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Abstract—The Transmission Control Protocol (TCP) at the
heart of TCP/IP protocol stacks is a critical part of our current
digital infrastructure. In this article, we show how an existing
professional-grade open source embedded TCP/IP library can
benefit from a formally verified TCP reimplementation. Our
approach is to apply formal verification to the TCP layer only,
relying on validated models of the lower layers on which it
depends.

Index Terms—Network protocols, deductive verification, sym-
bolic execution.

I. INTRODUCTION

By 2030 it is estimated that one trillion Internet of Things
(IoT) devices will be deployed and be part of every aspect of
our daily life [1]. At the same time, it is evident that security
for such systems is a major challenge [2], [3]. Any vulnera-
bility in software libraries that are widely used by embedded
systems can potentially open the door for compromising the
security of billions of deployed IoT devices. Researchers have
shown that such vulnerabilities exist: in 2019, critical security
vulnerabilities were discovered in a TCP implementation that
has been used by billions of IoT devices for more than 13
years [4], some of them allowing remote code execution.

Networking communication models define the processes
of transferring information from one network component to
another. Currently, the two most popular networking com-
munication models are the TCP/IP (Transmission Control
Protocol/Internet Protocol) [5] and the OSI (Open System
Interconnection) [6] models. Layering is an essential design
requirement for both models to achieve modularity, flexibility,
and abstraction. Applications that only need to use the lower
levels’ functionality can ignore all the unnecessary upper
levels. Figure 1 shows the various layers of the OSI model.
Each layer supports a wide range of protocols that are compat-
ible with the layer’s specifications. The lowest layers, bottom
layers in Figure 1, are more hardware-oriented, while the top
layers are more software-specific. While the application level
has a wide range of protocols that can be used depending on
the application specification, the transport layer is heavily de-
pendent on the two dominant protocols: Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). Today,
almost every networking application, including IoT devices,
is using either the TCP or the UDP protocols to traffic data
between the Network and the Application layers.

Existing research has dealt with formally verifying several
protocols of the TCP/IP stack. Early work formalized and
proved some key properties of the TCP protocol [7]. In later
work, researchers have formally specified TCP, UDP and the
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Fig. 1. Overview of the TCP/IP CycloneTCP stack (OSI model). Green parts
have been translated into SPARK. They depend on orange parts written in C.

Sockets API in HOL and tested existing libraries against
the formal specification [8], [9]. More recently, others have
formally specified and implemented the SSL/TLS protocol
in F* and integrated the resulting implementation in existing
libraries [10]. To the best of our knowledge, no prior work at-
tempted to formally verify an implementation of TCP, although
the authors of [9] suggest that it would possible to extract an
actual implementation in Haskell from their specification.

In this paper, we take a practical approach, where the
security of an existing TCP/IP stack implementation written
in the C programming language is incrementally enhanced
by replacing parts of its code with formally verified code
in SPARK [11], a subset of the Ada programming language
supported by formal verification tools. We chose CycloneTCP,
a professional-grade open source embedded TCP/IP library
developed by the Oryx Embedded company [12]. Figure 1
shows the protocols supported by the library. This work
focuses on the TCP and Socket components of the stack. The
library’s TCP implementation is meant to conform to the RFC
793 protocol specifications [13]. The quality of CycloneTCP
is acknowledged by the AMNESIA:33 report [14], which
classifies it as one of the most resilient TCP/IP stacks.

The contributions of this article are the following. First, we
show that formal verification can be applied selectively to a
layer of an existing TCP/IP library, by translating the TCP
layer to SPARK and modelling the lower layers on which it
depends. The benefits are three-fold: we found and corrected
two bugs in the TCP layer, we proved the correction of that
layer, and we defined formal contracts for the upper layers to
call the TCP layer. Second, we showed how the models of
the lower layers can be validated by symbolic execution with
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KLEE on the C code of those layers. The tools1 and code2

are freely available online.
We present the TCP protocol in section II and the spec-

ification techniques used in section III. We explain how we
formally implemented in SPARK the TCP user functions in
section IV and how we hardened the user’s API in section V.
Finally we conclude with a summary of the results of our work
in section VI.

II. OVERVIEW OF THE TCP PROTOCOL SPECIFICATION

TCP is a connection-oriented protocol; a connection be-
tween the sender and the receiver must be established before
transmitting any data. Furthermore, TCP is a reliable protocol
since it guarantees the delivery of all the messages in absence
of a network outage and that they are delivered in the order
they were sent. It also provides error-checking mechanisms to
discard and recover from corrupted data.

