
High-Integrity Object-Oriented
Programming in Ada

Version 1.4

AdaCore

October 24, 2016

This page is intentionally left blank.

2

CONTENTS

1 Introduction 5

2 Object Orientation Concepts 7
2.1 Fundamentals of Object-Oriented Development . 7
2.2 Object-Oriented Programming (OOP) . 8
2.3 Additional Object-Oriented Programming Concepts . 9

3 Object Orientation in Ada 11
3.1 Classes, Objects, Inheritance, and Polymorphism . 11
3.2 Encapsulation Features . 14
3.3 Constructors . 15
3.4 Finalization and Controlled Types . 16
3.5 Multiple Inheritance and Interface Types . 17
3.6 Other Object-Oriented features . 19
3.7 Support for Programming by Contract in Ada 2012 . 19

4 Vulnerabilities and Their Mitigation 23
4.1 Lack of Encapsulation . 23
4.2 Dynamic Dispatch and Substitutability . 24
4.3 Improper Overriding . 26
4.4 Multiple Inheritance . 27
4.5 Static Binding and Overriding . 29
4.6 Memory Management Issues . 30

5 Complexity Management 33
5.1 Control Inheritance Depth / Width and Multiple Inheritance . 33
5.2 Control Class Coupling . 34
5.3 Minimize Need for Ada Run-Time Support and Facilitate Source-to-Object Traceability 36

6 Safety and Verification Considerations 39
6.1 Use of Pre/Post/Invariant Aspects for Verification . 39
6.2 Robustness of Dynamic Dispatch Mechanism . 42

7 Information for GNAT Pro Users 43
7.1 Writing a Coding Standard with GNATcheck . 43
7.2 Using SPARK Pro for Formal Proofs . 44
7.3 Using GNATstack for Stack Resource Analysis . 46
7.4 OO Support in GNAT Pro High-Integrity Profiles . 48

8 Conclusion 51

Bibliography 53

3

This page is intentionally left blank.

4

CHAPTER

ONE

INTRODUCTION

This paper’s goal is to provide guidance on how to use Ada’s Object Oriented (OO) features for High-Integrity
(HI) applications; i.e., high-reliability systems with requirements for safety and/or security and which may need
to demonstrate compliance with domain-specific certification standards. In the past, using OO was not considered
an option for HI applications, since their small size did not require sophisticated development methods. But such
applications have grown in size and can now be very large: several millions of line of code are common for
systems in some domains. Using OO techniques is therefore more attractive, since these can help achieve a high
level of modularity, extensibility, reusability, and maintainability in large applications.

The paper was written by AdaCore experts with extensive experience in this area through their participation in
industrial working groups such as the joint EUROCAE WG71 / RTCA SC 205 working group that produced the
RTCA DO-178C / EUROCAE ED-12C avionics safety standard [DO178C] [R13], and ISO’s Ada Rapporteur
Group that manages the Ada language standardization process. Another source of experience comes from
supporting AdaCore customers in domains such as aerospace and transportation, since the company’s inception in
the mid 1990s. Many customers are using AdaCore tools during their certification process, and some have already
completed the highest level of certification with Ada code while extensively using Object Oriented features.

The Object Orientation Concepts chapter summarizes the principal concepts in order to establish the terminology
and provide criteria for comparing languages’ approaches. The Object Orientation in Ada chapter introduces
Ada’s model for Object Orientation. Readers familiar with Ada 95 can move quickly to the last sections of this
chapter, which describe several new features that have been added to the latest revision of language, known as Ada
2012 [Ada2012], and which are directly relevant to safe Object-Oriented programming. The next three chapters
– Vulnerabilities and Their Mitigation, Complexity Management, and Safety and Verification Considerations
– describe known concerns related to using Object Oriented technology in a High Integrity environment and
discuss recommended solutions. The final chapter, Information for GNAT Pro Users, starts with a user checklist
summarizing the steps we suggest taking when starting out in this area, and then presents the relevant elements
and tools of the GNAT Pro technology.

5

This page is intentionally left blank.

6

CHAPTER

TWO

OBJECT ORIENTATION CONCEPTS

Object Orientation is a software design and implementation approach that can contribute towards a robust and
maintainable system architecture, especially in applications that are “data rich” (i.e., that need to deal with multiple
kinds of data that are related in various ways). The basic elements of Object Orientation first appeared in the
Simula 67 language in the late 1960s, gained traction (especially in the research and academic communities) with
Smalltalk in the 1970s and 1980s, and found their way into mainstream practice with the emergence of languages
such as C++, Ada 95, Java, and C#.

Object Orientation is characterized by a small number of basic concepts, but different languages have their
own vocabularies for these concepts. With the goal of remaining language independent, this summary uses
terminology that has entered common usage and that appears in UML or in one or more widely-used Object-
Oriented languages.

2.1 Fundamentals of Object-Oriented Development

The core of Object Orientation is embodied in three concepts: class, object, and encapsulation.

2.1.1 Class

A class is a data type and thus a template for objects; it specifies the fields that are present in, and the
operations that may be invoked on, any object of the class. Such fields and operations are referred to as instance
fields/operations. A class may also specify so-called static fields and/or operations: such fields and operations
exist independently of any objects of the class.

A class is also a module, i.e. a unit of program composition. From this perspective the fields and operations are
said to be members of the class.

Languages differ with respect to whether the class concept is realized by a single feature that serves as both a
type and a module, or by separate features. C++ and Java are in the first category; Ada, CLOS, and Smalltalk
are in the second. Languages also differ with respect to whether a class’s logical interface is combined with its
implementation in the same module or are separated into distinct modules. Java is in the first category; C++ and
Ada are in the second.

2.1.2 Object

An object is an instance of a class. The set of instance fields for an object is sometimes referred as the state of the
object. An object thus has state (fields) and behavior (operations).

2.1.3 Encapsulation

Encapsulation is the programmer’s ability to restrict access to class’s members, for example to ensure that an
instance or a static field is visible only within the implementation of the class’s operations, and to provide a
procedural interface to operations for accessing the data. It is generally good practice, in order to prevent certain

7

kinds of coding errors and to reduce the effort in system maintenance as requirements evolve, to minimize the
accessibility of state / fields so that they may only be referenced in those parts of the program with a “need to
know”.

Several levels of encapsulation are found in practice. The most restrictive is to limit a class member so that it
is visible only within the implementation of the class itself. At the other extreme, the most general is to allow a
class member to be visible wherever the class itself can be referenced. Intermediate levels are also possible; for
example, limiting a class member so that it is visible only within its containing class and all its subclasses.

2.2 Object-Oriented Programming (OOP)

The concepts described above, sometimes collectively referred to as Object-Oriented Design or Object-Based
Programming, are basic to Object-Oriented development and provide a sound basis for effectively specifying a
system’s high-level architecture. Ada 83 is an example of a language with features to realize these concepts.
However, the power and flexibility of Object Orientation is significantly enhanced through several additional
mechanisms: inheritance, polymorphism, and dynamic binding.

2.2.1 Inheritance

Inheritance may be viewed from two angles. From a programming perspective, inheritance is a language feature
that allows a programmer to define a new class (the subclass) in terms of an existing class (the superclass) by
adding new state and/or operations, and by overriding existing instance operations with new implementations.
Superclass operations that are not overridden, and all fields, are implicitly inherited by (i.e., are members of) the
subclass. Inheriting from a superclass is sometimes referred to as implementation inheritance or inheritance
of implementation (since it brings in the superclass’s state and operation code) and is also sometimes called
programming by extension.

From a type theory (or data modeling) perspective, inheritance is a specialization relationship between a subtype
(subclass) and a supertype (superclass): an instance of the subtype is also an instance of the supertype, and thus
a subtype instance should be usable whenever a supertype instance is required. This latter property is sometimes
known as the Liskov Substitution Principle (LSP) [LW94]. Note that this usage of the term subtype is different
from the Ada sense.

An inheritance hierarchy with respect to a particular class consists of that class together with all of its direct and
indirect subclasses.

Inheritance is an effective technique for reuse and system extensibility, but adhering to LSP imposes some
constraints on the implementation of a subclass’s overriding operations. If the superclass operation imposes some
precondition, then the subclass’s implementation should not impose a more restrictive precondition. The reason
for this rule is that the operation’s contract that is known to the caller is the precondition and postcondition for
the superclass’s version. If the overriding operation required a more restrictive precondition, then an invocation
of the operation that satisfied the superclass’s precondition might violate the subclass’s precondition, resulting in
a run-time error. For similar reasons the subclass’s implementation of an overriding operation should not loosen
the postcondition that applies to the superclass’s version of the operation.

Languages differ with respect to whether a class may only have one direct superclass (so-called single
inheritance) or an arbitrary number of direct superclasses (multiple inheritance). Ada and Java are examples
of languages with single inheritance of implementation; C++ is the principal example of a language with multiple
inheritance of implementation. Multiple implementation inheritance brings expressive power but also semantic
and implementation complexity. Well-known problems include:

• Name clashes. Different superclasses may have fields with the same name, or operations with the same
signature. Exactly what is inherited by the subclass, and how is it referenced?

• “Diamond inheritance”. A “root” class C0 may define some fields and operations that then get inherited by
subclasses C1 and C2. If a class C3 inherits from C1 and C2, exactly what does it inherit indirectly from
C0, and how is it referenced?

For further discussion see the Multiple Inheritance section in Vulnerabilities and Their Mitigation below.

8

2.2.2 Polymorphism

Polymorphism is the ability of a variable to denote objects from different classes (in the same inheritance hierarchy)
at different times. Polymorphism is generally realized through references, since the compiler cannot predict in
advance the maximum size for an object that will be denoted by a polymorphic variable. Languages differ with
respect to whether the references are explicit (Ada, C++) or implicit (Java), and whether the resultant storage
management issues are the responsibility of the programmer (Ada, C++) or an implementation-provided garbage
collector (Java).

2.2.3 Dynamic Binding

Dynamic binding is the run-time determination of an operation performed on a polymorphic variable, based on the
class of the object that is currently denoted by the variable. This is in contrast to static binding, which resolves an
operation invocation based on the compile-time type of the variable on which the operation is invoked. Languages
differ with respect to how they determine whether an operation is to be bound statically versus dynamically.

The judicious use of inheritance, polymorphism, and dynamic binding can ease system maintenance / extensibility.
If a new class is added to an inheritance hierarchy, code that processes objects from existing classes does not have
to be modified or even recompiled. In contrast, with a design based on functional decomposition rather than OOP,
adding new data generally entails modifying a centralized data structure (variant record) and all the modules that
process this data structure.

2.3 Additional Object-Oriented Programming Concepts

The essence of Object-Oriented Programming is captured in the constructs so far described, but several additional
concepts are often realized in Object-Oriented Languages.

2.3.1 Abstract Class

An abstract class is a class that does not permit instantiation (construction of objects); it serves as the root of an
inheritance hierarchy and typically includes operations that are likewise abstract (lacking an implementation). A
concrete class is one that is not abstract; a concrete class that inherits from an abstract class has to override all of
its superclass’s abstract operations with concrete versions.

An abstract class is useful for modeling a data space that is to be partitioned. A “root” class is defined as abstract,
and concrete subclasses then correspond to the various partitions.

2.3.2 Interface

An interface is like a lightweight abstract class, containing only abstract operations and having no instance fields.
A class can inherit from (or implement) an arbitrary number of interfaces; this is known as interface inheritance.
Since interfaces lack concrete operations and per-instance state, multiple interface inheritance avoids the semantic
complexity of multiple implementation inheritance.

Interfaces support polymorphism and dynamic binding. A polymorphic variable of an interface type can denote
an object from any class that directly or indirectly implements the interface. Applying an interface type operation
to such a polymorphic variable invokes the version of the operation supplied for the class of the object that the
variable denotes.

2.3.3 Constructor

A constructor is an operation that is applied to an object immediately after it has been created. Constructors may
be parameterized and typically perform initializations that bring the object to a consistent state in preparation for
further processing.

9

2.3.4 Finalization

Finalization is an operation that is applied to an object after the program has no further need to access the object.
Finalization generally is responsible for disposing of resources that were used by the object. Whether finalization
is responsible for reclaiming the space occupied by dynamically allocated objects depends on the programming
language.

10

CHAPTER

THREE

OBJECT ORIENTATION IN ADA

This section explains how Object Orientation is implemented in Ada, taking into account the enhancements that
have been added in the Ada 2012 language revision.

3.1 Classes, Objects, Inheritance, and Polymorphism

Object-oriented features were added to Ada as part of the first major revision to the Ada standard, completed
in 1995 (ISO/IEC 8652/1995). These features permit the creation of classes of types related by an inheritance
mechanism called type derivation. Polymorphism is supported by the notions of class-wide types and primitive
dispatching operations. The following sections discuss these features, giving simple examples of their use.
Later sections give an overview of related Ada features that enhance and build upon Ada’s basic object-oriented
capabilities.

3.1.1 Type Classes

As mentioned earlier in the Class subsection of Fundamentals of Object-Oriented Development, Ada follows a
class model based on separate features (types declared within package units) rather than a single module-based
class construct. Corresponding to the notion of a type hierarchy, Ada has the concept of a type class, which consists
of a set of types, created by declaring a root type R within a module-like construct called a package. Additional
types, called type extensions, can be declared in the same or separate packages, extending the properties of the
root type. Associated with each type is a unique tag that distinguishes it from all other types in the class.

