
When testing is
not enough.
Software complexity drives technology
leaders to adopt formal methods.
By Yannick Moy & M. Anthony Aiello

AdaCore white paper – Formal Methods for Software Verification

Executive Summary
The size and complexity of software in embedded systems are growing at an astonishing
rate. From aircraft and automobiles to medical devices, home appliances, and our homes
themselves, products that were once hardware-only are now cyber-physical: they rely on
software for much of their functionality. And we rely on that software for the dependability
of those systems, especially their safety and security.

Verifying correct software behavior is an increasingly challenging problem, given this
growth in software size and complexity. Conventional (or traditional) testing methods are
insufficient; there is simply too much ground to cover. This is especially true for software
that is safety- or security-critical: software for which undiscovered defects (bugs) can
result in catastrophic failure, loss of life, vulnerability to theft, and/or severe financial
damage. This software verification challenge is a problem we can no longer ignore.

Today, leading companies are finding relief from this problem through the use of formal
methods. Long viewed as impractical or too expensive for commercial software
development, formal methods have come of age thanks to advances in computing power
and new tools that automate and simplify their application.

In this white paper, we examine the problems being created by software’s increasing
complexity. We look at why traditional verification methods are no longer adequate for
highly dependable applications (and haven’t been for some time). We explore how formal
methods can help solve the problem of verifying that critical software is reliable, safe and
secure, without increasing life cycle costs. We look at what formal methods are, what to
look for when choosing them, why now is an excellent time to begin applying them, and
who is benefiting from formal methods today.

The impact of complexity on software reliability
The complexity of software in embedded systems has grown at an exponential rate for
years, as evidenced by the following graphs (Figures 1 and 2).

Figure 1: Growth software complexity in aerospace systems over timei Figure 2: Growth software complexity in automobiles
over timeii

In software, size is an important measure of complexity. Larger software has more inputs,
more states, and more variables. In other words: larger software has more things to test
and more opportunities for things to go wrong. Over the last few decades, increasing

AdaCore white paper – Formal Methods for Software Verification

software complexity has meant an ever-increasing challenge in the verification of critical
systems.

Critical systems include those requiring a high degree of dependability, including safety
and security, and are typical of numerous industries, such as aerospace and defense,
automotive, medical, energy generation and distribution, hazardous material management,
and cybersecurity. The required maximum probability of failure in the most critical
elements of these systems may be on the order of 10-7 to under 10-9 failures per hour.

Cost and schedule impacts
Software complexity impacts the cost and schedule of system development. The National
Research Council (NRC) found that large software projects show very high rates of delay,
cost overrun, and cancellation.iii Both dependable and typical commercial software
programs suffer similar low success rates. The NRC found this unsurprising, “because
dependable applications are usually developed using methods that do not differ
fundamentally from those used commercially. The developers of dependable systems
carry out far more reviews, more documentation, and far more testing, but the underlying
methods are the same.”

Accidents and disruptions
As software has grown more complex, these underlying software-development methods
have frequently failed to prevent disasters, even in systems developed to standards and
extensively tested.

• On January 15, 1990, an undetected defect in a new version of switching software
brought down ATT’s global long-distance network for more than nine hours. ATT lost
more than $60 million in unconnected calls and suffered a severe blow to its
reputation.iv

• In January 2017, the US FDA and Dept. of Homeland Security issued warnings against
at least 465,000 St. Jude’s Medical RF-enabled cardiac devices. Software
vulnerabilities in the devices could allow hackers to remotely access a patient's
implanted device and disable therapeutic care, drain the battery, or even administer
painful electric shocks. Short-selling firm Muddy Waters had revealed these flaws in
August 2016, based on a report by the security firm MedSec, alleging negligence in St.
Jude Medical’s software development practices.v

• The WannaCry ransomware attack of May 2017 encrypted the data of more than
200,000 computers across 150 countries. WannaCry made use of EternalBlue; a
sophisticated cyberattack exploit stolen from the U.S. National Security Agency (NSA).
EternalBlue exploits a vulnerability in Microsoft's implementation of the Server
Message Block (SMB) protocol in Windows and Windows Server. One month later, the
NotPetya malware attack used EternalBlue to destroy data on computers across
Europe, the U.S., and elsewhere. According to Kaspersky Labs, damage estimates from
WannaCry range from $4 billion to $8 billion, while losses from NotPetya may total over
$10 billion.vi

These are just a few examples. As software complexity continues to grow, so do the
chances that current software verification methods will fail to find such faults. As the NRC
concluded, “the evidence is clear: these methods cannot dependably deliver today’s
complex applications, let alone tomorrow’s even more complex requirements."

