Considerations Around
ED-203A / DO-356A

Security Refutation
Objectives




Guidelines and Considerations
Around ED-203A / DO-356A Security
Refutation Objectives

Paul Butcher
September 14, 2021



CONTENTS

Contents
1 Introduction
Purpose

Scope

WD

Considerations
4.1 General Considerations . . . .. ... ... ... .. ........
411 Perspective. . . . . .. ... e
41.2 Security CodingStandards . . . ... ............
41.3 QuantityandQuality . . . ... ... ... L
4.2 Activity Specific Considerations . . . .. ... ... ........
1. Verification and Refutation Separation . . . ... ... ... ..
.Assurance Goals . . . ... ... ... ... ..
.Limitations . . . . . .. ...
.System Complexity . . . .. ... ...
. Measuring Confidence . . . ... ... ..............
.Scope ... e
.ThreatScenarios . . ... .. ... .. .. ... .......
.Pedigree . . . ..
. Relationship to other refutation activities. . . . . ... ... ..

OCooNODUOThhWN

Annexes

A Fuzz Testing
A1 Activity Description . . . .. ... oo
A.2 General Considerations to achieving effective fuzz testing . . . .
A.3 Coverage and Fuzzing Campaign Criteria . . . . . ... ... ...
A.4 Planning Considerations . . . ... ... ... ... ........
A5 Guidance . . . .. ... e



1 Introduction

This document has been produced as part of the “High-Integrity, Complex, Large,
Software and Electronic Systems” (HICLASS) project. HICLASS was created to
enable the delivery of the most complex, software-intensive, safe and cyber-
secure systems in the world. HICLASS is a strategic initiative to drive new tech-
nologies and best-practice throughout the UK aerospace supply chain, enabling
the UK to affordably develop systems for the growing aircraft and avionics mar-
ket expected over the coming decades. The HICLASS project is supported by
the Aerospace Technology Institute (ATI) Programme, a joint Government and
industry investment to maintain and grow the UK's competitive position in civil
aerospace design and manufacture. The programme, delivered through a part-
nership between the ATI, Department for Business, Energy & Industrial Strategy
(BEIS) and Innovate UK, addresses technology, capability and supply chain chal-
lenges. The £32m investment program, led by Rolls-Royce Control Systems, fo-
cuses on the UK civil aerospace sector but also has direct engagement with the
Defence, Science and Technology Laboratory (DSTL).

HICLASS is divided into a number of work packages (WPs). WP1.2 was set
up as a collaborative working group with the aim of analysing aerospace secu-
rity standards, identifying maturity gaps within the standards and sharing best
practice of security objective conformance. HICLASS document D1.2.4TH titled
“Report on Identification of Aeronautical Security and Cyber-Security Processes”
is the first deliverable of the “Security Process Standards Analysis” workstream
and it was within this report that there was an identified need for additional guid-
ance on Refutation Testing.

This report aims to offer further guidelines and considerations around se-
curity refutation objectives as described by the European Organisation for Civil
Aviation Equipment (EUROCAE) ED-203A “Airworthiness Security Methods and
Considerations” [6]. The ED-203A foreword states that ED-203A is technically
identical to RTCA DO-356A [4] and this is also true of ED-202A [3] and RTCA
D0-326A [5]. Within this report references will cite the ED-202A process speci-
fication and ED-203A methods and considerations, however, all guidelines and
considerations offered within this report should be considered equally applica-
ble for DO-326A and DO-356A.

Refutation is described within ED-203A / DO-356A as follows:

“Refutation acts as an independent set of assurance activities beyond anal-
ysis and requirements. As an alternative to exhaustive testing, refutation can
be used to provide evidence that an unwanted behavior has been precluded to
an acceptable level of confidence. NOTE: Refutation is also known as Security
Evaluation in some contexts.”



The aim of Refutation in the context of the Airworthiness Security Process
is to refute the allegation of exploitable vulnerabilities. The negative take on the
wording within the phrase, as opposed to just claiming the system is secure,
is deliberate. This is to emphasise the negative testing aspects of the asso-
ciated activities and to differentiate the refutation testing phase from security
verification testing. The difference is subtle but important to understand. Se-
curity verification activities (positive testing) focus on arguing, or proving where
applicable, that a security requirement has been satisfied. Negative testing ac-
tivities focus on trying to refute the hypothesis that the security requirement has
been satisfied, whilst also gaining assurance that “unwanted behaviour has been
precluded to an acceptable level of confidence”. Refutation differs to standard
security verification testing in a number of ways. In some activities, like fuzz
testing and penetration testing, the focus is on the observation of the system be-
haviour when the system is subjected to ‘unusual’ scenarios, particularly where
the expected behaviour has not been captured by requirements. The aim of the
refutation activities is to identify any unexpected situations where the system
would unexpectedly transition into an non-secure state (or more generally vio-
late a minimal invariant guaranteeing the security of the system). Trying to iden-
tify these scenarios using formal standard requirements based testing methods
would likely result in missed sequences; a better alternative is to target the test-
ing on particular aspects of the system but then allow scenarios to be generated
that are free from unwanted requirements based bias.

In addition, and in order to fully understanding the aim of Refutation, it is
useful to understand what we mean by the term "Vulnerability" and also the dif-
ference and similarity between a "Software Bug" and a "Vulnerability".

ED-202A defines the term as follows:

“Vulnerability: A flaw or weakness in system security procedures, design, im-
plementation, or internal controls that could be exercised (unintentionally trig-
gered or intentionally exploited) and result in a security breach or a violation of
the system'’s security policy.” [3][5]

Here a software bug is only a vulnerability when it is has been demonstrated
that it “could be exercised” (i.e. exploitable) and “result in a security breach or a
violation of the system’s security policy”. However is also noted within ED-203A
that:

“The situation that a vulnerability may be known as “bug” or defect for a long
time before being recognized as a vulnerability should be considered. There are
known cases where a vulnerability has been known for years as a defect without
realizing the potential attacks. There are also cases where a vulnerability was
considered “fixed” (by mitigation or prevention of known attacks), but shown by
new attacks to still exist several years later.” [6]



This contradicts the ED-202A definition as the implication is that we should
now also consider all known software bugs, without known attack vectors and
where there was no known path to a resulting security breach or a violation of the
system'’s security policy, as vulnerabilities (or at least “potential vulnerabilities”).

This warning clearly identifies a potential safety risk in the classification of
software bugs and/or the mitigation of identified vulnerabilities. This empha-
sises the importance in ensuring that the first phase of security vulnerability
identification exercises the system in such a way that the maximum number
of defects is identified. Phase 2 will then classify the defects as vulnerabilities
(with calculated grades based on associated safety hazards) or non-exploitable
software bugs (where the risk that this classification may change in the future
is acceptably low). It is also vital that the arguments for classifying a software
bug as a vulnerability (i.e. exploitable) are equally as strong as the argument for
classifying a software bug as being non-exploitable.

Another consideration here is that ED-202A states that a software bug s clas-
sified as a vulnerability if can be “unintentionally triggered”. This highlights an-
other common issue with non-exploitable software bugs in that a change in the
software could unknowingly transition the bug from being non-exploitable to a
vulnerability.

Different refutation testing capabilities, and sometimes different strategies
taken by a testing team, will determine if the activity itself is capable of classi-
fying if the identified defect is exploitable or not. Noting that determining if an
identified defect is exploitable does not automatically make the defect a vulner-
ability. As stated within the definition in order to be classified as a vulnerability
the defect needs to be“(unintentionally triggered or intentionally exploited) and
result in a security breach or a violation of the system’s security policy”. Activ-
ities such as penetration testing are ordinarily targeting entries to the system
that are known to be capable of forming an attack vector. Here any identified
anomalies will highly likely be exploitable. In comparison tools such as formal
proof static analysers may identify scenarios that expose a defect. However, fur-
ther analysis could determine that there is no known vector to allow an attacker
to exploit the software bug. For example the analyser could identify a potential
overflow exception due to the incorrect constraining of data types, however, it
is later determined that the data required to trigger the constraint error is im-
possible to generate due to an input sanitiser at the system boundary. Fuzzing
has the potential to identify both non-exploitable defects and exploitable defects
dependent on the scope of the fuzzing campaign. If the fuzz test harness can
be configured such that the fuzzing campaign targets an entry point to the sys-
tem (where the entry is accessible to an attacker) then any identified anoma-
lies should be considered as exploitable. If the campaign is scoped such that a



number of tests are required to exercise individual parts of the system then any
identified anomalies may or may not be exploitable.

The importance in determining if a software bug is actually a vulnerability
will depend on the phase in the software life-cycle the system is currently in. It
is widely accepted that software bugs take more effort to fix the later in the life-
cycle they are identified and where applicable the best solution will always be
to fix the software bug and re-test. If the application is deployed and in service
then it may be infeasible to fix an identified and non-exploitable software bug. In
this scenario a strong argument will be required showing convincing evidence
that the known defect is not a vulnerability and cannot be exploited such that
the software bug cannot lead to an aircraft safety hazard. The problem is that it
may be difficult to argue that all bugs have been identified and, where applica-
ble classified as vulnerabilities, if the Refutation activities are only focusing on
known attack vectors. Either way if all defects and anomalies identified during
Refutation are corrected or sufficiently mitigated it logically follows that there is
a strong argument that the software system doesn’t contain any vulnerabilities.

In the context of the Airworthiness Security Process the overarching goal of
the Refutation phase within the software development life-cycle is to provide
assurance that the system is secure (and therefore safe). The goal of the refu-
tation testing activities is to identify vulnerabilities within the system and to test
the robustness of any implemented security measures.

In order to argue confidence over a claim that the system is secure all iden-
tified vulnerabilities need to be mitigated (or accepted) in one of the following
ways:

+ Fixed within the implementation (assuming the vulnerability is associated
with a software bug).

+ Logged within the vulnerability dossier and protected by a security mea-
sure, or a range of security measures, where the measures are commen-
surate with the safety hazard associated with the exploitation of the vul-
nerability.

* Logged within the vulnerability dossier and mitigated through a mecha-
nism at a higher level in the overall aircraft platform.

+ Logged within the vulnerability dossier and accepted that the calculated
risk of the vulnerability being exploited is sufficiently low.

If no vulnerabilities can be identified then one of the following scenarios has
occurred:

+ Refutation could not identify any bugs or anomalies.



