
CASE STUDY

How Masten Space Systems is
Using Ada and SPARK to Land on
the Moon’s South Pole

When Masten Space Systems was awarded a NASA contract to
land scientific payloads on the Moon, they knew they would need

software that could be proven reliable —and proven quickly.
All the mission-critical flight control software for their XL-1
Lunar Lander had to work perfectly. And to top it all off,
Masten was working with an extremely constrained schedule
and budget.

That’s why they chose Ada and SPARK.

The challenges of landing on the lunar south
pole
In April of 2020, NASA awarded Masten a contract to
transport a suite of scientific research payloads to the lunar
south pole. The NASA Commercial Lunar Payload Services
(CLPS) project is a $75.9 million contract that covers
everything from the lab to the surface of the Moon, along with
a host of payload services after landing.

Geologically, the lunar south pole is highly active and an area
of great interest to scientists. The terrain is very uneven,
making it a difficult place to land a spacecraft and explore
with a rover. Once in lunar orbit, the XL-1 must be able to
navigate to the polar region, determine where to land, and land
safely, avoiding the numerous hazards in the area. It must
touch down within a very narrow corridor—where the
scientific interest lies, not five kilometers away. And it must
do all of this autonomously.

Developing mission-critical spacecraft
software to a tight schedule
Masten’s lander boasts a large collection of computers,
including numerous smaller computers called electronic
control units (ECUs).

The ECUs are embedded systems that interface with the
hardware on the spacecraft. They turn the power on and off to
various components, control the engines and thrusters, and
interface with the sensors.

Developing software for these small, heavily constrained
ECUs presents a number of challenges, according to
Abhimanyu Ghosh, the avionic software engineer who is
leading Masten’s ECU software development effort for the
XL-1.

First, memory and power are scarce resources on the XL-1, as they are on most spacecraft. To minimize
resource consumption, the ECU software will run in a “bare metal” configuration, that is, without an
operating system or other facilities that support the application code.

Customers
Masten Space Systems - a
developer of reusable vertical-
takeoff/vertical-landing (VTVL)
rockets

Problem
Masten’s XL-1 Lunar Lander will
transport a suite of scientific
research payloads to the lunar south
pole. It boasts numerous small
embedded computers called
electronic control units (ECUs) that
turn the power on and off to various
components, control the engines
and thrusters, and interface with
sensors. Developing the software for
these small, heavily constrained
ECUs presents a number of
challenges. The software will run in
a “bare metal” configuration, and it
has to be extremely reliable and
easy to maintain. The code also
needs to be modular and reusable,
to avoid duplication of effort and to
reduce development costs and
timeline.

Solution
To develop their mission-critical
flight control software, Masten
chose the Ada and SPARK
programming languages, together
with AdaCore’s GNAT Pro integrated
development environment and the
SPARK Pro static analysis tool suite.

Results
While the XL-1 Lunar Lander project
is still in development, Masten
already sees substantial value in the
capabilities that Ada, SPARK, and
AdaCore’s products and support
have brought to their embedded
project. They expect to realize a
reduction of at least 20 to 30
percent in verification and validation
time and in overall development
costs and timelines, as well as a 20
to 30 percent increase in code
reuse.

https://masten.aero/lunar-lander/
https://masten.aero/lunar-lander/

Second, the software must be easy to maintain. Therefore, it must be easy to understand for both
technical and non-technical team members.

Third, the software must be extremely reliable in flight. It must be verified to be correct—free from bugs
that might threaten the mission and result in the loss of millions of dollars of scientific equipment.

Finally, the software development process has to meet the program’s tight project schedule.

“A lot of things that might be acceptable in traditional spacecraft development timelines don't align well
with our program goals,” says Ghosh. To meet their schedule, Masten needed their code to be modular
and reusable, so they could avoid duplication of effort.

Therefore, it was crucial to choose the right programming language and the right set of development
tools that would support a bare metal configuration, enforce correctness of the code by design, facilitate
rapid verification and validation, and maximize code reuse.

Choosing the right language (Why C/C++ was not the answer)
According to Ghosh, Masten’s choice of
programming language for their embedded
ECUs came down to the amount of effort
that would be required.

Ghosh said they could have used C and C++.
There are, after all, many spacecraft flying
with C/C++ flight software. They are even
used for some applications on the XL-1. “The
problem with using C or C++ for safety-
critical and mission-critical applications,” he
said, “is that these languages are
fundamentally memory-unsafe and non-
concurrency-aware.”

Organizations who use C/C++ for such applications typically require the use of an extensive coding
standard for the language. Examples include MISRA C, MISRA C++, the Lockheed JSF AV C++ Coding
Standards, and the JPL Institutional Coding Standard for the C Programming Language.

“Use of such a coding standard,” says Ghosh, “would significantly drive up the time and cost of
verification and validation for Masten’s ECUs.”