AdaCore white paper – Formal Methods for Software Verification

Testing can find bugs… but cannot prove no bugs
remain
Software testing is designed to reveal software defects. Software inputs are exercised in
various sequences and combinations, and software outputs are monitored and compared
with expected behavior. When the observed behavior differs from expected behavior, the
source of the discrepancy is identified, and the software is corrected.

As software complexity has increased exponentially, there has been a corresponding
increase in the number of test cases and the time and cost required to execute them. The
question then becomes, when can we stop testing?

Testing can only establish the presence of defects, not their absence — unless all possible
combinations of inputs and internal states are covered during testing. Thus, verification
and validation by testing are—for all practical purposes—impossible. This has significant
implications for critical software and has been known for quite a long time.

Exhaustive testing is practically impossible
To prove dependability, test cases must cover all possible combinations of inputs and
internal states. However, even for software of moderate size, exhaustive testing is
practically impossible. A simple piece of software with three 32-bit inputs and one 32-bit
internal state could easily require 3.4 x 1038 test cases to test exhaustively. Executing one
million test cases per second, the required time to complete exhaustive testing would be
over 1 x 1025—ten trillion trillion—years.

Life testing doesn’t work on software
To address the impossibility of exhaustive testing, alternative testing strategies have been
proposed. One traditional method of verifying reliability is life testing. Life testing involves
testing to failure on a statistically significant number of test specimens.

Life testing works well on hardware. Physical failures occur when hardware breaks down
due to a manufacturing or material defect, is eroded by adverse environmental conditions,
or wears out from the repeated stress of normal operation.

Software, however, doesn’t fail in the way hardware does. Software defects are introduced
during development but are only revealed when the right combination of inputs and states
is exercised. Otherwise, these defects lie dormant.

AdaCore white paper – Formal Methods for Software Verification

In 1991, Ricky Butler and George Finelli, from
the Formal Methods Group at NASA Langley
Research Center, proved that life testing is
impractical for verifying high-reliability
software. They showed that to demonstrate a
fault probability of <10-9, the duration of the
required testing would range from hundreds of
years (for prohibitively high numbers of test
specimens) to hundreds of thousands or even
millions of years for normal numbers of test
specimens (see sidebar at right).vii

Reliability growth models won’t work either
Another method, reliability growth models,
uses a repetitive process of testing and
repairing a program to predict the reliability of
the latest repaired iteration. This method, too,
is infeasible for critical software.

Reliability growth models require correction of
software defects to improve the reliability
prediction. At each subsequent iteration,
however, the remaining defects become much
harder to find and thus take much longer to
remove. Butler and Finelli showed that to
predict a fault probability below 10-9 the
duration of the final test iteration—the time
needed to remove just the last bug—would be
on the order of tens of thousands to hundreds
of thousands of years.

Why testing won’t prove dependability
That leaves us with the most common method:
normal software testing. As previously
described, software testing is valuable for finding defects. What testing doesn’t do,
however, is prove the absence of defects, which is what is required to verify dependability.

And yet, testing is an essential part of standards in critical software domains such as
avionics. Given the impossibility of exhaustive testing, these standards have defined
coverage criteria to decide when enough testing has been performed. Those criteria are no
guarantee of dependability, however.

For example, it would be a misunderstanding to attribute the safety of today’s avionics
software to testing. It’s a common saying in that domain that verifying avionics software
has become more a matter of achieving sufficient confidence in the developers and the
development processes than of testing the software itself. Software quality is obtained
mostly by a pervasive culture of safety encoded in the processes and assimilated by the
people. Testing in that environment serves as one of the checks that the resulting software
meets its requirements.

Testing critical software takes
centuries!

