
 

 

High-Integrity Systems Development for 
Integrated Modular Avionics using 

VxWorks and GNAT 

Paul Parkinson 1, Franco Gasperoni 2  
1 Wind River, Unit 5 & 6 Ashted Lock Way, Birmingham, B7 4AZ, United Kingdom 

Paul.Parkinson@windriver.com

2 ACT Europe, 8 Rue de Milan, 75009 Paris, France 
gasperon@act-europe.fr

Abstract. This paper presents recent trends in avionics systems development 
from bespoke systems through to COTS and emerging Integrated Modular 
Avionics architectures. The advances in Ada and RTOS technologies are 
explained and the impact of requirements for RTCA/DO-178B and 
EUROCAE/ED-12B certification and achievements are presented in the context 
of the GNAT and VxWorks technologies.  

1 Introduction 

Many avionics systems have successfully been implemented in Ada on 
bespoke hardware platforms, and have usually performed a dedicated 
function with limited interaction with narrowly defined external 
interfaces to external subsystems. However, in recent years, the need 
has evolved for new applications with ever-increasing levels of 
functionality, requiring interaction with many external systems, which 
has had a negative impact on development timescales. This has 
conflicted with market forces which have exerted pressure for shorter 
development cycles to bring new systems to market faster. In addition, 
avionics programmes have been under pressure to reduce life cycle 
costs, and as bespoke systems have been regarded as the largest single 
contributory cost factor, alternatives have been sought. 
 
One of the trends which has emerged as a result is the adoption of 
COTS (commercial off the shelf), but not just in the sense of 
commercial grade components recommended by the US Department of 



 

 

Defense, but in terms of system-level boards and importantly, COTS 
software.  
 
Programme offices have learned that significant cost savings can be 
made where an already available COTS board can be used to perform a 
function for which a proprietary system would have previously been 
developed. The risk to the programme is reduced in terms of 
development timescales and engineering development costs.  
 
However, lessons have been learned from the mistakes made during 
early COTS adoption, as some of these actually increased programme 
risk, rather than reducing it as intended. These pitfalls included the use 
of single-source supplier, closed proprietary interfaces, and 
dependencies on hardware architectures which would become obsolete 
during an in-service lifetime exceeding thirty years.  
 
One of the trends which has emerged as a result is Integrated Modular 
Avionics (IMA), which has placed demands on software systems, 
including Ada implementations and Real-Time Operating Systems 
(RTOS). These systems have placed new demands on the certification 
efforts required for deployment. These interesting issues are discussed 
in the following sections.    

1.1 The Development of High-Integrity Systems 

Standards for safety-critical systems have tracked advances in avionics 
development, and there is now a range of standards which apply to 
hardware and/or software, covering civil and/or military programmes, 
and may apply to a single country or a group of nations. These 
standards also vary in the approaches which they take towards ensuring 
safety-criticality. The US standard RTCA/DO-178B [1], and its 
European equivalent EUROCAE ED-12B, place a strong emphasis on 
testing to demonstrate absence of errors. The UK defence software 
standard Def Stan 00-55 [2], instead promotes proof of correctness in 
the design, rather than absence of errors. Despite the differences in the 
philosophies, recent research work has shown that there is some 
correlation between these standards [3], and they all place stringent 
requirements on avionics applications which need to be certified. 
 



 

 

The DO-178B/ED-12B standard defines five levels of safety-criticality, 
ranging from Level E at the least critical, to Level A at the most 
critical, as shown in table 1 below: 

Table 1. DO-178B/ED-12B Safety Criticality Levels 

Failure 
Condition 

Software Level Outcome 

Catastrophic Level A Death or injury 
Hazardous / 
Severe - Major 

Level B Injury 

Major Level C Unsafe 
workload 

Minor Level D Increased 
workload 

No Effect Level E None 
 
The implications for certification are significant, as there is a 
significant increase in certification effort required as the safety critical 
level is increased. This applies to software specification, design, 
implementation and testing phases. DO-178B defines 28 objectives for 
Level D, rising to 57 for Level C, through to 66 for Level A, which 
requires significantly more rigour than the lower levels. 

