
Lady Ada Mediates
Peace Treaty in Endianness War

Thomas Quinot and Eric Botcazou

AdaCore
46, rue d’Amsterdam
75009 Paris, France

{botcazou,quinot}@adacore.com
http://www.adacore.com

Abstract. There is no universal agreement on the order in which the
successive bytes constituting a scalar value are stored. Some machines
(so-called big-endian architectures) store the most significant byte first,
while others (little-endian architectures) adopt the opposite convention.
When porting an application across platforms that use different conven-
tions, programmers need to convert data to the appropriate convention,
and this may cause difficulties when exact memory layouts need to be
preserved (e.g. for communication with legacy systems).
This paper describes the features of the Ada language that help sup-
porting programmers in these situations, identifies some of their short-
comings, and introduces two novel solutions: a code generation approach
based on data representation modeling, and a new representation at-
tribute Scalar Storage Order , allowing the byte order convention to be
specified for a given composite data structure.

Keywords: endianness, retargeting, code generation

1 Introduction

As Gulliver landed on Lilliput, he discovered the fierce war raging between little
endians — whose soft boiled eggs they would always eat starting with the little
end — and the big endians who furiously defended the exact opposite standpoint,
and ended up in exile on the nearby island of Blefuscu [10].

Nowadays’ software engineers, like the explorer of yore, are still finding them-
selves in the middle of the same battleground, where hardware interfaces, com-
munication protocols, or other external constraints require multi-byte values to
be stored and exchanged in either big-endian format (most significant digits
first), or little-endian (least significant digits first). The war has been raging for
decades [3], with rules imposed by standard interfaces, or stemming from the
requirement of interoperability with third party or legacy applications.

All is well as long as all components of a system happen to use the same
convention. Splitting any data structure into its elementary components is then
just a matter of masking and shifting bits. However, as soon as different conven-
tions must come into play, trouble arises: the order of the bytes constituting a

data structure (the endianness) then needs to be changed at strategic conversion
points, which may or may not be well identified in source code. It is up to the
application developer to identify appropriate swapping points and keep track of
whether or not a given value has been swapped at any given point in time. This
proves a significant hassle, with a costly distributed impact.

This situation specifically arises when applications that used to rely on legacy
big-endian computers, for example based on PowerPC or SPARC CPUs, are
retargeted to now ubiquitous Intel-based platforms, which are little-endian. In-
tegration with legacy components, and processing of stored data from existing
systems requires that exact data representations be preserved, and software must
compensate for the fact that the new platform assumes a different storage order.

Introducing explicit reordering (byte swapping) of scalar values throughout
software may prove a costly endeavour. The mere extraction of scalars cross-
ing byte boudaries in data structures requires extra shift and mask operations.
In addition, the need for explicit code handling endianness conversions hinders
maintainability as data structures themselves evolve. This paper discusses how
tools can provide valuable assistance to application developers in addressing en-
dianness conversion issues, alleviating the need for such “manual” byte swapping.

In section 2, we first give a summary of the data representation constructs
provided by Ada. These allow the explicit specification of a data structure’s lay-
out according to an external constraint. They can be used to provide endianness
independence to a limited extent. However, users are often disconcerted at first
by the exact semantics of these features, which indeed do not provide a fully
transparent and general solution to endianness conversion issues. In section 3,
we focus on explicit byte swapping approaches, and we present the Tranxgen
code generator, which affords automated support to produce endianness inde-
pendent accessors. In section 4, we then describe another solution, introducing
a new representation attribute providing transparent in-place access to data of
arbitrary endianness.

2 Composite layout specifications in Ada

In this section we discuss standard features of Ada that allow the layout of a
data structure to be specified according to an external constraint. We show how
these features support endianness independence to a limited extent.

2.1 Record representation clauses

Ada record representation clauses allow developers to specify, for each component
of a record:

– its starting position, i.e. the byte offset of the first underlying storage element
(the one with the lowest memory address)

– a bit range indicating its specific extent over the underlying storage elements.