In their paper, The Infeasibility of Experimental
Quantification of Life-Critical Software Reliability,
Ricky Butler and George Finelli published the
following table of expected minimum test
durations for life testing of software requiring a
maximum fault probability 10-9 (DO-178 Level A,
for example).

No. of Replicates Expected Test Duration
(Dt)

1 1010 hours = 1,141,550
years

10 109 hours = 114,155 years
100 108 hours = 11,415 years

10,000 106 hours = 114 years
Table 1: Expected Life Testing Duration for r=1

The factor r is the number of observed failures
after which the test is stopped. Butler and Finelli
note that, “a value of r equal to 1 produces the
shortest test time, but at the price of extremely
high α and β errors (the probability of rejecting a
good system and the probability of accepting a
bad system, respectively). To get satisfactory
statistical significance, larger values or r are
needed and even more testing.”

Thus, we can see that even if one had 10,000
specimens (code instances and test
environments) available simultaneously, it would
still take over one hundred years of testing to
assure a fault probability of < 10-9.

With a more realistic number of test specimens,
even a fault probability of < 10-7 (DO-178 Level B)
would take hundreds if not thousands of years to
achieve.

AdaCore white paper – Formal Methods for Software Verification

In general, as software complexity has risen, testing to coverage criteria has become more
and more a matter of “test until you run out of time or budget.”

Why formal methods are needed to verify critical
software
When civil engineers design a bridge, they don’t just build and test the bridge to discover if
it will collapse under its own weight. Instead, they first analyze a model of the bridge,
performing structural load calculations to prove the bridge won't collapse.

Likewise, when mechanical engineers design a new machine, they model and analyze the
stresses the machine and its parts will have to withstand. Then, they specify parts that will
handle those stresses.

In the software world, formal methods enable software developers to perform analyses
that are analogous to those made by those civil and mechanical engineers. Formal
methods are techniques that reason about mathematical models of software.

Using formal methods-based tools, software engineers can then rapidly gain assurance
that their software behaves correctly by posing questions about software behavior, such
as “can a race condition ever occur?” or “can a memory overflow ever occur?” or “does a
certain critical variable ever exceed a safety threshold?” In short, formal-methods tools
allow engineers to obtain answers to critical questions about their software.

Broadly, formal-methods analyses fall into three categories: (1) abstract interpretation,
which models software semantics imprecisely but enables rapid identification of potential
defects; (2) model checking, which attempts to verify that a property holds over bounded
or exhaustive search of a model of software behavior; and (3) theorem proving, which
attempts to apply deductive reasoning to verify that a property holds over all permitted
inputs and internal states of the software. These analyses fall on a spectrum from more
automatic but less precise (abstract interpretation) to less automatic but more precise
(theorem proving) and are highly complementary.

Why formal methods are a better verification solution for critical software
Unlike testing, which samples software behavior in order to reveal defects, formal methods
analyze the behavior of the software and establish the presence or absence of defects.
Software engineers can identify specific conditions that must or must not occur and use
formal methods to prove that those conditions always or never occur. Thus, formal
methods can be used to guarantee the absence of buffer overruns, integer overflow
conditions, and other defects that lead to unpredictable behavior.

The guarantees provided by formal methods deal with all possible inputs and all possible
internal states, rather than only those inputs and states covered by executed test cases.
Engineers can be confident a latent defect will not be revealed by an unforeseen, unusual
sequence of inputs — as was the case in the examples we considered earlier.

Formal methods aren’t new
Formal methods are the foundation upon which computer science was based: even before
practical, general-purpose computers appeared, models of computation were developed
and analyzed. The introduction of high-order programming languages in the 1950s and

AdaCore white paper – Formal Methods for Software Verification

1960s provided a concrete representation for
these concepts, and, in the late 1960s, C.A.R.
“Tony” Hoare developed what became known
as Hoare logic as a means to express a
computation formally. It was nearly three
decades; however, before advances in
computing methods made the widespread
application of formal methods truly practical.