Table 2. DO-178B/ED-12B Testing Requirements 

Software 
Level 

Testing Requirements Examples 

Level A MCDC Coverage 
Level B Decision Coverage 
Level C Statement Coverage 

 
The top three safety levels are of particular interest to Ada developers, 
as they require development tool support to perform code coverage. 
This is usually performed via instrumentation of the source code with 
trace points prior to compilation by the Ada compiler; then during 
program execution, a log is generated which can be analyzed to 
determine the behaviour of the program. Level C specifies Statement 
Coverage, which requires every statement in the program to have been 
invoked at least once. Level B specifies Decision Coverage, which 
requires every point of entry and exit in the program has been invoked 



 

 

at least once and every decision in the program has taken on all 
possible outcomes at least once. Finally, Level A requires Modified 
Condition / Decision Condition (MCDC) testing which is explained 
below. This increases the number of test permutations immensely, and 
also places additional burdens on the development tool and systems 
under test.  
 
MCDC Illustration. The complexity of MCDC testing is illustrated by 
the following code fragment:   
if A=0 and then B<2 and then C>5 then P; end
if;

   
This contains three variables, three conditions and four MCDC cases 
(as shown in Table 3). For DO-178B Level B certification, two test 
cases which result in both the execution and non-execution of statement 
P are required, whereas for Level A certification, all four possible test 
cases need to be generated. 

Table 3. MCDC Test Cases 

A=0 B<2 C>5 P 
T T T T 
F ? ? F 
T F ? F 
T T F F 

 
The DO-178B standard is used to certify a complete system 
implementation and not just individual components of a system, 
therefore certification evidence must be produced for all software 
components used within that system. So for COTS, this means that 
certification evidence will be required for the Ada application, the Ada 
runtime system and the RTOS beneath it – these are addressed in the 
following subsections. 

1.1.1 Ada Application & Runtime Certification 
Ada applications rely on an Ada runtime system to provide services 
such as tasking or exceptions in their deployed environment. While the 
size and complexity of the runtime system is usually not an issue in 
commercial applications, in safety-critical systems it is, since the 



 

 

certification of the Ada runtime system can in itself prove to be a 
considerable task. 
 
To deal with this issue, the approaches that have emerged in the past 
ten to fifteen years restrict the Ada features that can be used in safety-
critical applications. The resulting benefit is a simplification of the 
underlying Ada runtime. Unfortunately, every Ada vendor has come up 
with its set of Ada restrictions. 
  
Ada 95 with its safety and security annex, the follow-on work done by 
the Annex H Rapporteur Group [4] as well as the work on the 
Ravenscar Profile [5, 6, 7] have brought some clarity in this domain. 
We are hopeful that Ada 0X will contain at least one standardized high-
integrity profile. This will enhance portability in the realm of safety-
critical applications. A side effect of this will be the extension of the 
ACATS test suite. As a result, Ada users would have a number of 
conformant implementations to choose from. 

 

1.1.2 RTOS Certification and VxWorks/Cert 
 
A number of avionics applications which have been certified for 
deployment have used proprietary in-house RTOS implementations, 
generally consisting of a kernel with task scheduler some resource 
management capabilities. The development, maintenance and 
certification of such kernels may have been manageable on past 
programmes, but it difficult to envisage how this approach can be 
viable for future programmes. This is because today’s more complex 
systems, with multiprocessor configurations and many communications 
interfaces demand more sophisticated functionality from an RTOS. For 
programmes developing and maintaining an in-house proprietary 
RTOS, this places a significant additional burden on the programme’s 
developers.  
 
Another approach which has been adopted in a number of safety critical 
avionics programmes, is to take a commercial RTOS and to certify it as 
part of the system certification activities.  Honeywell Aerospace 
adopted this approach in the development of the Global Star 2100 



 

 

Flight Management System, which runs on VxWorks®, and was 
certified to DO-17B Level C [8].  

 
However, the next logical step, was for a commercial RTOS vendor to 
provide an off-the-shelf product with DO-178B certification evidence 
which could be used in the development of safety critical systems. This 
is an appropriate approach because the FAA has produced guidelines in 
N8110.RSC [9], which outline how “reusable software components” 
(RSC), including an RTOS, can be certified to DO-178B as part of a 
system. The net result is that the off-the-shelf component can be reused 
in many programmes, without the need to redevelop certification 
evidence for the RTOS kernel each time, provided that it is not 
changed. The approach taken by Wind River to provide these reusable 
software components in detail in a later section. 

1.2 The Route to COTS 

Avionics programmes have sought to achieve portability and 
interoperability for hardware platforms in the drive towards COTS. The 
Ada programming language has helped towards this end by enabling 
software abstraction from both the processor and system architectures. 
 