−− A two byte data s t r u c t u r e
type R i s record

X : Cha rac t e r ;
Y : Boolean ;
Z : I 7 ; −− t ype I 7 i s range 0 . . 127

end record ;
f o r R use record

X at 0 range 0 . . 7 ;
Y at 1 range 0 . . 0 ;
Z at 1 range 1 . . 7 ;

end record ;

Listing 1: Elementary record representation clause

An elementary example is given in listing 1.
These record declaration and record representation clause declare a data

structure occupying two storage elements (which are assumed to be 8-bit bytes
throughout this discussion) which is thus laid out:

– the first component, X, is an 8-bit character that fits exactly in the storage
element at offset 0

– the second and third components, a 1-bit Boolean value Y and a 7-bit integer
value Z, share space in the second storage element at offset 1. Y uses one bit
numbered “0”, and Z uses the remaining seven bits, numbered “1” thru “7”.

It is important to note that the semantics of this very simple fragment of
code in terms of data representation is different, depending on the bit numbering
convention used by a particular compiler:

Low order first High order first

X first byte of representation
Y Least sig. bit of 2nd byte Most sig. bit of 2nd byte
Z Shift Right (2nd byte, 1) 2nd byte and 2#0111 1111#

2.2 Endianness neutral representation clauses

Tricks have been proposed to express such clauses in a neutral way, so that little
or no code modifications are required to obtain the same representation when
porting between a big-endian and a little-endian platform [4, 8]. These essentially
consist in having an integer constant whose value reflects the endianness of the
platform, and expressing all component positions and bit ranges as arithmetic
expressions depending on this constant.

Ada 95 introduced an alternative to these tricks, in the form of the represen-
tation attribute Bit Order (Ada 95 Reference Manual section 13.5.3 [5]). When
this attribute is defined for some record type, a record representation clause
for the type is interpreted using the specified bit numbering convention. In the
above example, one can thus specify:

f o r R’ B i t O rde r use System . Low Orde r F i r s t ;

The effect of this attribute definition clause is that the bit numbers in the
record representation clause will always be interpreted as on a little-endian ma-
chine. The memory representation of objects of type R therefore becomes inde-
pendent of the machine endianness.

2.3 Crossing byte boundaries

The semantics of bit positions greater than the number of bits in a storage el-
ement is pretty clear when using the default (system) bit order. The situation
becomes more confused in the opposite case, and this caused a binding interpre-
tation of the Ada 95 standard to be issued [1] to clarify the meaning of a record
representation clause in that case.

The rule as clarified in Ada 2005 (and retrospectively in Ada 95 by virtue of
this binding interpretation) is that operations on record components can only
extract information from contiguous bit ranges taken from some machine in-
teger (what Ada 2005 calls “machine scalars”). This makes sense because this
reflects the requirement that extracting a record component is performed using
load, store, shift, and mask operations of the underlying machine architecture.
This constraint limits the spectrum of data layouts that can be specified in an
endianness independent way.

This limitation becomes clear when one considers the following data type,
together with its representation clause:

subtype Yr Type i s Natu ra l range 0 . . 127 ;
subtype Mo Type i s Natu ra l range 1 . . 12 ;
subtype Da Type i s Natu ra l range 1 . . 31 ;
subtype Ho Type i s Natu ra l range 0 . . 23 ;
subtype Mi Type i s Natu ra l range 0 . . 59 ;

subtype S2 Type i s Natu ra l range 0 . . 29 ;
−− Two seconds u n i t

type Date And Time i s record
Yea r s S i n c e 1980 : Yr Type ;
−− B i t s Y0 (most s i g n i f i c a n n t)
−− to Y6 (l e a s t s i g n i f i c a n t)

Month : Mo Type ;
−− B i t s M0 (most s i g n i f i c a n n t)
−− to M3 (l e a s t s i g n i f i c a n t)

Day Of Month : Da Type ;
−− B i t s D0 (most s i g n i f i c a n n t)
−− to D4 (l e a s t s i g n i f i c a n t)

Hour : Ho Type ;
Minute : Mi Type ;
Two Second : S2 Type ;

end record ;

f o r Date And Time use record
Yea r s S i n c e 1980 at 0 range 0 . . 6 ;
Month at 0 range 7 . . 10 ;
Day Of Month at 0 range 11 . . 15 ;
Hour at 2 range 0 . . 4 ;
Minute at 2 range 5 . . 10 ;
Two Second at 2 range 11 . . 15 ;

end record ;

Listing 2: Record with components crossing byte boudaries

The data for the first three components, as described by the above represen-
tation clause, is stored as two storage elements, as shown on figure 1.

