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Executive Summary 
The size and complexity of software in embedded systems are growing at an astonishing 
rate. From aircraft and automobiles to medical devices, home appliances, and our homes 
themselves, products that were once hardware-only are now cyber-physical: they rely on 
software for much of their functionality. And we rely on that software for the dependability 
of those systems, especially their safety and security. 

Verifying correct software behavior is an increasingly challenging problem, given this 
growth in software size and complexity. Conventional (or traditional) testing methods are 
insufficient; there is simply too much ground to cover. This is especially true for software 
that is safety- or security-critical: software for which undiscovered defects (bugs) can 
result in catastrophic failure, loss of life, vulnerability to theft, and/or severe financial 
damage. This software verification challenge is a problem we can no longer ignore. 

Today, leading companies are finding relief from this problem through the use of formal 
methods. Long viewed as impractical or too expensive for commercial software 
development, formal methods have come of age thanks to advances in computing power 
and new tools that automate and simplify their application. 

In this white paper, we examine the problems being created by software’s increasing 
complexity. We look at why traditional verification methods are no longer adequate for 
highly dependable applications (and haven’t been for some time). We explore how formal 
methods can help solve the problem of verifying that critical software is reliable, safe and 
secure, without increasing life cycle costs. We look at what formal methods are, what to 
look for when choosing them, why now is an excellent time to begin applying them, and 
who is benefiting from formal methods today. 

The impact of complexity on software reliability 
The complexity of software in embedded systems has grown at an exponential rate for 
years, as evidenced by the following graphs (Figures 1 and 2). 

      
Figure 1: Growth software complexity in aerospace systems over timei Figure 2: Growth software complexity in automobiles 
over timeii 

In software, size is an important measure of complexity. Larger software has more inputs, 
more states, and more variables. In other words: larger software has more things to test 
and more opportunities for things to go wrong. Over the last few decades, increasing 
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software complexity has meant an ever-increasing challenge in the verification of critical 
systems.  

Critical systems include those requiring a high degree of dependability, including safety 
and security, and are typical of numerous industries, such as aerospace and defense, 
automotive, medical, energy generation and distribution, hazardous material management, 
and cybersecurity. The required maximum probability of failure in the most critical 
elements of these systems may be on the order of 10-7 to under 10-9 failures per hour. 

Cost and schedule impacts 
Software complexity impacts the cost and schedule of system development. The National 
Research Council (NRC) found that large software projects show very high rates of delay, 
cost overrun, and cancellation.iii Both dependable and typical commercial software 
programs suffer similar low success rates. The NRC found this unsurprising, “because 
dependable applications are usually developed using methods that do not differ 
fundamentally from those used commercially. The developers of dependable systems 
carry out far more reviews, more documentation, and far more testing, but the underlying 
methods are the same.” 

Accidents and disruptions 
As software has grown more complex, these underlying software-development methods 
have frequently failed to prevent disasters, even in systems developed to standards and 
extensively tested. 

• On January 15, 1990, an undetected defect in a new version of switching software 
brought down ATT’s global long-distance network for more than nine hours. ATT lost 
more than $60 million in unconnected calls and suffered a severe blow to its 
reputation.iv 

• In January 2017, the US FDA and Dept. of Homeland Security issued warnings against 
at least 465,000 St. Jude’s Medical RF-enabled cardiac devices. Software 
vulnerabilities in the devices could allow hackers to remotely access a patient's 
implanted device and disable therapeutic care, drain the battery, or even administer 
painful electric shocks. Short-selling firm Muddy Waters had revealed these flaws in 
August 2016, based on a report by the security firm MedSec, alleging negligence in St. 
Jude Medical’s software development practices.v 

• The WannaCry ransomware attack of May 2017 encrypted the data of more than 
200,000 computers across 150 countries. WannaCry made use of EternalBlue; a 
sophisticated cyberattack exploit stolen from the U.S. National Security Agency (NSA). 
EternalBlue exploits a vulnerability in Microsoft's implementation of the Server 
Message Block (SMB) protocol in Windows and Windows Server. One month later, the 
NotPetya malware attack used EternalBlue to destroy data on computers across 
Europe, the U.S., and elsewhere. According to Kaspersky Labs, damage estimates from 
WannaCry range from $4 billion to $8 billion, while losses from NotPetya may total over 
$10 billion.vi 