 
However, many Ada applications have run on top of a dedicated Ada 
runtime and kernel which has been not only specific to a processor 
architecture, but also to an Ada technology supplier. This has means 
that when some programmes migrate architectures, for example when 
transitioning from Motorola 68k to PowerPC, may unexpectedly face 
problems relating to vendor lock-in due to a proprietary Ada kernel 
implementation. Programmes have also sought to avoid vendor lock-in 
when selecting an Ada compiler technology. The Ada ‘95 
programming language standard [10], and associated compiler 
technology verification tests go a long way to providing evidence of 
intrinsic compatibility between compiler technologies, far more so that 
for C/C++ counterparts. However, close examination of the Ada 
compiler technology is also required to determine its openness, and 
whether the programme using a specific vendor’s compiler will become 



 

 

locked into that technology, or will be able to migrate to another 
technology at a future date. 

1.3 The Emergence of Integrated Modular Avionics 

In addition to the drive towards COTS to reduce life cycle costs, 
avionics programmes have also needed to consider the performance 
requirements of new avionics applications, which have increased 
dramatically.  In order to address these needs, a new model has been 
developed, Integrated Modular Avionics (IMA), which has the 
following high-level objectives: 
 
• Common processing subsystems. These should allow multiple 

applications to share and reuse the same computing resources. This 
facilitates a reduction in the number of deployed subsystems which 
are not fully utilised and provides a more efficient use of system 
resources which leaves space for future expansion.  
 

• Software abstraction. This should isolate the application not only 
from the underlying bus architecture but also from the underlying 
hardware architecture. This enables portability of applications 
between different platforms and also allows the introduction of new 
hardware to replace obsolete architectures.  
 

IMA seeks to achieve these objectives through the implementation of a 
layered software model, with an RTOS and architecture-specific 
software providing an isolation layer above the hardware, and above 
this portable applications reside.  
 
IMA is likely to become pervasive in avionics in the next few years, as 
number of high-profile industry research programmes including 
ASAAC [11] and the EU-funded Project Victoria are developing 
software architectures for IMA which will impact on the future 
developments of software technology from commercial vendors, and 
may also have input into relevant avionics software standards. 



 

 

1.3.1 Support for emerging IMA architectures 

The Avionics Computing Resource Minimal Operational Performance 
Specification [12] defines two important concepts which are widely 
used in IMA, these are Spatial Partitioning and Temporal Partitioning. 
 
Spatial Partitioning. This defines the isolation requirements for 
multiple applications running concurrently on the same processing 
platform. The applications should not be able to interfere with each 
other, and is usually achieved through the use of different virtual 
memory contexts, enforced by a processor’s memory management unit 
(MMU). These contexts are referred to as Partitions in the ARINC-653 
Specification [13], and contain an application with its own heap for 
dynamic memory allocation, and a stack for the application’s tasks. 
Applications running in an IMA partition must not be able to deprive 
each other of shared application resources or those that are provided by 
the RTOS kernel. These requirements will have an impact on the 
design and implementation of the Ada runtime system and the 
underlying RTOS kernel. 
 
Temporal Partitioning. This defines the isolation requirements for 
multiple applications running concurrently on the same processing 
platform. This ensures that one application may not utilise the 
processor for longer than intended to the detriment of the other 
applications. The ARINC-653 Specification defines a model where an 
application may be allocated a timeslot of a defined width, and other 
applications may be allocated timeslots of similar of differing 
durations. The ARINC scheduler then enforces the processor 
utilization, by forcing a context switch to a new application at the end 
of each timeslot. 

2 VxWorks/Cert and VxWorks AE653/Cert 

In 1999, Wind River set out to develop a VxWorks product which 
could be certified to DO-178B Level A, and also to define a 
certification product roadmap to address the needs of safety critical 
programmes in the near future. The development of the resulting 
VxWorks/Cert product has already been used on a number of 



 

 

programmes and is described in the next subsection; VxWorks 
technology advances to assist the development of IMA applications are 
also described in the subsequent subsection. 
 

2.1 Development of VxWorks/Cert 

In order to produce a version of VxWorks suitable for high integrity 
systems, close scrutiny of the FAA guidelines and other up and coming 
standards was required, including the RTCA SC-255 Requirements 
Specification for Avionics Computer Resource (ACR) [12] and other 
standards, such as ARINC-653. Then a multiple pass analysis of the 
whole of the source code base for VxWorks 5.4 and PowerPC 
architecture-specific code was undertaken. The end result was a 
certifiable subset of the VxWorks 5.4 API [14]; functionality that had 
been excluded was that which could compromise predictability or lead 
to memory fragmentation.  
 