Generally, every TCP communication session will go
through the following three phases (if no error occurs):
1) opening the connection, 2) sending and receiving the data,
and 3) closing the connection. The behavior of the three-phase
communication can be described by the state machine given in
Figure 2. An edge represents a state transition. An edge-label
in the format of x

y represents the actions associated with
the state transition, where x is triggering the transition, and y
is produced by the transition. The trigger x is either an explicit

1https://www.adacore.com/download
2https://github.com/Adacore/Http Cyclone

action like Close, or the arrival of specific flags, while y always
represents the flags transmitted in response when present. An
explicit action is either a user-triggered action (through the
user’s API) or an action automatically triggered by a timeout
event. The flags are embedded in the header section of a
transmitted segment and can be one of the following:

• ACK: the last message received by the sender is acknowl-
edged.

• SYN: this flag is sent to establish a connection.
• FIN: this flag is sent to close the connection.
• RST: this flag is sent to reset the connection, often when

an error occurred on one or the other side.

The state machine in Figure 2 does not represent the
complete protocol specification; for example, it does not reflect
error conditions or any actions which are not connected to
the state changes. Instead, it gives an overview of all the
possible states a TCP connection could reach over its lifetime.
Each state has a clear meaning. LISTEN represents waiting
for a connection request from any remote TCP and port.
SYN-SENT and SYN-RCVD represent the initialization of
the connection that ends when ESTABLISHED is reached.
FIN-WAIT-1, FIN-WAIT-2, CLOSING, and TIME-WAIT are
a group of states that represent waiting for a connection
termination request from the remote TCP. CLOSE-WAIT and
LAST-ACK represent waiting for a connection termination
request from the local user. Finally, CLOSED represents no
connection state at all.

TCP is based on a multitasking model. Different tasks
can interact and update the socket data structure, used to
retain the status of a TCP connection, to handle the various
events that can occur within a TCP session. RFC 793, under
Section “3.9. Event Processing” page 52, describes a possible
implementation of how to handle these events based on three
tasks: one for the user calls, one for the arriving segments
and one for the timers. The role of each of the three tasks
can be summarized as follows. User calls refer to functions,
namely open, close, abort, send and receive, that
can be called by the user to control the connection, send, or
receive data. These functions can trigger transitions between
the connection’s states since they are intended to control
the connection. In the arriving segments task, the received
segments are being processed, and the corresponding messages
are sent back. Transitions between states can be triggered
on the reception of a segment. Finally, timers control the
timeouts, for example, the retransmission timeout to retransmit
a message or the time-wait timeout to close the connection
after a specified amount of time elapsed. Thus, transitions
corresponding to the timeout events can also be triggered by
this task. A complete description of TCP specification can be
found in the RFC 793 document [13].

The CycloneTCP implementation adopts the three-task-
based model and the socket data structure defined by the
RFC 793. Thus, it has tasks dedicated to the user’s code,
to the timers, and to the processing of incoming segments.
These three tasks communicate together, either synchronously:

https://www.adacore.com/download
https://github.com/Adacore/Http_Cyclone


a task requests for an action to be done by another task; or
asynchronously: some actions are performed on a socket by
a task between two uses of the socket by another task. All
the uses of a socket are protected by a global mutex, common
to all the sockets. It ensures that only one task can modify a
socket at the same time.

III. SPECIFICATION TECHNIQUES USED

A. The SPARK programming language

Ada is a general-purpose, procedural and Object-Oriented
programming language that puts great emphasis on the safety
and correctness of the program. Some of the safety char-
acteristics of the language are its strong typing system and
its extensive compile-time and runtime checks. Common C
programming vulnerabilities like using unsafe pointers or
improper null termination of strings cannot exist in an Ada
program, while issues like buffer overflow or integer overflow
can be dynamically captured by Ada’s runtime checks and
dealt with via exception handlers. Furthermore, Ada provides
contracts, such as preconditions and postconditions, as part of
the language’s standard syntax. Such contracts are vital for
explicitly expressing software and verification requirements in
the source code to allow for static analyzers or runtime checks
to verify that the stated requirements are met.

By subsetting Ada, the SPARK programming language [11]
provides the largest possible subset of Ada that is suitable for
functional specification and static verification. For instance, in
SPARK, expressions are free from side effects, and aliasing
is forbidden (no two variables can share the exact memory
location or overlap in memory), including when using pointers
thanks to the use of an ownership policy [15].