Most sig. bit · · · Least sig. bit

Byte 0
Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0

0 1 2 3 4 5 6 7

Byte 1
M1 M2 M3 D0 D1 D2 D3 D4

8 9 10 11 12 13 14 15

(a) Big-endian

Most sig. bit · · · Least sig. bit

Byte 0
M3 Y0 Y1 Y2 Y3 Y4 Y5 Y6

7 6 5 4 3 2 1 0

Byte 1
D0 D1 D2 D3 D4 M0 M1 M2

15 14 13 12 11 10 9 8

(b) Little-endian

Fig. 1: Date and time structure (first two bytes)

To extract components using shift and mask operations, this data must be
considered as a single (16-bit) integer value, whose bits are numbered from 0
(MSB) to 15 (LSB) or 0 (LSB) to 15 (MSB), depending on whether Bit Order
is High Order First or Low Order First (figure 2).

Byte 0 Byte 1

Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0 M1 M2 M3 D0 D1 D2 D3 D4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte 1 Byte 0

D0 D1 D2 D3 D4 M0 M1 M2 M3 Y0 Y1 Y2 Y3 Y4 Y5 Y6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 2: Date and time structure as a 16-bit scalar (BE top, LE bottom)

As an example, if the date is November 18, 2012, the values for the first
three components is (Years Since 1980 => 32, Month => 11, Day => 18),
and on a High Order First machine the bit pattern is as shown on figure 3. The
corresponding sequence of storage elements is (65, 114), and the corresponding
scalar value is 65 × 256 + 114 = 16 754.

MSB(byte 0) .. LSB(byte 0) MSB(byte 1) .. LSB(byte 1)

Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0 M1 M2 M3 D0 D1 D2 D3 D4

0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0

65 114

16 754

Fig. 3: Bit pattern for Nov. 18, 2012 on a big-endian machine

MSB(byte 1) .. LSB(byte 1) MSB(byte 0) .. LSB(byte 0)

Original data M1 M2 M3 D0 D1 D2 D3 D4 Y0 Y1 Y2 Y3 Y4 Y5 Y6 M0

Example bits 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 1
Byte values 114 65
Scalar value 29 249

Fig. 4: Bits of big-endian structure from fig. 3, as seen on a little-endian machine

Now if the same memory region is accessed on a little-endian machine as a
16-bit integer, the binary value now is as shown on figure 4. For our example
case the original bit pattern now translates to scalar value 114 × 256 + 65 =
29 249. It should be noted that the Month field is not contiguous anymore in
this representation: bit 0 ends up at position 0 (least significant bit), where as
bits 1 to 3 end up at positions 13 to 15. More generally, on big endian machines
the least significant bit of one storage element is adjacent to the most significant
bit of the next one when considering a machine scalar, whereas on a little endian
machine it is the most significant bit of the first byte that is adjacent with the
least significant bit of the following one.

As a result, no record component representation clause in standard Ada can
describe the LE layout on a BE platform.

The Bit Order attribute changes the way indices are assigned to bits (i.e. in
the above integer, in High Order First ordering the bits are denoted with indices
0 .. 15, whereas in Low Order First they are numbered 15 .. 0). In other words,
the only effect of setting Date And Time’ Bit Order to Low Order First is to
change the bit numbering from 0 · · · 15 to 15 · · · 0. This does not change
the order in which a CPU load operation takes bytes from memory to build an
integer value in a register, on which shift and mask operations are applied to
extract an individual component.

