Core Java 
specification has the same execution model as that of the 
Ravenscar Profile, as discussed in section 3.7. 
Thus the real time extensions for Java are quite 
compatible with the Ada95 Real-Time Annex and 
Ravenscar Profile execution models, which encourages 
the view that both Ada and Real-Time Java 
implementations could be used to develop parallel 
subsystems that execute in a common underlying 
environment. 

5.2.2 Dissimilarity to Ada R-T Annex 
The following design decisions were taken during the 
development of the Core Java specification that conflict 
with those taken for Ada95: 

• Low-level POSIX-like synchronization primitives, 
such as mutexes and signaling and counting semaphores, 
are included as well as the higher-level of abstraction 
provided by synchronized objects (mutual exclusion 
regions), monitors and protected objects.  Ada95 chose to 
provide only the higher level of abstraction such as the 
protected object and the suspension object.  There is 
therefore greater scope for application error using the 
Core Java specification, such as accidentally leaving a 
mutex locked. 

• More than one locking policy is present.  
Synchronized objects and semaphores require only mutual 
exclusion properties and so are subject to priority 
inversion problems.  Mutex locks and monitors require 
priority inheritance to be applied in addition to mutual 
exclusion.  Protected objects require instead the priority 
ceiling protocol to be applied as for 
Ceiling_Locking in Ada95.  The requirement on the 
underlying environment to support both priority 
inheritance and ceiling locking was one that Ada95 chose 
not to impose.  Also the introduction of protected objects 
with Ceiling_Locking in Ada95 has implicitly 
deprecated the Ada83 rendezvous that was prone to 
priority inversion problems, thereby providing a single 
mutual exclusion mechanism that is optimal for static 
timing analysis. 

• The only mutual exclusion region that is abort-
deferred is the Atomic interface used by interrupt 
handlers.  In particular, protected object and monitor 
operations are not abort-deferred regions.  This removes 
the integrity guarantees that a designer may well be 
relying on in a protected operation.  Use of the Atomic 
interface introduces a number of coding restrictions that 
limit its general applicability (in particular all the code 
must be execution-time analyzable) and so this may not 
be appropriate for all protected object scenarios.  In 
Ada95, all protected operations are abort-deferred and 
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there is no restriction on the content of the code other than 
that it does not voluntarily suspend. 

• There is no notion of requeue in the Core Java 
specification.  Ada95 requeue has been found to be useful 
in designing scenarios such as servers that provide multi-
step service. 

• Asynchronous transfer of control includes the ability 
to resume execution at the point of interruption (i.e. 
effectively discarding the transfer of control) which could 
be useful for example to ignore an execution time overrun 
signal in certain context-specific situations.  This option is 
not provided by Ada95. 

• Dangling references to objects within allocation 
contexts can occur in the Core Java specification.  Ada95 
semantics were carefully crafted to prevent dangling 
references except via unchecked programming. 
 
Some of the RTSJ design decisions that conflict with the 
Ada 95 core language and Real-Time Annex follow: 

• The RTSJ has a more general view of scheduling and 
dispatching, with feasibility analysis, overrun and 
deadline miss handlers, rational time, etc. 

• For the fixed-priority preemptive policy, the RTSJ 
does not dictate where in the ready queue a preempted 
thread is placed.  In the Ada Real-Time Annex, this is 
deterministic (the preempted task is placed at the head of 
the queue for its priority). 

• The RTSJ’s priority ceiling emulation monitor 
control policy requires queuing in one supported model 
that allows a thread holding a priority ceiling lock to 
block. 

• There is no direct Ada analog to the RTSJ’s async 
event model (in particular the many-to-many relationship 
between events and handlers). 

• In the RTSJ, an ATC is not deferred in finally clauses 
(this is because the bytecodes do not directly reflect 
where finally clauses were present in the source code).  In 
Ada, abort is deferred during finalization. 

6 LOOKING AHEAD 
We can look back on the ’90s as the decade of 
revolutionary communication for individuals and for 
business, primarily via the internet.  Use of e-mail, the 
web, mobile phones, e-banking etc has become part of 
everyday life, and e-business is an extremely rapidly 
growing industry.  The Java execution environment has 
been most prominent in the software part of this new 
technology, with its write-once-run-anywhere capability 
inherent in its bytecodes and in the JVM, and with its 