* Bugs or anomalies have been identified, however we can sufficiently ar-
gue that the risk of the identified bugs and anomalies being exploited is
acceptable.

+ Bugs or anomalies have been identified and one or more of the identified
bugs or anomalies has been demonstrated to be exploitable (unintentional
or intentional), however we can sufficiently argue that the risk of the ex-
ploited bugs and anomalies resulting in a security breach or a violation of
the system’s security policy is acceptable.

In additional a poorly planned or executed Refutation phase may of course
fail to identify all of the bugs or anomalies. In this scenario vulnerabilities may
exist in the system, however they are yet to be discovered.

ED-203A / DO-356A states that refutation encompasses the following testing
and analysis activities:

+ Security penetration testing
+ Fuzzing

« Static code analysis

+ Dynamic code analysis

« Formal proofs

Full definitions of these activities can be found within Annex sections (as and
when the correlating Annexes are made available), however, for the scope of the
main report the following overview definitions should be used:

Security penetration testing: a testing mechanism involving the attempted
exploitation of a system vulnerability with the aim of reading or altering the state
of an identified security asset.

Fuzzing: an automated test-case input generating and system anomaly de-
tection mechanism. Fuzzing capabilities usually involve the mutation of a start-
ing corpus of test case inputs with the aim of generating more test cases that
the system is then subjected to whilst any unusual behaviour is observed. The
goal of fuzzing is to identify system inputs that can transition the system into an
non-secure state.

Static Code Analysis: a semantic analysis at the source code level of a sys-
tem, performed with the aim of identifying code constructs that may be consid-
ered unsafe and / or non-secure.

Dynamic Code Analysis: the analysis of the behaviour of the system whilst
the system is executing. An example of dynamic code analysis would be the



monitoring for a non-safe and / or non-secure sequence of instruction calls made
to the processor (i.e. detection of buffer overflows). Dynamic code analysis can
be enforced within the semantics of programming languages via run time con-
straint checks or via tools that detect memory corruption bugs via code instru-
mentation added during additional compilation passes.

Formal Proofs: an unambiguous and programmatically verifiable finite se-
quence of formulas (axioms, assumptions, rules and inferences - also known
as contracts and assertions) that are constructed during software design (and
automatically via interactive theorem proving tools) with the aim of describing
the intended behaviour of the system such that the formulas can be statically
checked via mathematical proof checkers. Where systems have been devel-
oped with a "Design by Contract" methodology, and formal methods are used
to specify security requirements within the software implementation, static ver-
ification tools can be used to generate security assurance over the information
flow through the system. In addition automated formal proof tools can be used
to generate assurance over the absence of run-time errors (that could lead to
denial of service attacks).

It should be recognised that this is not an exhaustive list of refutation activi-
ties and there may also be a benefit to overlap and / or combine the disciplines.
For example some Fuzzing implementations will use Dynamic Code Analysis to
detect non-secure system behaviour.

2 Purpose

To provide guidelines and planning considerations for the following issue iden-
tified within the HICLASS report 1.2.4TH titled “Report on Identification of Aero-
nautical Security and Cyber-Security Processes”:

Issue 15.

“ED-203A includes objectives and activities for “refutation testing”. However,
deciding the right refutation/penetration testing to do (in terms of quantity and
quality) is difficult in practice, and no guidance is given. For example, how much
is enough? What is tested (e.g” model and/or auto- generated code)? How does
the choice of programming language (e.g. C, Ada) affect it? Additional guidance
would be beneficial here.”

It is, however, recognised that there will be circumstances when some con-
siderations cannot have correlating concrete guidelines, for example when the
consideration is broad reaching and/or project specific. In these scenarios the



annex entries should try and provide further assurance activity specific consider-
ations to allow the reader to conclude their own project specific refutation plan-
ning activities. It is also reasonable for a consideration to not be applicable to a
particular activity. This scenario is considered acceptable when a valid explana-
tion is provided. In addition, there may be additional activity considerations that
are not included in this main report but are applicable to a Refutation activity and
therefore will need to be captured within the appropriate annex.

3 Scope

This report focuses on how to plan for security refutation test activities and what
needs to be considered in order to meet the Security Refutation Objectives de-
fined within ED-203A / DO-356A. In addition, this report assumes the reader has
a good understanding of the ED-202A / DO-326A process specification and the
ED-203A / DO-356A methods and considerations. However, it is beneficial in
describing the scope of this report to reiterate some of the fundamental terms
and concepts within ED-202A / DO-326A and ED-203A/D0O-356A. In addition, and
particularly where an interpretation of the process has had to be made, assump-
tions over the relevant process stages will be described to provide clarification.

The security refutation objectives, as stated within ED-203A/D0-356A are as
follows:

+ 03.71 Refutation analyses are performed to identify new vulnerabilities. [6][4]

+ 03.2 Refutation tests are performed to evaluate the exposure of vulnerabili-
ties in the security environment and to challenge the vulnerability evaluation.

[6][4]

+ 03.3 Refutation test plans are available. Refutation test results cover refu-
tation test plans and performed tests. Refutation test results are analyzed
and discrepancies are justified and traced. [6][4]

Therefore the main objective of the security refutation is to identify vulnerabil-
ities within the system. A secondary, but also mandatory, objective is to ensure
each identified vulnerability can be rated for exploitability; i.e” can the software
bug, hardware flaw etc form part of an attack path. The third objective can be
broken down into three sub-objectives:

1. A refutation test plan has been produced as part of the Plan for Security
Aspects of Certification (PSecAC).



Ordinarily PSecAC approval will be required from the certification
authority. The exception to this rule is when input activities (i.e. the
Aircraft Security Scope Definition (ASSD output), the Aircraft security
architecture(ASAM output), and the Aircraft threat conditions) have
indicated that the severity of the aircraft security effect is either “No
Effect” or where a “Minor” effect has been negotiated away with
certification authorities. Either way the PSecAC needs to show how the
plan will address the regulatory requirements for security and this should
include a detailed breakdown of the planned refutation activities.

. Ensure that the refutation testing performed covers the activities described
within the refutation test plan.

As with all test related activities it is essential to show that the activity:

- is fit for purpose (are we testing what we stated we would be
testing),

+ has been performed correctly (has the test been executed within a
sufficiently controlled environment such that there is confidence
that the test execution has correctly assessed the targeted security
aspect),

- was recorded and is repeatable (has the result of the test been
saved and can the test be re-executed such that the same behaviour
and results are observed).

. Ensure test results have been analysed and understood and where appli-
cable false positives and false negatives have been documented.

It is expected that many accepted forms of refutation testing may have
known limitations to their vulnerability finding capabilities resulting in
false negatives. In addition, tools like static analysers can often result in
false positives resulting in user required interaction to overcome
limitations in the analysing algorithms. Where this is the case it is
essential that the limitations are understood and documented within the
PSecAC and that a process is adopted that ensures the analysis of the
test results takes the known limitations into account. In many cases
conformance to a commensurable DO-330/ED-215 Tool Qualification
Level (TQL) can help provide the information required to understand the
limitations of the refutation testing tool. However, ED-203A states the
following:



+ 4.2.8 “Tool Security Objectives”

- “Tool that is used to detect vulnerabilities

- Such tools may be qualified according to ED-215 [8] / DO-330 [1]
TQL-5.

- Relevant tools are the ones that can fail to detect vulnerabilities
on the product under development, such as static code analysis.
Such tools may be qualified according to ED-215 / DO-330 or
ED-80 / DO-254.

- Such tools, scripts and supporting data that are only used within
refutation testing to execute attacks are not subject to security
tool qualification.

- NOTE: TQL-5 qualification objectives may be satisfied without
any tool qualification data from the tool developer, as described
in ED-215 / DO-330 section 11.3.” [6][4]

Note that regardless of if the refutation testing tool assurance can be ob-
tained via satisfaction of relevant TQL objectives or not the known limitations of
the tool should be documented within the PSecAC.

In addition, security refutation activities should adopt a layered approach
where the limitations of one activity are mitigated by the capability of another.
This line of thinking also follows the “Defense-in-Depth” philosophy that ED-203A
proposes as a consideration of the development of the security architecture and
measures. Here is is recognised that:

“Defense-in-depth is important as multiple lines of defense are the
preferred means to defend against multiple threats of varying com-
plexity... As attacks can be of numerous types, and to be prepared
for unknown attack techniques, different technological concepts are
to be used in different layers when defending against threats.” [6][4].

The same is true when attempting to identify vulnerabilities; it is unlikely that
one refutation testing methodology will be sufficient on its own. An example of
complementary security refutation activities would be to use fuzz testing to gain
confidence in the absence of run time errors of a sub-system of an application
that cannot easily be achieved through formal proofs. The security refutation
activities adopted and how they complement one another, should be described
within the security refutation test plan.

It is also important, when planning for security refutation, to understand the
difference between activities that focus on known attacks and the activities that
look for potential vulnerabilities that may or may not form part of an attack path.
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Both techniques are equally applicable and if both are adopted, greater security
assurance can be achieved.

ED-202A / DO-326A and associated documents don't explicitly mention or
define the term “Security Refutation”. This is explained in ED-203A / DO-356A as
follows:

“ED-203A/ DO0O-356A introduces the term “Refutation” to describe and
collect assurance activities as a method for airworthiness security.
This term is new because current versions of ED-202A / DO-326A
do not use the term, nor do other published aviation industry docu-
ments (ED-79A / ARP4754A, ED-12C / DO-178C, ED-80 / DO-254, etc.).
Even though these standards do not use the term “refutation”, these
standards do discuss many refutation activities as part of activities
associated with safety/security assurance objectives.” [6][4].

Refutation and Vulnerability testing are therefore new and, prior to ED-202A
and ED-203A, not considered standard practice within airworthiness certifica-
tion. As such the discipline is lacking well established methods, considerations
and guidelines and this report will attempt to address some of these issues.

Security refutation clearly plays a key role in security assurance as it forms
part of the vulnerability identification and security measure evaluation activities
within the Airworthiness Security Process. In the context of ED-202A / DO-326A
security assurance is described as:

“...necessary to assure that security measures perform as intended
and that the final product is acceptably free of known and exploitable
vulnerabilities, which may be introduced during development.” [3][5].