Restrictions of interest to Ada developers are that C++ runtime support 
was removed, and restrictions on dynamic memory allocation were 
introduced. This only allowed dynamic memory allocation to occur at 
system initialization time, which allowed the execution of Ada 
elaboration code, or C applications to create data structures from the 
heap. After a call has been to the kernel API memNoMoreAllocators() to 
indicate that system initialization has completed, the VxWorks kernel 
prevents further dynamic memory allocation and dynamic creation and 
deletion of tasks,  irrespective of whether they are VxWorks tasks or 
Ada tasks. 
 
The development of high integrity applications with VxWorks/Cert can 
be undertaken using an enhanced version of the Tornado™ integrated 
development environment, which is closely integrated with ACT’s 
GNAT Pro for Tornado development tools.  This subject was recently 
discussed by one of the authors in an industry journal [15]. 
 
In order to develop the certification evidence for VxWorks/Cert, a 
number of qualified CASE tools were employed. These were used in 
conjunction with automatic test harnesses which generated and collated 
MCDC test results. These results have been analyzed and audited, and 



 

 

in the rare cases full coverage results are not generated, a manual 
justification for the proof of correctness of behaviour has been 
developed. Such cases include entry and exit from an interrupt service 
routine (ISR), which cannot be tracked by CASE tools in some 
circumstances (e.g. during kernel start-up). The complete 
VxWorks/Cert certification evidence has been developed by Verocel in 
a hyperlinked format, navigable in an HTML browser. This not only 
greatly assists the certification audit process, by providing fast and 
accurate cross-referencing capability between different levels of 
specification, design documentation, source code and test results, but 
can also be extended, enabling programmes to add certification 
evidence for their Ada applications. 

2.2 Development of VxWorks AE653/Cert 

In order to fulfill the needs of IMA development programmes, Wind 
River has added spatial partitioning and temporal partitioning to 
VxWorks technology.  

2.2.1 Spatial Partitioning 
 
VxWorks AE implements spatial partitioning through Protection 
Domains, which are analogous to ARINC-653 partitions. Protection 
domains are flexible containers into which application tasks, objects 
and resources can be placed. Each protection domain employs its own 
stack and heap locally, which guarantees resource availability, as they 
cannot be usurped by applications running in other protection domains. 
Protection domains provide protection against errant memory accesses 
from applications running in other protection domains, implemented 
using an MMU virtual memory context. The implementation of 
protection domains is described in more detail in the High Availability 
for Embedded Systems white paper [16].  
 
The certifiable version of VxWorks AE, VxWorks AE653, also 
guarantees kernel resource availability by binding a separate instance of 
the VxWorks kernel to each application protection domain, and 
providing a message passing backplane between protection domains. 
This implementation contrasts with monolithic kernel implementations 
where an errant application can deprive other applications of kernel 



 

 

resources. The use of separate kernel instances also means that separate 
Ada runtimes can be used within each application protection domain. 

2.2.1 Temporal Partitioning 
 
The task scheduling models used in avionics systems are interesting. In 
recent years, there has been a trend in many embedded and real-time 
systems to migrate from the traditional time-slicing model towards pre-
emptive priority-based scheduling schemes, as these provide 
predictable and deterministic behaviour. These schemes have been 
successfully used in conjunction with Ada-based applications in major 
avionics programmes, such as GENESYS [17].  
 
However, because IMA systems can support multiple applications 
running on the same processor, and for this a time-based partitioning 
scheme is required. The ARINC-653 Specification defines a temporal 
partitioning scheduling model which guarantees time slots to partitions, 
and within these partitions applications tasks can be scheduled using 
other scheduling policies.  VxWorks AE653 implements ARINC-653 
partition scheduling via a protection domain scheduler, this provides 
guaranteed time slots to applications within each protection domain, 
and uses priority-based preemptive scheduling for tasks within the 
domain.    

3 GNAT Pro High Integrity Edition 

GNAT Pro High-Integrity Edition (GNAT Pro HIE in the remainder of 
this document) is intended to increase safety as well as reduce the 
certification cost of applications that need to meet safety-critical 
certification standards such as RTCA/DO-178B or EUROCAE ED-
12B. 
 