abundant highly practical and portable APIs.  But many of 
today’s Java applications do not have demanding size and 
performance constraints. 
So what will the next decade bring us?  The next 
revolution could well be in communicating embedded 
devices.  Some have predicted a trillion communicating 
devices by 2025, affecting almost all aspects of our daily 
lives.  In at least some of these cases, an embedded device 
application environment will have demanding size and 
performance constraints, and will also require high 
availability, high integrity and hard real time deadlines.  
A growing number of these systems may even have safety 
critical requirements. 
The Real-Time Java initiatives presented in this paper 
illustrate that the Java community as a whole, and its tool 
vendors and those who promote international standards in 
particular, are taking real-time requirements and 
embedded system constraints very seriously, and are 
preparing Java, its JVMs and its APIs for the next 
revolution.  So what of Ada95, or its next revision 
Ada0Y? 
Ada enthusiasts can argue quite validly that Ada95 
environments can already meet the stringent requirements 
of embedded systems better than any other, and that 
Ada’s suitability for use in high integrity and safety 
critical is second to none.  However it is clear that Ada 
did not figure in the communications revolution of the 
90’s, and does not enter the new millennium with an 
expanding community.  So can Ada, with all its excellent 
reputation within high integrity and safety critical 
embedded systems, find a role in the new revolution as 
the battleground moves into Ada’s own strongholds? 
The key to Ada’s successful future almost certainly lies in 
seamless co-operation with the Java environment, rather 
than in competing with it.  It is interesting to see how the 
two language environments are starting to converge 
somewhat.  This cross-fertilization could be known as the 
“Jada effect”. 
We have already seen in this paper that many of the new 
ideas for Real-Time Java have been borrowed from Ada, 
such as those needed for predictability and deterministic 
schedulability analysis.  Baseline Java had already used 
Ada’s exception model, and now we see that the real-time 
extensions have equivalents for protected objects 
including entries, priority ceiling emulation, well-defined 
thread scheduling policies, absolute delay, high precision 
timers, suspension objects, dynamic priority change, 
interrupt handlers, asynchronous transfer of control, 
access to physical memory, abort-deferred regions etc.  So 
Java is definitely evolving towards Ada in the real-time 
domain. 
In similar fashion, Ada is evolving towards Java.  The 
Ada95 revision already brought in support for a 
comprehensive object oriented programming model not 
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dissimilar to that in Java, including single inheritance 
hierarchies, constructors and finalizers etc.  The next 
revision of Ada (Ada0Y) may well see the addition of 
support for Java-style interfaces, thereby providing the 
same limited form of multiple inheritance as in Java (from 
one class plus any number of interfaces).  Furthermore, 
Ada0Y may relax the rules that currently prevent 
mutually-dependent package specifications, via a new 
with type construct.  This would allow mutually-
dependent Java classes to be modeled as Ada packages 
that each define a tagged type plus its primitive 
operations, without having kludges to workaround 
circularities in the “with” dependencies.  Finally there is 
even some discussion about whether to allow a Java-like 
OOP syntax for invoking the primitive operations of a 
tagged type.  This could be used instead of the traditional 
procedure calling style that requires some rules to identify 
which parameter is the object that controls the dynamic 
dispatching, replacing it with an OOP style along the lines 
of object’Operation(parameters). 
So it seems that both Java and Ada are undergoing the 
Jada effect.  However as well as language convergence, it 
is also very important to have execution environment 
convergence if the two are going to co-exist happily.  We 
have already seen some worthy attempts at integration 
between Java and Ada execution environments.  A few 
different approaches are mentioned below: 

• Aonix’s AdaJNI [Flint00] makes use of the Java 
Native Interface that is provided with the Java 
Development Kit.  This approach allows Ada native 
programs to interact with Java classes and APIs that are 
executed by a local or remote JVM via Ada-style 
interface packages. 

• Ada Core Technologies JGNAT [ACT00] compiles 
Ada95 into Java bytecodes in standard class files.  This 
approach allows JVM-based programs to comprise a 
mixture of Ada and Java code.  Again, there is also the 
capability for the Ada code to access Java classes and 
APIs via Ada-style interface packages. 

• Ada ORB vendors e.g. [OIS] provide access to 
CORBA objects from Ada programs.  This approach 
allows a logically distributed, mixed-language (including 
Ada and Java) system to communicate using the CORBA 
client/server model. 
If Ada is to gain any kind of foothold in the new 
generation of communicating devices, we must build on 
foundations such as these.  The efforts of users and 
vendors alike within the Ada community need to be 
focused on developing and evolving Ada in ways that are 
compatible with the emerging requirements, not least a 
seamless co-existence with the new Real-Time Java 
execution environments, their JVMs and their APIs.  If 
we can achieve this goal, this can give a whole new lease 

of life to Lady Ada.  We may even want to rename her 
Lady Jada !. 
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