Note that we arbitrarily chose to consider just the first three components,
and the corresponding underlying 16 bit scalar, but we could just as well have
considered the complete structure and the associated 32 bit scalar: the bits of
the Month component would have been separated in the same way.

This situation is encountered anytime a record component crosses a stor-
age element boundary. In this case no standard representation clause can be
written that will yield identical representations on big-endian and little-endian
machines: additional work is then required to access such data structures. Several
approaches are discussed in the remainder of this paper.

3 Explicit byte reordering

3.1 Individual component swapping

If each component in a record type occupies an integral number of storage el-
ements, then the extraction of the component’s bits from the enclosing data
structure does not require any shifting and masking operation; the component’s
underlying storage itself is a machine scalar, and the only remaining issue when
accessing the components is the ordering of bytes within the component itself. In
other words, in this case storage elements can be reordered after extracting the
component from the struture according to a record representation clause, and
the reordering operation can be considered at the level of the value of a single
component. (In contrast with cases such as the example discussed above, where
components did not occupy integral storage elements, and reordering operations
were necessary even to just gather the bits constituting a single component).

This simple situation is encountered for example when writing code that
binds directly to the standard BSD sockets API, where all data structures are tra-
ditionally big-endian; byte-swapping functions htons/ntohs and htonl/ntohl

are provided by the standard API to perform byte swapping (respectively for
short and long integer values) when operating on little-endian platforms (these
operations are nops on big-endian platforms).

The GNAT run-time library includes a set of generic procedures to perform
byte swapping in package GNAT.Byte Swapping. This package provides a set of
generic byte swapping subprograms for 16, 32, and 64-bit objects. These take
advantage of GCC builtins to perform byte swapping operations and which use
dedicated, efficient CPU instructions where available.

When using explicit byte swapping at the component level, care must be
taken by the programmer to identify whether a given value has been byte
swapped or not at any given point in time. This means a strict isolation is desir-
able between the data types used for input/output (or interaction with standard
library calls), which require data in the externally mandated byte order, and
data structures used for internal processing (where components need to be in
their correct native order). When retargeting legacy code that was not written
with portability in mind in the first place, such isolation may be found wanting.

3.2 Arithmetic component extraction

Another alternative is for the user to extract component values from storage
elements using explicit arithmetic operations on raw storage arrays. For example,
suppose that SE (0) and SE (1) are the first and second storage elements of
the date/time structure from listing 2 as stored on a big-endian machine. The
following expressions can be used to extract the Year and Month components in
a platform independent way:

Year := SE (0) / 2 ;
Month := (SE (0) and 1) ∗ 8 + SE (1) / 32
−− ˆˆˆ M0 ˆˆˆ ˆˆM1 . . M3ˆˆ

This way of expressing data layout is independent of endianness, and as such
ensures maximum portability. However it is a cumbersome notation, reducing
the legibility, and hence the maintainability, of application code. It also hinders
optimization by the code generator, by pushing detailed representation informa-
tion up to the highest levels of the intermediate representations handled by the
code generator. Moreover, in this case again there must be a strict separation
between the raw arrays of storage elements used for external operations, and the
native byte order data structures used internally by the software.

3.3 Wholesale byte reversal

An interesting solution has been proposed by R. Andress in [2], where he suggests
to revert the order of storage elements constituting a given data structure as
a whole, and to then construct a new record representation clause mapping
components on the reversed structure. He observes that when changing platform
endianness endianness, the complete reversal of byte order makes all components
that crossed byte boundaries contiguous again. One can then construct a new
representation clause that locates each component within the reversed structure.

This approach is elegant and expressive; it has the merit of minimal intru-
siveness on existing code. On the other hand it still requires an explicit byte
reordering operation, and the storage of data structures in two copies (one in
original order, and the other in reversed order). The representation clause for the
reversed structure also needs to be carefully written and maintained up-to-date
with respect to the original one.

3.4 Data modeling approaches

An important drawback of the manual byte reordering approaches discussed
above is the verbosity of notations for arithmetic component extraction or record
representation clauses. One way of alleviating such a concern is to replace man-
ually implemented code with code generated from a model.