These are just a few examples. As software complexity continues to grow, so do the 
chances that current software verification methods will fail to find such faults. As the NRC 
concluded, “the evidence is clear: these methods cannot dependably deliver today’s 
complex applications, let alone tomorrow’s even more complex requirements." 
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Testing can find bugs… but cannot prove no bugs 
remain 
Software testing is designed to reveal software defects. Software inputs are exercised in 
various sequences and combinations, and software outputs are monitored and compared 
with expected behavior. When the observed behavior differs from expected behavior, the 
source of the discrepancy is identified, and the software is corrected. 

As software complexity has increased exponentially, there has been a corresponding 
increase in the number of test cases and the time and cost required to execute them. The 
question then becomes, when can we stop testing?  

Testing can only establish the presence of defects, not their absence — unless all possible 
combinations of inputs and internal states are covered during testing. Thus, verification 
and validation by testing are—for all practical purposes—impossible. This has significant 
implications for critical software and has been known for quite a long time. 

Exhaustive testing is practically impossible 
To prove dependability, test cases must cover all possible combinations of inputs and 
internal states. However, even for software of moderate size, exhaustive testing is 
practically impossible. A simple piece of software with three 32-bit inputs and one 32-bit 
internal state could easily require 3.4 x 1038 test cases to test exhaustively. Executing one 
million test cases per second, the required time to complete exhaustive testing would be 
over 1 x 1025—ten trillion trillion—years.  

Life testing doesn’t work on software 
To address the impossibility of exhaustive testing, alternative testing strategies have been 
proposed. One traditional method of verifying reliability is life testing. Life testing involves 
testing to failure on a statistically significant number of test specimens. 

Life testing works well on hardware. Physical failures occur when hardware breaks down 
due to a manufacturing or material defect, is eroded by adverse environmental conditions, 
or wears out from the repeated stress of normal operation. 

Software, however, doesn’t fail in the way hardware does. Software defects are introduced 
during development but are only revealed when the right combination of inputs and states 
is exercised. Otherwise, these defects lie dormant. 
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In 1991, Ricky Butler and George Finelli, from 
the Formal Methods Group at NASA Langley 
Research Center, proved that life testing is 
impractical for verifying high-reliability 
software. They showed that to demonstrate a 
fault probability of <10-9, the duration of the 
required testing would range from hundreds of 
years (for prohibitively high numbers of test 
specimens) to hundreds of thousands or even 
millions of years for normal numbers of test 
specimens (see sidebar at right).vii 

Reliability growth models won’t work either 
Another method, reliability growth models, 
uses a repetitive process of testing and 
repairing a program to predict the reliability of 
the latest repaired iteration. This method, too, 
is infeasible for critical software. 

Reliability growth models require correction of 
software defects to improve the reliability 
prediction. At each subsequent iteration, 
however, the remaining defects become much 
harder to find and thus take much longer to 
remove. Butler and Finelli showed that to 
predict a fault probability below 10-9 the 
duration of the final test iteration—the time 
needed to remove just the last bug—would be 
on the order of tens of thousands to hundreds 
of thousands of years. 

Why testing won’t prove dependability 
That leaves us with the most common method: 
normal software testing. As previously 
described, software testing is valuable for finding defects. What testing doesn’t do, 
however, is prove the absence of defects, which is what is required to verify dependability. 

And yet, testing is an essential part of standards in critical software domains such as 
avionics. Given the impossibility of exhaustive testing, these standards have defined 
coverage criteria to decide when enough testing has been performed. Those criteria are no 
guarantee of dependability, however. 

For example, it would be a misunderstanding to attribute the safety of today’s avionics 
software to testing. It’s a common saying in that domain that verifying avionics software 
has become more a matter of achieving sufficient confidence in the developers and the 
development processes than of testing the software itself. Software quality is obtained 
mostly by a pervasive culture of safety encoded in the processes and assimilated by the 
people. Testing in that environment serves as one of the checks that the resulting software 
meets its requirements. 

Testing critical software takes 
centuries! 