In addition to providing two high-integrity Ada profiles, GNAT Pro 
HIE contains a number of features especially useful for safety critical 
programming. The following sections will describe each of these 
elements.  



 

 

3.1 GNAT Pro HIE Certification Benefits 

An important benefit of GNAT Pro HIE when it comes to user code 
certification is the ease in which object code can be traced to the 
original source [18].  
 
A compiler option allows display of the low-level generated code in 
Ada source form. This acts as an intermediate form between the 
original source code and the generated object code, thus supporting 
traceability requirements. This intermediate presentation can be used as 
a reference point for verifying that the object code matches the source 
code. This expanded low-level generated code can also be used as a 
reference point for run-time debugging. As an example, consider the 
following code: 
 
procedure Try is

X : array (1 .. 100) of Integer := (1, 2, others => 3);
begin

null;
end;

Using a special switch you can display (or save to a file) the low-level 
Ada source code that is internally created by the compiler and from 
which the final object code is generated. For the above the source code 
is: 
 
procedure try is

x : array (1 .. 100) of integer;
x (1) := 1;
x (2) := 2;
I5b : integer := 2;
while I5b < 100 loop

I5b := integer'succ(I5b);
x (I5b) := 3;

end loop;
begin

null;
return;

end try;

 
Thus, instead of having to go from high-level Ada source directly to 
assembly and object code, GNAT Pro HIE allows programmers to 
introduce the low-level Ada code step when mapping source to object 
code. Because the low-level Ada code used is very simple, this code 
maps straightforwardly to the generated assembly and object code. 
Furthermore, this low-level Ada code is mostly target independent.  



 

 

 
As a result, the benefits of this approach are: 
 

• The code certification process is less costly since the semantic 
gap between each step (Ada to low-level Ada to assembly to 
object code) is reduced 

• The code certification process can be speeded up as it can be 
done in 3 parallel steps by 3 separate teams (Step 1: Ada to low-
level Ada; Step 2: low-level Ada to assembly; Step 3: Assembly 
to object code) 

• Because low-level Ada is mostly target independent, part of the 
certification work can be reused. 

3.2 GNAT Pro HIE Programming Benefits 

GNAT Pro HIE contains a number of features especially useful for 
safety-critical programming: 
 

• The GNAT Pro HIE compiler has a special switch to generate 
Ada representation clauses about the choice of data 
representations. 

• The compiler produces an extensive set of warning messages 
to diagnose situations that are likely to be errors, even though 
they do not correspond to illegalities in Ada Reference 
Manual terms: Missing returns from functions, inner variable 
hiding an outer variable with the same name, infinite 
recursion, uninitialized variables, unused variables, 
unnecessary with clauses, etc. 

• The compiler performs various style checks that can be used 
to enforce rigorous coding standards, easing the verification 
process by ensuring that the source is formatted in a uniform 
manner. 

• Annex H of the Ada 95 Reference Manual [10] is fully 
implemented, and all implementation-dependent 
characteristics of the GNAT implementation are defined in 
the GNAT Reference Manual [19], further supporting the 
goal of reviewable object code. 



 

 

3.3 GNAT PRO HIE Profiles 

GNAT Pro HIE offers the choice of two profiles. Both profiles restrict 
the Ada constructs that a profile-compliant application can employ. In 
either case, if an application uses a construct not allowed by the profile, 
compilation will fail. Furthermore, the binder will check that all units in 
the applications are compiled using the same profile. The two GNAT 
Pro HIE profiles are:    
 

• No-Runtime profile (no Ada tasking). This profile guarantees 
that no Ada runtime library is used in conforming applications. 
With this profile only the application source code will appear in 
the final executable and needs to be certified. This profile is 
derived from the GNORT technology described in [18]. 

  
• Ravenscar profile (Ravenscar Ada 95 tasking [5, 6, 7]). This 

profile complements the previous one by providing a simple Ada 
runtime implementing the Ravenscar tasking subset. In this case 
the Ada runtime is designed to expedite the certification process 
for an application that needs to use concurrency. In certain 
situations it may be simpler and less expensive to certify a 
concurrent program built on the Ravenscar Profile than to certify 
a sequential program with no runtime library (and where the 
concurrency needs to be simulated in application code).  

 
The programmer chooses the profile by using a compilation switch that 
specifies whether she wants No-Runtime, Ravenscar, or the full Ada 95 
runtime. 
 