Since the late 1990s, thanks in large part to
the Pentium FDIV bug, formal methods have
been used extensively in the electronics
industry to verify integrated circuit designs.viii,

ix

More recently, formal methods have entered
the mainstream of software verification. This
uptake of formal methods has been made
possible by several primary factors:

• Advances in the state of the art in
Satisfiability Modulo Theory (SMT)
solvers, which provide the heavy
lifting for most modern formal-
methods analyses;

• Ever greater compute power in
personal computers and in the cloud;

• The design of programming languages
(in fact subsets of general-purpose
languages) that are simple enough to
be formally analyzable but expressive
enough for coding real-world software
applications; and

• Improvements in the overall usability
of formal methods-based tools.

These innovations have enabled software
companies to quickly apply and benefit from
formal methods—even without prior formal-
methods experience. Today, companies large
and small are using formal methods on a day-
to-day basis in software development.

Who will benefit from
using formal methods?
Any organization that develops critical
software to meet the highest dependability

Choosing a formal-methods solution
Different formal-methods solutions are geared toward
different software development environments and
organizational needs. Consider the following when
selecting a formal method. We illustrate each topic
using SPARK, a formally analyzable subset of Ada.

1. Expressivity versus Automation
Expressivity refers to how easily engineers can
describe desired functionality in a given formal
language. Automation refers to how easily formal-
methods tools can complete analysis without human
guidance. In general, greater expressivity results in
lower automation.

SPARK provides a good balance between expressivity
and automation. The language inherits Ada’s strong
typing and support for safety-critical development.
SPARK excludes only those very few Ada features
that limit automation or increase the likelihood of
defects. The SPARK tools can complete most analyses
with limited human guidance; additional guidance,
when necessary, is provided using the SPARK
language and is integrated into the software.

2. Soundness
Soundness means that analysis results are accurate
and trustworthy: if a methodology or tool is claiming to
verify a given program property (for example, that an
index into an array is within the array bounds), then it
must detect any and all violations of that property.
This is a critical characteristic of formal methods.
Many tools attempt to spot bugs automatically, but
such tools are generally unsound; they cannot prove
the absence of specific classes of bugs.

SPARK is sound. When SPARK proves absence of run-
time exceptions, the proof is an ironclad guarantee
that no such exceptions will occur in the part of the
software written in SPARK.

3. Integration
Formal methods typically offer much smaller libraries
of common programming tasks, as compared to
traditional programming languages. Developers will,
therefore, need to be able to integrate the part of the
software written in the formal language with the part
of the software that depends upon existing libraries.

SPARK makes this easy, by integrating with full Ada
and with C and C++ as well. SPARK can also interface
with other popular languages, such as Java and
Python.

4. Incrementality
Formal methods are rarely applied in all-new software
development. Instead, formal methods can be
incrementally applied to existing software and within
existing software-development efforts.

SPARK enables incremental adoption within existing
development efforts. SPARK brings immediate
benefits, because the language omits a few Ada
features that can challenge developer understanding
and possibly increase the likelihood of defects.

Another way SPARK supports gradual adoption is by
providing several levels of analysis. Each level requires

AdaCore white paper – Formal Methods for Software Verification

standards — i.e., software whose failure is
unacceptable — will benefit from using formal
methods in verification.

Safety-critical modules in avionics, medical
devices, automotive vehicle control, nuclear
power control and monitoring, and other
hazmat management applications are prime
candidates for formal verification. Critical
infrastructure applications like energy
distribution and telecom switching,
connectivity, and other secure-data
applications, and critical computing
components like OS kernels will also benefit
by having their reliability proven by formal
methods.

Who is using formal methods and why
Today, formal methods are being used for
software verification across many industries
and applications. Practitioners include:

• Aerospace giants, including Lockheed
Martin, Airbus, Rockwell Collins, Thales,
and NASA

• Major automakers, including Toyota
• Computer industry leaders, including

Microsoft, NVIDIA and Amazon
• Multinational conglomerates, including GE

These companies and many others have
turned to formal verification to:

• Assure the dependability of critical
software modules

• Eliminate vulnerabilities to malware attacks
• Reduce software verification schedules
• Eliminate defects early before they become more costly to remove

Case study: Amazon Web Services s2n
In June 2015, Amazon Web Services (AWS) introduced a new Open Source
implementation of the SSL/TLS network encryption protocols. They’ve called this
implementation Amazon s2n (“signal to noise”). Because of s2n’s security-critical role,
AWS decided to use it as a proving ground for new automated reasoning, testing, and
assurance techniques that could be built upon for broader adoption.x

AWS hired Galois, a research and development firm that specializes in applied formal
methods, to simplify this process and make it developer-friendly. Galois developed a tool
chain that allows AWS to formally verify important aspects of s2n, which they integrated
into the s2n build environment. Now, anyone with the prerequisites installed can run the
same proofs on their own s2n code. Plus, they designed the reports generated from these

existing software-development efforts.
SPARK enables incremental adoption within existing
development efforts. SPARK brings immediate
benefits, because the language omits a few Ada
features that can challenge developer understanding
and possibly increase the likelihood of defects.