GNATprove [16] is the tool that provides formal verification
for SPARK through two kinds of analyses. The first enables
flow analysis to check the initialization of variables, verify data
dependencies between inputs and outputs of subprograms, and
detect useless code. The second uses deductive verification to
generate verification conditions for SMT solvers via a weakest-
precondition calculus to detect possible runtime errors and
violations of functional contracts.

B. Interfacing SPARK and C code

The verification of the entire functional specification of
the CycloneTCP library is beyond the scope of this work.
Instead, the aim is to provide significant security hardening
to mostly-C libraries by selective use of SPARK. Thus, this
work focuses on the hardening of the TCP library areas
that its original authors designated as the most vulnerable or
crucial to conform to their functional specifications, namely,
the API. This mainly falls under two categories: a) proving
the conformance to the protocol’s functional specification for
the translated code, discussed in Section IV, and b) hardening
the user’s API to enforce its correct usage by users, discussed
in Section V.

Ada and SPARK offer an easy-to-use mechanism for inter-
facing with C code. The mechanism allows C-written functions
to be called by Ada/SPARK code and vice versa and for

representing shared data objects. The memory representations
of a shared data object must be the same in both the C and
the SPARK code. For instance, if a C function is called with a
32-bits integer argument, the SPARK interface of this function
should also be called with a 32-bits integer argument. It is
also true for record types. It is the responsibility of the user
to ensure this property. Nevertheless, the compiler GCC offers
an option -fdump-ada-spec that helps the user in writing
correct Ada specifications by generating them directly from
the C code. The layout of the record types are then the same
by construction in C and SPARK.

Although formal verification can only be applied to the
SPARK translated code, preconditions and postconditions can
be attached to C functions interfaced in SPARK to allow
reasoning about the side effects of calling these functions by
the SPARK code. Since the functional specification of these
contracts cannot be proved, it is the programmer’s role to
ensure their correctness. Interfacing C and SPARK code can
be error-prone if it is not done carefully. Section IV discusses
how to mitigate this issue effectively.

C. Dealing with pointers

In the CycloneTCP library, pointers are used both as the
type of variables passed to functions and as the type of
structure fields; for instance, in the socket structure to store
other complex data structures and recursive pointer-based data
structures. SPARK uses a pointer ownership model to prevent
bugs involving pointers such as memory leak or double free,
which imposes some restrictions on how pointers are being
manipulated. When a memory area is allocated, a pointer
points to this memory area, and thus, it is considered “owned.”
The ownership of the memory can be transferred, but the
memory must be deallocated before the end of the execution
of the program.

D. Specifying the frame condition

The socket structure is shared between different functions
and contains a large number of fields. Most of the fields are
used in library parts that are not considered by this work,
and thus, are not relevant for our verification. Thus we use
ghost code in SPARK (that is, special code only meant for
verification and not included in the final executable) to focus
the verification effort on the relevant subset of the fields, which
also makes the specifications easier to write and understand.
This is a solution to the classical problem of specifying the
frame condition for a function, that is, the set of objects
possibly modified by the function. Ghost code is used by
GNATprove for analysis but is not compiled into the final
executable. More specifically, we define a model of the actual
socket as a ghost function that can be used in contracts:
Model(Sock) extracts the fields of interest from socket
Sock. A common usage is within a function postcondition:

Model(Sock) = (Model(Sock)’Old with delta
State => TCP_STATE_CLOSED)

This states that the fields of Sock used by Model are not
changed by the function call, except for the field State that



is equal to TCP_STATE_CLOSED after the call. Nothing is
stated on the fields that are not selected by Model(Sock).
In particular they can have changed during the execution of
the function or not.

IV. CONFORMANCE TO THE TCP PROTOCOL

A. Extracting a specification from RFC 793

Extracting a specification is mandatory for providing func-
tional contracts to the user’s functions. This can be achieved by
interpreting the text of RFC 793. However, the text is under-
specified, and thus, only one of the possible implementations
is used by this work. The following choices were made in our
formalization of the TCP specification:

• The transitions between states must respect the order
given by the state machine described in Figure 2. In
particular, a transition from one state to another is valid
only if the state machine allows a transition between these
two states.