However, it is still not straightforward to correlate the activity into the process
specification which can lead to confusion when trying to determine where to
reference a Refutation plan within the Plan for Security Aspects of Certification
(PSecAC). The ED-203A / DO-356A description does state that: “Refutation is
also known as Security Evaluation” which implies that within ED-202A / DO-326A
Refutation falls under the remit of “Security Verification”; a described purpose of
security verification is to contribute to the evaluation of security effectiveness.

“Security verification has the following purposes:

- Contributes to evaluation of security effectiveness (specific to
security).”[ED-202A / DO-326A] [3][5].

1



Within the Airworthiness Security Process the Security Effectiveness require-
ments are derived during development of the “Aircraft Security Architecture and
Measures" and assessed against the “Preliminary Aircraft Security Risk Assess-
ment". The Security Effectiveness requirements form an input into the Aircraft
Security Verification (ASV) and a goal of this exercise is to:

“Finalize vulnerability test plan and evaluate how well it covers the se-
curity requirements in its context of the threat scenarios in the secu-
rity risk assessment, including its security effectiveness." [ED-203A
/ DO-356A] [3][5].

For the most part Security Requirements Verification can be achieved through
conformance with standard verification techniques, as described within DO-178C
[2]. This will, however, be dependent on the individual form the security require-
ments take, the assumption here is that standard verification techniques can be
adopted because the requirements are expressed in a positive (finite test cases)
notation. When this is the case is not expected that security refutation testing
will be required to add to the verification of security requirements. If the secu-
rity requirements are expressed in a notation that favours negative testing then
it may be feasible to utilise refutation testing activities to provide evidence that
the requirement is satisfied, however, how this is achieved is beyond the scope
of this report.

In addition, another goal of the ASV is to:

“Conduct vulnerability assessment and testing and analyze results
for security risk." [ED-203A / DO-356A].

This objective can be achieved by the adoption of security refutation test-
ing methodologies. In addition, the results of the security refutation testing will
form part of the Aircraft Vulnerability Dossier. The aircraft security verification
and test results and analysis, achieved via the ASV, are also required to be doc-
umented within the PSecAC summary report.

ED-202A / DO-326A states that the purpose of Security Verification is:

+ Verification that systems, hardware, and software meet security require-
ments (normal purpose in a standard development process such as ED-
79A / ARP 4754A), and

+ Contributes to evaluation of security effectiveness (specific to security),

+ ldentification of vulnerabilities for final Security Risk Assessment (specific
to security).[ED-202A / DO-326A].
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The AWSP then expands on this by describing 3 testing activities:

+ Security Requirements Testing.
+ Security Robustness Testing.

+ Vulnerability Testing.

ED-202A / DO-326A states that Security Requirements Testing and Security
Robustness Testing:

“demonstrate that the implementation of the technical security re-
quirements is correct even under abnormal inputs and conditions.”
[ED-202A / DO-326A].

The first two test activities are therefore based around the verification of se-
curity requirements and, as previously discussed, can be considered “standard
practice", particularly when developing airborne software that has been associ-
ated with safety related failure conditions. Albeit that the focus of these tests
will be on security requirements rather than safety requirements.

The third set “Vulnerability Testing" doesn’t focus explicitly on requirements
and can be met through the adoption of applicable security refutation activities.

Airworthiness security process specifications extend existing software con-
siderations in airborne systems and equipment certification by introducing the

concept of a “Threat Condition". “Threat Conditions" differ from "Failure Condi-
tions" in that they introduce the concept of:

"

. acts of intentional unauthorised electronic interaction (IUEI), in-
volving cyber threats..." [ED-202A].

Vulnerabilities are described within ED-203A as:

“A flaw or weakness in system security procedures, design, imple-
mentation, or internal controls that could be exercised (unintention-
ally triggered or intentionally exploited) and result in a security breach
or a violation of the system’s security policy." [ED-203A].

Threat Conditions therefore include the exploitation of system vulnerabilities,
intentionally or unintentionally triggered, where the exploitation can have a di-
rect, or consequential effect on the airplane and/or its occupants. The intention
of the assurance activities, covered under Refutation, is to argue that an accept-
able level of confidence can be demonstrated in the robustness of the system.

13



In this context a "Robust System" is one that does not contain vulnerabilities that
could lead to Threat Conditions.

In order to understand Refutation activities, in the context of an Airworthiness
Security Processes (AWSP), and the critical role it plays in achieving certification,
it is important to consider the primary goals of the AWSP. ED-202A / DO-326A
describes the goals within Chapter 2 as:

“The purpose of the Airworthiness Security Process (AWSP) is to es-
tablish that, when subjected to unauthorized interaction, the aircraft
will remain in a condition for safe operation (using the regulatory air-
worthiness criteria). To accomplish this purpose, the Airworthiness
Security Process:

+ Establishes that the security risk to the aircraft and its systems
are acceptable per the criteria established by the AWSP, and

+ Establishes that the Airworthiness Security Risk Assessment is
complete and correct.” [ED-202A / DO-356A].

Refutation testing plays a role in gathering evidence to support an argument
that “the security risk to the aircraft and its systems are acceptable”. In addi-
tion, only with a suitable refutation security test plan can the regulatory author-
ity establish that the “Airworthiness Security Risk Assessment is complete and
correct".

The number of security testing disciplines that fall under the realm of “Refu-
tation Testing” and make for potential methods for achieving compliance with
ED-203A / DO-356A Security Refutation Objectives are vast. In addition, new
and existing testing capabilities and testing methodologies are rapidly evolving
as existing and new software vulnerabilities are understood.

ED-203A / DO-356A states that refutation encompasses the following testing
and analysis activities:

+ Security penetration testing
+ Fuzzing

+ Static code analysis

+ Dynamic code analysis

+ Formal proofs

14



However, this is not an exhaustive list and other existing and future activities
may also play key roles. In addition, ED-203A was established to provide guide-
lines for both ED-202A and RTCA's equivalent: DO-326A and it is recognised that
alternative methods may be available to also obtain certification.

The main section of this report will identify a number of refutation test con-
siderations. Annex parts will then be provided for each of the activities listed.
This allows the report to be expandable with new refutation activity annexes
added as and when they become available. Each annex will address the consid-
erations by stating their relevance to the activity whilst also providing guidelines
for meeting the security refutation objectives where applicable.

The guidelines within this report will try not to refer to particular commer-
cially available tools, to avoid any bias. In addition, programming languages will
only be considered when they can add value on addressing a security related
consideration.

This report will propose considerations for Refutation Testing aspects of a
Refutation Test Plan that fits within the “Plan for Security Aspects of Certifica-
tion (PSecAC)” as defined within the ED-202A / DO-326A Airworthiness Security
Process Framework.

Other activities including system functional testing, security measure testing
and security robustness testing will not be covered.

4 Considerations

4.1 General Considerations
4.1.1 Perspective

Existing, and well established, airworthiness safety processes do not consider
intentional disruption and instead focus on aspects like environmental hazards
and failing internal components that could lead to accidents. This shift from
safety “failure conditions" to security “threat conditions" requires a change of
perspective and an understanding of the differentiation between verification and
refutation. ED-203A / DO-356A emphasises the point when it states:

“Verification and refutation activities should be performed separately
because they follow different concepts. Verification activities are
requirements-based while refutation activities need to be performed
from an attacker perspective." [ED-203A / DO-356A].

Therefore a key aspect of refutation testing, which differs from standard ver-
ification based test approaches, is the perspective that the refutation testing

15



4.1 General Considerations

team should adopt when determining a test strategy and test plan.

Whilst a standard verification testing approach should be adopted for argu-
ing the satisfaction of security requirements, the likelihood of activity success,
in terms of finding exploitable vulnerabilities, will be increased if the frame of ref-
erence is considered from an attacker’s perspective. In reality this can be a very
difficult approach to adopt and even harder to measure success. However, a key
aspect of this transition is to ensure that, where applicable, the refutation activ-
ities are adopted that mirror known approaches taken by attackers to achieve
their goal of unauthorised electronic interaction.

4.1.2 Security Coding Standards
ED-203A / DO-356A objective 02.1 states:

“Vulnerabilities in security measures and assets (including COTS) are
identified and evaluated for their potential impact on safety." [ED-
203A / DO-356A].

In addition, a note has been tagged to the objective stating:

“The situation that a vulnerability may be known as “bug” or defect
for a long time before being recognized as a vulnerability should be
considered." [ED-203A / DO-356A].

Software bugs therefore need to be identified as part of “Vulnerability Identi-
fication". If the vulnerability identification is being performed as part of the devel-
opment of a new or an update to a system the software bug can and should be
fixed. If a software patch is not an option or an established system is undergoing
retrospective Vulnerability Identification then any identified bugs or anomalies
will need to be assessed for “exploitability”. This assessment requires the anal-
ysis of the bugs or anomalies to determine if an exploit can be used to form an
attack across the defined system security perimeter. All identified vulnerabilities
are required to be documented within the Vulnerability Dossier.

In addition, ED-203A / DO-356A implementation objective 08.2 states:

“Source code and/or hardware description conforms to security cod-
ing standards." [ED-203A / DO-356A].

It is widely recognised that software bugs can be introduced during the soft-
ware implementation phase through a lack of developer understanding of the
security risks associated with particular programming language semantics. One
way of mitigating these risks is through the adoption of a suitable security fo-
cused coding standard. The construction of a coding standard should be based
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on considerations of known vulnerabilities within the programming languages
used to develop the airborne system. One method of constructing an argument
that an adopted coding standard captures all known security vulnerabilities as-
sociated with the chosen programming languages is to ensure it conforms to
the guidelines set out within the International Organisation for Standardization
(ISO) Technical Report 24772 titled: “Guidance to Avoiding Vulnerabilities in Pro-
gramming Languages through Language Selection and Use".
This report recognises that:

“All programming languages contain constructs that are incompletely
specified, exhibit undefined behaviour, are implementation depen-
dent, or are difficult to use correctly. The use of those constructs
may therefore give rise to vulnerabilities, as a result of which, soft-
ware programs can execute differently than intended by the writer.
In some cases, these vulnerabilities can compromise the safety of a
system or be exploited by attackers to compromise the security or
privacy of a system."

In addition, the report proposes that by identifying programming language
constructs that could lead to vulnerabilities, and by providing alternative and se-
cure approaches, multiple common vulnerabilities can be avoided altogether.