In the context of endianness conversions, the model is a formal description
of the bit layout of some data structure, and the operations provided by the
generated code are accessors to the components of that structure.

The idea is akin to that of the ASN.1 standard [6]. However in ASN.1 one
describes a data structure in an abstract semantics perspective. This description
can then be mapped to one (or more) concrete representations through some
standard encoding rules [7].

In the case of externally mandated data representations, on the contrary, the
model starts by describing the exact structure in terms of bits and bytes, and
from there describes how these elementary pieces of data must be interpreted to
form higher level values.

This is the approach we followed in Tranxgen, a code generation tool we
introduced while developing a portable, certifiable TCP/IP stack. A similar path
has been followed by existing tools for other languages [9].

Tranxgen accepts a data structure description description in the form of
an XML document, and produces a set of Ada (more specifically, SPARK 95)
accessors for the data structure.

<package name=”Date And Time Pkg”>
<message name=”Date And Time”>
< f i e l d name=” Yea r s S i n c e 1980 ” l e n g t h=”7” />
< f i e l d name=”Month” l e n g t h=”4” />
< f i e l d name=”Day Of Month” l e n g t h=”5” />
< f i e l d name=”Hour” l e n g t h=”5” />
< f i e l d name=”Minute ” l e n g t h=”6” />
< f i e l d name=”Two Seconds” l e n g t h=”5” />

</message>
</ package>

Listing 3: Tranxgen specification for date/time record

From this specification, Tranxgen produces a record type declaration with
representation clause, none of whose components crosses a byte boundary. Acces-
sors decompose and reconstruct component values using arithmetic expressions,
following the method outlined in section 3.2, as seen in the following generated
code excerpt:

package Date And Time Pkg i s
type Date And Time i s record

Yea r s S i n c e 1980 : U7 T ; −− 7 b i t s
Month 0 : B i t s 1 ; −− 1 b i t i n t e g e r
Month 1 : B i t s 3 ; −− 3 b i t s
Day Of Month : U5 T ; −− 5 b i t s
Hour : U5 T ; −− ””
Minute 0 : B i t s 3 ; −− 3 b i t s
Minute 1 : B i t s 3 ; −− ””
Two Seconds : U5 T ; −− 5 b i t s

end record ;

f o r Date And Time ’ Al ignment use 1 ;

f o r Date And Time ’ B i t O rde r
use System . H i g h O r d e r F i r s t ;

f o r Date And Time use record
Yea r s S i n c e 1980 at 0 range 0 . . 6 ;
Month 0 at 0 range 7 . . 7 ;
Month 1 at 1 range 0 . . 2 ;
Day Of Month at 1 range 3 . . 7 ;
Hour at 2 range 0 . . 4 ;
Minute 0 at 2 range 5 . . 7 ;
Minute 1 at 3 range 0 . . 2 ;
Two Seconds at 3 range 3 . . 7 ;

end record ;

end Date And Time Pkg ;

package body Date And Time Pkg i s

−− [. . .]

funct ion Month (P : System . Address) return U4 T i s
M : Date And Time ;
f o r M’ Address use P ;
pragma Import (Ada , M) ;

begin
return U4 T (M. Month 0) ∗ 2∗∗3 + U4 T (M. Month 1) ;

end Month ;

procedure Set Month (P : System . Address ; V : U4 T) i s
M : Date And Time ;
f o r M’ Address use P ;
pragma Import (Ada , M) ;

begin
M. Month 0 := B i t s 1 (V / 2∗∗3) ;
M. Month 1 := B i t s 3 (V mod 2∗∗3) ;

end Set Month ;

−− [. . .]

end Date And Time Pkg ;

4 The Scalar Storage Order attribute

In this section we introduce the Scalar Storage Order attribute, which allows the
specification of the storage endianness for the components of a composite (record

or array) type. Byte reordering is performed transparently by compiler generated
code upon access to elementary (scalar) components of the data structure.