• RFC 793 describes the conditions for the state of the
socket which need to hold when a user’s function is
called [13, p. 52], to avoid errors. These conditions were
turned into preconditions in our formalization.

B. Rewriting the TCP user functions

While being extensively tested against industry standard re-
gression test suites, the original CycloneTCP library provides
no formal guarantees that the implementation respects the TCP
functional specification. Thus, there is no assurance that the
implementation will only allow valid transitions between the
different states that a TCP session can exhibit. We aim to
use the SPARK technology to verify that the implementation
respects the TCP automaton, given in Figure 2. The work is
focused on hardening the API of the user task, mainly the
high-level user functions, to verify the state transitions. To
achieve this, the rest of the TCP protocol, not related to the
user task, has to be taken into account. The reason for this
is two-fold. First, although TCP user functions can trigger
state transitions, the actual transitions are done by other library
functions called from TCP user functions. Second, other parts
of the library can trigger state transitions during and between
TCP user function calls, which can affect the intermediate and
final states that a TCP user function can exhibit. The TCP user
functions were fully translated to SPARK. SPARK bindings
were also provided for most of the rest of the library’s C
functions to allow their invocation from the SPARK code.

RFC 793 provides all the information needed for the allowed
transitions between the different TCP possible states. For any
transitions directly triggered by calling the TCP user func-
tions, SPARK contracts, representing transitions allowed by
the functional specification, are embedded within the SPARK
translated code. The helper function TCP_Change_State is
called explicitly every time a state transition needs to be made
to update the socket’s state. Any incorrect transition allowed
by the code will be detected by GNATprove.

The concurrent implementation of the TCP protocol allows
for multiple interactions between the tasks, both synchronous

Algorithm 1 Function to compute the possible state after the
completion of a particular event that is requested by a TCP
user function.

1: function TCP WAIT FOR EVENTS PROOF(Socket, Event Mask)
2: Slast := Socket
3: E := TCP_Update_Events(Slast)
4: if (E & Event Mask) 6= 0 then
5: return Slast

6: end if
7: for i = 1 to 3 do
8: Slast := TCP_Process_One_Segment(Slast)
9: E := TCP_Update_Events(Slast)

10: if (E & Event Mask) 6= 0 then
11: return Slast

12: end if
13: end for
14: return ∅
15: end function

(with a call to TCP_Wait_For_Events) and asynchronous
(between two user function calls), and thus, numerous pos-
sible state changes are possible at any given moment. This
makes the functional specification verification significantly
challenging, as SPARK does not have a native mode to deal
precisely with interactions related to concurrency. To address
this, we avoid using concurrency in SPARK and instead we
introduced sequential SPARK functions with contracts that
model how the different possible interactions can modify the
state of a socket. Finding a correct and precise contract for
TCP_Wait_For_Events was challenging but needed for
the verification of the TCP user functions. The solution is
elaborated in the following section.

C. Dealing with synchronous exchanges

In the synchronous scenario of interaction between the
TCP tasks, the resulting state of a user function can be
affected by the rest of the TCP tasks when the TCP user
function releases the mutex to allow for other events to
occur. In this case, the function TCP_Wait_For_Events
is called from the TCP user function to check if the event
requested is completed. For example, the TCP_Connect
user function calls TCP_Wait_For_Events to wait
for the completion of the socket connection event,
namely SOCKET_EVENT_CONNECTED. The call to
TCP_Wait_For_Events releases the mutex, and when
the relevant task receives the appropriate segment, in this
case, a segment with the SYN flag, the connection will be
established. This will move the socket to the ESTABLISHED
state. In the meantime, the TCP_Update_Events function
is monitoring for any state changes, and when it notices
that the connection is established, it will trigger the
SOCKET_EVENT_CONNECTED event, using the OS event
mechanism. This will allow the TCP_Connect user function
to resume execution.

Essentially, the function TCP_Wait_For_Events re-
leases the mutex to allow for required events to happen.
The function TCP_Update_Events detects that the event’s
expected outcome is completed by monitoring the changes to
the TCP states. Then it updates the specified event to be true



in the socket structure, and it raises the desired event to allow
resuming the TCP user function that requested the event in
the first place. Thus, the TCP_Update_Events function is
called when a segment is being received and a state change
took place. This makes the TCP_Update_Events function
a perfect candidate to introduce contracts in SPARK and model
the possible states after the completion of each event.