4.1.3 Quantity and Quality

Refutation test considerations can be categorized based on the following two
metrics:

* Quantity - how much is enough?

* Quality - what constitutes ‘strong refutation evidence'?

Quantity is a difficult problem as the identified refutation activities often ad-
here to a ‘negative testing’ philosophy where the number of the required test-
case permutations makes exhaustive testing infeasible. Functional requirements
stipulate how the system should behave and can be verified by ‘positive’ testing.
Negative testing focuses on the inverse of the required behaviour by attempting
to address the “what if?". However, with some requirements the inverse scenar-
ios could be limitless and human preconceptions often rule out scenarios that
could lead to the exposure of a vulnerability. In addition, traditional coverage
criteria objectives, as found within safety standards like DO-178C, were not de-
signed with security objectives in mind. Scenarios including retained state and
dynamic memory allocation are not always sufficiently considered when mea-
suring coverage and therefore cannot be relied upon to make any security argu-
ments. This is better described by the following scenario:
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A set of test-cases are created that target a software unit. By analysing the
control flow of each test execution, coverage metrics are calculated and
100% Modified Condition Decision Coverage (MC/DC) is recorded and no
bugs are detected. The application is then tested again with the same test-
cases but this time the system state is retained in-between test executions
such that there is an incremental execution that can now reach different
application stages. 100% MC/DC is again recorded, however, this time a
buffer overflow fault is identified.

The problem is exacerbated if the bug was only identifiable when the test
suite was executed multiple times, perhaps more than would be considered nec-
essary by a test engineer. Therefore ‘quantity’ considerations should include a
coverage criteria suitable for security based testing. In addition, it should be ac-
knowledged that achieving 100% of any coverage criteria does not guarantee a
system is secure or safe.

Quality considerations will focus on the level of security assurance that each
individual refutation activity can provide. The quality of refutation test evidence,
for each identified activity, should be measurable and stated within the test plan.
Each activity will need to consider what evidence it can bring to support the argu-
ment and how it is commensurate with the identified Security Assurance Level
(SAL) of the associated Security Measure the activity is testing.

The final consideration asks each refutation test activity to consider how it
fits into the overall goal of the refutation plan and to which of the other activities
it is related. It is not expected that a single refutation activity will be sufficient
to form a suitable refutation test plan. Instead a combination of multiple activ-
ities will likely be required to ensure suitable confidence can be gained to form
an argument that the system is free of unwanted behaviour. This consideration
requires a clear understanding of the strengths and weaknesses of each activity
and the software and hardware tools used to achieve the goals of the activity. An
example would be using static analysis to identify a coding vulnerability, for ex-
ample, SQL injection through unsanitised password entry fields, and then using
fuzz testing to identify a software bug, where the attack vector is the same pass-
word entry field, and where the exploited bug could result in a denial of service
attack. In this example two refutation activities are used to identify two different
exploitable vulnerabilities, however, it may not be the case that any one activity
could identify both.

4.2 Activity Specific Considerations

Each consideration below should have a corresponding section within each Refu-
tation Activity Annex which should describe if and how the consideration is rel-
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evant to the particular activity.

For the majority of the guidelines and considerations, unless not applicable
for the particular activity under focus, it is beneficial to the reader to show ex-
amples of how the action resulting from the consideration could be described
within the Refutation Test Plan.

1. Verification and Refutation Separation

ED-203A / DO-356A stipulates that Verification and Refutation should be
treated as separate activities and whilst this recommendation isn’t a direct
objective there is a benefit to understand and document how the refutation
activity conforms to this guideline.

1.1 What evidence can be collected to argue that a level of separation
exists between verification and the refutation activity?

For example, how is the activity performing non-functional testing that
is not directly focused on the verification of requirements (including
security related requirements).

1.2 What argument can be made over how the process for performing
the refutation activity ensures the testing is also performed from the
perspective of an attacker?

The aim here is to try and ensure the activity focuses on both vulnera-
bility identification and defensive security measure assessment.

1.3 How does the activity deal with human preconceptions and un-
wanted bias within test cases?

This is an opportunity to promote any automated negative testing as-
pects of the activity and to identify manual aspects that could intro-
duce an unwanted bias. An example here is automated test case input
generation from mutation algorithms adopted by fuzz testing. In this
example the automation of the test input creation demonstrates inde-
pendence from manual input creation which can add an unwanted bias
through the knowledge of the application design.

2. Assurance Goals
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Refutation testing is used to aid security assurance arguments, however,
it is expected that particular activities will target different aspects of se-
curity assurance. For example, formal proof could be used to argue that a
system, or part of a system, is absent of run-time errors and therefore free
of vulnerabilities. Fuzz testing may be using specific algorithms to target
common vulnerabilities like buffer overflow attacks.

This is broken down further into the three sub-considerations that should
be answered and documented within the Refutation Plan within the PSe-
cAC.

2.1 What are the main goals for the refutation activity? What assur-
ances is it trying to achieve and how?

2.2 What unwanted behaviour is the activity trying to exercise in the
system?

2.3 Is the activity targeting a known set of vulnerabilities/exploits or is
the activity attempting to capture any possible vulnerabilities through
techniques like brute force test case injection?

3. Limitations

The limitations of the activity need to be clearly understood and docu-
mented.

3.1 What are the known limitations of the refutation activity?

For example if fuzz testing is being used to identify buffer overflows is
the test application runtime guaranteed to always detect a buffer over-
flow? This may be the case for applications developed in Ada but not
always the case for applications developed in C.

3.2 What are the known factors that can stop the activity from com-
pleting its goals?

For example, if formal proof is being used to argue the absence of run-
time errors can the adopted formal proof static analyser discharge all
verification conditions required to guarantee that all scenarios have
been considered?
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3.3 Are there any known hardware or system design architecture con-
siderations that could affect the capability of the refutation activity
(i.e. choice of Instruction Set Architecture, programming language or
compiler optimisation).

An example is where runtime constraint checking is enforced to ensure
all software bugs can be identified during fuzz testing, however this is
not representative of the final target build where the runtime checking
is not included. In this scenario any performance implications of the
constraint checking need to be considered.

4. System Complexity

It is expected that system complexity has a direct correlation to the like-
lihood of the activity identifying the maximum number of vulnerabilities
within the system. The same is true for the likelihood of being able to suit-
ably measure the assurance of a targeted defensive measure. It is impor-
tant to understand how system complexity is being measured in order to
be able to assess the suitability and capability of the particular refutation
activity.

In this regard system complexity is relevant to the particular activity and
it is understood that complexity measurements for one activity will differ
to another. For example, Penetration Testing will likely be interested in the
availability of public library versions embedded within the codebase such
that it can identify known exploits for particular software versions. Fuzz
testing may see code bases that use comparison statements with complex
types as complicated. Activities involving theorem provers will want to
measure state explosion and loop termination.

Once a complexity measurement has been described it is important to un-
derstand at what point does the measured complexity start to affect the
capability of the activity.

Once a complexity measurement has been described it is important to un-
derstand at what point does the measured complexity start to affect the
capability of the activity.

4.1 What is the definition of "system complexity" for the particular
refutation activity?

4.2 How does an increase in complexity affect the scalability of the
activity?
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5. Measuring Confidence

It will be key to security critical assurance refutation activities that the as-
sessor can understand what evidence the activity can produce in order to
measure the security assurance of the system.

5.1 What evidence can the refutation assurance activity provide to
measure that unwanted behavior has been precluded to an accept-
able level of confidence?

For example, can a Fuzz testing capability show the areas of the con-
trol flow that have, and have not, been exercised. If Formal Proof has
been adopted can the activity produce clear evidence of the assurance
that a system, or part of a system, is absent of runtime errors?

5.2 What format will the activity use to record newly identified vulner-
abilities?

5.3 How can the results of the assurance activity be reproduced and
what information needs to be configured to achieve this?

5.4 What coverage criteria will the activity use and what are the known
limitations for each case?

Example coverage criteria algorithm limitations are discussed in Sec-
tion 4.1.3 “Quantity and Quality".

6. Scope

This area of consideration focuses on how the scope of the tested area of
the system is documented and what particular aspects of the system the
activity can, and cannot, test.

6.1 At what scope will the activity be performed (i.e. system, sub-
system, item or other)?

When collating security assurance evidence for an existing platform
it is expected that Refutation testing will be, or may have to be, per-
formed at the system level. When the Airworthiness Security Process
is adopted from the start of a new development it may be possible, and
in many cases beneficial, to reduce the scope of the tested aspects of

22



4.2 Activity Specific Considerations

the system through sub-system or unit based refutation testing. If the
activity is not testing the entire system how is the scope of the test
being documented?

6.2 What evidence can be provided to show that the activity has suffi-
ciently tested the security measure/s commensurate to the Security
Assurance Level associated with the measure/s?

When Refutation Testing is being used to provide assurance that a se-
curity measure, or set of security measures, are effective in their role of
guarding a security asset it is important to present a strong argument
that the Refutation Activity is fit for purpose. For example, Penetration
Testing that uses an outdated set of known vulnerabilities may not be
considered may not be considered appropriate on it's own to provide
the required assurance of a Security Assurance Level 4 security mea-
sure.

6.3 What software representation level is the activity aimed at (i.e.
source code, executable code, or some other intermediate represen-
tation)?

Static analysis techniques for identifying vulnerabilities tend to be aimed
at source code. Fuzz testing is performed on the executable code.
Other refutation testing activities like symbolic execution may be aimed
at an intermediate representation that is executed through an emulated
environment.

6.4 What are the limitations of targeting the activity on a particular
software representation level, and how does this affect the system
behaviour?

For example, if the refutation testing is performed on an intermediate
representation of the system source code or the actual source code
and not the binary executable image, what assurance can be provided
that additional vulnerabilities will not be created during the compilation
phases required to create the binary executable.

6.5 Is the hardware test-harness representative of the final implemen-
tation, and if not how does this affect the system behaviour?
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For example, where an emulator is being utilised on a host environment
to represent the system under test, proof is needed that the emulator
is a true representation of the target hardware.

6.6 Does the activity need to alter the software under test (i.e. in-
sert instrumentation code for metric-related data collection) and how
does the alteration affect system behaviour?

For example, if a fuzzer is instrumenting the binary code for control
flow path execution tracking, then guarantees are required to ensure
that the additional instrumentation instructions do not inadvertently
alter the original program behaviour.