4.1 Formal definition

Scalar Storage Order is an implementation-defined attribute specified as follows
by the GNAT Reference Manual.

For every array or record type S, the representation attribute
Scalar Storage Order denotes the order in which storage elements that
make up scalar components are ordered within S. Other properties are
as for standard representation attribute Bit Order, as defined by Ada
RM 13.5.3(4). The default is System.Default Bit Order.
For a record type S, if S ’Scalar Storage Order is specified explicitly,
it shall be equal to S ’Bit Order.

This means that if a Scalar Storage Order attribute definition clause is not
confirming (that is, it specifies the opposite value to the default one, System.
Default Bit Order), then the type’s Bit Order shall be specified explicitly and
set to the same value. Also note that a scalar storage order clause can apply not
only to a record type (like the standard Bit Order attribute), but also to an
array type (of scalar elements, or of other composite elements).

If a component of S has itself a record or array type, then it shall also
have a Scalar Storage Order attribute definition clause. In addition,
if the component does not start on a byte boundary, then the scalar
storage order specified for S and for the nested component type shall be
identical.
No component of a type that has a Scalar Storage Order attribute
definition may be aliased.

These clauses ensure that endianness does not change except on a storage ele-
ment boundary, and that components of a composite with a Scalar Storage Order
attribute are never accessed indirectly through an access dereference (instead all
accesses are always through an indexed or selected component).

A confirming Scalar Storage Order attribute definition clause (i.e. with
a value equal to System.Default Bit Order) has no effect.
If the opposite storage order is specified, then whenever the value of a
scalar component of an object of type S is read, the storage elements
of the enclosing machine scalar are first reversed (before retrieving the
component value, possibly applying some shift and mask operatings on
the enclosing machine scalar), and the opposite operation is done for
writes.

This is where the new attribute introduces the byte reordering.
The following clause generalizes the notion of machine scalar to cover some

useful cases not taken into account by the original wording of the standard in
the definition of the underlying machine scalar of a given (scalar) component.

In that case, the restrictions set forth in 13.5.1(10.3/2) for scalar com-
ponents are relaxed. Instead, the following rules apply:
– the underlying storage elements are those at

(position + first bit / SE size) .. (position + (last bit +

SE size - 1) / SE size)
– the sequence of underlying storage elements shall have a size no

greater than the largest machine scalar
– the enclosing machine scalar is defined as the smallest machine scalar

starting at a position no greater than
position + first bit / SE size and covering storage elements at
least up to position + (last bit + SE size - 1) / SE size

– the position of the component is interpreted relative to that machine
scalar.

4.2 Example usage and effect

Let us assume that the type declaration for the Date And Time structure in
listing 2 is from a legacy big-endian application, a component of which is now
being retargeted to a new little-endian board. Of course the underlying memory
representation must not be changed, as this board exchanges messages with a
legacy black-box module whose source code is unavailable. We will therefore
apply attribute definition clauses as follows as shown in listing 4.

f o r Date And Time ’ S c a l a r S t o r a g e O r d e r
use System . H i g h O r d e r F i r s t ;

f o r Date And Time ’ B i t O rde r use System . H i g h O r d e r F i r s t ;
−− Bi t o r d e r and s c a l a r s t o r a g e o r d e r must be c o n s i s t e n t .

Listing 4: Attribute definition clauses for scalar storage order and bit order

The memory representation of an object of type Date And Time as created
on a big-endian machine is shown on figure 1. If we read the Month component
of an object of that type, we first load the underlying machine scalar. As noted
above, the storage elements have values 65 followed by 114, and on a little-endian
machine this represents the 16-bit scalar value 29 249.

But now by virtue of the Scalar Storage Order that has been defined for the
type as High Order First, since we are on a little-endian machine we reverse
the order of bytes within this machine scalar, which gives us back the original
value 16 754. The bit pattern of this scalar is now identical to the original one
from the big-endian specification, and thus shifting and masking operations will
yield the original component value.