To model any possible state changes upon the
reception of a segment in SPARK, the function
TCP_Process_One_Segment is introduced. The behavior
of TCP_Wait_For_Events is modeled by the ghost
function TCP_Wait_For_Events_Proof shown in
Algorithm 1. It computes the set of possible final states
after the completion of an event by calling repeatedly the
function TCP_Process_One_Segment. It is enough to
perform only three iterations in the loop of this algorithm
because the maximum path between two states from the
TCP automaton, given in Figure 2, that does not require
a user interaction has a size of three. Both functions have
the same behavior, and thus, the contract of the function
TCP_Wait_For_Events_Proof is also attached to
TCP_Wait_For_Events. This ghost function is proved
automatically without even requiring a loop invariant, thanks
to loop unrolling in GNATprove.

D. Symbolic execution to extract contracts

The soundness of our verification requires all the con-
tracts to be complete and correct; all the possible state
transitions of a TCP connection must be modeled and
proved. In particular, this is true for the contract of
TCP_Process_One_Segment that is used to prove the
function TCP_Wait_For_Events, as it models calls to
parts of the library in C that are not proved. To overcome
this issue, symbolic execution was used on the original Cy-
cloneTCP C code to exhaustively verify any contracts related
to transitions triggered from the C parts of the library.

Symbolic execution is a means of executing programs with
symbolic values rather than concrete values [17]. Exhaustive
symbolic execution can be considered sound and complete
(it prevents false negatives and false positives), and thus, it
is on par with deductive verification. In [18], the authors
present how symbolic execution can be used to improve
deductive verification, and in [19] the authors demonstrated
the technique’s value in inferring contracts. For our work, the
KLEE v2.1 symbolic execution engine is used [20]. KLEE
is built upon the LLVM optimizer’s bytecode, and it offers a
very simple yet powerful C interface.

Symbolic execution is used to verify that all the possible
paths when executing the tcpProcessSegment function
will result in a state that respects the RFC 793 extracted
specifications. This process requires three steps shown in
Figure 3. Firstly, a symbolic incoming segment is created,
allowing to account for all possible incoming segments (see
lines 1-4). Then at line 11, function tcpProcessSegment
is executed symbolically by KLEE. Finally, the assertion,
klee_assert, at line 14 checks if the code leads to a

1 // Create a fake incoming segment
2 TCPheader *segment = malloc(sizeof(TCPheader));
3 klee_make_symbolic(segment, sizeof(segment), "seg");
4 klee_assume(segment->flag <= 31);
5 // Create the socket
6 Socket *sock = malloc(sizeof(Socket)), oldSock;
7 klee_make_symbolic(sock, sizeof(sock), "sock");
8 memcpy(&oldSock, sock, sizeof(Socket));
9

10 // Call the function to process the segment
11 tcpProcessSegment(sock, segment);
12

13 // Check the expected postcondition
14 klee_assert(
15 (oldSock.state == TCP_STATE_ESTABLISHED) ?
16 sock->state == TCP_STATE_ESTABLISHED ||
17 sock->state == TCP_STATE_CLOSE_WAIT ||
18 sock->state == TCP_STATE_CLOSED :
19 (oldSock.state == ...) ? ... )
20 )

Fig. 3. Driver for the verification of tcpProcessSegment with KLEE

valid state, one that is within the TCP specification. If there
is no raised assertion, then the contract represented by the
assertion is deemed proved, and the relevant C code respects
the TCP specification regarding that contract. The assertion is
then manually converted to a SPARK contract and added to
the function TCP_Process_One_Segment. This enables
the SPARK prover to reason about the possible side-effects
caused by the C code on the state of a TCP connection and
thus, enables the functional correctness verification of the TCP
user functions.

Our choice of combining deductive verification with SPARK
and symbolic execution with KLEE was driven by practical
considerations which are typical of industrial applications.
Using KLEE on user functions would be difficult due to the
presence of loops with a possible high number of iterations,
which symbolic execution will need to unroll, leading to
combinatorial explosion. Using SPARK on the function that
processes incoming segments would be desirable, and may be
done in the future, but was not doable in the timeframe of
this project. Note that KLEE has other limitations compared
to SPARK in terms of the verification scope. For example it
is lacking a detection of memory leaks, which turned out to
be useful in SPARK, see section VI.