Each type in a class is referred to as a tagged type, defined by including the keyword tagged in the root type’s
declaration. Here is an example of a root-level tagged type Shape declared within a package Shapes, with a
single primitive operation:

package Shapes is

type Shape is tagged record
Color : Color_Type;

end record;

procedure Set_Color (Obj : in out Shape; Color : Color_Type);

end Shapes;

Each class of types has an associated class-wide type, defined implicitly along with the class’s root type R, and
denoted by the notation R’Class.

The root type and its type extensions are referred to as specific types. Each specific type in the class can have
an associated set of data components and operations. In the above example, the tagged type Shape is a record
type with a single component, Color, and one primitive operation, a procedure Set_Color with one parameter
of the type. The implementation of a type’s primitive operations are typically given in the package’s separately
compiled body.

11

3.1.2 Inheritance and Type Extensions

A new type can be added to a class by inheriting from a parent tagged type by means of a declaration called a type
extension. The type declared by a type extension inherits the components and primitive operations of the parent
type. The new type is said to derive from its parent type. Here’s an example of a type that extends from the earlier
Shape type:

package Polygons is

subtype Side_Count is Integer range 3 .. Integer'Last;
type Inches is range 0 .. 100;

type Polygon is new Shapes.Shape with record
Number_Of_Sides : Side_Count;
Length_Of_Side : Inches;

end record;

procedure Set_Number_Of_Sides (P : in out Polygon; Sides : Side_Count);
procedure Set_Length_Of_Side (P : in out Polygon; Length : Inches);
function Area (P : Polygon) return Float;

end Polygons;

The declaration of type Polygon indicates that it derives from the parent Shape type, thus inheriting the Color
component and the primitive operation Set_Color. The inherited components and operations are said to be
implicitly declared for the type extension.

A new component Number_Of_Sides is declared for the type, along with a new operation
Set_Number_Of_Sides. If Polygon is later extended by another type, that type will further inherit
all of Polygon‘s components and operations.

An instance of a tagged type is created by declaring an object of the type within a package, or within the body of
a subprogram (just as for other types in Ada). The object can then be referenced by its name. Tagged objects can
also be created dynamically by executing an allocator; for example,

Ref := new Polygon;

which produces a reference to the object (called an access value in Ada).

Given an object of type Polygon, its components and operations can be referenced as follows:

use Polygons; -- Open visibility to declarations within package Polygons

Rectangle : Polygon :=
(Color => Red, Number_Of_Sides => 4, Length_Of_Side => 1.5);
-- Constructs a value of type Polygon

C : Color_Type := Rectangle.Color; -- Select the Color component
A : Float := Area (Rectangle);

Set_Color (Rectangle, Color => Green);

Rectangle.Set_Color (Green); -- Equivalent to the preceding call
Rectangle.Set_Number_Of_Sides (Rectangle.Number_Of_Sides + 1);

Note that primitive operations can be invoked either using conventional call notation, passing the tagged object
as a parameter, or by using a prefixed form of call, where the object is prefixed to the operation name (this form
requires that the tagged parameter is defined as the first formal parameter of the operation).

In the case of operations, an inherited operation can be overridden for the type extension. For example:

type Square is new Polygon with record ... end record;

overriding
function Area (R : Square) return Float; -- overrides inherited Area

12

An optional overriding indicator can be included with the overriding declaration, which helps to catch errors
in cases where the declaration is mistyped. Compilers (such as GNAT) will warn if the overriding indicator
is missing. For further discussion see the sections Improper Overriding and Writing a Coding Standard with
GNATcheck later in this document.

3.1.3 Polymorphism and Dynamic Binding

As discussed in the previous section, an instance of a specific tagged type is created by declaring an object of
the type. It is also possible to declare an object of the associated class-wide type, though such an object must be
initialized from an object of a specific type in the class of types associated with the class-wide type. For example:

Some_Shape : Shape'Class := Rectangle;

However, once a class-wide object has been created, its tag is fixed, so it’s not possible to reassign from an object
of another specific tagged type. Thus, such an object is not polymorphic in the sense of being able to take on the
value of any object in the type class. Usually it’s necessary to introduce a reference type (called an access type
in Ada) whose values can designate any object in the type class. Access variables can be freely reassigned and
embedded within objects, permitting the creation of heterogeneous linked structures in the traditional way. For
example:

type Any_Shape is access Shape'Class;
Any : Any_Shape := new Square;

Any := Some_Other_Shape;

Polymorphic operations can be declared that take any object in a type class as a parameter:

procedure Print_Shape (S : Shape'Class);

or that take an access to any object as a parameter:

procedure Print_Shape (S : access Shape'Class);

The implementation of a class-wide operation will normally be general enough to apply to any object within the
type class, and so will typically include calls to common operations of the class that involve dynamic binding.

In Ada, dynamic binding is supported by calling primitive operations of the the root type of a type class and passing
an object of the class-wide type as a so-called controlling operand. Such a call is referred to as a dispatching call.
Rather than invoking the root type’s operation, a dispatching call will generally result in a call to the operation of
the type corresponding to the tag associated with the controlling operand. As an example:

procedure Describe_Polygon (P : Polygon'Class) is

Area : Float := P.Area; -- Dispatching function call

begin
Put ("The polygon has" & Integer'Image (P.Number_Of_Sides) & " sides");
Put_Line (" and an area of" & Float'Image (Area) & " square inches");

end Describe_Polygon;

Since each Polygon has a Number_Of_Sides field, that field can be selected from an object of type
Polygon’Class (no dispatching is involved). The call to Area dispatches to the particular Area operation
associated with the tag of the underlying object (or to the root type’s Area operation, if it has not been overridden).
Note that, in this example, the prefixed form of call is used for the dispatching call to Area.

A tagged type can be declared as an abstract type, in which case its operations are usually declared as abstract.
This can make sense when the type serves as a model for an abstraction that has no default implementation. Each
concrete type that extends the abstract type must provide the implementation by overriding each of the abstract
operations inherited from the abstract parent type. No instances can be created for an abstract type, only for

13

descendant types, and calls to abstract operations are necessarily always dispatching calls. This ensures that there
is no “dangling dispatching”; that is, every dispatching call will dispatch to some concrete operation body.

As an example, the type Shape could be declared as abstract, with an abstract Area operation:

package Abstract_Shapes is

type Shape is abstract tagged null record; -- No fields
function Area (S : Shape) return Float is abstract; -- Always dispatching

end Abstract_Shapes;

Abstract types are also allowed to have operations that are null procedures, if it makes sense for the operation to
do nothing as a default behavior. Null procedures do not need to be overridden.

Several predefined operations are available for tagged types. Membership tests can be used to determine whether
a class-wide object belongs to a subclass of a given class:

if Some_Shape in Square'Class then ...

Tagged objects can also be assigned and compared for equality, as long as the type is not a limited type (see
Encapsulation Features below). If a class-wide object is assigned, then the tag of the source object must match
the tag of the target, otherwise an exception is raised. Class-wide objects will only compare as equal if they have
the same tag and they are component-wise equal.

3.2 Encapsulation Features

Ada provides several features that support encapsulation of type properties.

At the module level, packages are partitioned into two main parts, called the package specification and package
body, which can be physically separate when declared at the top level of the program. Packages can also be
nested within packages and other forms of program units. The body of a package contains the implementation of
subprograms declared within the package’s specification, and can also include the declaration of additional types
and data structures needed only by the implementation.

The package specification consists of a visible part and an optional private part. Entities declared within the visible
part are available to all clients of the package (i.e., units that with the package), whereas entities declared in the
private part are visible only within the visibility region encompassed by the package itself (which can include parts
of its so-called child units, as explained below). Thus, a package is a unit that supports division of an abstraction
into a well-defined specification of externally visible properties clearly separated from its implementation.

Types themselves can be defined in terms of a visible part and private part, allowing the hiding of type properties
that are strictly part of the implementation of an abstraction. A private type is declared in the visible part of its
package’s specification, and its corresponding full type is declared in the package’s private part. The full type
might be tagged while the private view is tagged or untagged, depending on whether the abstraction designer
intends the type to be extended by clients.

Here is an example based on the earlier Shape type, where the type is defined as a tagged private type:

package Shapes is

type Shape is tagged private;
procedure Set_Color (Obj : in out Shape; Color : Color_Type);

private

type Shape is tagged record
Color : Color_Type;

end record;

end Shapes;

14

A package can be partitioned into multiple units, generally packages, as a kind of subsystem hierarchy, by the
use of child units. A child unit is either a public child or a private child. The private part (if any) and body of
each public child unit P.C of a package P has access to the private part of its parent package P. This permits
an abstraction to be decomposed into separate interfaces and implementations, which can help to organize the
abstraction and better manage its complexity. The full specification and body of a private child has access to its
parent’s private part, effectively making the private child a part of the package hierarchy’s implementation. A
private child can only be withed from units that likewise have visibility into the private part of the parent (i.e.,
only within the unit hierarchy rooted at the parent).

We can add a child unit of package Shapes as follows:

package Shapes.Polygons is

type Polygon is new Shape with private;

procedure Set_Number_Of_Sides (P : in out Polygon; Sides : Side_Count);
procedure Set_Length_Of_Side (P : in out Polygon; Length : Inches);
function Area (P : Polygon) return Float;

private

type Polygon is new Shape with record
Number_Of_Sides : Side_Count;
Length_Of_Side : Inches;

end record;

end Shapes.Polygons;

Note that the type Polygon is declared as deriving from type Shape with a private extension. This allows
the details of the type’s components to be hidden from clients of the package, but clients are still allowed to
extend the type and be aware that such extensions are part of the Shape’Class type hierarchy. Note that the
implementation of the Polygons child package has access to the details defined in the private part of its parent
package.

In addition to declaring a type as private, types can be declared to be limited, which further restricts the operations
that can be performed on objects by clients of the type. Specifically, a limited type does not have the operations of
assignment and equality available (although the programmer can explicitly declare an equality operation if this is
appropriate for the type). This level of control is commonly needed for abstractions where copying does not make
sense, or where copying would compromise safety of data, such as for file descriptors or locked data structures.

3.3 Constructors

Object-oriented languages generally provide some means of initializing an object to a well-defined state when its
created, via a mechanism commonly called a constructor. Ada has several ways of initializing objects. One is by
using default initializing of components, which is accomplished by specifying specific default values for one or
more components as part of a record type declaration, for example:

type Polygon is new Shape with record
Number_Of_Sides : Side_Count := Side_Count'First;
Length_Of_Side : Inches := 0.0;

end record;

When an object of this type is declared without explicit initialization, the components object will be initialized
with the specified values. This approach is appropriate when there is a default that makes sense for all objects, but
it is not too flexible. A more general form of default initialization can be achieved using controlled types, which
are described in Finalization and Controlled Types below.

Another approach is to initialize an object with an aggregate, which is a construct that allows a value to be given
to each component of the object as part of the object’s initialization:

15

Pentagon : Polygon :=
(Color => White, Number_Of_Side => 5, Length_Of_Sides => 1.0);

This works when all of a type’s components are visible, but cannot be used if there are any components not visible
at the point where the object is declared (such as when the type is private or is a private extension).

The most general approach to constructing an object’s value is to define an appropriately parameterized function
that returns a value of the given type. This is usually the best technique when defining a private abstraction, where
the details of the implementation are hidden:

Pentagon : Polygon := Init_Polygon (White, 5, 1.0);

Note that if such a constructor function is declared as a primitive operation, it cannot be inherited and used by type
extensions, but must be overridden by each extension. This rule helps ensure proper initialization of fields added
in the type extension. It is often undesirable for a constructor to be a primitive operation since there is never any
need to dispatch on construction of an object. One can avoid constructor functions to be primitive by declaring
them in a subpackage:

package Shapes.Polygons is

type Polygon is new Shape with private;

package Constructor is
function Init_Polygon (
Color : Color_Type;
Number_Of_Sides : Side_Count;
Length_Of_Side : Inches)

return Polygon;
end Constructor;
...

It is also possible to combine aspects of the different constructor features. For example, for a type that derives
from a private extension, and adds some components, an object of the type can be initialized by a special form of
aggregate called an extension aggregate, that uses default initialization or calls a function to initialize the hidden
components and then explicitly initializes any components added by the extension:

type Named_Polygon is new Polygon with record
Name : String (1 .. 15);

end record;

NP : Named_Polygon :=
(Init_Polygon (Red, 4, 1.0) with Name => "I am a square ");

3.4 Finalization and Controlled Types

Most object-oriented languages provide a way to clean up resources associated with an object after the object
is no longer needed, in a process called finalization. In Ada, this capability is achieved using the controlled
type feature, which builds upon on tagged types. The predefined package Ada.Finalization defines types
Controlled and Limited_Controlled along with Initialize and Finalize procedures for each
type. A type that extends one of the predefined controlled types can override the inherited Initialize and
Finalize procedures, implementing appropriate default initialization and finalization actions. Initialize
is implicitly called for objects of such a type when an object is created without an explicit initial value. Finalize
is implicitly called at the end of an object’s lifetime.

Note that deallocation of the space occupied by a controlled object is not tied to its finalization. An object’s
space is freed up either when it goes out of scope (such as when exiting a subprogram) or when it’s explicitly
deallocated by the program (Ada is not a garbage-collected language). For types that extend the non-limited type
Controlled, an additional inherited operation named Adjust can be used to support copying of objects that
have a deep state that needs to be copied, thus providing a user-defined assignment capability.

16

3.5 Multiple Inheritance and Interface Types

Ada supports multiple inheritance of interfaces; the more general form, multiple inheritance of implementation, is
not allowed.