Both profiles are upwardly compatible with the SPARK Ada profile 
defined by Praxis Critical Systems [20]. In this case, upwardly 
compatible means that GNAT Pro HIE can compile any SPARK Ada 
compliant program. Furthermore, when using the “No-Runtime” 
profile, the user is guaranteed that the final SPARK Ada application 
will contain only code written by the user.   
 
The implementation of the Ravenscar profile relies on VxWorks/Cert. 
It is remarkable to consider that Ravenscar Ada 95 tasking can be 
implemented on top of the VxWorks/Cert API with only 200 source 



 

 

lines of simple Ada code for the runtime and 60 source lines of Ada for 
the libraries. This is because the VxWorks/Cert kernel provides all the 
necessary synchronization and scheduling primitives to do a 
straightforward implementation of Ravenscar. The number of 
VxWorks/Cert primitives used to implement Ravenscar is around 10. 
These primitives include creating tasks, setting their priority plus mutex 
operations. 
 
When using the No-Runtime profile in conjunction with VxWorks/Cert 
it is possible to make direct calls to VxWorks/Cert to create tasks, 
synchronize them using the VxWorks mutex primitives, etc. As a 
matter of fact GNAT Pro HIE, regardless of the profile, comes with a 
complete Ada binding to the 400 routines in the VxWorks/Cert API. 
 
Note that all Integrated Modular Avionics issues dealing with spatial 
and temporal partitioning are taken care of transparently by VxWorks 
AE653. Furthermore, for each VxWorks AE653 protection domain the 
programmer can select a different GNAT Pro HIE profile. 

3.4 GNAT PRO HIE Ada Restrictions 

Although restricted in terms of dynamic Ada semantics, both profiles 
fully support static Ada constructs such as generics and child units. The 
use of tagged types (at library level) and other Object-Oriented 
Programming features is also allowed, although the general use of 
dynamic dispatching may be prohibited at the application level through 
pragma Restrictions. Generally speaking pragma Restrictions, as 
defined in Ada 95 Annex H, can be used to further constrain the Ada 
features that a programmer can use in the safety-critical application 
being developed. 
 
The features excluded from the GNAT Pro HIE profiles are as follows: 
 

• Exception handlers (see the section “Exceptions in GNAT Pro 
HIE” below) 

• Packed arrays with a component size other than 1, 2, 4, 8, 16 or 
24 bits 

• The exponentiation operator 



 

 

• 64-bit integer (the type Long_Long_Integer) or fixed-point 
types 

• Boolean operations on packed arrays (individual elements may 
be accessed) 

• Equality and comparison operations on arrays 
• The attributes External_Tag, Image, Value, Body_Version, 

Version, Width, and Mantissa 
• Controlled types 
• The attributes Address, Access, Unchecked_Access, 

Unrestricted_Access when applied to a non library-level 
subprogram 

• Non library-level tagged types 
• Annex E features (Distributed Systems) 

 
In addition the No-Runtime profile excludes all the tasking constructs 
while the Ravenscar profile only allows Ravenscar Ada 95 tasking as 
defined in [5]. 
 
Explicit withs of library units are permitted. However, in an 
environment where the code needs to be certified, the programmer 
takes responsibility for ensuring that the referenced library units meet 
the certification requirements. 

3.5 Exceptions in GNAT PRO HIE 

Exception handlers are forbidden in GNAT Pro HIE, so exceptions can 
never be handled. However, exceptions can be raised explicitly with a 
raise statement (which are allowed in GNAT Pro HIE) or, if run time 
checking is enabled, then it is possible for the predefined exceptions 
such as Constraint_Error to be raised implicitly. 
 
The result of such a raise is to call procedure 
__gnat_last_chance_handler, which must be provided by the 
programmer at the application level. This procedure should gracefully 
terminate the program in a fail-safe mode. To suppress all runtime 
error checking and disallow raise statements one can use the 
No_Exceptions restriction of Annex H. 



 

 

 3.6 Allocators in GNAT PRO HIE 

Dynamic memory allocation and deallocation is permitted in GNAT 
Pro HIE. Use of these features will generate calls to routines 
__gnat_malloc and __gnat_free that  must be provided by the 
programmer at the application level. To prohibit the use of allocators or 
unchecked deallocation, programmers can use the 
No_Local_Allocators, No_Allocators, No_Implicit_Heap_Allocations,
No_Unchecked_Deallocation restrictions defined in Annex H. These 
restrictions can be enforced at the application level. For instance
No_Local_Allocators prohibits the use of allocators except at the 
library level. Such allocators can be called once at elaboration time, but 
cannot be called  during execution of the program. 