The reverse byte swapping is performed upon write operations, after the
component value has been installed into a machine scalar, and prior to this
machine scalar being stored back to memory. This transformation is applied
only for scalar components, so that nested records are handled correctly (i.e.
no extra swapping is introduced when accessing a subcomponent of a nested
record).

4.3 Implementation

The implementation of the Scalar Storage Order attribute has been done in the
version of the GNAT compiler using the GCC back-end as the code generator.

Even if a growing number of processors have the capability to run either in
big-endian or in little-endian mode, the mode is generally selected once for all
at startup and cannot be changed afterwards. The compiler therefore needs to
generate explicit byte swapping operations.

The primary design decision to be considered is the level at which these
byte swapping operations are made explicit in the hierarchy of intermediate
representations of the compiler. The GCC-based GNAT compiler has a 4-tiered
hierarchy of representations (the framed boxes):

source code

?
GNAT front-end processing

expanded code

?
GNAT-to-GNU translation

GENERIC

?
GIMPLification

GIMPLE

?
RTL expansion

RTL

?
code generation

machine code

The higher in the hierachy the byte swapping operations are made explicit,
the simpler the implementation is, but the less efficient the machine code will be
when run on the target. This is because the bulk of the compiler is parameterized
for the endianness of the target, and so explicit byte swapping operations act as
optimization barriers in the various intermediate representations.

The choice has been made to generate the byte swapping operations during
RTL expansion: the first intermediate representation in which they are explicitly
present is RTL (Register Transfer Language), which is a very low-level repre-
sentation. All high-level GIMPLE optimizations, which are the most powerful
ones, work without change on code requiring endianness conversions; only the
low-level RTL optimizations are affected.

The other major design decision pertains to the representation and the ma-
nipulation of the storage order in the GIMPLE representation (the expanded
code and the GENERIC representation being essentially extremely verbose ver-
sions of the source code, they do not need substantial adjustments; at these
levels, the scalar storage order is just another property of composite types, like

movzwl (%ecx), %eax
ro lw $8, %ax
shrw $5, %ax
and l $15, %eax

Listing 5: x86 assembly code generated for load of Month

packedness or atomicity). Storage order could conceivably be tracked on a scalar-
by-scalar basis, i.e. with the finest possible granularity. With this approach, every
scalar gets a new property, the endianness, in addition to the usual properties,
for example the size and the bounds. However this would have required major
surgery in the high-level part of the code generator, and would have introduced
an undesirable additional layer of complexity.

We therefore chose instead to consider storage order only as a property of
memory stored scalars (and specifically, only those scalars stored as part of an
enclosing composite object); all other scalars always have the default storage
order. Moreover, scalar values (considered outside of any object) are always in
the default endianness. This makes the implementation far simpler, because the
various transformations and optimizations applied to the intermediate represen-
tation need not take the endianness into account. They only have to preserve the
invariant that some particular scalars in memory must be accessed in a special
way.

It is also worth noting that, in a few specific cases, the GNAT front-end
needs to apply low-level transformations to the source code before passing it
to the code generator, which may depend on the storage order. In these cases,
the front-end may need to generate explicit byte swapping operations (for ex-
ample to initialize bit-packed arrays). The code generator therefore exposes its
internal byte swapping primitives as builtins that can be directly invoked by the
front-end. These are ultimately translated into explicit byte swapping operations
during RTL expansion.

The implementation is fully generic: it imposes no additional requirement
on the target architecture, such as availability of specific byte swapping or byte
manipulation instructions. However, the code generator will take advantage of
them if present, for example on the Intel x86 and IBM PowerPC architectures,
with a measurable performance gain in these cases.

Going back to the example of the Month component of an object of type
Date And Time, the assembly code generated on x86 to read the component is
shown on listing 5.

The first instruction movzwl loads the underlying machine scalar, i.e. the 16-
bit integer value at offset 0 in the record. The second instruction rolw $8 swaps
the bytes in this scalar. The remaining instructions extract the component.

4.4 Performance discussion

The introduction of the Scalar Storage Order attribute represents a significant
gain in terms of application development cost, in that in relieves developers from
the need to implement data conversions from one endianness to the other.