In their paper, The Infeasibility of Experimental 
Quantification of Life-Critical Software Reliability,    
Ricky Butler and George Finelli published the 
following table of expected minimum test 
durations for life testing of software requiring a 
maximum fault probability 10-9 (DO-178 Level A, 
for example). 

No. of Replicates Expected Test Duration 
(Dt) 

1 1010 hours = 1,141,550 
years 

10 109 hours = 114,155 years 
100 108 hours = 11,415 years 

10,000 106 hours = 114 years 
Table 1: Expected Life Testing Duration for r=1 

The factor r is the number of observed failures 
after which the test is stopped. Butler and Finelli 
note that, “a value of r equal to 1 produces the 
shortest test time, but at the price of extremely 
high α and β errors (the probability of rejecting a 
good system and the probability of accepting a 
bad system, respectively). To get satisfactory 
statistical significance, larger values or r are 
needed and even more testing.”  

Thus, we can see that even if one had 10,000 
specimens (code instances and test 
environments) available simultaneously, it would 
still take over one hundred years of testing to 
assure a fault probability of < 10-9. 

With a more realistic number of test specimens, 
even a fault probability of < 10-7 (DO-178 Level B) 
would take hundreds if not thousands of years to 
achieve. 
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In general, as software complexity has risen, testing to coverage criteria has become more 
and more a matter of “test until you run out of time or budget.” 

Why formal methods are needed to verify critical 
software 
When civil engineers design a bridge, they don’t just build and test the bridge to discover if 
it will collapse under its own weight. Instead, they first analyze a model of the bridge, 
performing structural load calculations to prove the bridge won't collapse. 

Likewise, when mechanical engineers design a new machine, they model and analyze the 
stresses the machine and its parts will have to withstand. Then, they specify parts that will 
handle those stresses. 

In the software world, formal methods enable software developers to perform analyses 
that are analogous to those made by those civil and mechanical engineers. Formal 
methods are techniques that reason about mathematical models of software. 

Using formal methods-based tools, software engineers can then rapidly gain assurance 
that their software behaves correctly by posing questions about software behavior, such 
as “can a race condition ever occur?” or “can a memory overflow ever occur?” or “does a 
certain critical variable ever exceed a safety threshold?” In short, formal-methods tools 
allow engineers to obtain answers to critical questions about their software. 

Broadly, formal-methods analyses fall into three categories: (1) abstract interpretation, 
which models software semantics imprecisely but enables rapid identification of potential 
defects; (2) model checking, which attempts to verify that a property holds over bounded 
or exhaustive search of a model of software behavior; and (3) theorem proving, which 
attempts to apply deductive reasoning to verify that a property holds over all permitted 
inputs and internal states of the software. These analyses fall on a spectrum from more 
automatic but less precise (abstract interpretation) to less automatic but more precise 
(theorem proving) and are highly complementary. 

Why formal methods are a better verification solution for critical software 
Unlike testing, which samples software behavior in order to reveal defects, formal methods 
analyze the behavior of the software and establish the presence or absence of defects. 
Software engineers can identify specific conditions that must or must not occur and use 
formal methods to prove that those conditions always or never occur. Thus, formal 
methods can be used to guarantee the absence of buffer overruns, integer overflow 
conditions, and other defects that lead to unpredictable behavior. 

The guarantees provided by formal methods deal with all possible inputs and all possible 
internal states, rather than only those inputs and states covered by executed test cases. 
Engineers can be confident a latent defect will not be revealed by an unforeseen, unusual 
sequence of inputs — as was the case in the examples we considered earlier.  

Formal methods aren’t new 
Formal methods are the foundation upon which computer science was based: even before 
practical, general-purpose computers appeared, models of computation were developed 
and analyzed. The introduction of high-order programming languages in the 1950s and 
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1960s provided a concrete representation for 
these concepts, and, in the late 1960s, C.A.R. 
“Tony” Hoare developed what became known 
as Hoare logic as a means to express a 
computation formally. It was nearly three 
decades; however, before advances in 
computing methods made the widespread 
application of formal methods truly practical. 