V. HARDENING THE USER’S API

One of the most significant problems pointed to by the
primary author of the CycloneTCP library is the incorrect
usage of the library’s API. More specifically, users of the
library might call the TCP user functions in the wrong order
and forget to check the return code after some calls. This
causes their TCP implementation to behave outside of the
functional specification of the protocol. The following sections
demonstrate how SPARK can be used to enforce a correct
usage of the library.



procedure Socket_Connect
(Sock : in out Not_Null_Socket;
Remote_Ip_Addr : in IpAddr;
Remote_Port : in Port;
Error : out Error_T)
with
Pre => Is_Initialized_Ip (Remote_Ip_Addr),
Post =>
(if Sock.S_Type = SOCKET_TYPE_STREAM then

(if Error = NO_ERROR then
Sock.S_Remote_Ip_Addr = Remote_Ip_Addr)

else
Sock.S_Remote_Ip_Addr = Remote_Ip_Addr)

procedure Socket_Send
(Sock : in out Not_Null_Socket;
Data : in Send_Buffer;
Written : out Natural;
Flags : Socket_Flags;
Error : out Error_T)
with
Pre => Is_Initialized_Ip (Sock.S_Remote_Ip_Addr)

Fig. 4. An example of how function calls can be ordered by preconditions
and postconditions

A. Enforcing the correct order of TCP user functions

The TCP protocol implies a specific order such that the
user can call the TCP user functions without breaking the
functional specification of the protocol. This order is also
conveyed by the protocol’s state machine given in Figure 2.
Ada’s preconditions and postconditions are a powerful tool
to express such inter-function dependencies, while SPARK
technology can be used to guarantee that the assertions always
hold. Thus, preconditions and postconditions were introduced
to model a partial order on the calls to the TCP user functions.
The preconditions in Ada can be enabled at runtime to protect
against a violation when called from code that was not proved,
for example from C code.

Simplified contracts extracted from our SPARK imple-
mentation are reproduced in Figure 4, to demonstrate how
SPARK can be used to enforce the correct function calls’
ordering. If no error occurs, the function Socket_Connect
sets Sock.S_Remote_Ip_Addr to Remote_Ip_Addr
which is supposed to be initialized when the function is
called. Socket_Send requires being called with a not
null socket such that its field Remote_Ip_Addr is initial-
ized. The only way to ensure that the precondition holds
is to call Socket_Connect before Socket_Send. By
analyzing the user’s code, GNATprove will statically detect
if a call to Socket_Send is not preceded by a call to
Socket_Connect.

B. Checking the correctness of return codes

The following code demonstrates how SPARK will enforce
that return codes of TCP user functions are checked, and allow
execution to proceed only if no error code is returned:

Socket_Connect(Sock, Ip_Addr, Port, Error);
Socket_Send(Sock, Data, Written, Flags, Error);

In the above scenario, the postcondi-
tion of Socket_Connect specifies that
Sock.S_Remote_Ip_Addr is initialized only if the
function successfully executes, and thus, Error is equal to
NO_ERROR. In the case where an error occurs, nothing is
specified about the value of Sock.S_Remote_Ip_Addr,
and thus, the function Socket_Send cannot be called
because its precondition won’t be satisfied.

VI. BUGS CAPTURED

As a result of this work, two bugs were detected and
reported to the fourth author of this article, also main developer
of CycloneTCP, and were fixed in the C implementation.

1) Memory leak: A memory leak was detected thanks to the
pointer ownership policy of SPARK detailed in Section III-C.
When closing a socket, the associated memory allocated for
the buffer that stores incoming segments was only partially
freed, due to the use of the wrong library function to free the
memory.

2) Violation of the TCP protocol: A subtle bug violating
TCP specification is reproduced below:

1case Sock.State is
2 when TCP_STATE_SYN_RECEIVED
3 | TCP_STATE_ESTABLISHED =>
4 -- Flush the send buffer
5 TCP_Send (Sock, Buf, Ignore_Written,
6 SOCKET_FLAG_NO_DELAY, Error);
7 if Error /= NO_ERROR then
8 return;
9 end if;

10

11 -- Make sure all the data has been sent out
12 TCP_Wait_For_Events
13 (Sock => Sock,
14 Event_Mask => SOCKET_EVENT_TX_DONE,
15 Timeout => Sock.S_Timeout,
16 Event => Event);
17

18 -- Timeout error?
19 if Event /= SOCKET_EVENT_TX_DONE then
20 Error := ERROR_TIMEOUT;
21 return;
22 end if;
23