Ada defines a special form of tagged type called an interface type, or more simply an interface. An interface is
essentially an abstract type with no components and with each operation either abstract or null. A type extension is
allowed to inherit from one or more interface types (as well as from at most one parent type that is not an interface
type).

Here is an example showing multiple inheritance from one regular tagged type and two interface types:

package Encryptable_Pkg is
type Encryptable is interface;

procedure Encrypt (Item : in out Encryptable) is abstract;
procedure Decrypt (Item : in out Encryptable) is abstract;

end Encryptable_Pkg;

package Textable_Pkg is
type Textable is interface;

function Image (T : Textable) return String is abstract;
function Value (S : in String) return Textable is abstract;

end Textable_Pkg;

package Person_Pkg is
type Person is tagged private;
... -- Subprograms for Person

private
...

end Person_Pkg;

with Encryptable_Pkg, Textable_Pkg;
use Encryptable_Pkg, Textable_Pkg;
package Person_Pkg_Secret_Agent_Pkg is

type Secret_Agent is new Person and Encryptable and Textable with private;

... -- Overriding versions of Person subprograms as needed

... -- New subprograms for Secret_Agent

procedure Encrypt (Item : in out Secret_Agent);
procedure Decrypt (Item : in out Secret_Agent);
function Image (T : Secret_Agent) return String;
function Value (S : in String) return Secret_Agent;

private
...

end Person_Pkg_Secret_Agent_Pkg;

Here is another example. Consider a queue abstraction:

type Queue is limited interface;

procedure Enqueue (Q : in out Queue; Item : Item_Type) is abstract;
procedure Dequeue (Q : in out Queue; Item : Item_Type) is abstract;

-- ... other abstract operations such as Count

A type that implements the Queue interface must override all of Queue abstract operations.

An interface can be declared as synchronized, which means that any type that implements it must be a concurrent
type (that is, a task or protected type). As an example, consider a synchronized Queue interface type. This

17

interface could add additional forms of dequeuing operation that would wait until an item is available rather than
raising an exception if the queue is empty:

type Synch_Queue is synchronized interface and Queue;

procedure Enqueue (Q : in out Queue; Item : Item_Type) is abstract;
procedure Dequeue (Q : in out Queue; Item : Item_Type) is abstract;

procedure Dequeue_When_Ready
(Q : in out Queue; Item : Item_Type) is abstract;

This type can be implemented by a task type (or protected type), ensuring safe concurrent access to the queue:

task type Concurrent_Queue is new Synch_Queue with

entry Enqueue (Item : Item_Type);
entry Dequeue (Item : Item_Type);
entry Dequeue_When_Ready (Item : Item_Type);

end Concurrent_Queue;

Note that the inherited queue operations are overridden by entries that only take one parameter (because the queue
object is a task that will be given as the prefix in an entry call, and is implicit for the entries themselves).

package Encryptable_Pkg is
type Encryptable is interface;

procedure Encrypt (Item : in out Encryptable) is abstract;
procedure Decrypt (Item : in out Encryptable) is abstract;

end Encryptable_Pkg;

package Textable_Pkg is
type Textable is interface;

function Image (T : Textable) return String is abstract;
function Value (S : in String) return Textable is abstract;

end Textable_Pkg;

package Person_Pkg is
type Person is tagged private;
... -- Subprograms for Person

private
...

end Person_Pkg;

with Encryptable_Pkg, Textable_Pkg;
use Encryptable_Pkg, Textable_Pkg;
package Person_Pkg_Secret_Agent_Pkg is

type Secret_Agent is new Person and Encryptable and Textable with private;

... -- Overriding versions of Person subprograms as needed

... -- New subprograms for Secret_Agent

procedure Encrypt (Item : in out Secret_Agent);
procedure Decrypt (Item : in out Secret_Agent);
function Image (T : Secret_Agent) return String;
function Value (S : in String) return Secret_Agent;

private
...

end Person_Pkg_Secret_Agent_Pkg;

18

3.6 Other Object-Oriented features

Ada has a number of other features that enhance the use of tagged types.

3.6.1 Package Ada.Tags

In some cases it’s useful to deal directly with the tags associated with objects, such as for debugging purposes
or for inputting and outputting tagged data to a data stream that requires a symbolic representation. The tag of a
type or a class-wide object can be accessed by use of the attribute Tag (e.g., Obj’Tag). The predefined library
package Ada.Tags provides operations to access the name of the type associated with an object’s tag and to
convert to and from the internal form of a tag (generally represented internally as an address) and the external
string representation of the tag. It’s also possible to access the tags of parent and interface types.

3.6.2 Ada.Tags.Generic_Dispatching_Constructor

It is sometimes necessary to create an object of a tagged type given a tag and some parameter values, for
example in applications where tagged data is streamed in from an external device. A predefined generic
unit, Generic_Dispatching_Constructor, which is a child unit of package Ada.Tags, provides this
capability:

generic
type T (<>) is abstract tagged limited private;
type Parameters (<>) is limited private;
with function Constructor (Params : not null access Parameters) return T

is abstract;

function Ada.Tags.Generic_Dispatching_Constructor
(The_Tag : Tag;
Params : not null access Parameters) return T'Class;

By instantiating with a parameter type and a constructor function returning any tagged type, the resulting function
can be called with a tag and parameters to construct a value of the type associated with the tag.

3.6.3 Predefined Containers

The Ada predefined library provides a number of generic packages for containers, encapsulating various common
data structure abstractions. These include linked lists, vectors, maps (hashed and ordered), and sets (hashed and
ordered). In the Ada 2012 standard, additional container forms support multiway trees, synchronized queues, and
priority queues. For most of the containers, both bounded and indefinite forms are defined, supporting fixed-size
and variable-sized component types respectively.

3.7 Support for Programming by Contract in Ada 2012

The Ada 2012 language revision has introduced several new features that facilitate debugging and program
correctness analysis. These are defined as so-called aspects, which can be specified using a new syntax called
aspect specifications that allow a variety of properties to be defined for types, objects, and subprograms. These
properties are most commonly Boolean expressions, and Ada 2012 includes several new expression forms that
will be convenient for contract-based programming.

Aspects are specified as part of the declaration of entities, such as object definitions, type declarations, all manner
of subprogram declarations, component declarations and entry declarations. Specifiable aspects include among
others size, alignment, packing, as well as the novel predicates described later. For example, the following example
shows the definition of a class-wide type invariant, which applies to all extensions of the type:

19

type Shape is tagged private
with Invariant'Class => Is_Valid (Shape);

function Is_Valid (Obj : Shape) return Boolean;

This invariant is checked on exit from any visible subprogram that is a primitive operation of the type.

Aspects may be statically verified at compile time or dynamically at execution time.

3.7.1 New Expression Forms.

Ada 2012 includes conditional expressions and case expressions, quantified expressions, and expression functions.

3.7.2 Conditional and Case expressions.

These are the obvious generalizations of the corresponding statement forms. These expressions must be
parenthesized, or else appear within parentheses as an actual parameter in a call.

X := (if Z > 0 then 100 else 101);

Trigger := (if Enabled (B) then B > Unsafe);

Slot := (case X mod 4 is
when 0 | 3 => 'a',
when 1 => 'b',
when 2 => 'c');

Note the shortcut in the second example: if the type of the expression is Boolean, a default value of True is
assumed if there is no else part.

3.7.3 Quantified Expressions.

An Ada 2012 quantified expression corresponds exactly to its namesake in first-order logic. It indicates that a
Boolean property holds for all or some elements of a collection, which may be an array or a container. For
example, the assertion that an integer Num is prime can be written (although inefficiently) as follows:

(for all J in 2 .. Num / 2 => Num mod J /= 0)

Universally quantified expressions use the keyword all. For existentially quantified expressions Ada 2012
introduces a new reserved keyword some. The predicate indicating that a set Names_Table contains at least a
non-null string can be written as follows:

(for some S of Names_Table => S'Length > 0)

This example uses another Ada 2012 syntactic innovation: an iteration over the elements of a container does not
need an explicit cursor that denotes successive elements of the container.

3.7.4 Aspects.

An aspect may be specified for a subprogram, private type, subtype, and object, and is attached to the
corresponding declaration. Aspects generalize attribute definition clauses and pragmas under a single syntax
that uses the keyword with to introduce a comma-separated list of relevant aspects.

function Sqrt (X : Long_Float) return Long_Float
with Pre => X >= 0.0;

type Bit_Vector is array (positive range <>) of Boolean
with Pack => True;

20

3.7.5 Preconditions and Postconditions.

Preconditions and postconditions can be specified for subprograms by means of the Pre and Post aspects.

procedure Sort (Table : in out Vector)
with Post =>

(for all J in Table'Range =>
J = Table'Last

or else Table (J) <= Table (J + 1))

Preconditions and postconditions are boolean expressions so there can be several combined using logical operators.

3.7.6 Type Invariants.

Type invariants can be specified for private types. They are expressed by means of the aspects Invariant and
Invariant’Class. Invariants are restricted to private types because one can then specify precisely the places
at which invariants must be verified: the invariant expression associated with a type is evaluated as a postcondition
of any operation that creates, evaluates or returns a value of the type. The aspect Invariant’class given for
a type T indicates that the given invariant is inherited by all types derived from T. This aspect can only be specified
for a tagged type. If a type has both inherited and specified invariants, the resulting invariant is the conjunction of
all of them.

generic
type Item is private;

package Stacks is
type Stack is private with Invariant => Is_Valid (Stack);

procedure Push (S : in out Stack; I : in Item)
with Pre => not Is_Full (S),

Post => not Is_Empty (S);

procedure Pop (S : in out Stack; I : out Item)
with Pre => not Is_Empty (S),

Post => not Is_Full (S);

function Top (S : in Stack) return Item
with Pre => not Is_Empty (S);

Stack_Error : exception;

function Is_Empty (S : in Stack) return Boolean;
function Is_Full (S : in Stack) return Boolean;
function Is_Valid (S : in Stack) return Boolean;

private
-- not specified

end Stacks;

Note that the Invariant and Pre/Post aspects are calls to functions that have not been declared yet. An
aspects is resolved at the end of the the current list of declarations, and not at the point where it appears. In this
way aspects can mention auxiliary entities that must be declared after the type or subprogram itself.

21

This page is intentionally left blank.

22

CHAPTER

FOUR

VULNERABILITIES AND THEIR MITIGATION

This section discusses vulnerabilities resulting from the nature of object-oriented programming and the language
features that support OOP.

4.1 Lack of Encapsulation

Unencapsulated data (i.e., data whose internal state can be referenced or assigned outside the code that requires
such access) is problematic for several reasons. First, coding errors can cause data to have inconsistent state,
resulting in vulnerabilities or hazards. The DO-178 standard specifically cites the corruption of global data as an
error that requirements-based software integration testing should detect; using encapsulation to prevent such errors
simplifies the testing and the related data coupling analysis. Second, modifications to the definition of the data
structure during program maintenance may necessitate source code changes in code that accesses the data; i.e.,
lack of encapsulation makes module interfaces too broad. Encapsulation involves defining procedural interfaces
to data and declaring the data items themselves such that their accessibility is restricted.

Ada addresses this issue via several language features, depending on whether the encapsulation is for data objects
or data types. Somewhat simplified:

• The placement of an object’s declaration within a package determines where the object’s name is visible.
The minimal encapsulation is to place the declaration in the visible part of a package spec; it is then visible
to any “client” unit (i.e., any unit that “with”s the package). An intermediate level of encapsulation is to
place the declaration in the private part of a package spec; it is then visible within the private part and body
of child units, but not clients. For full encapsulation, the declaration may be placed in a package body. It is
then visible only within that package body (and subunits), and not to child units or clients.

• A private type encapsulates the fields of a (tagged) record. The most common case is a (tagged) type
declared as private in the visible part of a package spec, with the complete declaration of the type (as a
record type) occurring in the private part of the package. A client unit cannot reference the fields of the
record. The fields are accessible in the package body and in the implementation of child units (ie in the
private parts and bodies of child packages).

Encapsulation does introduce several issues, however. One is performance related: accessing a field through
a procedural interface is much more expensive in execution time than simply fetching the field directly. This
problem is addressed by applying a compiler directive, pragma Inline, to the subprogram. The pragma advises the
compiler to expand each invocation of the subprogram in a macro-like fashion, thus avoiding the linkage overhead
of out-of-line calls.

A second issue involves the robustness of requirements-based testing. For safety certification standards such as
DO-178, the developer needs to demonstrate that all low-level requirements are met. For requirements related to
error handling, a test program may need to assign to a variable a value that could not occur in the course of normal
processing. If the variable is encapsulated (e.g., declared in the private part of a package), there is no way to write
a test as a “client” unit (one that “with”s the defining package). Ada offers a convenient solution to this problem:
the test can be expressed as a child unit of the defining package, thus providing the necessary visibility onto the
variable. And instead of encapsulating data objects in package bodies, the programmer can place the declarations
in the visible part of private children. This allows reuse of implementation, and again allows test programs to be
written as children of the original package.

23

4.2 Dynamic Dispatch and Substitutability

The Liskov Substitution Principle (LSP) [LW94] states that within a class hierarchy, an instance of a subtype is
also an instance of a supertype, and thus a subtype instance should be usable whenever a supertype instance is
required.

Dynamic Dispatch represents a clear vulnerability when it is used within a class hierarchy that has not been built
with LSP. Adding a new class (and its methods) to a class hierarchy can affect any software component that
dynamically dispatches to one of the methods defined in this hierarchy. Even if this component has been verified
and tested with the previous state of the hierarchy, it can suddenly start failing because the new method does
not fulfill the requirements or expectations of its ancestors. The failure can come from the fact that the newly
added version of the method expects too much from its context (stronger precondition) or fails to provide some
elements expected by the context as a result of the call (weaker postcondition). It is uncomfortable to be faced
with situations where unit testing might be invalidated by changes that do not visibly affect the unit under test.