3.7 Array and Record Assignments in GNAT PRO HIE 

Array and record assignments are permitted in GNAT Pro HIE. 
Depending on the target processor these constructs can generate calls to 
the C library functions memcpy() or bcopy(). A certifiable version 
of these routines is provided in VxWorks/Cert.  

3.8 Functions returning unconstrained Objects 

GNAT Pro HIE allows functions returning unconstrained objects (e.g. 
unconstrained arrays). To implement this capability the compiler uses a 
secondary stack mechanism requiring runtime support. A sample 
implementation comes with GNAT Pro HIE. However, since no 
certification material is provided for this sample implementation, it is 
the programmer’s responsibility to certify it. To disable this capability 
GNAT Pro HIE provides a No_Secondary_Stack Restrictions 
pragma.  

3.9 Controlling Elaboration with GNAT Pro HIE 

One of the objectionable issues in a certification context is the fact that 
the Ada compiler generates elaboration code without the programmer 
being aware that such code is being generated. The elaboration code 
must be generated to meet Ada semantic requirements, and it is always 



 

 

safe to do so. However, the elaboration code needs to be certified and 
this increases certification costs (why was this elaboration code 
implicitly generated by the compiler, what Ada requirement does it 
meet, what test cases do we need to devise for the elaboration code, 
etc.) 
 
GNAT Pro HIE provides a Restrictions pragma 
No_Elaboration_Code, that allows programmers to know when 
elaboration code would be generated by the compiler. When the 
pragma Restrictions No_Elaborations_Code is specified in a 
compilation unit, the GNAT Pro HIE compiler stops with an error 
every time it needs to generate elaboration code. It is up to the 
programmer to rewrite the code so that no elaboration code is 
generated.  As an example consider the following: 
 
package List is

type Elmt;
type Temperature is range 0.0 ... 1_000.0;
type Elmt_Ptr is access all Elmt;
type Elmt is record

T : Temperature;
Next : Elmt_Ptr;

end record;
end List;

pragma Restrictions (No_Elaboration_Code);
with List;
procedure Client is

The_List : List.Elmt;
begin

null;
end Client;
 
When compiling unit Client the compiler will stop with the error 
 
client.adb:4:04: violation of restriction "No_Elaboration_Code"
at line 1

 
To understand why GNAT needs to generate elaboration code for 
object The_List, remember that Ada requires that all pointers be null 
initialized.  To see the elaboration code that would be generated the 
user can remove the No_Elaboration_Code restriction and use the 
-gnatG switch to view the low-level version of the Ada code 
generated by GNAT. In this case you get 
 
package list is
type list__elmt;
type list__temperature is new float range 0.0E0 .. (16384000.0*2**(-

14));



 

 

type list__elmt_ptr is access all list__elmt;
type list__elmt is record

t : list__temperature;
next : list__elmt_ptr;

end record;
freeze list__elmt [
procedure list___init_proc (_init : in out list__elmt) is
begin
_init.next := null;
return;

end list___init_proc;
]

end list;

with list; use list;
procedure client is
the_list : list.list__elmt;
list___init_proc (the_list);

begin
null;
return;

end client;

 
The reason why elaboration code is generated inside procedure Client 
is because the pointer inside The_List object must be initialized to 
null. To avoid elaboration code the programmer can add an explicit 
initialization as shown below: 
 
pragma Restrictions (No_Elaboration_Code);
with List; use List;
procedure Client is

The_List : List.Elmt := (0.0, null);
begin

null;
end Client;

By making the initialization explicit, rather than sweeping it under the 
compiler's rug, initialization becomes part of the requirements mapping 
and application design. In a certification context it may be preferable to 
certify code that you write explicitly rather than code that gets 
generated for you implicitly by a compiler.  

3.10 Controlling Implicit Loops and Conditionals with GNAT Pro 
HIE 

Certain complex constructs in Ada result in GNAT generating code that 
contains implicit conditionals, or implicit for loops. For example, slice 
assignments result in both kinds of generated code. 
 