Since the late 1990s, thanks in large part to 
the Pentium FDIV bug, formal methods have 
been used extensively in the electronics 
industry to verify integrated circuit designs.viii, 

ix  

More recently, formal methods have entered 
the mainstream of software verification. This 
uptake of formal methods has been made 
possible by several primary factors:  

• Advances in the state of the art in 
Satisfiability Modulo Theory (SMT) 
solvers, which provide the heavy 
lifting for most modern formal-
methods analyses;  

• Ever greater compute power in 
personal computers and in the cloud; 

• The design of programming languages 
(in fact subsets of general-purpose 
languages) that are simple enough to 
be formally analyzable but expressive 
enough for coding real-world software 
applications; and 

• Improvements in the overall usability 
of formal methods-based tools. 

These innovations have enabled software 
companies to quickly apply and benefit from 
formal methods—even without prior formal-
methods experience. Today, companies large 
and small are using formal methods on a day-
to-day basis in software development. 

Who will benefit from 
using formal methods? 
Any organization that develops critical 
software to meet the highest dependability 

Choosing a formal-methods solution 
Different formal-methods solutions are geared toward 
different software development environments and 
organizational needs.  Consider the following when 
selecting a formal method. We illustrate each topic 
using SPARK, a formally analyzable subset of Ada. 

1. Expressivity versus Automation 
Expressivity refers to how easily engineers can 
describe desired functionality in a given formal 
language.  Automation refers to how easily formal-
methods tools can complete analysis without human 
guidance. In general, greater expressivity results in 
lower automation. 

SPARK provides a good balance between expressivity 
and automation. The language inherits Ada’s strong 
typing and support for safety-critical development. 
SPARK excludes only those very few Ada features 
that limit automation or increase the likelihood of 
defects. The SPARK tools can complete most analyses 
with limited human guidance; additional guidance, 
when necessary, is provided using the SPARK 
language and is integrated into the software. 

2. Soundness 
Soundness means that analysis results are accurate 
and trustworthy: if a methodology or tool is claiming to 
verify a given program property (for example, that an 
index into an array is within the array bounds), then it 
must detect any and all violations of that property. 
This is a critical characteristic of formal methods. 
Many tools attempt to spot bugs automatically, but 
such tools are generally unsound; they cannot prove 
the absence of specific classes of bugs. 

SPARK is sound. When SPARK proves absence of run-
time exceptions, the proof is an ironclad guarantee 
that no such exceptions will occur in the part of the 
software written in SPARK. 

3. Integration 
Formal methods typically offer much smaller libraries 
of common programming tasks, as compared to 
traditional programming languages. Developers will, 
therefore, need to be able to integrate the part of the 
software written in the formal language with the part 
of the software that depends upon existing libraries. 

SPARK makes this easy, by integrating with full Ada 
and with C and C++ as well. SPARK can also interface 
with other popular languages, such as Java and 
Python. 

4. Incrementality 
Formal methods are rarely applied in all-new software 
development. Instead, formal methods can be 
incrementally applied to existing software and within 
existing software-development efforts. 

SPARK enables incremental adoption within existing 
development efforts. SPARK brings immediate 
benefits, because the language omits a few Ada 
features that can challenge developer understanding 
and possibly increase the likelihood of defects.  

Another way SPARK supports gradual adoption is by 
providing several levels of analysis. Each level requires 
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standards — i.e., software whose failure is 
unacceptable — will benefit from using formal 
methods in verification.  

Safety-critical modules in avionics, medical 
devices, automotive vehicle control, nuclear 
power control and monitoring, and other 
hazmat management applications are prime 
candidates for formal verification. Critical 
infrastructure applications like energy 
distribution and telecom switching, 
connectivity, and other secure-data 
applications, and critical computing 
components like OS kernels will also benefit 
by having their reliability proven by formal 
methods. 

Who is using formal methods and why 
Today, formal methods are being used for 
software verification across many industries 
and applications. Practitioners include:  

• Aerospace giants, including Lockheed 
Martin, Airbus, Rockwell Collins, Thales, 
and NASA 

• Major automakers, including Toyota 
• Computer industry leaders, including 

Microsoft, NVIDIA and Amazon 
• Multinational conglomerates, including GE 

These companies and many others have 
turned to formal verification to: 

• Assure the dependability of critical 
software modules 

• Eliminate vulnerabilities to malware attacks 
• Reduce software verification schedules 
• Eliminate defects early before they become more costly to remove 