In the context of traditional imperative languages, it is common to base the verification of software components
on tests derived from the requirements of the component. This is referred to as requirements-based testing. The
quality of the testing is assessed, among other things, through coverage metrics. For instance, in the avionics DO-
178 standard, the requirements-based tests must cover all statements as soon as the software level is C or above.
When it comes to OO systems, we have to deal with a new kind of statement – a dispatching call – and we need
to decide what it means to “cover” such a call. Does it mean that the thread of execution should go through this
“statement” at least once as for any traditional statement, or should it cover all the possible targets of the dispatch?

To see the difference between the two approaches, we can simulate a dispatching call with a case statement.
Consider the following example:

type T0 is tagged private;
procedure P (X : T);

type T1 is new T0 with private;
overriding procedure P (X : T1);

type T2 is new T0 with private;
overriding procedure P (X : T2);

...
Obj1, Obj2 : T0'Class := ...;
Obj1.P; -- dispatching call
...
Obj2.P; -- dispatching call
...

If we consider the previous dispatching calls as any other subprogram call, we could think that a simple test case
executing the dispatching calls just once would fulfill the required statement coverage objectives.

However, dispatching calls are a different kind of statement, and the above dispatching calls can be considered
conceptually equivalent to case statements such as:

Obj1, Obj2 : T0'Class := ...;
case Obj1'Tag is

when T0'Tag => TO(Obj1).P; -- static calls
when T1'Tag => T1(Obj1).P;
when T2'Tag => T2(Obj1).P;

end case;
...
case Obj2'Tag is

when T0'Tag => TO(Obj2).P; -- static calls
when T1'Tag => T1(Obj2).P;
when T2'Tag => T2(Obj2).P;

end case;
...

Such implicit case statements could also be moved out-of-line and still provide an equivalent effect:

24

Obj1, Obj2 : T'Class := ...;
...
Dispatch_To_P (Obj1);
...
Dispatch_To_P (Obj2);
...

procedure Dispatch_To_P (Obj : T'Class) is
begin

case Obj'Tag is
when T0'Tag => TO(Obj).P; -- static calls
when T1'Tag => T1(Obj).P;
when T2'Tag => T2(Obj).P;

end case;
end Dispatch_To_P;

Those two equivalent sequences of non-OO code have very different consequences in terms of statement coverage
obligations. In the first case, each possible target for the dispatching operation should be exercised at each dispatch
point if we want to achieve 100% statement coverage. This is called pessimistic testing and leads to exponential
testing requirements which becomes impractical as soon as the class hierarchy becomes large. In the second case,
each possible dispatch must be tested at least once among the various dispatch points leading to it. This is called
optimistic testing and, in contrast with pessimistic testing, is not sufficient to address the vulnerability we are
considering here : Errors related to this vulnerability would remain undetected if the faulty method (in the sense
that it does not respect LSP) is only called, and thus covered, from innocuous dispatch points while other dispatch
points exist and provide a context sensitive to such errors.

The OO supplement of DO-178C [RE2010] offers an original solution to this dilemma, which we recommend
following. Instead of trying to adapt the definition of statement coverage to OO languages and in particular
to dispatching calls, it suggests adding a specific verification activity dealing with this vulnerability. This
activity is called Local Type Consistency Verification and ensures that LSP is sufficiently respected to address
the vulnerability. Three possibilities are offered:

• Formally verify substitutability.

• Ensure that each tagged type passes all the tests of all its parent types which it can replace.

• For each dispatch point, test every method that can be invoked (pessimistic testing)

The local in “Local Type Consistency” refers to the fact that one can limit the consistency verification to the cases
that actually occur in the application. For instance, when a method is never dynamically dispatched to, it is not
necessary to verify that its precondition is no stronger than its parent’s.

The first possibility offers a direct verification of the LSP. It is the recommended path when appropriate formal
methods can be used, since they provide the highest level of confidence that the objective is met. SPARK Pro has
the capability of conducting such a formal proof of LSP. See section Formal Proofs below.

The second possibility is well adapted to verification based on unit testing. In such a context, each class’s method is
associated with a set of tests that verify its requirements. An overridden method usually has extended requirements
compared to the method it overrides, so it will be associated with an extended set of tests. Each class can be tested
separately by calling the tests of its methods. In order to verify substitutability of a given tagged type by testing,
the idea is to run all the tests for all parent types with objects of the given tagged type. If all the parent tests pass,
this provides a high degree of confidence that objects of the new tagged type can properly substitute for parent
type objects. Aunit, the unit testing tool included in GNAT Pro, offers the necessary support for automating such
verification activities and provide specific examples showing the detection of LSP violations.

The third possibility corresponds precisely to the pessimistic testing strategy described earlier. It may remain the
simplest verification method when dispatching calls are rare and the class hierarchy is shallow and/or narrow. In
the context of GNAT Pro, the GNATstack tool can locate all the dispatching points of the application and identify
the potential destination subprograms for each. See section Using GNATstack for Stack Resource Analysis below.
Note that GNATstack locates dispatching calls and potential targets for each of them, but the coverage of these
calls need to be verified to meet the requirements (coverage analysis is outside the scope of GNATstack).

25

4.3 Improper Overriding

The semantics of inheritance in Object-Oriented languages may result in two kinds of programming errors:

• Declaring a new or overloaded subprogram when overriding was intended

• Overriding a subprogram when declaring a new subprogram was intended

The first issue (sometimes known as unintended non-overriding) typically occurs when the subprogram name is
misspelled. Here is an example in Ada:

package Text_Processing is
type Text is tagged private;
procedure Italicize (Item : in out Text);
...

end Text_Processing;

with Text_Processing; use Text_Processing;
package Rich_Text_Processing is

type Rich_Text is new Text with private;
procedure Italicise (Item : in out Rich_Text);
...

end Rich_Text_Processing;

This code is legal and will compile, but the Italicise procedure does not override the parent type’s
Italicize. Instead, the latter procedure is implicitly inherited by the Rich_Text type, which is probably
not the programmer’s intent. Since an overriding subprogram may perform subclass-specific safety or security
checks, the invocation of the parent subprogram on a subclass instance can introduce a vulnerability.

The second issue (unintended overriding) can arise when a new subprogram is added to a parent tagged type
during program maintenance, after an inheritance hierarchy already exists. For example:

package A is
type T is tagged private;

procedure P(Item : in out T);
...

end A;

with A; use A;
package B is

type T1 is new T with private;

-- Inherit P
procedure Q(Item : in out T1); -- New subprogram
...

end B;

Suppose that during program maintenance the author of package A (who might not even be aware of package B)
modifies the package to introduce a procedure Q:

package A is
type T is tagged private;

procedure P(Item : in out T);
procedure Q(Item : in out T); -- New subprogram
...

end A;

When B is recompiled, its declaration of Q is interpreted as an overriding of A.Q. Therefore an invocation of
A.Q on an object of type A.T’Class that is currently a B.T1 will dynamically bind to the originally declared
subprogram B.Q. This scenario was not anticipated by the author of B. Mistakenly invoking one subprogram
instead of another can have unpredictable effects, so this sort of error may introduce a vulnerability.

26

Ada 2005 has addressed both issues through a feature that allows the programmer to explicitly mark a primitive
subprogram as overriding or not overriding. If a subprogram is intended as an overriding of a subprogram from
a parent type, then it may be declared with the overriding reserved word. In such cases it is a compile-time error
if the subprogram is not such an overriding. Likewise, if a subprogram is declared as not overriding, then it is a
compile-time error if the declaration overrides a subprogram declaration from the parent type.

Reformulating the unintended non-overriding example with the Ada 2005 syntax:

package Rich_Text_Processing is
type Rich_Text is new Text with private;
overriding procedure Italicise (Item : in out Rich_Text);
...

end Rich_Text_Processing;

The compile-time error for Italicise will alert the programmer to the need to correct the spelling.

In the unintended overriding example:

package B is
type T1 is new T with private;

-- Inherit P
not overriding procedure Q(Item : in out T1);
...

end B;

The compile-time error for Q‘s declaration (after the A package has introduced Q for type T) will alert the
programmer to the need to change the subprogram’s name. This might have a ripple effect (it is an example
of the fragile base class problem in OOP, where a change to a base class may induce a cascade of source code
changes in subclasses), but this is better than having an incorrect version of the subprogram invoked at run time.

For upwards compatibility with Ada 95, the inclusion of overriding or not overriding for a derived tagged type’s
primitive subprograms is optional in Ada 2005. The use of overriding is strongly encouraged and can be enforced
by an appropriate coding standard rule.

However, the case for explicitly specifying not overriding is weaker:

• The syntax is rather heavy for what will be a common scenario

• A program that compiles correctly with overriding and not overriding declarations is not necessarily free
of “unintended non-overriding” errors. In particular, a subprogram with neither of these designations might
or might not be an overriding of an inherited subprogram. What is really needed is a check that overriding
is supplied for each overriding declaration, and only for such declarations. There is no need to supply not
overriding.

• The error that not overriding is designed to prevent – the unintended overriding of a subprogram that was
added to a parent type – will be caught if the user supplies two switches to the GNAT Pro compiler:

– -gnatyO, which warns about overriding declarations that are not marked with the overriding keyword

– -gnatwe, which treats warnings as errors

As a result of these considerations, the recommendation is to not use not overriding, and instead to ensure that all
overriding declarations (for a derived tagged type’s primitive subprograms) are marked as overriding. This can be
enforced through the switches mentioned above or through a coding standard rule (which is implemented through
these switches). If overriding is used systematically then not overriding is useless.

4.4 Multiple Inheritance

The major vulnerabilities associated with multiple inheritance are described in RTCA DO-332 / EUROCAE ED-
217, the Object-Oriented Technology and Related Techniques supplement [DO332] to the DO-178C standard. In
summary:

27

• With multiple interface inheritance, if two interfaces contain an identical method signature, a (non-abstract)
class that inherits from these interfaces will need to provide a single implementation for both. However, the
intent (contracts) of the methods in the two interfaces may be completely unrelated, raising the issue of how
one implementation can work for two different purposes.

• With multiple implementation inheritance, name clashes and “diamond inheritance” problems (described
earlier under Inheritance in Object-Oriented Programming (OOP)) complicate traceability analysis and
software verification.

In Ada, the “multiple interfaces with common method signature” problem can be solved by adding a discriminant
to the derived type, which can reflect which interface is intended. Here is an example:

package I1_Pkg is
type I1 is interface;
type I1_Class_Ref is access all I1'Class;
procedure P(X:I1) is abstract;
procedure Q1(X:I1) is abstract;

end I1_Pkg;

package I2_Pkg is
type I2 is interface;
type I2_Class_Ref is access all I2'Class;
procedure P(X:I2) is abstract;
procedure Q2(X:I2) is abstract;

end I2_Pkg;

with I1_Pkg, I2_Pkg;
use I1_Pkg, I2_Pkg;
package T_Pkg is

type Selector is (I1_Value, I2_Value);
type T(S : Selector) is new I1 and I2 with
record

A, B : Integer;
end record;

type T_Class_Ref is access all T'Class;
procedure P(X:T); -- Implements I1.P and I2.P
procedure Q1(X:T);
procedure Q2(X:T);

end T_Pkg;

package body T_Pkg is
procedure P(X:T) is
begin

case X.S is
when I1_Value => ... -- (1)
when I2_Value => ... -- (2)

end case;
end P;

procedure Q1(X:T) is ...;
procedure Q2(X:T) is ...;

end T_Pkg;

with I1_Pkg, I2_Pkg, T_Pkg;
use I1_Pkg, I2_Pkg, T_Pkg;
procedure Test is

Ref1 : I1_Class_Ref := new T(I1_Value);
Ref2 : I2_Class_Ref := new T(I2_Value);

begin
T(Ref1.all) := (I1_Value, 10, 20);
T(Ref2.all) := (I2_Value, 100, 200);
P(Ref1.all); -- Branch (1)
P(Ref2.all); -- Branch (2)

end Test;

28

The issues associated with multiple implementation inheritance do not arise in Ada, since Ada does not supply this
language feature. However, even without an explicit language feature, Ada is able to obtain the main benefits of
multiple implementation inheritance. The most common case in practice is the so-called mix-in, where a subclass
needs to inherit the implementation of methods from one main superclass, but only the methods signatures from
other classes. This exactly corresponds to the multiple interface inheritance facility that Ada provides. And in
those rare cases where multiple implementation inheritance (say from T1 and T2) is needed, it can be simulated
through delegation. Declare a type T3 that derives from one of these types (say T1), and in the record extension
for T3 define a component with type T2. For each primitive subprogram P for T2, T3will declare a corresponding
subprogram P that either directly calls P on the view conversion to T2 (simulating inheritance), or else declares a
new subprogram P with the appropriate effect (simulating an overriding).