6.7 Can the activity test the boot process and verify that integrity is
protected?

Where applicable systems may require complete end-to-end security
including providing assurance that the integrity of defensive security
measures with the system boot process cannot be compromised. For
example, if the system has implemented a drive encryption scheme or
a firewall is the activity capable of attempting to bypass the security
measures.

6.8 What aspects of the system can not be exercised by the activity?

For example it is unlikely that fuzzing would be suitable for testing the
boot process integrity whilst limited guarantees may be made when
applying formal proof to a system that encompasses various prebuilt
low assurance software libraries.

7. Threat Scenarios

As and when threat scenarios are identified, refutation activities should be
run to target the implemented security measures.

7.1 How can the activity be configured to challenge the vulnerability
evaluation?
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For example, can the activity demonstrate that vulnerabilities, as doc-
umented within the vulnerability dossier, can not be exploited.

7.2 What identified threat scenarios can't be covered by the activity?

It should be clear within the vulnerability evaluation which refutation
activities are being employed to evaluate the exploitability of each vul-
nerability.

8. Pedigree

This set of considerations focuses on the assurance aspects of the ac-
tual refutation testing activity and in particular the software and hardware
tools required to execute the test. Whilst it is recognised that refutation
testing tools do not need to be implemented to a particular DO330 Tool
Qualification Level (TQL) it is also reasonable to assume that any known
tool assurance is documented within the Refutation Testing plan.

The following considerations try to breakdown an assessment of the as-
surance of a Refutation Testing tool, particularly where a TQL assessment
cannot be provided.

8.1 Has the activity been used for establishing security airworthiness
before?

8.2 Is this a mature approach of vulnerability identification or experi-
mental?

8.3 If the activity involves an external to the organisation entity, what
evidence (certification packs etc) can the subcontractor provide?

8.4 How much human interaction does the activity involve and how
can you demonstrate that the operators have the required level of ex-
perience for the associated tools?

9. Relationship to other refutation activities

It is expected that in many scenarios a single refutation testing activity
will not be suitable on its own to provide suitable security assurance. In
addition, many refutation testing activities will contain known limitations
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that can be satisfied by other refutation testing activities. An example is
where formal proof is used to argue the absence of runtime errors within
the implemented application code but may not be capable of providing
assurance over third party software libraries. In this scenario fuzz testing
may be also applied to provide further system security assurance.

9.1 What other activities complement this activity and which other
activities can make up for the known limitations of this activity?

Annexes

A Fuzz Testing

A.1 Activity Description

Traditional Fuzz testing, also known as ‘fuzzing’, is a software testing technique
that involves the automatic generation of system inputs generated through mu-
tation of a user-provided set of test cases, also known as the starting corpus.

Fuzz testing focuses on robustness rather than verification; the goal of the
exercise is to determine if the system can protect identified security assets when
subjected to unusual operating conditions (i.e. test cases that include uncon-
strained data). This is achieved by a monitoring process that, during test execu-
tion, attempts to detect if the system has crashed or hung. With fuzzing, under
some circumstances, for example the use of design by contract pre- and post-
conditions, it is also feasible to detect a system transition into an unwanted or
unknown state. However, it is not feasible to achieve guarantees that the imple-
mentation conforms to the functional specification with fuzzing; formal verifica-
tion will need to be adopted to achieve this.

The term fuzz testing covers a wide range of automated testing capabilities.
In particular fuzz testing methodologies tend to be either black box, grey box or
white box. Black box fuzz testing is where the software system is tested without
the need for any knowledge of the internal workings of the application (i.e. the
source code). With black box fuzz testing the binary executable of the software
system is usually executed through an emulated environment or a virtual ma-
chine. Grey box fuzz testing requires some instrumentation of the system under
test and therefore the source code must be made available. The instrumenta-
tion is usually added via a compiler wrapper and no knowledge of the functional
specification of the system is required (i.e" the source code must be made avail-
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able to the compiler, however an understanding of the implementation within
the source code is not required). Fuzz testing can also be used to identify bugs
within sub-systems, items or units and a white box fuzz testing approach can be
adopted to ensure the correct test scope is defined and specific subprogram sig-
natures are targeted for test injection. White box fuzz testing can also be useful
to identify areas within the code base that the tester specifically wants to fuzz
(i.e” a security measure protecting a security asset). Manual (or automated if
available) test-cases can be created and added to the starting corpus to ensure
the required coverage is achieved.

It is expected that in most cases the attacker will only have access to a black
box fuzzing capability, however, this should not be relied upon; particularly when
code reverse engineering from a binary executable is a possibility. In addition
we need to accept that publicly available software libraries may have been em-
bedded into the system under test and that these libraries may contain vulnera-
bilities (known or unknown). Where a public library is used the attacker will have
full access perform white box and grey box fuzz testing on the full API of the
library and can use any found vulnerabilities to their advantage.

American Fuzzy Lop (AFL) [9] is one such fuzz test mutation engine that sup-
ports black box, grey box and white box fuzz testing.

A.2 General Considerations to achieving effective fuzz testing

Fuzzing is employed in cases where manual robustness testing and vulnerability
identification mechanisms do not scale. This is often the case with large appli-
cations and applications with complex code semantics. In these cases, it is
difficult to manually create test cases to sufficiently exercise the program. Fur-
thermore, fuzzing removes the need for human driven manual test generation
which could be bias and error prone.

For fuzz-based testing to achieve maximum effectiveness in vulnerability
identification the test environment should enforce the maximum usage of avail-
able anomaly detectors. For example, programming languages such as Ada
include run-time checking of multiple constraints (including memory overflow
checks and developer embedded contract assertions) and these should be in-
cluded within the fuzz test harness. For languages with limited runtime checks,
such as C, third party anomaly detectors should be enforced (for example: in-
valid memory access detectors). Failing to enforce anomaly detection can lead
to false negatives and an incorrect level of security assurance assumed.
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A.3 Coverage and Fuzzing Campaign Criteria

Most fuzz testing capabilities have some understanding of the level of coverage
of the system under test that has been exercised during a fuzz testing session.
Coverage in the context of fuzz testing will be tool independent and will range
from a measurement of instrumentation points added during test harness com-
pilation, to a more advanced analysis of the source code coverage. It is noted
within section 2.1.2 of the main report that there are limitations with all cover-
age algorithms and achieving maximum coverage based on rigorous algorithms
like Modified Condition/Decision Coverage (MC/DC) doesn’t guarantee a system
is free of vulnerabilities. However, coverage is still widely regarded as a useful
measure of software testing whilst algorithms like MC/DC are mandated within
DO-178C to ensure adequate testing of the most critical (Level A) software.

The guidance for coverage with fuzz testing provided here is to adopt an ap-
proach that mirrors the intent of DO-178C coverage objectives whilst recognis-
ing that 100% MC/DC coverage is likely un-achievable with fuzz testing, within
a reasonable time frame. Therefore consideration must be taken over Security
Assurance Levels (SAL) of the security measures placed within the system un-
der test in much the same way objectives are met for equivalent Development
Assurance Levels. For example, when fuzz testing is targeting a security asset
that has properties associated with safety critical DAL components, greater as-
surance will be required when compared to fuzz testing security measures with
no associated safety hazard. Greater assurance can be achieved with increased
coverage and an increase in the time the fuzz test is allowed to run.

It is also recognised that it may not be feasible to measure anything other
than statement coverage with the majority (if not all) fuzz testing capabilities.
The reason being is that, and at least with the popular “grey box, path aware”
fuzzing solutions, test-cases, that do not identify system anomalies and also do
not find new paths of execution though the control flow, are not retained for cov-
erage analysis. Ordinarily, and especially with fuzzing solutions built on top of
tools like American Fuzzy Lop [9], the identification of new paths through the con-
trol flow is determined by an analysis of which instrumentation points (placed
around basic blocks) were hit. This is effectively a measure of statement cover-
age at the Assembly language level. In order to measure anything like MC/DC we
would need to run the analysis on every mutated test case (regardless of which
paths they took; which is not straight forward as ordinarily test cases that don’t
find new paths are quietly thrown away after test execution).

Therefore, inthe context of fuzz testing it only makes sense to consider state-
ment coverage, and this should only be used as a measure of the quality of the
starting corpus. A high level recommendation is therefore to adopt the following
two phased strategy:
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1. Work towards achieving a test-case starting corpus that achieves the de-
sired level of statement coverage or that sufficiently targets the areas of
the application where refutation testing is required

2. Execute a fuzzing campaign utilising the starting corpus and derive a for-
mula for defining the stopping criteria of the campaign

In effect this requires the definition of a “Starting Criteria” and a “Stopping
Criteria” and both should be clearly defined within the Refutation Test Plan. It
should also be noted that it is likely that multiple fuzzing campaigns will be re-
quired to target different aspects of the system under test. When this is the case
each campaign will need to be considered individually and appropriate “Starting
Criteria” and “Stopping Criteria” defined on a per campaign basis.

It is recommended that the following two methods are considered for build-
ing a suitable starting corpus:

1. If available adopt an existing set of test cases that are known to achieve
the desired level of coverage, or that are known to target the particular
security aspects of the system that the fuzzing campaign is attempting to
refute.

2. Manually build a starting corpus and then use a fuzzer to mutate the corpus
into a wider reaching set of test-cases that either achieves the desired level
of coverage, or can be seen to target the particular security aspects of the
system that the fuzzing campaign is attempting to refute.

Method 1 above is seen as the most likely solution where Integration testing
or Unit level testing has already been applied (or will be applied) to the System.
This will be particularly true of the higher safety assurance level systems that
are using a testing verification method for arguing safety assurance. However,
some effort will likely be required to convert unit or integration level test-cases
into test-cases suitable for fuzz testing, although it is reasonable to assume that
some, or all, aspects of the conversion could be automated.

Once the starting criteria has been derived, established and accepted by the
governing regulatory body the actual fuzzing campaign can start. However, in
order to be able to sufficiently argue that the risk of the system containing vul-
nerabilities is acceptable we also need to clearly define the campaign’s stopping
criteria.

This formula will need to take into account multiple considerations (listed
below) but will result in the following three fuzzing campaign requirements:

1. Starting Criteria has been met
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2. Test hardware capability is achievable (measured in test executions per
second)

3. Length of time the campaign will need to run has been calculated

Note thatitems 2 and 3 above are tightly coupled and could have been grouped
together under the requirement “number of required test executions has been
calculated”.