Instead of C or C++, Masten chose Ada and SPARK, together with GNAT Pro from AdaCore.

SPARK is a language plus a toolset. The SPARK language is a formally analyzable subset of Ada. Its
primary design goal is to provide the foundation for sound formal verification and static analysis. It
embodies a large subset of Ada 2012 while prohibiting certain features that are common sources of
defects and not amenable to static verification. The SPARK toolset brings mathematics-based
confidence to software verification through use of formal methods.

GNAT Pro is AdaCore's complete solution for producing critical software systems where reliability,
efficiency, and maintainability are essential. It provides an integrated development environment for Ada
and offers a suite of tools and libraries for developing large, mission-critical applications. There’s also
optional support for C and C++.

Why Masten chose AdaCore
Masten decided to put SPARK to use where it would have maximum value: in code that is critical to the
mission, code that must be flawless.

“The	problem	with	using	C	or	C++	
for	safety-critical	and	mission-
critical	applications	is	that	these	
languages	are	fundamentally	
memory-unsafe	and	non-
concurrency-aware.”	
— Abhimanyu Ghosh, Avionic Software Engineer, Masten
Space Systems

The XL-1 is not a totally SPARK-driven environment. Ghosh and his colleagues are trying to strike a
balance between (1) making use of existing codebases that were not written in Ada or SPARK, and (2)
using the features of SPARK where they need to verify that the code is absolutely correct.

Ghosh lists several reasons why Masten chose AdaCore’s tools.

One reason is AdaCore’s business model, which is based on open-source software plus support. “That's
definitely something I feel is a good thing,” Ghosh says. “It's beneficial to the company, and it's also
beneficial to the community, and to the customer.”

A second reason is that AdaCore support comes directly from the developers of the technology, as
opposed to the traditional “first line” support. “Having access to the folks who actually designed the
tools—who really understand the detailed technical jargon—is extremely useful. It's going to be even
more useful going forward, as we're only at the beginning of ramping up on AdaCore's technology.”

Third, Ghosh was impressed with the modularity of the AdaCore toolchains. “A lot of things can be
adjusted to the customer's needs,” he says. “It’s not a monolithic solution like so many others in the
embedded market that are aimed at a narrow use case. Most vendors say, ‘Here, take this, and this is
how you're expected to develop.’ But as soon as you try to do advanced things with the tools, you run
into a brick wall. That’s not the case with GNAT Pro and SPARK.”

Ghosh also praised the high level of AdaCore’s documentation, and he greatly appreciates the fact that
all the source code is provided.

Ramping up with SPARK Pro and GNAT Pro
Masten has made good initial progress in defining their software architecture. They are currently
refining their full system-level and subsystem-level requirements and flowing those down into
individual component-level software requirements for the XL-1.

Ghosh says they’re trying to fully understand
what they’re building before they start coding. As
part of that effort, Masten has been using SPARK
and GNAT Pro for R&D and prototyping, alongside
C and C++.

“We’ve been able to run SPARK in a bare metal
environment using the Ravenscar profile,” says
Ghosh. He also says that they’ve implemented
some tasking and a top-level executive for
controlling general-purpose IO and serial ports,
and they’ve been verifying core behavior and the
processor interface.

One thing that struck Ghosh during this early development is how AdaCore’s tools stand out in the
embedded world.

“Many embedded tools are very rigid,” he says. “The developer is locked into a graphical environment
where you click a certain button or do specific things to make certain things happen. They’re built to be
easy for the developer to use during initial development stages. Where they falter is when they’re used
in continuous integration or cloud-based builds.”

“SPARK Pro and GNAT Pro are far more flexible. You can use the IDE (GNAT Studio), but it’s by no
means required. Everything you do within the IDE can be scripted in some way. The pieces of the
AdaCore tool stack are very modular. That has major benefits not just for development, but for
integration as well.”

Ghosh	says	they’re	trying	to	fully	
understand	what	they’re	
building	before	they	start	coding.	
As	part	of	that	effort,	Masten	has	
been	using	SPARK	and	GNAT	Pro	
for	R&D	and	prototyping,	
alongside	C	and	C++.

Ghosh also likes AdaCore’s use of standard open-source software development techniques, such as
using Makefiles.

Improvements of at least 20 to 30 percent
While it's too early for Masten to quote quantifiable results, Ghosh can already see substantial value in
the capabilities that Ada and SPARK bring to an embedded project.

“We’re probably looking at a reduction of at
least 20 to 30 percent, if not more, in
verification and validation time and in
overall development costs and timelines,” he
says. “And that’s compared to very well
written, very well optimized C++ code,
which is very hard to come by these days. I
expect a 20 to 30 percent increase in code
reuse as well.”

Ghosh also believes SPARK will help Masten
simplify their code. They are borrowing from
functional safety principles to come up with
an architecture that gains them value while
reducing complexity.