An example of mix-in with a subclass inheriting the implementation of methods from one main superclass, and
the methods signatures from another class (interface) is the following. There is a class Shape which represents
colorless shapes, and we add the interface Colorful:

type Shape is tagged null record;

type Colorful is interface;

procedure Set_Color (Obj : in out Colorful; Color : Color_Type) is abstract;
function Get_Color (Obj : Colorful) return Color_Type is abstract;

generic
type T is tagged private;

package Make_Colorful is
type Colorful_T is new T and Colorful with private;
procedure Set_Color (Obj : in out Colorful_T; Color : Color_Type);
function Get_Color (Obj : Colorful_T) return Color_Type;

private
type Colorful_T is new T and Colorful with

record
Color : Color_Type;

end record;
end Make_Colorful;

package Colorful_Shape is new Make_Colorful (Shape);

4.5 Static Binding and Overriding

As mentioned earlier, static binding corresponds to a direct call to a method. Overriding implies the same method
is implemented in different ways for different elements of a class hierarchy. Using both at the same time opens a
vulnerability when an object’s static compile-time known type differs from its dynamic (run-time) type because
such an object can end up being manipulated by a method implementation that does not match its actual type but
one of its parent types (superclasses).

Ada is a strongly-typed language. Furthermore, it differentiates class-wide types from specific types, so one could
have expected the mismatch between dynamic and static type to be rare or impossible. This is not the case,
however, because the language supports view conversions both explicit, through type conversions to a parent type,
and implicit, through method inheritance as shown in the following example. The vulnerability appears when
manipulating an object with its specific methods is essential to the consistency of the object.

-- parent class
type Dated_Thing is tagged private;

-- methods
procedure Set_Date (Obj : in out Dated_Thing; D : Date);
function Get_Date (Obj : in Dated_Thing) return Date;
procedure Copy_Date(From : in Dated_Thing; To : in out Dated_Thing);

29

-- subclass
type Logged_Thing is new Dated_Thing with private;

-- one method is overridden, the other two are inherited
overriding procedure Set_Date (Obj: in out Logged_Thing);
-- change the date but also keep track of the change in a log

-- first example of vulnerability (explicit view conversion)
procedure Do_Something (X : in out Dated_Thing) is
begin

...
X.Set_Date (My_Date);
...

end Do_Something;

My_Thing : Logged_Thing;
...

Do_Something (Dated_Thing (My_Thing));
-- the date will be set but not logged

...

-- second example (implicit view conversion)
-- this is the implementation of Dated_Thing's third method
procedure Copy_Date (From : in Dated_Thing; To : in out Dated_Thing) is
begin

To.Set_Date (From.Get_Date);
end Copy_Date;
-- implementation is straightforward and seem to apply as is for
-- Logged_Thing so it can be inherited.
My_Thing1, My_Thing2 : Logged_Thing;
...

Copy_Date (My_Thing1, My_Thing2);
-- the date will be changed but not logged

...

When detected, those vulnerabilities can easily be countered: in the first example, the Do_Something routine
could have taken a class-wide parameter, that would have made the type conversion on the caller side unnecessary
and even if it was kept, it would not matter because the call to Set_Date in its body would have been dispatching
in any case. In the second example, the problem can be addressed by simply copy/pasting the Copy_Date
routine instead of inheriting it. The problem is not really how to address such issues when they are discovered but
rather make sure that the problem cannot happen thanks to an appropriate coding standard. The Object-Oriented
Technology in Aviation handbook [OOTiA] describes this vulnerability and suggests a rule to address it called the
simple dispatch rule. This rule specifies that any call to a method should be dispatching except in the very specific
case of a method calling its immediate parent method. There is a GNATcheck rule (see Writing a Coding Standard
with GNATcheck) Direct_Calls_To_Primitives which prevents any static dispatching.

4.6 Memory Management Issues

A polymorphic variable can denote objects from different classes at different times. Since a class may be added
to an inheritance hierarchy after the code containing the declaration of a polymorphic variable has been compiled,
the compiler cannot predict in advance the maximum size for the object that the variable denotes. As a result,
polymorphic variables are implemented as references (pointers) to their denoted objects, or, in Ada parlance, as
access values that designate their associated objects.

The representation of polymorphic variables as access values raises several issues:

1. Is dynamic allocation required?

2. If so, then various vulnerabilities may arise, from both the application code and the implementation of the
compiler vendor’s dynamic memory management run-time library. How are these vulnerabilities mitigated?

30

These issues will be discussed in the next two sections.

4.6.1 Avoiding Dynamic Allocation

Dynamic allocation is not intrinsic to OOP in Ada. In simple Object-Oriented applications the programmer can
declare the needed objects as aliased variables (perhaps pooled into arrays) in a library-level package, and then
obtain references to them via the ’Access attribute. The following fragment uses the examples shown earlier:

with Text_Processing, Rich_Text_Processing;
use Text_Processing, Rich_Text_Processing;
package Objects is

Max_Texts : constant := ...;
Max_Rich_Texts : constant := ...;
Texts : array (1..Max_Texts) of aliased Text;
Rich_Texts : array (1..Max_Rich_Texts) of aliased Rich_Text;

end Objects;

with Text_Processing, Rich_Text_Processing, Objects;
use Text_Processing, Rich_Text_Processing, Objects;
procedure Example is

type Text_Class_Ref is access all Text'Class;
Ref : Text_Class_Ref;

begin
...
Ref := Texts(1)'Access;
Italicize (Ref.all); -- Text_Processing.Italicize
...
Ref := Rich_Texts(1)'Access;
Italicize (Ref.all); -- Rich_Text_Processing.Italicize
...

end Example;

Thus the full range of OOP features may be used – inheritance, class-wide types, polymorphism, dynamic binding
– without requiring dynamic allocation (neither implicit nor explicit).

The absence of dynamic allocation can be enforced by supplying two pragmas:

• pragma Restrictions (No_Allocators), which prohibits all explicit allocators, and

• pragma Restrictions (No_Implicit_Heap_Allocations), which prohibits the use of im-
plicit allocations for purposes such as array descriptors.

Independent of OOP, other uses of dynamic allocation arise when a data structure needs a flexible representation
so that it can grow or shrink. In some situations the maximum size is unknown; for such unbounded data structures
it will be necessary to use dynamic allocation. However, in many cases a maximum size can be predicted. For
such bounded data structures the programmer can use discriminated record types or, for better encapsulation, one
of the new Ada 2012 bounded container types such as Bounded_Doubly_Linked_Lists. The GNAT Pro
implementation of discriminated record types and the bounded container types does not use dynamic allocation.

4.6.2 Using Dynamic Allocation Safely

Although some OOP scenarios can be modeled with a statically-determined set of objects, it is more typical to
require additional flexibility that implies dynamic allocation. The issue is how to do this without introducing
vulnerabilities.

From an application programmer’s perspective, there are several main requirements:

1. Ensure that no allocation request fails

2. If the language provides an explicit deallocation construct, ensure that no object is deallocated while it is
still accessible to the program (i.e., avoid dangling references).

31

3. If the implementation provides storage reclamation (i.e., garbage collection), ensure that the garbage
collector’s execution does not cause real-time deadlines to be missed

Since Ada provides explicit deallocation – the generic procedure Ada.Unchecked_Deallocation – rather
than assuming a garbage collector, the third issue does not arise.

There are several approaches to meeting the first two requirements. A simple solution is to restrict dynamic
allocation to the package elaboration phase of program execution, and to forbid unchecked deallocation. A typical
style is to allocate pools of objects, with program control over when they are no longer needed (so that they may
be reused). There are no problems concerning heap exhaustion or dangling references, but in a DO-178 context
the developer will need to verify the object pool management via appropriate analysis.

The restriction of dynamic allocation to package elaboration, and the prohibition of unchecked deallocation, can
be enforced by supplying two pragmas:

• pragma Restrictions (No_Local_Allocators)

• pragma Restrictions (No_Unchecked_Deallocation)

If these restrictions are too constraining, then a range of more general strategies are available. One is to allow
namescopes (subprograms, blocks) to perform dynamic allocations in a locally created pool of sufficient size, to
ensure that references to such objects are never copied to more global variables, and to deallocate the entire pool at
scope exit. The developer would need to demonstrate that requirements 1 and 2 are met (i.e. that the pool is large
enough, and then references do not “escape”). With any additional generality regarding the usage of allocation
and deallocation, the price is additional complexity in certification.

An example of how to define a storage pool and use it for class-wide types is the following. Users can define the
way dynamic memory from that pool can be allocated and deallocated:

type My_Storage_Pool_Type is new
System.Storage_Pools.Root_Storage_Pool with null record;

overriding function Storage_Size
(Pool : My_Storage_Pool_Type)
return System.Storage_Elements.Storage_Count;

overriding procedure Allocate
(Pool : in out My_Storage_Pool_Type;
Address : out System.Address;
Storage_Size : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

overriding procedure Deallocate
(Pool : in out My_Storage_Pool_Type;
Address : System.Address;
Storage_Size : System.Storage_Elements.Storage_Count;
Alignment : System.Storage_Elements.Storage_Count);

My_Pool : My_Storage_Pool_Type;

type Shape is tagged null record;
type Any_Shape is access Shape'Class

with Storage_Pool => My_Pool;

A related requirement when using access types is to ensure that no attempt is made to dereference (apply .all to)
a null access value. This is a data flow analysis issue, which can be facilitated through static analysis (for example
via CodePeer).

32

CHAPTER

FIVE

COMPLEXITY MANAGEMENT

5.1 Control Inheritance Depth / Width and Multiple Inheritance

Although inheritance is intrinsic to OOP, a class hierarchy that is not properly designed may complicate system
maintenance and increase the effort in safety certification. The heart of the problem is what is sometimes referred
to as the fragile base class issue. A change to a base class in an inheritance hierarchy may have a ripple effect that
requires inspection, modification, recompilation, and retesting/reverification of all classes in the hierarchy. Other
sections of this document deal with some of the mitigation strategies: choosing appropriate data encapsulation and
separate compilation relationships is discussed in Control Class Coupling, and avoiding unintentional overriding
is discussed in Improper Overriding. This section addresses complexity issues associated with the depth and width
of the inheritance hierarchy, and with multiple inheritance.

5.1.1 Deep hierarchies

Deep inheritance hierarchies raise several issues:

• Such hierarchies may be symptoms of poor design. As a contrived example, although it is possible to define
a Stack base class with a single method Push, and then a subclass PoppableStack with an additional
method Pop, and then a further subclass QueryablePoppableStackwith an additional method Size,
such a class hierarchy would of course be highly suspect. A class designer needs to provide a complete and
coherent base class from the start, rather then rely on subclassing to compensate for errors of omission.

• It is more difficult for the human developer to understand and maintain the class structure. Deep inheritance
hierarchies require the reader to refer back to multiple superclasses in order to understand the behavior of a
“leaf” subclass.

The threshold for “too deep” is inexact, but beyond around 4 or 5 levels the complexity accelerates.
To specify a limit on inheritance depth, the developer can use the GNATcheck tool with the rule
Deep_Inheritance_Hierarchies, using the maximum inheritance depth as parameter of the rule.

There is also a design/implementation technique for reducing inheritance depth: use variant records instead of
inheritance to model variation among class instances. Although the variant record style is generally regarded with
suspicion in the OO community, there are circumstances when it may provide the simplest solution. In Ada you
can declare a discriminated tagged type where the discriminant establishes the variant that is present, so the OO
and variant record styles can be combined.

5.1.2 Wide hierarchies

Wide inheritance hierarchies are not necessarily as problematic as deep ones. Different subclasses of the same
base class may be completely independent and may participate in separate subsystems, so the number of such
subclasses does not raise complexity issues. The developer or maintainer of each subsystem does not need to be
aware of the sibling classes used in other subsystems.

On the other hand if the developer or maintainer needs to understand a software architecture with one superclass
and a large number of immediate subclasses then that could present problems, especially if there is coupling
among the subclasses. If several of the subclasses share some common traits then it may make sense to merge

33

these classes into a single class, perhaps abstract, which is then subclassed (possibly with interface inheritance) to
obtain the necessary variation.

There is no GNATcheck rule to automatically verify this property, and it needs to be verified by manual inspection
of the code.

5.1.3 Multiple inheritance

The problems with multiple implementation inheritance are covered elsewhere in this document. Since Ada only
supplies interface inheritance, it avoids these issues. There are, however, a few points that need to be considered
with multiple interface inheritance.

• Inheriting the same subprogram signature from multiple interfaces. This issue is discussed in section
Multiple Inheritance.

• Inheriting conflicting subprogram signatures. The following example illustrates the problem:

type I1 is interface;
procedure P(I : I1; N : Natural) is abstract;
procedure Q1(I : I1) is abstract;

type I2 is interface;
procedure P(I : I2; N : Integer) is abstract;
procedure Q2(I: I2) is abstract;

It is impossible to declare a type that inherits from both I1 and I2, since there is no way to declare P. (Ada’s
derivation / overriding rules require subtype conformance, and the formal parameter cannot match both Natural
and Integer.) One solution is to adopt a style in which base types rather than subtypes are used for formal
parameters and function results of subprograms declared in interfaces.

• Inheriting too many interfaces. Similar to the issues raised with deep or wide hierarchies, inheriting
from a large number of interfaces can interfere with program understanding, To specify a limit on the
number of interfaces that a type inherits from, the developer can use the GNATcheck tool with the rule
Too_Many_Parents, using the maximum number of parents as parameter of the rule.

5.2 Control Class Coupling

This section describes both the general issues associated with inter-module coupling and the specific issues that
arise with class coupling in OOP. It shows how to mitigate these issues using Ada and GNAT Pro tools.

A major principle of encapsulation is to define the interface for a module to be as narrow as possible, in order to
minimize the impact on other units when the module is changed. (The term interface is used here in the general
software architecture sense: the properties of a module that may be assumed by external components. It is not
referring to the Ada interface type facility.)