In order to determine the formula required to derive the measurements above
the following aspects need to be considered:

* maximum test-case permutations (if calculable)
* input data complexity
+ system under test complexity

+ achievable test executions per second (needs to consider hardware capa-
bility, number of processors, number of cores and factors like number of
fork/executes per test case)

« mutations performed per test-case seed

+ mutation algorithm strategies adopted (deterministic, random, structure
aware etc)

« corpus cycles required (number of times every test case in the corpus has
been through a complete mutation cycle)

+ Security Assurance Level of implemented security measures being tar-
geted

An example stop criteria formula is shown in the guidelines section for con-

sideration 6.2 below.

A.4 Planning Considerations

The following aspects of the adopted fuzzing strategy for refutation (as described
further in the sections below) should be covered within the PSecAC and per
fuzzing campaign required:

+ Mutation algorithm/s definition

— A description of each algorithm adopted
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* algorithms built into any third party fuzzer mutation engines (for
example if using AFL state the version of the tool used and the
mutation phases adopted - i.e” deterministic / havoc etc)

* any customisations to the algorithms (i.e" any sanitisation of the
mutations)

* any project specific algorithms developed (i.e” protocol aware mu-
tations)

+ Starting Corpus generation strategy

- A description of the mechanism used to generate the starting corpus
— A description of how coverage analysis will be performed (if applica-
ble)
« Anomaly detection mechanism enforced

- A description of the run-time checks used to detect vulnerabilities

* run-time checks enforced by the programming language

* additional third party vulnerability detection (for example Address-
Sanitizer)

+ Test-case generation capabilities beyond test-case mutation, for example:

- Symbolic Execution
- “Magic byte" finding tools like RedQueen ([7])

+ Stopping Criteria formula and resulting campaign requirements metrics

A.5 Guidance

1.1 What evidence can be collected to argue that a level of separation exists
between verification and the refutation activity?

Fuzz testing is inherently different from traditional verification activities. Verifi-
cation testing focuses on providing evidence that functional requirements have
been satisfied. Fuzz testing does not focus on the correct functional behaviour
of the system and instead is used to assess the robustness of the system when
subjected to unusual operating conditions. In this regard it makes for a good tool
for identifying software bugs (which may or may not become classified as vul-
nerabilities), particularly where the vector that instigated the failure path would
not normally be considered by traditional verification test cases.
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In addition, test case automation with no prior knowledge or influence of
functional requirements is clear evidence that the activity is separate to verifi-
cation. One method to achieve this form of separation is to divert the number of
test decisions away from the test engineer and towards the fuzzing engine. Non-
discriminating automation, and particularly where the automation engine has no
prior knowledge of the input data format or the architecture of the system under
test, reduces the risk that human preconditions can influence the test.

Fuzz testing involves the dynamic and automatic generation of test cases.
This takes some of the onus of test case creation away from the engineer. How-
ever, the most effective fuzzing engines make use of a starting corpus which
may, or may not, be manually generated. Each test case, from the initial set,
is required to contain valid data that will take the system execution through to
completion. In order to maximise the usefulness of the starting corpus each test
case should aim to drive the test executions through differing paths within the
control flow graph. This allows the fuzzer to gain a significant advantage with
the goal of maximum coverage. Depending on the scope of the fuzzing session,
and the nature of the system under test, it may be possible to create the starting
corpus without having to understand the underlying architecture of the system
under test (for example where an APl is being fuzzed). However, in order to en-
sure the starting corpus is wide-reaching in terms of control flow it is expected
that the test engineer will need to also understand the code base.

Human created starting corpuses increase the risk of human preconceptions
influencing the decision over the data values. This can lead to an unwanted bias
unknowingly influencing the test through prior knowledge of the system require-
ments. Divergence along all of the control flow paths from the starting corpus
are within the reach of the fuzzer through standard test mutation. However, there
is a risk that a control flow path is assumed to be secure and not targeted by a
test case within the starting corpus. If the code base is complex it may be diffi-
cult for the fuzzer to randomly mutate the data such that all paths are executed.

A better alternative, to manual starting corpus creation, could be automated
starting corpus generation. This requires the automatic generation of multiple
values for test data type components within the test case. All permutations, of
each generated value for each test data type, will then need to be created such
that the starting corpus can be generated. Some fuzzing engines, particularly
grey-box fuzzers, have a capability to reduce a starting corpus down to the mini-
mal set required to execute maximum coverage. If this capability is not available
(i.e. black box fuzzing) then a human created starting corpus may be the best
approach.

The refutation test plan should therefore contain a description of the strategy
used for starting corpus generation. This should include an argument over how
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influences over system requirements knowledge will not add an unwanted bias
within the starting corpus generation.

1.2 What argument can be made over how the process for performing the refu-
tation activity ensures the testing is performed from the perspective of an at-
tacker?

It is recognised that whilst grey-box or white-box fuzz testing may yield greater
returns than black-box fuzz testing there is a recognised benefit in additionally
performing system level black box fuzz testing. In addition, it is unlikely that
the attacker will have access to a grey or white box fuzz testing capability, how-
ever, black-box fuzz testing will likely be more in reach and therefore should not
be ignored. In addition, specialist mutation algorithms applicable to a particu-
lar system, can play a key role in ensuring a wide reaching test input corpus is
achieved. However, an attacker will likely only have access to a standard set of
generic algorithms and a good way of adopting an attackers mindset is to also
try and deploy the same attack methodology.

Whilst it is recognised that system specific mutation algorithms can help
penetrate deeper into the control flow graph they should not be a complete sub-
stitute for generic mutation algorithms. Generic mutation algorithms are defined
in this context as having no understanding of the nature of the test cases. Sys-
tem specific mutation algorithms are structure aware and are typically used to
sanitise mutations and ensure the system under test doesn’t immediately re-
ject the test case at the system boundary. It is recommended if structure aware
mutations are needed that they are used in combination with generic mutation
algorithms. It is unlikely that the attack will have access to structure aware mu-
tations - or at least the same structure aware mutation algorithms as the refu-
tation tester. Attackers will however always be able to utilise generic mutation
algorithms.

1.3 How does the activity deal with human preconceptions and unwanted bias
within test cases?

For the most part fuzz testing involves automated test case generation, however,
there are two aspects to fuzz testing that can include unwanted human bias
within generated test-cases:

+ Mutation algorithms

+ Starting corpus generation
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Itis recommended that Fuzz testing strategies incorporate multiple mutation
algorithms including random bit flip patterns. Test-case data structure aware
mutations serve a purpose, however, should not be included in the strategy at
the expense of random mutations.

A starting corpus generation strategy should be shown to attempt to achieve
as much coverage of the system under test as feasible. If a starting corpus is
too focused on a particular aspect of the control flow graph it may be difficult for
the fuzzer to mutate the test-case seeds in such a way as to traverse the graph
onto the wider reaching paths. However, this can be mitigated by ensuring a
statement level coverage analysis is incorporated into the fuzzing session and
the starting corpus generation.

2.1 What are the main goals for the refutation activity? What assurances is it
trying to achieve and how?

The main goal of Fuzz testing is to automatically generate test-case inputs that
try to execute the aspects of the control flow graph being targeted whilst de-
tecting if the generated test-case inputs cause the system under test to crash
or hang. However, fuzz testing is not completeness testing and cannot provide
complete assurance that the touched code base is free of vulnerabilities, it can
however demonstrate that the system is robust when subjected to a large sam-
ple of test-case input values.

Fuzz testing, as a refutation activity, is about trying to provide some assur-
ances that the system is free from software bugs. Fuzz testing attempts to pro-
vide this assurance by identifying any software bugs that, when triggered by cer-
tain test-cases, cause the system, or part of the system, to inadvertently crash
or enter an unknown state of execution. Identification of this behaviour is typ-
ically achieved via detection of a segmentation fault or through the monitoring
of other application layers or operating system layer detected faults.

In addition, some fuzz testing mechanisms may also attempt to detect when
a system has failed to complete its execution within a given timeout. This pro-
vides assurance that certain test-case data inputs cannot cause the system to
enter lengthy processing states or become permanently hung or blocked which
is the common aim of Denial of Service (DoS) attacks.

2.2 What unwanted behaviour is the activity trying to exercise in the system?

Fuzz testing will attempt to orchestrate scenarios that demonstrate that the sys-
tem is robust and will continue to operate, within its functional specifications,
under unusual operating scenarios.
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In particular fuzz testing will generate test-case data that may or may not
be correctly constrained and may or may not be considered valid by the system
under test. The fuzz testing mechanism will then observe the system under test
during the processing of the test-case and check for the undesired behaviour,
such as crashes and process timeouts.

2.3 Is the activity targeting a known set of vulnerabilities/exploits or is the ac-
tivity attempting to capture any possible vulnerabilities through techniques like
brute force test case injection?

Fuzz testing is about the detection of data inputs that can cause the system
under test to inadvertently stop executing, enter an unknown state of execution
or overrun an execution cycle.

All of these unwanted behaviour states are caused through software bugs.
Ordinarily common software bugs are not specifically targeted through fuzz test-
ing and the identification of the software bugs that caused the unwanted be-
haviour are not known. However, there may be specific techniques, adopted
within mutation strategies, that aim to trigger common issues such as buffer
overflows or the raising of range check exceptions.

For the most part fuzz testing is targeting all software bugs that cause the
system to crash or hang.

3.1 What are the known limitations of the refutation activity?

Whilst software tools exist to try and automate as much as possible the creation
of a Fuzz testing session there are several system characteristics that make
the technology harder to adopt. Typically fuzzing is well suited to systems that
follow a traditional model of:

1. Receive input
2. Process the input

3. Stop

Systems that don't fit this model will need to be altered. For example an
application with a main permanent loop that processes messages from buffer
queues will need to be altered such that the execution completes after a mes-
sage is received and processed. This, however, is no different to the type of
scoping involved in standard, more traditional forms, of unit level and integra-
tion level testing.
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In addition, some fuzz based technologies rely on instrumentation of the sys-
tem under test in order to provide guidance prompts to the mutation algorithms,
others require complex test drivers, for example POSIX fork servers to efficiently
spawn new test-case processes. When this "grey box" style fuzzing approach is
adopted the system under test is no longer a true representation of the target
executable code and different compilers may be needed to ensure the system
can run within the required operating parameters of the fuzzing session.