Case study: Amazon Web Services s2n 
In June 2015, Amazon Web Services (AWS) introduced a new Open Source 
implementation of the SSL/TLS network encryption protocols. They’ve called this 
implementation Amazon s2n (“signal to noise”). Because of s2n’s security-critical role, 
AWS decided to use it as a proving ground for new automated reasoning, testing, and 
assurance techniques that could be built upon for broader adoption.x 

AWS hired Galois, a research and development firm that specializes in applied formal 
methods, to simplify this process and make it developer-friendly. Galois developed a tool 
chain that allows AWS to formally verify important aspects of s2n, which they integrated 
into the s2n build environment. Now, anyone with the prerequisites installed can run the 
same proofs on their own s2n code. Plus, they designed the reports generated from these 

 

existing software-development efforts. 
SPARK enables incremental adoption within existing 
development efforts. SPARK brings immediate 
benefits, because the language omits a few Ada 
features that can challenge developer understanding 
and possibly increase the likelihood of defects.  

Another way SPARK supports gradual adoption is by 
providing several levels of analysis. Each level requires 
more investment from developers but results in 
stronger guarantees. 

5. High-Quality Tooling and Developer 
Support 
Many formal methods are not professionally 
developed or supported, which may challenge their 
adoption in industrial software-development efforts.  

SPARK provides high-quality tooling and is 
professionally supported. SPARK is integrated into 
AdaCore’s professional IDE and provides detailed 
information about failed proofs—including 
counterexamples—which greatly assists developers in 
fixing errors so that the proofs can be completed.  

6. Active User Community 
Active user communities are as important for formal 
methods as they are for typical programming 
languages. User communities contribute to library 
development, offer a broader support network, and 
offer diverse opportunities for learning how to use 
formal methods. 

SPARK has a diverse community that is active on 
several platforms, including GitHub, Stack Overflow, 
Reddit, LinkedIn, Twitter, Facebook, and 
AdaCore.com. 
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automated proofs so that they’re easy to understand—even by people with no formal 
methods training.xi 

More broadly, AWS is proving that more and more of their code is correct using formal 
methods. For example, they have formally verified s2n’s implementation of HMAC, an 
important algorithm used extensively within the TLS/SSL protocols and elsewhere. In 
addition, they are using automated formal methods tools to continuously enhance AWS 
security and to provide functionality to customers through the AWS services Con_g, 
Inspector, GuardDuty, Macie, Trusted Advisor, and the storage service S3.xii 

"Proof is an accelerator for adoption,” says Byron Cook, Director of Automated Reasoning 
at AWS. “People are moving orders of magnitude more workload (to AWS) because they're 
(saying) 'in my own data center I don't have proofs, but there (at AWS) they have proofs.' " 
xiii 

Case study: seL4 open-source separation kernel 
A separation kernel is a type of security kernel used to simulate a distributed environment. 
As such, the environment must appear as though each regime is a separate, isolated 
machine. "One of the properties we must prove of a separation kernel, therefore, is that 
there are no channels for information flow between regimes other than those explicitly 
provided," said John Rushby, who conceived the device.xiv  

Without a formal guarantee of the absence of run-time errors in the separation kernel, 
however, you have no guarantee of security, even if other critical parts of the system have 
been formally verified. 

Fortunately, separation kernels proven free of runtime errors are now becoming 
commercially available. 

The seL4 is a third-generation microkernel developed by the NICTA group as a basis for 
highly secure and reliable systems. The world's first operating-system kernel with an end-
to-end proof of implementation correctness and security enforcement—formal 
verification of its functional correctness was completed in 2009—seL4 became available 
as open source in July 2014. xv  

The seL4 is no longer unique in that regard, however. The Muen kernel, a small separation 
kernel written primarily in SPARK, has also been proven error-free using formal methods.xvi 
These kernels are good examples of how formal verification can help establish a 
guaranteed error-free base upon which to build better, more reliable systems. 

Case study: Tokeneer ID Station 
To demonstrate that developing highly secure systems to the level of rigor required by the 
higher assurance levels of the Common Criteria is possible and practical, the United States 
National Security Agency (NSA) asked the UK consultancy firm Altran to undertake a 
research project: develop part of an existing secure system (the Tokeneer System) in 
accordance with Altran’s formal methods-based Correctness by Construction 
development process. 