The “impact on another unit when the module is changed” is referred to as the coupling between the module and
the other unit, and there are three principal possibilities:

• No coupling. No effect on other units (i.e., no need for either source code changes or recompilation)

• Weak coupling / recompilation required. Other units need to be recompiled but do not require source code
changes (there is no possibility of compilation errors)

• Strong coupling / source changes possible. The other units’ source code may need to be changed and will
need to be recompiled

A significant vulnerability in some languages is to allow an executable program to be built without enforcing the
needed recompilations. Commonly referred to as version skew, this situation can arise if a module is changed
(for example so that a subprogram has a different signature) and recompiled, but some unit dependent on the
old version (e.g., invoking the subprogram) is not recompiled. The resulting program will have unpredictable
behavior. This sort of error is prevented in Ada.

34

Strong coupling introduces a number of problems. It implies a potential for complex inter-module relationships,
and a resulting increase in effort in demonstrating compliance with safety certification standards such as DO-
178B (for example, to show that data structures cannot be corrupted). Ada’s package structure allows the package
developer to control the trade-off between minimizing the package’s coupling and maximizing its potential for
reuse, based on where declarations appear. In the other direction, the developer of a unit that needs to reference
a package’s entities can, by choosing the separate compilation relationship between the unit and the package,
determine the degree of coupling between the two. The major separate compilation relationships in Ada are
the client relationship (if with P is in a context clause for Q then Q is said to be a client of P) and the child
relationship (between a child unit and its parent package).

From the perspective of the package developer:

• The visible part of a package specification has a “source changes possible” coupling with all sections of
each of its client units and each of its child units

• The private part of the specification for a package P has:

– A “recompilation required” coupling with each of P‘s client units

– A “source changes possible” coupling with the complete specification of each of P‘s private child
units, and with the private part and body of each of P‘s public child units

• The body for a target package has a “source changes possible” coupling with all subunits (and their
dependents), and a “no coupling” relationship with all other units that depend on the package specification

More simply, a declaration in the visible part of a package specification has maximal reuse but also strongest
coupling, a declaration in a package body has minimal reuse but also weakest coupling, and a declaration in
the private part of a package specification has intermediate reuse (visibility in child units but not to clients) and
intermediate coupling.

The above rules are qualified by the disclaimer that an implementation may optimize by avoiding recompilations
that are unnecessary, and on the other hand may also add further dependencies in an implementation-defined
manner. A common additional dependence occurs when a package body contains an inlined subprogram or the
body of a generic unit; in such situations there may be a “recompilation required” coupling with units that invoke
the subprogram / instantiate the generic.

Given the existence of a package P, the developer of a unit U that needs to reference an entity in P can choose
between two principal separate compilation relationships:

• U may be a client of P

• U may be a child of P (i.e., P.U)

To minimize coupling, U should be a client of P unless U requires access to the declarations in the private part of
P. As a client unit, U will not need to be changed if the private part or body of P is modified. On the other hand,
if U does need to reference the private part of P, then U should be declared as a child of P. Generally, it will be
a public child; in some circumstances (for example the encapsulation of implementation-oriented declarations) it
will make sense to define U as a private child.

Several other aspects of Ada’s separate compilation facility are relevant to the issue of coupling control:

• with clauses in Ada are not transitive. That is, if R withs Q and Q withs P, then R does not automatically gain
access to the declarations in P‘s visible part. That can help avoid propagation of the need to change source
code when the visible part of P is modified.

• The nature of a unit U‘s coupling with other units is always apparent at the beginning of the unit, from its
with clause(s) and from its name (ie whether it is a child). This helps program readability.

• Ada 2005 introduced the concept of limited with, which allows different library packages to declare
interdependent types. The limited with facility is an extremely weak coupling between two packages, since
there are minimal assumptions that the packages can make about each other.

This section’s discussion up to this point applies to Ada development in general. In the case of OOP, it is useful to
distinguish two kinds of class coupling relationships: inheritance, and the usage of one class by another.

The decision with inheritance is whether to make the subclass’s package a client or a child of the superclass’s
package. The recommendation above on minimizing coupling applies here. That is, if package P declares a

35

tagged type T, and package U declares a tagged type T1 derived from T, and the bodies of the subprograms for
T1 do not need to access the representation of T, then U should be a client of P; it does not need to be a child. On
the other hand, the use of child packages will be typical when inheriting from a tagged type that is either private
or has a private extension, since defining the derived type’s package as a client will not provide the necessary
visibility. Thus an inheritance hierarchy of private tagged types will be modeled by a tree of child packages. The
drawback to this organization is the fragile base class problem mentioned above in section Control Inheritance
Depth / Width and Multiple Inheritance: if the root package is volatile (i.e., is undergoing frequent changes), then
the source code in the child packages might need to be modified in response to the changes. This issue is inherent
in OOP and is not specific to Ada.

In addition to inheritance, another form of class coupling is simply the usage of one class’s entities by another;
for example, class C1 defining a field that has class C2 or invoking a method from C2. In general, any given
class will make use of entities from multiple other classes, and those dependencies can interfere with reuse and
understandability, especially when there are a large number of dependencies or mutual dependencies among
the classes. The GNAT Pro tool GNATmetrics includes switches that result in the output of various coupling
complexity measures for an OO program:

• Each class’s efferent coupling: the number of other classes that the given class depends on

• Each class’s afferent coupling: the number of other classes that depend on the given class

There are also switches for deriving the efferent and afferent couplings of groups of classes. The report produced
by GNATmetrics can help the developer assess the potential for problems associated with complex class couplings.

This section has thus far treated the concept of coupling in a syntactic sense: by choosing where to place a
declaration, and whether to make a dependent a client or a child, the programmer controls which entities may
be referenced, and from which kinds of units. However, and importantly, there is also a semantic sense to
coupling. Although the interface between a package and a client unit is narrow syntactically, the client may
be assuming certain properties of the behavior of the with‘ed package. If so, then changes to the package body
may cause the client unit to execute incorrectly. One such property is whether the invoked subprogram makes
use of certain run-time facilities such as heap allocation or exception propagation. This can be detected through
the use of pragma Restrictions or coding standard rules (GNATcheck). Another such property is execution
time; in a real-time application the worst-case execution time of a subprogram is in fact part of that subprogram’s
semantic interface. Demonstrating that a subprogram invocation does not exceed its stated worst-case execution
time requires verification activities separate from what is automatically provided by the compiler.

5.3 Minimize Need for Ada Run-Time Support and Facilitate
Source-to-Object Traceability

Like most modern OO languages, Ada is an extensive language designed to cover the needs of a broad range
of applications. When a constrained Ada subset is required in order to reduce costs and risks in meeting safety
certification standards, Ada provides a mechanism for defining profiles [Ada2012], Section D.13. A profile defines
a set of configuration pragmas which restrict the availability of language features and minimize the need for
Ada run-time support. Ada 2005 [Ada2005] defines one profile (the Ravenscar profile) and implementations
are allowed to provide other profiles. The GNAT Pro High-Integrity Edition [GNATHIE] provides four profiles:
the Zero Footprint profile, the Cert Profile, the Ravenscar Profile, and the Full-Runtime profile). It also allows
programmers to define their own profiles. Although limited in terms of dynamic Ada semantics, the profiles fully
support static Ada constructs such as generic templates and child units.

In the area of Object-Oriented Programming, the following features can be restricted to minimize the Ada run-time
support and facilitate source-to-object traceability:

• Tagged types defined at nested scopes, since their definition involves specific compiler support to handle
pointers to primitives defined in nested scopes, as well as run-time support to serialize their elaboration (see
[GNATHIE] Section 6.3).

• Controlled types, since their support requires extensive run-time support.

• Streams, since no run-time support is then needed to handle dispatching stream operations.

• Package Ada.Tags, since the full functionality of this package may not be needed.

36

• Class-wide types, if the safe use of record extensions is the unique OO requirement of the High-Integrity
application. Their use can be limited through the Ada restriction identifier No_Dispatch.

• Allocation and unchecked deallocation of objects may be limited through restriction identifiers or under
control of the High-Integrity application.

37

This page is intentionally left blank.

38

CHAPTER

SIX

SAFETY AND VERIFICATION CONSIDERATIONS

6.1 Use of Pre/Post/Invariant Aspects for Verification

These new Ada 2012 aspects offer a new type of user-controlled checks that fits in nicely with OO methodology
and thus extends the safety brought by language-defined checks.

Precondition checks in particular are especially useful during integration testing, and help with the DO-178
Control Coupling analysis.

Design by Contract [M97] (“DbC”) is a recognized way of building reliable object-oriented software. It forces
the designer of a program to answer three questions for each class/method:

• What does the method expect?

• What does the method guarantee?

• What does the class maintain?

The answer to the first question is known as the method’s precondition, which is implemented in Ada 2012 as the
Pre aspect. The answer to the second question is known as the method’s postcondition, which is implemented
in Ada 2012 as the Post aspect. The answer to the third question is known as the class’s invariant, which is
implemented in Ada 2012 as the Invariant aspect.

6.1.1 Preconditions and Postconditions

A precondition is a Boolean expression over formal parameters and global variables, which is evaluated at
subprogram entry. A postcondition is a Boolean expression relating formal parameters and global variables at
subprogram entry and subprogram exit. This expression is evaluated at subprogram exit, and a special Ada
attribute ’Old makes it possible to refer to values at subprogram entry: X’Old refers to the value of X at
subprogram entry. The value returned by a function is also available through attribute ’Result: F’Result
refers to the result of the current function F. Returning to the Stack example seen previously, we can express a
richer contract on Push:

generic
type Item is private;
Max : Positive;

package Stacks is

type Stack is private;

function Is_Empty (S : Stack) return Boolean;
function Is_Full (S : Stack) return Boolean;

function Size (S : Stack) return Natural
with Post => (if Is_Empty (S) then Size'Result = 0

elsif Is_Full (S) then Size'Result = Max
else Size'Result in 1 .. Max - 1);

procedure Push (S : in out Stack; I : in Item)

39

with Pre => not Is_Full (S),
Post => Size (S) = Size (S)'Old + 1;

private
...

end Stacks;

Note that the attribute ’Old can be applied to any name, including a function call. Here, the expression
Size(S)’Old might or might not be equivalent to Size(S’Old), depending on the implementation of stacks,
because the former refers to a call to Size at function entry (which is what we want), while the latter would refer
to a call to Size at function exit (possible in a different heap).

If Stack is a tagged type, we can rewrite calls in the usual prefixed notation:

generic
type Item is private;
Max : Positive;

package Stacks is

type Stack is tagged private;

function Is_Empty (S : Stack) return Boolean;
function Is_Full (S : Stack) return Boolean;

function Size (S : Stack) return Natural
with Post => (if S.Is_Empty then Size'Result = 0

elsif S.Is_Full then Size'Result = Max
else Size'Result in 1 .. Max - 1);

procedure Push (S : in out Stack; I : in Item)
with Pre => not S.Is_Full,

Post => S.Size = S.Size'Old + 1;

private
...

end Stacks;

When compiled with assertions on (-gnata in GNAT), each precondition is checked before calling the
subprogram, and each postcondition is checked before returning from the subprogram. Any failure to respect
the contract expressed in the pre- or postcondition leads to raising an exception.

What is checked in preconditions and postconditions depends on the project/team objectives, but as a general
guideline a contract should be a simple expression of rich constraints between the caller and the called subprogram.
Typically, this is obtained by calling subprograms in the contract, in order to abstract operations. This is necessary
both for encapsulation and for simplicity.

6.1.2 Control Coupling

According to DO-178, control coupling is “the manner or degree by which one software component influences the
execution of another software component”. A large part of this influence is precisely captured by component
subprograms’ preconditions. Verifying that preconditions are respected is therefore an effective means of
controlling software components’ control coupling. It can be done either statically as described in a subsequent
section or by enabling dynamic precondition checks during integration testing. The latter is facilitated in GNAT
by the use of the following pragma:

pragma Check_Policy (Preconditions, On);

40

6.1.3 Invariants

An invariant is a property that all objects of a private type should respect, except when being modified by a
primitive operation of the type. Typically, an invariant is not true during object construction/update/finalization
occurring inside a primitive operation of the type.

In the stack example, an invariant can express that the stack is valid, with a definition of validity based on the
internal representation of the stack. For example, Is_Valid could express that unused elements have a special
value.

generic
type Item is private;
Unused : Item;
Max : Positive;

package Stacks is

type Stack is private with Invariant => Is_Valid (Stack);

function Is_Valid (S : Stack) return Boolean;

private

type Items is array (1 .. Max) of Item;
type Stack is tagged record

Top : Natural := 0;
Data : Items;

end record;

function Is_Valid (S : Stack) return Boolean is
(for all J in S.Top + 1 .. Max => S.Data (J) = Unused);

end Stacks;

All primitive operations should maintain the invariant of the object on which they operate. Ada 2012 only
mandates that, after calling a subprogram that has a result or an out or in out parameter of the type, the invariant
of this object is checked. These checks do not guarantee that the invariant is never broken, since the user may
reference the value of a global variable in the invariant, and modify this global variable outside of the operations
on the type. Rather, the invariant is a rich way to partially check such properties, as the user only has to state once
a property checked in multiple places.

6.1.4 Inheritance

In some cases, one wants to make sure that the overriding operations of a derived type obey the restrictions imposed
on the overriden operations. This is mandated in particular by the Liskov Substitutability Principle [LW94]. Then,
one can use the inheritable versions of attributes Pre, Post and Invariant, called respectively Pre’Class,
Post’Class and Invariant’Class.