24 -- Send a FIN segment
25 TCP_Send_Segment
26 (Sock => Sock,
27 Flags => TCP_FLAG_FIN or TCP_FLAG_ACK,
28 Seq_Num => Sock.sndNxt,
29 Ack_Num => Sock.rcvNxt,
30 Length => 0,
31 Add_To_Queue => True,
32 Error => Error);
33

34 -- Failed to send FIN segment?
35 if Error /= NO_ERROR then
36 return;
37 end if;
38

39 -- Switch to the FIN-WAIT-1 state
40 TCP_Change_State (Sock, TCP_STATE_FIN_WAIT_1);

In the original implementation, after the call to Tcp_Send,
if no error occurs, the state of the socket can either be
ESTABLISHED or CLOSE-WAIT. After the call at line 12,



TABLE I
COMPARISON OF THE NUMBER OF ASM INSTRUCTIONS BETWEEN THE C

AND THE SPARK IMPLEMENTATION

Function
Number of ASM instructions

∆ num. of instr.
C SPARK

TCP_Listen 18 11 −39%
TCP_Accept 153 167 +9%
TCP_Connect 103 114 +10%
TCP_Send 94 124 +31%
TCP_Receive 113 153 +35%
TCP_Shutdown 107 122 +14%
TCP_Abort 42 50 +19%

the state of the socket can still be ESTABLISHED or CLOSE-
WAIT, or CLOSED if a RST flag has been received when the
mutex was released. At line 25, a FIN segment is sent, which
does not modify the state of the socket. Finally, at line 40
the code tries to move the connection to the FIN-WAIT-1
state, and thus, the transitions CLOSE-WAIT → FIN-WAIT-1
and CLOSED → FIN-WAIT-1 are possible. These transitions
are not allowed by RFC 793, and thus, not allowed by the
precondition of TCP_Change_State, which models all the
transitions allowed by TCP specification. Thus GNATprove
reported an unproved precondition check here.

VII. RESULTS

In total, for this work, 50 functions have been translated
from C to SPARK. This accounts for 2266 lines of code,
of which 1165 are SPARK logic code (e.g. contracts)
used to represent and prove the TCP specification. All
the socket functions and the user functions of TCP have
been translated and proved in SPARK, in particular
TCP_Init, TCP_Connect, TCP_Listen, TCP_Send,
TCP_Receive, TCP_Shutdown, TCP_Accept and
TCP_Abort. The corresponding socket functions from the
Socket interface have also been fully translated to SPARK.
At the end, 25% of the functions that implement the TCP
protocol have been rewritten in SPARK.

The overall proving time with GNATprove from the Com-
munity 2021 release is 10 minutes on a 12-processor Intel(R)
Core(TM) i7-9750H CPU with 2.60GHz speed and 16GB of
RAM.

Comparing the performance of C and SPARK functions can
be very volatile and might not reflect the real time taken by the
functions due to network latency. Instead, we have reproduced
in Table I the number of ARM assembly instructions of the
TCP functions written in C and in SPARK. Both C and SPARK
code have been compiled with GCC by enabling the option
-Os that performs many optimizations similar to -O2 that
do not increase the size of the generated code. We observe
that the C functions contain fewer instructions than their
SPARK counterparts, hence it is expected that their runtime
performance will be better. However, we don’t expect this to
be of practical significance, given the modest amount of time
that an application will spend running these functions.

VIII. CONCLUSION AND FUTURE WORK

We selectively applied formal verification to a TCP/IP li-
brary layer by translating TCP user functions into SPARK and
modeling asynchronous events with ghost code. This enabled
the detection of two bugs in the original C implementation
related to memory management and concurrency. The work is
a step towards a more secure implementation. The translated
code has been proven to be free of run-time errors and to
respect the transitions of the TCP state machine, specified in
RFC 793 [13].

These results depend upon other layers written in the C
programming language, which were not formally verified to
the same level. Instead, we used symbolic execution with
KLEE to formally verify the contracts used in SPARK to
model the corresponding behaviors. The principal function
of those layers is to format packets before they are sent, or
parse incoming packets, check their integrity, and transmit the
resulting payload to the corresponding upper-level layer. This
processing part can be a source of errors and bugs as explained
in [21]. As an alternative to manual translation into SPARK,
we envision using the RecordFlux DSL [21] to specify the
parser and printer of the different protocols’ packets and
generate provable SPARK code from this specification. This
would complete our current verification of the CycloneTCP
stack towards the lower layers.
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