In some certification protocols, conditionals and loops require special 
treatment. For example, in the case of a conditional, it may be 



 

 

necessary to ensure that the test suite contains cases that branch in both 
directions for a given conditional. A question arises as to whether 
implicit conditionals and loops generated by the compiler are subject to 
the same verification requirements. 
 
GNAT Pro HIE provides two additional restriction identifiers that 
address this issue by controlling the presence of implicit conditionals 
and loops: 
 
  pragma Restrictions (No_Implicit_Conditionals);
pragma Restrictions (No_Implicit_Loops);

 
These are partition-wide restrictions that ensure that the generated code 
respectively contains no conditionals and no loops.  This is achieved in 
one of two ways. Either the compiler generates alternative code to 
avoid the implicit construct (possibly at some sacrifice of efficiency) 
or, if it cannot find an equivalent code sequence, it rejects the program 
and flags the offending construct.  In the latter situation, the 
programmer will need to revise the source program to avoid the 
implicit conditional or loop. 

4 Summary and Conclusions 

The avionics industry has witnessed a major shift towards COTS in recent years.  
Ada and RTOS suppliers have needed to enhance their technologies in order to assist 
this migration process.  

 
This paper has outlined how Wind River and ACT have enhanced VxWorks and 

GNAT to meet the specific needs of the aerospace and defence market, and has 
demonstrated how COTS software technology can be used to build high integrity 
systems for safety critical applications. 

References 

1.  RTCA, "DO-178B - Software Considerations in Airborne Systems and Equipment 
Certification", URL http://www.rtca.org 

2. UK Ministry of Defence, "Requirements for Safety Related Software in Defence 
Equipment", Def Stan 00-55. 

3. Dr. C. H. Pygott, "A Comparison of Avionics Standards", DERA/CIS3/TR990319/1.0, 
British Crown Copyright 2000. 

4. “Guidance for Use of Ada in High Integrity Systems”, ISO/IEC TR 15942. 



 

 

5. Ted Baker and Tullio Vardanega, “Session Summary: Tasking Profiles”, Ada Letters 
September-October 1997, Vol. XVII, Number 5, pages 5-7. 

6. A. Burns and B. Dobbing, "The Ravenscar Tasking Profile for High Integrity Real-Time 
Programs", pp. 1-6 in Proceedings of ACM SigAda Annual Conference, ACM Press, 
Washington DC, U.S.A. (8-12 November 1998). 

7. Alan Burns, “Guide for the use of the Ada Ravenscar Profile in high integrity systems – the 
work of the HRG”, Ada User Journal, Vol. 22, Number 3, September 2001, pp182-187. 

8. Wind River Datasheet, “Honeywell customer success story”, http://www.windriver.com. 
9. FAA Draft Notice N8110.RSC. 
10. S. Tucker Taft et al.: Ada 95 Reference Manual - Language and Standard Libraries. 

International Standard ISO/IEC 8652:1995(E), Springer, LNCS 1246, ISBN 3-540-63144-5 
11. J. Kemp, A. Wake, W. Williams, "The Development of the ASAAC Software 

Architecture", ERA Avionics Show 2000. 
12. RTCA SC-255 “Requirements Specification for Avionics Computer Resource (ACR)”, 

http://www.rtca.org. 
13. ARINC-653 Specification, http://www.arinc.org. 
14.  “VxWorks/Cert Subset Definition and Rationale v1.2a”, Wind River Systems.   
15. Paul Parkinson, " Hochverfügbar – Komplexe langlebige System mit Ada und VxWorks 

Entwickeln” (Developing High-Integrity Systems with VxWorks and Ada), pp 36-39, 
Electronik Praxis, 2 Oktober 2001. 

16. “High Availability for Embedded Systems” white paper, Wind River Systems. 
http://www.windriver.com. 

17. “GENESYS – An Application of OO Technology to Aircraft Display Systems”, Neil 
Davidson, BAE Avionics Ltd. Symposium on Reliable Object Oriented Programming, IEE, 
24th October 2001 

18. Roderick Chapman and Robert Dewar, “Re-engineering a Safety-Critical Application Using 
SPARK 95 and GNORT”, Reliable Software Technologies, Ada-Europe’99, LNCS 1622, pp 
40-51.   

19. “GNAT Reference Manual”, http://www.gnat.com. 
20. John Barnes, “High Integrity Ada: The SPARK Approach”, Addison Wesley, 1997 
 
 
 


	1.2 The Route to COTS
	1.3.1 Support for emerging IMA architectures