Another consideration with fuzz testing is knowing when to stop. Fuzz test-
ing mutation algorithms may become exhausted, particularly when the test-case
input structure is considered simple or when a coverage analysis confirms that
all inputs have been generated. However, it is more often the case that the com-
plexity of the test-case input date is such that the maximum possible test case
mutation permutations is vast. In this scenario the test engineer needs to have
a well defined strategy for stipulating when the test can stop. Fuzz testing solu-
tions that can offer up an automated capability to define complex stop criteria
rules can provide a partial answer to this problem. It is expected that achiev-
ing acceptance of a refutation test plan that involves fuzz testing will require the
documenting of a stop criteria algorithm that can be enforced by the fuzz testing
tool. An example of a stop criteria algorithm is defined in A.5

When a fuzz testing session is terminated the coverage achieved should be
assessed and, where applicable, additional manually created test-cases added
to the starting corpus to drive the execution to the untouched areas of the tar-
geted code base. The fuzz testing session should then be restarted. This pro-
cess should be repeated until the required coverage for the starting corpus is
achieved. Once we are satisfied we have met our starting corpus criteria we can
commence the fuzzing campaign, which will be terminated when the stopping
criteria is met.

3.2 What are the known factors that can stop the activity from completing its
goals?

The greater the system complexity and/or data input complexity (as defined
within consideration item 4) the less likely the fuzzing session will achieve the
desired level of code coverage. A mechanism will be needed to measure either
the complexity or the test-case coverage. Systems where fuzzing would be inef-
fective in achieving the desired coverage will likely need to be split up and fuzz
tested as a series of units.
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3.3 Are there any known hardware or system design architecture considera-
tions that could affect the capability of the refutation activity (i.e. choice of
Instruction Set Architecture, programming language or compiler optimisation).

Some programming languages are generally more well suited to fuzz testing
than others. In particular languages with run-times that can be configured to
include constraint checking make for good fuzz testing targets. Languages that
support concepts like design by contract are also well suited. Languages that
allow systems to enter unknown states through vulnerabilities such as buffer
overflows are less well suited. An example of this is with the comparison of a
standard Ada runtime, that will always identify buffer overflows, with a standard
C runtime, that may, or may not, identify buffer overflows.

Some fuzz testing architectures require code instrumentation, however, most
also support test execution using processor emulators. Fuzz testing tends to in-
volve a complex test harness wrapper that needs to be built, or executed, along-
side the system under test. This makes fuzz testing embedded systems, as
generally seen within aerospace avionics, a particular challenge. Here the so-
lution is often to rehost the application within an emulated environment that is
representative of the target hardware and that it is accessible to a fuzz testing
solution. However, and as noted within section 3.1, the embedded system may
require alterations to allow fuzz testing to take place.

In addition, and particularly where a fuzz test harness requires a library com-
ponent inaccessible to the target compiler, an alternative could be to cross-
compile the application onto a host environment that is known to support the
required component. An example is with the dependency AFL has on the imple-
mentation of POSIX fork() and exec() functions.

4.1 What is the definition of "system complexity" for the particular refutation
activity?

Complexity is the key factor in determining the likelihood of the fuzzing session
finding all of the vulnerabilities. In the scope of fuzz testing the term complexity
can be split into two categories:

1. Complexity of the system under test

Measured by considering the volume and hierarchical depth of the decisions
within the code base; the number of decision points plus the number of permuta-
tions of conditions making up the decisions. In addition conditions that may not
traditionally be considered complex, around equality testing of data with wide
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ranging bounds (an example is floating point equality) is also considered com-
plex in this context and this includes any conditions that make black box testing
harder to achieve full coverage.

Other factors that may affect the complexity of a fuzz test include the level
of concurrency within the architecture of the system and the number of external
interfaces.

2. Complexity of the test case

Measured by considering the structure of the test case data, including the de-
fined bounds of the individual scalar leaf nodes of the structure. In addition,
consideration should be given to the protocol of the system that the data is ad-
hering to and if the components of the data are loose or tightly coupled.

Another factor affecting the complexity of the test case is with the test case
generation approach implemented within the fuzzer's mutation engine; fuzzing
sessions using structure aware mutation engines will waste less cycles gen-
erating invalid data thrown away by the interface. However, custom mutators
are intrinsically human-biased and it is advisable to always ensure they are not
exclusively used; a pure structure aware mutation engine may fail to identify a
vulnerability which can only be exposed through a test case containing invalid
(unconstrained) data.

4.2 How does an increase in complexity affect the scalability of the activity?

An increase in complexity of the system under test will reduce the probability of
the fuzzer reaching the desired level of coverage. Fuzz testing hardware consid-
erations will also play a factor as the number of test-case generations required
to reach the coverage target could be very high (millions or greater). Multi-core
servers may be required to process fuzzing sessions on high complexity sys-
tems.

Scalability decisions will need to be a factor of the calculated complexity of
the system and the hardware running the fuzzing session. Test-case generations
per second will need to be complementary to the estimated total permutations
of possible test inputs (if calculable).

Most fuzzing tools provide dynamic feedback during execution and where
grey-box style fuzzing is adopted, test engineers will need to be mindful of the
length of time that has passed since the fuzzer last found a new path of execu-
tion within the control flow graph. Last path time can be coupled with test case
generation rate (hertz) to determine if the current approach is scalable to the
system under test.
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If the session isn't scalable there are two options available:
1. Complexity will need to be reduced

2. Test-case generation per second will need to be increased

5.1 What evidence can the refutation assurance activity provide to measure that
unwanted behavior has been precluded to an acceptable level of confidence?

Fuzz testing approaches generally throw away test cases that did not result in
unexpected system behaviour. This is by design as writing all generated test-
cases to file is often not feasible. In addition, and where test-cases are dynami-
cally created by mutation algorithms, this approach would result in an unwanted
overhead that would have an adverse effect on the rate at which the tests can
be executed. Therefore it is not always feasible to produce a set of repeatable
regression tests that can be run to show assurance in the system.

Instead fuzz tests tend to record test-cases that cause the system to enter
an undesirable state and test-cases that find a new path of execution through
the control flow graph. The latter can be used to calculate code coverage met-
rics and the former can be used to show a previously identified vulnerability has
been fixed. Where the coverage identifies gaps in the testing additional test-case
seeds can be created and added to the starting corpus and the fuzz testing run
again. This will need to be repeated until a suitable level of coverage is achieved.

5.2 What format will the activity use to record newly identified vulnerabilities?

Each fuzz test will be required to record the starting corpus and associated test
harness such that the test can be re-executed. In addition, grey box fuzzers that
record all test-cases that found new paths of execution through the control flow
graph, should also save these test-cases into the starting corpus associated with
the fuzz test.

Itis however common for fuzz testing mutation algorithms to rely on random
number generators to transform (mutate) queued test-cases within the corpus
into new test-cases for test execution. Therefore fuzz testing sessions are of-
ten not truly repeatable. In some cases pseudo random number generators can
be configured to use fixed seeds which can make aspects of the testing more
deterministic. However, the usage of fixed seeds to produce deterministic fuzz
tests is not a recommended strategy. This is because using random seed val-
ues is more likely to yield more interesting test case input values, achieve greater
coverage and detect more vulnerabilities.

For fuzz testing there are two key factors in assurance evidence generation:
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1. The ability to analyse the coverage achieved when executing test case in-
puts within the corpus.

2. The definition of a "stop criteria rule" used to argue that the continuation
of a fuzzing session has reached the point of unacceptable dimensioning
returns.

Section 3.1 provides an overview of the stop criteria concept.

In addition, test-cases that found unwanted behaviour within the system un-
der test should be saved and later used to verify that the associated software
bugs have been fixed.

5.3 How can the results of the assurance activity be reproduced and what in-
formation needs to be configured to achieve this?

Test-case files that result in undesired behaviour within the system will be recorded.
These test-cases can be used to reproduce the vulnerability. In addition the fuzz
test corpus, fuzz test harness and any execution environment settings will need
to be retained, however, there is no guarantee that this will result in the same set
of dynamically generated test-cases (as described in section 5.2).

5.4 What coverage criteria will the activity use and what are the known limita-
tions for each case?

Fuzz testing is not bound to a particular code coverage algorithm. In addition,
and assuming the fuzzer records all generated test-cases or test-cases that
found new paths of execution through the control flow graph, it should be fea-
sible to execute the recorded test-cases through the system under test inde-
pendently of the fuzzing tool. In this sense multiple coverage mechanism can
be utilised to record the achieved coverage through the system (i.e. Statement
Coverage or Modified Condition / Decision Coverage etc).

The limitations of the coverage algorithm will therefore depend on the par-
ticular algorithm chosen, however, consideration will be needed over if, and how,
the algorithm deals with factors like state incrementation leading to buffer over-
flow.

In addition, and as previously noted, it is expected that for many fuzzers it
may not make much sense to record anything other than statement coverage. It
is also recommended that this is only used to derive a formula for the starting
corpus i.e. ensuring that the corpus meets 100% statement coverage
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6.1 At what scope will the activity be performed (i.e" System, Unit or other)?

Like all software testing disciplines fuzz tests can be scoped using standard
software boundary tightening techniques, for example function stubbing. Re-
ducing the scope of a fuzzing session may be essential to perform an effective
vulnerability test and there are multiple reasons why system level fuzz testing
may be infeasible, these include:

« Concurrent applications where multiple system interfaces are simultane-
ously driven from multiple external sources

+ Embedded applications that often enter a’'main loop’ to process interrupts;
anything failing to successfully terminate will be deemed as a 'hung pro-
cess’ by a fuzzer

+ Applications that utilise closed source third party libraries

+ Applications that contain protocol constraint checks of the input data un-
der test (for example this may be required when a fuzz test mutation engine
cannot sanitise the data’s checksum)

Where feasible fuzz testing should be performed at the system level, how-
ever, the greater the complexity of the system under test the quicker this ap-
proach will lead to diminishing returns. Understanding the level of complexity
involved in a fuzzing campaign is therefore essential for determining how to
achieve the maximum effectiveness and ultimately how best to set-up, scope,
execute, monitor and stop the tests.