Inherited preconditions are ored together to form the actual precondition. Inherited postconditions are anded
together to form the actual postcondition. Inherited invariants are anded together to form the actual invariant.

If we consider the following code excerpt:

type Buffer is tagged private
with Invariant'Class => Is_Valid (Buffer);

function Is_Valid (B : Buffer) return Boolean;
function Is_Full (B : Buffer) return Boolean;
function Is_Empty (B : Buffer) return Boolean;

procedure Insert (B : in out Buffer; Item : Natural)
with Pre'Class => not Is_Full (B),

Post'Class => not Is_Empty (B);

41

procedure Extract (B : in out Buffer; Item : out Natural)
with Pre'Class => not Is_Empty (B),

Post'Class => not Is_Full (B);

type Ordered_Buffer is new Buffer with private
with Invariant'Class => Is_Ordered (Ordered_Buffer);

function Is_Ordered (B : Ordered_Buffer) return Boolean;

The preconditions, postconditions and invariants defined for class Buffer are inherited by class
Ordered_Buffer. Class Ordered_Buffer defines another invariant, which is hence anded together
with the inherited invariant, so both Is_Valid and Is_Ordered are invariants of class Ordered_Buffer.

6.2 Robustness of Dynamic Dispatch Mechanism

Dynamic dispatch through indirection is the technique commonly used by compilers to implement dynamic
binding since it introduces a small and fixed overhead. One dispatch table is associated with each class. A
dispatch table contains the run-time signatures of the methods of the class. For efficiency reasons the method
signature is generally the address of the method. Dispatch tables are also known in the C++ literature as Vtables
(for Virtual methods Table). The layout of the GNAT dispatch tables is described in various papers such as [M06]
and [M07].

Each object instance has a hidden component (the Vtable pointer in C++ and Java, or the Tag in Ada) that
references the dispatch table corresponding to the actual class of the object. At the point of a dispatching call, the
compiler generates code that uses this hidden component to

1. get the dispatch table associated with the object,

2. index it by a number associated with the method signature (a constant known at compile time), and

3. make an indirect invocation of the target method.

With such an implementation, dispatching calls are deterministic and bounded in time, with a performance similar
to an indirect call.

Dynamic dispatching has potential safety and security problems since the wrong initialization of these tables or
the corruption of their contents can lead to improper control flow of dispatching calls.

In order to prevent corruption of the dispatch table content during the execution of the code, GNAT generates
dispatch tables of library level classes as static data that is placed in a read-only data section of the object code.
Appropriate linker switches can be used to ensure that such sections are placed in ROM. Placing such tables in
ROM insures that they cannot be modified either inadvertently or maliciously.

42

CHAPTER

SEVEN

INFORMATION FOR GNAT PRO USERS

As shown in the previous chapters, there are many issues to consider when planning the use of Object Oriented
features in a High Integrity context, but Ada’s design offers safe solutions that have made Ada a language of
choice in this area. Indeed, GNAT Pro High-Integrity Edition customers have already used Ada to develop Object
Oriented software that has passed the highest level of avionics certification.

The following are main points to consider when starting a new project using OO technology. Choices need to be
made based on the desired generality of the OO features and the required level of certification or safety case.

• Deciding degree of formality. What amount of rigor is desired or required for the verification activities?
If formal proofs of properties are of interest, the SPARK Pro technology should be considered. See Using
SPARK Pro for Formal Proofs.

• Choosing appropriate run-time library. In order to reach a high level of confidence, one of the High Integrity
run-time libraries should be adopted. Usually this choice is constrained by considerations more global than
those related to OO features, such as the necessity of having specific certification evidence for the given
library. Nonetheless, one still needs to verify that the chosen runtime provides support for OO features
compatible with the project needs and expectations. See OO Support in GNAT Pro High-Integrity Profiles.

• Mitigating OO vulnerabilities. The project needs to define a strategy that addresses the complexities and
vulnerabilities defined earlier, and to select the activities and tools that will help implement this strategy.
Particular care must be given to solving the vulnerability concerning dynamic dispatch described in the
Dynamic Dispatch and Substitutability section. This section already contains references to elements of the
GNAT Pro technology that can be used for this purpose.

• Defining a coding standard. One key element that will help simplify the implementation of the strategy
mentioned above is to define and enforce a Design and Coding Standard, with the goal of limiting the
complexity of the application and thus reducing the difficulty in achieving safety verifications. The section
Writing a Coding Standard with GNATcheck addresses this issue.

7.1 Writing a Coding Standard with GNATcheck

GNAT Pro offers a mechanism for automating the verification of a coding standard through the use of the
GNATcheck tool. The coding standard is materialized by a file containing GNATcheck rules. Here is a simple
example of such a standard:

-- This is a simple Coding Standard
+RGOTO_Statements
+RMetrics_Cyclomatic_Complexity : 5
+RRestrictions : No_Dependence => Ada.Containers
+Style_Checks:O

We can see that a coding Standard file of this sort can include comments like an Ada source. Non comment lines
include one rule and optionally its parameters. The leading string is either ‘+R’ or ‘-R’ in order to enable the
rule or disable it. The conventions for GNATcheck rules is that they describe the constructs or patterns that are
to be flagged. For instance the first rule “GOTO_Statements” requests GNATcheck to emit a message for each
GOTO statement in the Ada sources that are analyzed. The second rule “Metrics_Cyclomatic_Complexity : 5”
is a good example of a parametrized rule: it will requests GNATcheck to emit a message for each subprogram

43

whose cyclomatic complexity is greater or equal to 5. The last 2 rules in this example show how GNATcheck can
take advantage of GNAT’s comprehensive list of Restrictions and style checks. The first one would have an effect
similar to adding to the Ada sources:

pragma Restrictions (No_Dependence, Ada.Containers);

The second one would have an effect similar to compiling the Ada Sources with option -gnatyO. The advantage
of using the GNATcheck version of those rules as opposed to the equivalent features of the compiler is that all
the generated messages will be collected in the GNATcheck report that can be used as evidence of the level of
adherence to the coding standard. GNATCheck is indeed a qualifiable tool that is regularly used for fulfilling
certification obligations. Note that GNATcheck also provides a mechanism to deal with accepted deviations from
the standard called exemptions. More information can be found in the GNATcheck User’s Guide [GNATcheckUG]
concerning GNATcheck usage as well as all the available rules. The next section will focus on the rules that
concern directly one of the issue addressed in this paper.

7.1.1 Relevant GNATcheck Rules

• Controlled_Type_Declarations

This rule prevent the use of Controlled types. Note that such types are not supported by GNAT Pro HIE
runtimes so when the profile associated with such runtimes is already part of the Coding Standard such a
rule might be considered redundant.

• Deep_Inheritance_Hierarchies

This rule has an argument: the longest acceptable derivation path. It allows controlling the complexity of
the class hierarchy (depth) and it can be used both in single and multiple inheritance contexts.

• Too_Many_Parents

This rule has an argument: the maximum number of parents. It is used to control the complexity added by
the use of multiple inheritance. It can also be used to ban multiple inheritance altogether when the parameter
is set to one.

• Direct_Calls_To_Primitives

This rule can be used to prevent static dispatch in order to address the vulnerability describe in the Static
Binding and Overriding section. It solves the vulnerability by verifying that the simple dispatch rule is
applied.

• Visible_Components

This rule prevent the use of composite types whose component type is publically known. So it encourages
the use of private types and help addressing the vulnerability described in the Lack of Encapsulation section.

• Style_Checks:O

This rule detects all overriding primitives that are not declared with the overriding keyword and thus
enforces the suggested strategy for addressing the vulnerability described in the Improper Overriding
section.

• Restriction:No_Dispatch and Restriction:No_Dispatching_Calls

The first restriction is part of the Ada standard. It prevents all uses of class-wide types, which effectively
prevents the use of polymorphism but also prevents any attempt as classwide programming even when it
doesn’t trigger dynamic dispatch. The second one, which is specific to the GNAT Pro technology is less
restrictive, and allows the use of class-wide types and operations, but disallows any form of dispatching
calls.

7.2 Using SPARK Pro for Formal Proofs

SPARK [O13] is a high-level, high-integrity software development language, supported by powerful tools. The
compilable elements of SPARK are a subset of Ada, but SPARK is not just a subset of Ada: an integral part of

44

the language is its annotation language, which forms an essential part of the “contractual” specification of SPARK
programs.

7.2.1 Language and Tools

Part of a program’s contract, in both Ada and SPARK is the set of signatures for each of its (visible) subprograms:
its name, formal parameters (together with their types and modes) and description (in accompanying comments).
SPARK programs have additional contractual elements, however. These additional elements consist of a set of
core annotations, which may also be supplemented by more specific proof annotations. The core annotations allow
a fast, polynomial-time analysis of SPARK source code to check for data-flow and information-flow errors, which
can indicate a failure of the code to meet its contract. The proof annotations are optional; when these are used,
they can support the mathematical proof of properties of the source code. The proofs performed can range from
proof of exception freedom, at its simplest, all the way to a proof of correctness against a formal specification.

The subset of Ada which is at the heart of the SPARK language has been chosen to produce a simple yet powerful
programming language, retaining the key features that support the construction of software that is demonstrably
correct and abstraction through specification. For example, packages, private types and separate compilation are
all important aspects of the language. The verification of the body of each package is independent of the bodies of
any other packages: only the contracts of the packages on which it depends are needed for verification purposes.
In particular this allows the programmer to use package bodies developed in SPARK together with package bodies
developed in full Ada, provided the package specifications are in SPARK.

7.2.2 Formal Proofs

Returning to the stack example, the specification of Push seen previously can be written as follows in SPARK,
with proof annotations in special comments introduced by a # symbol.

package IStacks is

subtype Item is Integer;
Max : constant := 100;

type Stack is private;

function Is_Empty (S : Stack) return Boolean;
function Is_Full (S : Stack) return Boolean;

function Size (S : Stack) return Natural;
--# return Result => (Is_Empty (S) <-> Result = 0)
--# and (Is_Full (S) <-> Result = Max)
--# and Result in 0 .. Max;

procedure Push (S : in out Stack; I : in Item);
--# pre not Is_Full (S);
--# post Size (S) = Size (S~) + 1;

private
...

end IStacks;

Note the special operators in SPARK annotations, such as the equivalence <-> and the reference to the value of
variable S at subprogram entry, denoted S~, similar to S’Old in Ada 2012.

Given a suitable implementation of Push in SPARK, the SPARK tools generate logic formulas that should be true
for function Push to respect its contract. Then, various provers provided in the SPARK toolset can be used to
automatically prove that these logical formulas are true.

Of special interest in object-oriented programming is the verification of the Liskov Substitutability Principle. For
every overriding subprogram, SPARK generates formulas that ensure that 1) the overriding subprogram precon-

45

dition is implied by the overridden subprogram precondition, and 2) the overriding subprogram postcondition
implies the overridden subprogram postcondition.

7.2.3 Control and Data Coupling

As discussed previously, verifying that preconditions and postconditions are respected is an effective means of
controlling software components’ control coupling. Formal verification, in contrast to testing, gives the additional
guarantees that all execution paths have been covered in this verification.

SPARK also provides a straightforward solution to checking data coupling, through the static verification of data-
flow and information-flow. The user states in annotations the expected reads and writes of subprograms, or the
flows between reads and writes, and the SPARK toolset checks these automatically. This guarantees that no use
of data can occur silently (i.e., without being explicitly specified).

Data flow analysis concerns how data flows within and between programs. If we always, or sometimes, use the
value of a variable before it has been assigned a value, for instance, this is a data flow error. Data flow analysis is
performed by the SPARK Examiner tool on all of the source code to which it is applied.

Information flow analysis concerns how information flows between variables. For a given program, we can
determine a set of inputs (parameters of mode in or in out, together with global variables from which we may read
values) and a set of outputs (parameters of mode in out or out, together with global variables that we may modify).
Information flow analysis considers which inputs may affect which outputs, both for individual subprograms and,
by composition, subprograms which call these, and so on. Information flow analysis can also detect more subtle
programming errors, including missing or unexpected dependencies between inputs and outputs, and loop exit
conditions which may become ‘stable’ (and cease to change) after a small number of iterations. Information flow
analysis is optional, but can be applied to all SPARK code that has the relevant core annotations.

As an example, here is a SPARK specification of a procedure Exchange which swaps the values of X and Y and
stores X in some global G:

procedure Exchange (X, Y : in out Float);
--# global out G;
--# derives X from Y &
--# Y from X &
--# G from X;

7.3 Using GNATstack for Stack Resource Analysis

High-Integrity systems must provide evidence demonstrating the impossibility of stack overflow, and the use of
object-oriented capabilities (namely the dynamic binding) complicates this calculation of stack usage.

The stack is the memory area that stores local information for the subprograms being executed. A stack overflow
occurs when there is an attempt to store more data on the stack than what can fit. The consequences of a stack
overflow depend on the operating environment and execution context. If this event is properly detected and
handled, execution can proceed in error-recovery mode. If this situation remains unnoticed, memory can be
corrupted, leading to unpredictable execution. Hence, it is of paramount importance to avoid stack overflows in
the first place by means of analyzing worst-case stack requirements.

The two approaches to stack requirement analysis are based on either dynamic testing or static analysis
techniques. Dynamic testing-based approaches usually involve measuring the maximum amount of memory used
while running or simulating the application. Static analysis techniques entail computing per-subprogram stack
consumption combined with control-flow analysis.

The major weakness of dynamic testing-based approaches is that they cannot guarantee that the worst-case
execution path has been exercised during the testing campaign. Static stack analysis techniques provide worst-
case results that can be safely used for dimensioning stacks, ensuring reliable stack memory usage and thus
guaranteeing safe execution.