The resulting Tokeneer ID Stationxvii project demonstrated that formal methods can 
produce a high quality, low defect system, conformant to the Common Criteria’s 
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Evaluation Assurance Level (EAL) 5 and above, in a cost-effective manner. The project 
effort was carefully monitored, and the resulting productivity was 38 lines of code per day 
overall and 203 lines of code per day during the coding phase while achieving the ultra-
high reliability that was required. 

Conclusions 
Software testing has never been adequate for guaranteeing the dependability of critical 
software, as was proven mathematically in the 1990s. Moreover, as software has 
continued to grow exponentially, the inadequacy of software testing has manifested itself 
with increasing frequency in the form of costly system failures caused by latent software 
defects. 

Now more than ever, developers of critical software need to join the leaders in their 
industry and embrace formal methods. Advances in technology and improvements to 
usability have made the application of formal methods feasible and practical for software 
verification. Current formal methods-based tools have made it easier than ever to get 
started.  

Using formal methods, leading companies are now obtaining guarantees of correct 
functionality and dependability, while saving total life cycle cost. Far from a research-
focused, esoteric application, formal methods have become a key differentiator in high-
profile applications — a point underscored by Byron Cook, Director of Automated 
Reasoning at AWS. “AWS customers love this work!” says Cook, referring to Amazon’s use 
of formal verification. “Soundness is key. Customers don’t want to hear about how many 
more hours we’ve spent on testing. But when you talk about proof, the conversation 
changes.” 

Additional Information 
Besides software verification, formal methods are also being applied in related disciplines. 
Follow the links below to find more information on some of those domains, including: 

System requirements 
• www.ccs.neu.edu/home/pete/pub/re-2018.pdf 
• http://loonwerks.com/tools/spear.html 
• http://loonwerks.com/publications/wagner2017nfm_spear.html 

Software architecture 
• http://loonwerks.com/tools/agree.html 

Model-based design 
• https://www.mathworks.com/products/sldesignverifier.html 
• https://ieeexplore.ieee.org/document/7423151 

Software specification 
• http://pvs.csl.sri.com/ 
• https://en.wikipedia.org/wiki/Z_notation 

Notable formal methods centers include: 

NASA LaRC: https://shemesh.larc.nasa.gov/fm/  
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SRI CSL: http://www.csl.sri.com/programs/formalmethods/ 

Collins Aerospace (http://loonwerks.com) 

Galois (https://galois.com/) 

About AdaCore 
Founded in 1994, AdaCore supplies software development and verification tools for 
mission-critical, safety-critical and security-critical systems. Four flagship products 
highlight the company’s offerings: 

• The GNAT Pro development environment, a complete toolset for designing, implementing, 
and managing applications that demand high reliability and maintainability. GNAT Pro is 
available for Ada and also for C and C++. 

• The CWE-Compatible CodePeer advanced static analysis tool, an automatic Ada code 
reviewer and validator that can detect and eliminate errors both during development and 
retrospectively on existing software. CodePeer can detect a number of the “Top 25 Most 
Dangerous Software Errors” in the MITRE Corporation’s Common Weakness Enumeration 
(CWE). 

• The SPARK Pro verification environment, a toolset providing full formal verification oriented 
toward high-assurance systems with stringent security requirements. 

• The QGen model-based development tool suite for safety-critical control systems, providing 
a qualifiable and customizable code generator and static verifier for a safe subset of 
Simulink® and Stateflow® models, and a model-level debugger. 

Over the years customers have used AdaCore products to field and maintain a wide range of critical 
applications in domains such as commercial and military avionics, automotive, railway, space, 
defense systems, air traffic management/control, medical devices, and financial services. AdaCore 
has an extensive and growing worldwide customer base; see www.adacore.com/industries/ for 
further information. 

AdaCore products are open source and come with expert online support provided by the developers 
themselves. The company has North American headquarters in New York and European 
headquarters in Paris. www.adacore.com/. 

For a more in-depth look at how your organization can get started on an incremental 
approach to formal verification, download our free guide, Implementation Guidance for the 
Adoption of SPARK. 

If you are interested in pricing information on SPARK Pro, please fill out our online pricing 
request form. 
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