As a minimum fuzz testing should be performed on identified attack vectors
to the software system under test (i.e. socket connections) and ideally using a
fuzz test harness that closely resembles that target environment.

6.2 What evidence can be provided to show that the activity has sufficiently
tested the security measure/s commensurate to the Security Assurance Level
associated with the measure/s?

Fuzzing focuses on the detection of software bugs. This includes “corner-case"
design or implementation errors that are triggered via unusual data inputs; in-
puts that standard verification testing techniques may have failed to consider
relevant.

Fuzz testing should consider the attack surface of the system under test as
the fuzz test entry points and the associated fuzz test harness should be repre-
sentative of the mechanism the deployed system uses to receive external data.
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It is expected that there will always be a path from the actual system attack sur-
face to the fuzz test injection point. In this sense each test-case injected into
the system under test can be considered a potential attack vector. Potential se-
curity breaches or Denial of Service attacks can occur if the application can be
triggered to transition into an unwanted state, an unknown state, a dead state
or a blocked state. Fuzz testing can detect vulnerabilities that can cause these
attacks via exploits deployed across the attack surface via associated attack
vectors. In this sense any security measures that have been implemented to
protect security assets associated with known vulnerabilities will also be sub-
jected to the testing.

The following evidence should be collected to show the activity has covered
sufficient scope commensurate to the identified security asset attack vectors:

+ All test-cases that found vulnerabilities
« Evidence that found vulnerabilities have been fixed

+ Description of the scope of the testing and the identified attack surface
(the fuzz test injection point)

+ Description of the mutation strategies adopted (the potential attack vec-
tors)

+ The coverage achieved by the testing

+ Specific scenarios or a range of scenarios that any targeted security mea-
sures have been subjected to

In addition the starting and stopping criteria of the fuzzing campaign, as de-
scribed within section A.3 needs to factor in the associated Security Assurance
Level of the attack mitigating security measure(s) the campaign is targeting.

An example of how this could be achieved could be to multiply each variable
within the derived stop criteria formula by the highest SAL number associated
with the security measure(s) being targeted. Using this approach an example
formula could look like:

Zz((&xﬁ);(/yxﬂ))xg (1)

where;

« « = Cyclomatic Complexity of the control flow
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+ 3 = Highest SAL Number associated with the security measure(s) being
targeted

+ ~v = Input data structure complexity
+ p = Achievable test executions per second

+ o = Some arbitrary number used to scale the result (i.e. 86400 = seconds
in a day)

* > = Hours of fuzzing time required for this campaign

An example of how this formula could be applied is shown in table 1. Here we
can see that the required hours for the fuzzing campaign grows as we increase
the Security Assurance Level. Note that this example assumes a starting criteria
of 100% statement coverage.

> Blal~r]| p o
104 hours | 1| 4 | 2 | 5000 | 86400
415hours |2 | 4| 2 | 5000 | 86400
933 hours | 3| 4 |2 | 5000 | 86400
1659 hours | 4 | 4 | 2 | 5000 | 86400

Table 1: Example derivation of required fuzzing time when factoring complexity,
SAL and performance

Note that this example presents one potential solution to consideration 6.2, this
has in no way been validated or agreed with a regulatory body as the correct ap-
proach. In addition no guidance is provided with this example on how to measure
control flow complexity and input data complexity. It will be the responsibility of
the reader to derive their own formula for calculating stop criteria requirements
specific to their project.

6.3 What software representation level is the activity aimed at (i.e” source code
or executable code or some other intermediate representation)?

Fuzz testing requires the execution of the system under test and source code
has to be compiled into a target executable. This may, or may not, require a
differing compiler to the target compiler and in some cases additional instru-
mentation may be required to be added at either the source code level or a lower
level representation.

Fuzz testing is ultimately performed on executable code. The executable code
may be the same as the actual deployed executable code or it may be a fuzz test
specific required representation.
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6.4 What are the limitations of targeting the activity on a particular software
representation level, and how does this affect the system behaviour?

If the fuzz test can only be executed on a host environment then consideration
will be needed over how the behaviour of the hosting processor compares to the
target processor. As a minimum the following potential differences should be
consider:

+ Order or sequence of bytes within computer memory
+ Performance implications of any embedded instrumentation

+ Are the return values from any stubs (required to reduce the scope of the
fuzz test) representative of the real system behaviour

The same considerations exist for aspects of verification testing and the same
project guidance should be followed.

6.5 Is the hardware test-harness representative of the final implementation,
and if not how does this affect the system behaviour?

This will need to be assessed on a case by case basis, however, fuzzing engines
built on top of the popular American Fuzzy Lop (AFL) architecture will likely be
limited to execution on POSIX based operating systems. If a fuzzing session
can only be executed on a host version of a system hardware architecture there
may be vulnerabilities introduced by the executable code generation of the tar-
get compiler, or the vulnerabilities within the target hardware, that will not be
detected via host based fuzz testing.

6.6 Does the activity need to alter the software under test (i.e’ insert instru-
mentation code for metric-related data collection) and how does the alteration
affect system behaviour?

This will also need to be assessed on a case by case basis, however, it is not
uncommon for fuzz testing strategies to require path awareness feedback in-
strumentation into the system under test. In addition some fuzzers will embed
test-case execution constructs into the code base of the system under test to
speed up the test-case execution time.

In this scenario it may not be feasible to fuzz test the actual application on its
target hardware and this is likely to be particularly true of embedded flight soft-
ware. Where this is the case the software will need to be ported to a native
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platform either via cross-compilation and instrumentation, or through a emula-
tion of its target environment. Fuzz testing is also reliant on the software under
test executing to completion in as fast a time as possible. When fuzz testing at
the system level the test engineer may have to accept that the code may need to
be manually altered to ensure the exercised code completes an execution. For
example an embedded system that enters a main loop and never terminates is
not suitable for fuzz testing.

If target based fuzz testing is possible it should be used, however, if target based
fuzz testing is not an option it is still considered useful to adopt an emulated or
host based fuzz testing approach.

A description of how the strategy adopted affects the measurable performance
of the system should be documented within the plan. Consideration should be
given over if a drop in performance could affect time critical behaviour such that
race conditions are introduced that are not reflective of the target release.

6.7 Can the activity test the boot process and verify the integrity is protected?

No. This isn't something that fuzz testing can achieve.

6.8 What aspects of the system can not be exercised by the activity?

Fuzz testing cannot identify security attack vectors exposed during a boot se-
quence (i.e’ BIOS attacks / Boot Loader attacks). Fuzz testing cannot identify
vulnerabilities exposed through hardware attacks (i.e” glitching, fault-injection,
side channel), this includes any attack vector composed of a power fluctuation.
There are no immediately identifiable software run-time aspects of a system that
could not be exercised by fuzz testing. However, the more complex the system
under test the harder it will be to identify all of the potential attack vectors.

7.1 How can the activity be configured to challenge the vulnerability evaluation?

Fuzz testing is a security verification activity and the main goal is to find software
vulnerabilities. Any software bugs identified during a fuzzing session that are
not currently identified within the vulnerability evaluation are a direct challenge
to the evaluation.

7.2 What identified threat scenarios can the activity not cover?

Fuzz testing has the potential to identify vulnerabilities within standalone soft-
ware applications, threat scenarios that involve the interaction of multiple sys-
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tems can not easily be exercised. Complex scenarios involving double or triple
failure conditions are best tested through other software verification techniques.
Threat scenarios involving hardware attacks through methods including power
fluctuations are better suited to other Penetration Testing techniques.

8.1 Has the activity been used in the field before?

At the time of writing fuzz testing is not considered to be commonly used within
the aerospace and defence industries as a refutation activity. It is however more
widely used within other industries, such as automotive and internet based clien-
t/server applications. This is expected to change with the introduction of the Air-
worthiness Security Process as an Acceptable Means of Compliance with cyber-
security related objects by various regulatory bodies, i.e’ the Federal Aviation
Administration (FAA) and the European Union Aviation Safety Agency (EASA).

8.2 Is this a mature approach of vulnerability identification or experimental?

Arguably fuzz testing is not tried and tested across all aerospace and defence
projects however, it is gaining popularity. The technique is more commonly used
in other sectors (i.e. automotive, internet of things).

8.3 If the activity involves a partner external to the organisation what evidence
(certification packs etc) can the subcontractor provide?

To be assessed on a case by case basis.

8.4 How much human interaction does the activity involve and how can you
demonstrate that the operators have the required level of experience for the
associated tools?

The amount of human interaction will be based on the fuzzing strategy adopted
and the fuzzing testing tool being utilised. The level of automation available
will vary based on the complexity of the system under test and the capability of
the fuzzing tool technology. Some solutions may offer a near-fully autonomous
solution whilst others will require the construction of complex test harnesses,
custom mutation algorithms and starting corpus.

Fuzz test harnesses are widely regarded as complex developments (when com-
pared to standard verification test harnesses) and it is recommended that the
chosen fuzz testing tool supports multiple layers of automation code genera-
tion, test execution and results collation.
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Staff suitability should be assessed on a case by case basis, however, the more
automated the fuzz testing solution the less experience the staff will likely need
to operate the tools.

9.1 What other activities complement this activity and which other activities
can make up for the known limitations of this activity?

Itis expected that with complex systems fuzz testing may not generate sufficient
test-cases to reach the desired level of code coverage.

Where this is the case other coverage measurable refutation activities (i.e" static
analysis or formal proof) should be used to complement the approach.

Fuzz testing is not a replacement for penetration testing; although the two ac-
tivities may cross over they tend to focus on different potential attack vectors.
In particular penetration testing can be used to attempt to exploit a vulnerability
within a boot loading sequence or a known vulnerability within a particular Oper-
ating System. In addition, penetration testing and static analysis focuses on the
identification of known vulnerabilities whilst fuzz testing attempts to uncover
any vulnerability (including previously unknown vulnerabilities).

Fuzz testing will likely yield little return on aspects of the system that have been
formally proven to be absent of run-time errors. Therefore consideration should
be given over the perceived benefits of fuzz testing high integrity aspects of the
system that have been formally verified. For example if the system is imple-
mented in the programming language SPARK and formally proved to be absent
of run-time errors through the SPARK examiner it is unlikely that fuzz testing can
provide any further security assurance.

In addition, other refutation testing activities like penetration testing should be
used to cover all identified hardware attack vectors.
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