46

Static stack analysis techniques need to be able to know all feasible control flow during execution, and this is
where the dynamic binding mechanism creates problems: the target of a dispatching call depends on the actual
context of execution, and it cannot, in general, be known statically.

The approach to handle statically dispatching calls is to identify the set of overriding primitive operations
(methods) that can potentially be called. Taking into account the class hierarchies and associated primitive
dispatching operations, and the class-wide type of the controlling operand, the stack analysis tool can determine
the list of potential primitive operations that can be the targets of any dispatching call.

For example, with the Shape class hierarchy, if we have the following code:

procedure Get_Name (Object : Shape) is
Name : String (1 .. 5);

begin
Name := "Shape";
...

end Get_Name;

procedure Get_Name (Object : Polygon) is
Name : String (1 .. 7);

begin
Name := "Polygon";
...

end Get_Name;

procedure Get_Name (Object : Rectangle) is
Name : String (1 .. 9);

begin
Name := "Rectangle";
...

end Get_Name;

procedure Use_Name (Object : Shape'Class) is
begin

Get_Name (Object);
...

end Use_Name;

Procedure Use_Name performs a dispatching call which can only be resolved at execution time to any of the three
primitive operations associated to the Shape’Class type hierarchy. The way to address this issue statically is
to consider the three primitive operations as potential targets of the dispatching call. Therefore, the procedure:

procedure Use_Name (Object : Shape'Class) is
begin

Get_Name (Object);
...

end Use_Name;

is conceptually considered equivalent, from the point of view of static control-flow analysis, to the following:

procedure Use_Name (Object : Shape'Class) is
begin

if Object'Tag = Shape'Tag then
Shape (Object).Get_Name;

elsif Object'Tag = Polygon'Tag then
Polygon (Object).Get_Name;

elsif Object'Tag = Rectangle'Tag then
Rectangle (Object).Get_Name;

end if;
...

end Use_Name;

When using GNATstack [GNATSTACK], AdaCore’s static stack analysis tool, dispatching calls are analyzed as
described above, obtaining a safe upper bound for the worst-case path in terms of stack usage. For the previous

47

example, if we want to focus on the path starting from Use_Name, we get the following stack usage information:

Accumulated stack usage information for entry points

shapes.use_name : total 208 bytes
+-> shapes.use_name at Use_Name:shapes.adb:31:4 : 96 bytes
+-> dispatching to shapes.get_name at Get_Name:shapes.adb:23:4 : 112 bytes

List of dispatching calls resolved by analysis

From subprogram shapes.use_name at Use_Name:shapes.adb:31:4:

Call at shapes.adb:33:7 may dispatch to:
+-> shapes.get_name at Get_Name:shapes.adb:7:4
+-> shapes.get_name at Get_Name:shapes.adb:15:4
+-> shapes.get_name at Get_Name:shapes.adb:23:4

In this case, the worst-case path is the one where the dispatching call is resolved to the primitive operation
associated with the tagged type Rectangle (defined at shapes.adb:23:4). We can see in the previous
example that this primitive operation is declaring the largest object on the stack.

GNATstack also provides the list of possible targets for every dispatching call. This list can be exploited to
determine whether the implementation corresponds to the model, and whether the testing campaign has covered
all possible targets for dispatching calls.

The same principles described here apply also to multiple inheritance of interfaces, with GNATstack able to
statically analyze this kind of construct.

Therefore, GNATstack handles dynamic dispatching by considering all possible targets of dispatching calls
(according the hierarchies of classes and primitive dispatching operations, and the class-wide type of the
controlling operand). With this information, without doing any data-flow analysis based on the context of the
execution, it constructs statically the application call graph, so it can explore all possible paths searching for
worst-case stack usage.

GNATstack takes into account Ada tasks when performing the control-flow analysis, presenting per-task stack
requirements which can be used to allocate the stack space required by each task in the application (using pragma
Storage_Size (Max_Size) in the task declaration.)

7.4 OO Support in GNAT Pro High-Integrity Profiles

The GNAT Pro High-Integrity Edition defines four predefined profiles:

1. The Zero Footprint Profile, an Ada subset requiring no run-time support;

2. The Cert Profile, comprising the features in the Zero Footprint profile together with a restricted set of
thread-safe features, in particular exception propagation;

3. The Ravenscar Profiles, comprising the features in the Zero Footprint profile (Ravenscar ZFP) or the Cert
profile (Ravenscar Cert) together with a restricted set of tasking features; and

4. The Full-Runtime Profile, comprising the complete Ada language.

The Zero Footprint Profile, the Cert Profile and the Ravenscar Profiles are collectively known as the High-Integrity
Profiles, since they are designed to be used in applications that need to be certified for safety-critical use. The
following Ada features for Object-Oriented Programming are supported under the various High-Integrity profiles:

• Tagged types defined at library level are supported; tagged types defined in nested scopes are not supported
since their implementation require compiler support to handle pointers to primitives declared in nested
scopes, and runtime support to elaborate nested tagged types in presence of multiple tasks (See Sections
Minimize Need for Ada Run-Time Support and Facilitate Source-to-Object Traceability and Robustness of
Dynamic Dispatch Mechanism.) In addition, library-level tagged types are statically elaborable and thus
can be used in the presence of the restriction No_Elaboration_Code.

48

• Tagged objects can be declared at library level, in nested scopes, or allocated in the heap. In the ZFP
profile, allocation of tagged objects in the heap is under control of the programmer, who needs to provide
the low-level memory management routines invoked by the code generated by the compiler to allocate
and free the memory of the objects. The Cert and Ravenscar profiles provide a limited version of
function gnat_malloc that simply calls the underlying malloc routine. Allocation and deallocation
of objects may be limited through the following restriction identifiers defined in the Ada Reference
Manual: No_Local_Allocator, No_Allocators, No_Implicit_Heap_Allocations, and
No_Unchecked_Deallocation.

• Declarations of class-wide objects (i.e., polymorphic objects) and class-wide parameters are supported.
They can be limited through the Ada restriction identifier No_Dispatch if the safe use of record
extensions is the unique object-oriented requirement of the application.

• Dynamic dispatching is supported and can be limited through the GNAT restriction identifier
No_Dispatching_Calls, which also forbids calls internally generated by the compiler (for
example, implicit dispatching calls generated by the compiler to handle class-wide object assignment or
class-wide object comparison).

• The object-operation notation is fully supported under any profile since its use does not involve extra cost
in the code generated by the compiler.

• A subset of interface types is supported in the High-Integrity profiles. Various restrictions on interfaces help
reduce the run-time support:

1. No task interfaces, protected interfaces or synchronized interfaces,

2. No dynamic membership test applied to interfaces (only those cases in which the evaluation can be
performed at compile-time are supported),

3. No class-wide interface conversions,

4. No declaration of tagged type covering interfaces in which its parent type has variable-size compo-
nents, and

5. ’Address not supported on objects whose visible type is a class-wide interface.

• Streams are partially supported. That is, dispatching calls associated with streams are not allowed to
avoid the need for run-time support to handle dispatching stream operations. However, use of the package
Ada.Streams (or another package that does so itself) in the High-Integrity application is permitted as
long as no actual stream objects are created and no stream attributes are used.

• Controlled types are not supported since they require extensive run-time support.

• A limited version of package Ada.Tags is available in the default implementation of
these profiles. Services Wide_Expanded_Name, Internal_Tag, Descendant_Tag,
Is_Descendant_At_Same_Level and Interface_Ancestor_Tags are excluded since
their implementation involves extra run-time cost.

• Generic dispatching constructors are not supported since their implementation requires the above-mentioned
routines.

49

This page is intentionally left blank.

50

CHAPTER

EIGHT

CONCLUSION

In this document, we have described the general concepts of Object-Oriented Programming and their realization
in Ada, including features introduced in Ada 2005 and Ada 2012. Ada is a language that is well suited for
the development of High Integrity systems, and in the early chapters we explained how Ada’s OO features fit
into the language’s general safe / secure / reliable framework. We then reviewed the most common safety-
related vulnerabilities associated with OO and proposed ways of addressing or at least mitigating them. The
next several chapters discussed other safety-related issues such as complexity management and how to simplify
specific analyses that may be required for certification. In particular, we described the new Ada 2012 support
for contract-based programming and showed how it can be used for such analyses. Finally we provided specific
information to GNAT Pro users for activities or analyses based on GNAT Pro and SPARK Pro tools.

The goal of this document is provide guidance on the safe use of OO technology with Ada, and specifically in
the context of the GNAT Pro technology. We expect this document to evolve over time, and readers are invited
to send comments and suggestions to AdaCore at report@adacore.com with the title of the document included on
the subject line.

51

mailto:report@adacore.com

This page is intentionally left blank.

52

BIBLIOGRAPHY

[Ada2012] Ada 2012 Language Reference Manual. http://www.ada-auth.org/standards/ada12.html

[C06] C. Comar, R. Dewar, G. Dismukes. “Certification & Object Orientation: The New Ada Answer”, ERTS
2006. http://www.adacore.com/wp-content/uploads/2006/03/Certification_OO_Ada_Answer.pdf

[DO178C] RTCA DO-178C/EUROCAE ED-12C. Software Considerations in Airborne Systems and Equipment
Certification. December 2011.

[DO332] RTCA DO-332/EUROCAE ED-217. Object-Oriented Technology and Related Techniques Supplement
to DO-178C and DO-278A. December 2011.

[GNATcheckUG] GNATcheck User’s Guide. http://www.adacore.com/category/developers-center/reference-
library/documentation/

[GNATHIE] GNAT Pro User’s Guide Supplement for High-Integrity Edition Platforms.
http://www.adacore.com/wp-content/files/auto_update/gnat-hie-docs/html/gnathie_ug.html

[GNATSTACK] J.F. Ruiz, E. Botcazou, O. Hainque, and C. Comar. “Preventing Stack Overflow using Static
Analysis”, Proceedings of DASIA 2007, Data Systems In Aerospace, Naples, Italy, 2007.

[LW94] B. Liskov and J. Wing. “A behavioral notion of subtyping”, ACM Transactions on Programming
Languages and Systems (TOPLAS), Vol. 16, Issue 6 (November 1994), pp 1811-1841.

[M06] J. Miranda. The Implementation of Ada 2005 Interface Types in the GNAT Compiler,
http://www.adacore.com/wp-content/uploads/2006/06/Ada-2005_Interface_Types.pdf

[M07] J. Miranda. “Towards Certification of Object-Oriented Code with the GNAT Compiler”, Ada User Journal,
Volume 28, Number 3, September 2007. http://www.adacore.com/2011/01/05/towards-certification-of-object-
oriented-code-with-the-gnat-compiler/

[M97] B. Meyer. “Object-Oriented Software Construction”, Prentice Hall Professional Technical Reference, 2nd
Edition, 1997, pp 331-410.

[O13] I. O’Neill. “SPARK - a language and tool-set for high-integrity software development”, In Industrial
Use of Formal Methods: Formal Verification, J-L Boulanger (ed.), Wiley Online Library. January 2013.
http://onlinelibrary.wiley.com/book/10.1002/9781118561829

[OOTiA] US Federal Aviation Administration. Handbook for Object-Oriented Technology in Aviation, October
2004. http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot

[R13] L. Rierson. Developing Safety-Critical Software: A Practical Guide for Aviation Software and DO-178C
Compliance. CRC Press, 2013.

53

http://www.ada-auth.org/standards/ada12.html
http://www.adacore.com/wp-content/uploads/2006/03/Certification_OO_Ada_Answer.pdf
http://www.adacore.com/category/developers-center/reference-library/documentation/
http://www.adacore.com/category/developers-center/reference-library/documentation/
http://www.adacore.com/wp-content/files/auto_update/gnat-hie-docs/html/gnathie_ug.html
http://www.adacore.com/wp-content/uploads/2006/06/Ada-2005_Interface_Types.pdf
http://www.adacore.com/2011/01/05/towards-certification-of-object-oriented-code-with-the-gnat-compiler/
http://www.adacore.com/2011/01/05/towards-certification-of-object-oriented-code-with-the-gnat-compiler/
http://onlinelibrary.wiley.com/book/10.1002/9781118561829
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot

	Introduction
	Object Orientation Concepts
	Fundamentals of Object-Oriented Development
	Object-Oriented Programming (OOP)
	Additional Object-Oriented Programming Concepts

	Object Orientation in Ada
	Classes, Objects, Inheritance, and Polymorphism
	Encapsulation Features
	Constructors
	Finalization and Controlled Types
	Multiple Inheritance and Interface Types
	Other Object-Oriented features
	Support for Programming by Contract in Ada 2012

	Vulnerabilities and Their Mitigation
	Lack of Encapsulation
	Dynamic Dispatch and Substitutability
	Improper Overriding
	Multiple Inheritance
	Static Binding and Overriding
	Memory Management Issues

	Complexity Management
	Control Inheritance Depth / Width and Multiple Inheritance
	Control Class Coupling
	Minimize Need for Ada Run-Time Support and Facilitate Source-to-Object Traceability

	Safety and Verification Considerations
	Use of Pre/Post/Invariant Aspects for Verification
	Robustness of Dynamic Dispatch Mechanism

	Information for GNAT Pro Users
	Writing a Coding Standard with GNATcheck
	Using SPARK Pro for Formal Proofs
	Using GNATstack for Stack Resource Analysis
	OO Support in GNAT Pro High-Integrity Profiles

	Conclusion
	Bibliography