“That’s not captured in the software effort in many programs right now,” he says. “If you look at the JSF
C++ document, it's a minefield. That’s very prevalent in the C/C++ world. People write these elaborate
100-page-long company coding standards. With Ada and SPARK, you can use automation to enforce
correctness at the software level and not put people through this.”

Better traceability
One of the things Ghosh appreciates in Ada and SPARK is the clarity of the syntax. He believes it makes
for better traceability between requirements and code.

“A lot of requirement details get lost in the
implementation of a C/C++ program,” he
says. “You certainly can't take a C++ program
and show it to a systems engineer and expect
them to understand what it's doing. There’s a
much better sense of traceability between
requirements written in English by a systems
engineer and the things you see in the source
code listing when you write in Ada. With
Ada’s extremely modular nature, you're
specifying in a very ‘systems engineering-
oriented’ manner. The inputs, outputs, and
contracts are inherent in a module, which you
can't really do with C++ in a meaningful way.”

Ghosh says Masten’s expectations for Ada and SPARK have definitely been met and even exceeded,
especially in terms of the support they’ve received and the ease with which they’ve been able to ramp
up on the technology.

“We’re	probably	looking	at	a	
reduction	of	at	least	20	to	30	
percent,	if	not	more,	in	verification	
and	validation	time	and	in	overall	
development	costs	and	timelines…	I	
expect	a	20	to	30	percent	increase	in	
code	reuse	as	well.”	
— Abhimanyu Ghosh, Avionic Software Engineer, Masten
Space Systems

There’s	a	much	better	sense	of	
traceability	between	requirements	
written	in	English	by	a	systems	
engineer	and	the	things	you	see	in	
the	source	code	listing	when	you	
write	in	Ada.	
— Abhimanyu Ghosh, Avionic Software Engineer, Masten
Space Systems

Big milestones on the horizon
One big milestone Masten wants to pass very soon is the implementation of error detection and
correction (EDAC) features on their processor. They’ll also be implementing a network stack and an
interface to the network stack from within the Ada application.

After that, another important milestone will be integrating new Ada-based code into their existing C/C+
+ software environment. They’ll take actual Ada/SPARK user applications and inject them into the C/C+
+ codebase.

“There's a significant amount of development ahead,” says Ghosh, “but I'm definitely looking forward to
it.”

About Masten Space Systems
Born in California's Mojave Desert in 2004, Masten Space Systems develops technology to accelerate
space ecosystems on the Moon, Mars, and beyond. Their goal is to unlock the value in space to
ultimately benefit humans on Earth. Masten’s reusable rockets, lunar landers, and supporting
technologies break down the barriers to space for government, defense, and commercial customers.

Masten began prototyping its vertical-takeoff/vertical-landing (VTVL) rockets long before SpaceX and
Blue Origin made that concept well-known. Thanks to their pioneering work in VTVL, they won the
NASA Centennial Northrop Grumman Lunar Lander X-Prize Challenge in 2009.

Since then, Masten has worked with NASA and other customers to advance Technical Readiness Level
(TRL) for a wide variety of space technologies. Customers can put their payload on one of Masten’s
rockets and test it on Earth. Masten provides a unique service that allows their customers to control
Masten’s rocket through the payload itself.

One payload was the Jet Propulsion Laboratory’s Lander Vision System (LVS), which was recently used
to land the Perseverance rover on Mars. The LVS was tested and its TRL advanced through flights on
Masten’s Xombie rocket.

In 2020, Masten was awarded a NASA CLPS contract to land scientific research payloads at the South
Pole of the Moon. That landing is scheduled to take place in late 2023.

About AdaCore
Founded in 1994, AdaCore supplies software development and verification tools for mission-critical,
safety-critical, and security-critical systems.

Over the years, customers have used AdaCore products to field and maintain a wide range of critical
applications in domains such as commercial and military avionics, automotive, railway, space, defense
systems, air traffic management/control, medical devices, and financial services. AdaCore has an
extensive and growing worldwide customer base; see www.adacore.com/industries for further
information.

AdaCore products are open source and come with expert online support provided by the developers
themselves. The company has North American headquarters in New York and European headquarters in
Paris. www.adacore.com.

Contact info@adacore.com if you would like to speak to a space expert
about AdaCore technologies for space systems

mailto:info@adacore.com

	When Masten Space Systems was awarded a NASA contract to land scientific payloads on the Moon, they knew they would need software that could be proven reliable —and proven quickly.
	The challenges of landing on the lunar south pole
	Developing mission-critical spacecraft software to a tight schedule
	Choosing the right language (Why C/C++ was not the answer)
	Why Masten chose AdaCore
	Ramping up with SPARK Pro and GNAT Pro
	Improvements of at least 20 to 30 percent
	Better traceability
	Big milestones on the horizon
	About Masten Space Systems
	About AdaCore