However the execution time cost of such conversions does not disappear: they
are still present, and if opposite-endianness data structures are frequently used,
they are liable to cause an unavoidable degradation in application performance
(compared to the same application using data structures in native endianness).
This is less likely when explicit data conversions are used, because in the latter
case conversion points are well identified, and internal processing in the appli-
cation is done efficiently on data structures that have native endianness.

It may therefore be advisable, even when relying on Scalar Storage Order
to perform data conversions, to apply this attribute to a derived type used for
external interfaces. Ada type conversions from the derived type to the ancestor
type (which has no representation attributes, and hence has the standard native
representation) can then be used to convert data from the external representation
(possibly using a different endianness than the native one) to the internal (native
endianness) representation, as show on listing 6.

type Date And Time i s record
. . .

end record ;
−− Nat ive , e f f i c i e n t r e p r e s e n t a t i o n

type Exte rna l Date And Time i s new Date And Time ;
f o r Exte rna l Date And Time use record

. . .
end record ;
f o r Externa l Date And Time ’ S c a l a r S t o r a g e O r d e r

use Ex t e r n a l B i t O r d e r ;
f o r Externa l Date And Time ’ B i t S t o r a g e O rd e r

use Ex t e r n a l B i t O r d e r ;

funct ion To I n t e r n a l
(DT : Exte rna l Date And Time) return Date And Time

i s
begin

return Date And Time (DT) ;
−− Type c o n v e r s i o n wi th change o f r e p r e s e n t a t i o n

end To I n t e r n a l ;

Listing 6: Setting scalar storage order on a derived type

In this manner, developers retain the advantage of automated, transparent
generation of the code effecting the required representation change, while at
the same time avoiding the distributed overhead of pervasive byte swapping
throughout the application.

5 Conclusion and future directions

We have presented the issues posed by data representations with different endian-
ness in Ada applications. We have discussed the current Ada features supporting
record layout specification, and identified some of their limitations in conjunc-
tion with support for endianness conversions. We have introduced two separate
approaches to overcoming these limitations: a code generation tool Tranxgen
producing accessors from a data representation model, and a new representa-
tion Scalar Storage Order allowing transparent access to data structures of ar-
bitrary endianness. These tools allow application code to be written in a portable
way, guaranteeing consistent data representations between little-endian and big-
endian platforms without the need for explicit conversion operations.

Possible improvements to Tranxgen include support for a wider variety of
data structures, and using the Scalar Storage Order attribute in generated code.
The specification for the attribute will be proposed to the Ada Rapporteur Group
for inclusion in the next revision of the Ada language.

References

1. Ada Rapporteur Group: Controlling bit ordering. Ada Issue AI95-00133, ISO/IEC
JTC1/SC22/WG9 (2004), http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ais/ai-
00133.txt?rev=1.17, adopted amendment to the Ada 95 standard [5]

2. Andress, R.P.: Wholesale byte reversal of the outermost Ada record object to
achieve endian independence for communicated data types. Ada Letters XXV(3),
19–27 (Sep 2005)

3. Cohen, D.: On Holy Wars and a Plea for Peace. IEEE Computer 14(10), 48–54
(Oct 1981)

4. Cohen, N.H.: Endian-independent record representation clauses. Ada Letters
XIV(1), 27–29 (Jan 1994)

5. ISO: Information Technology – Programming Languages – Ada. ISO (Feb 1995),
ISO/IEC/ANSI 8652:1995

6. ITU-T: Information technology — Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation. Recommendation X.680 (Nov 2008)

7. ITU-T: Information technology — ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished En-
coding Rules (DER). Recommendation X.690 (Nov 2008)

8. Mardis, M.: Endian-safe record representation clauses for Ada programs. Ada Let-
ters XIX(4), 13–18 (Dec 1999)

9. Protomatics: Transfer Syntax Notation One (TSN.1). Tech. rep.,
http://www.protomatics.com/tsn1.html

10. Swift, J.: Travels into Several Remote Nations of the World. By Lemuel Gulliver.
(1726)