Another way SPARK supports gradual adoption is by
providing several levels of analysis. Each level requires
more investment from developers but results in
stronger guarantees.

5. High-Quality Tooling and Developer
Support
Many formal methods are not professionally
developed or supported, which may challenge their
adoption in industrial software-development efforts.

SPARK provides high-quality tooling and is
professionally supported. SPARK is integrated into
AdaCore’s professional IDE and provides detailed
information about failed proofs—including
counterexamples—which greatly assists developers in
fixing errors so that the proofs can be completed.

6. Active User Community
Active user communities are as important for formal
methods as they are for typical programming
languages. User communities contribute to library
development, offer a broader support network, and
offer diverse opportunities for learning how to use
formal methods.

SPARK has a diverse community that is active on
several platforms, including GitHub, Stack Overflow,
Reddit, LinkedIn, Twitter, Facebook, and
AdaCore.com.

AdaCore white paper – Formal Methods for Software Verification

automated proofs so that they’re easy to understand—even by people with no formal
methods training.xi

More broadly, AWS is proving that more and more of their code is correct using formal
methods. For example, they have formally verified s2n’s implementation of HMAC, an
important algorithm used extensively within the TLS/SSL protocols and elsewhere. In
addition, they are using automated formal methods tools to continuously enhance AWS
security and to provide functionality to customers through the AWS services Con_g,
Inspector, GuardDuty, Macie, Trusted Advisor, and the storage service S3.xii

"Proof is an accelerator for adoption,” says Byron Cook, Director of Automated Reasoning
at AWS. “People are moving orders of magnitude more workload (to AWS) because they're
(saying) 'in my own data center I don't have proofs, but there (at AWS) they have proofs.' "
xiii

Case study: seL4 open-source separation kernel
A separation kernel is a type of security kernel used to simulate a distributed environment.
As such, the environment must appear as though each regime is a separate, isolated
machine. "One of the properties we must prove of a separation kernel, therefore, is that
there are no channels for information flow between regimes other than those explicitly
provided," said John Rushby, who conceived the device.xiv

Without a formal guarantee of the absence of run-time errors in the separation kernel,
however, you have no guarantee of security, even if other critical parts of the system have
been formally verified.

Fortunately, separation kernels proven free of runtime errors are now becoming
commercially available.

The seL4 is a third-generation microkernel developed by the NICTA group as a basis for
highly secure and reliable systems. The world's first operating-system kernel with an end-
to-end proof of implementation correctness and security enforcement—formal
verification of its functional correctness was completed in 2009—seL4 became available
as open source in July 2014. xv

The seL4 is no longer unique in that regard, however. The Muen kernel, a small separation
kernel written primarily in SPARK, has also been proven error-free using formal methods.xvi
These kernels are good examples of how formal verification can help establish a
guaranteed error-free base upon which to build better, more reliable systems.

Case study: Tokeneer ID Station
To demonstrate that developing highly secure systems to the level of rigor required by the
higher assurance levels of the Common Criteria is possible and practical, the United States
National Security Agency (NSA) asked the UK consultancy firm Altran to undertake a
research project: develop part of an existing secure system (the Tokeneer System) in
accordance with Altran’s formal methods-based Correctness by Construction
development process.

The resulting Tokeneer ID Stationxvii project demonstrated that formal methods can
produce a high quality, low defect system, conformant to the Common Criteria’s

AdaCore white paper – Formal Methods for Software Verification

Evaluation Assurance Level (EAL) 5 and above, in a cost-effective manner. The project
effort was carefully monitored, and the resulting productivity was 38 lines of code per day
overall and 203 lines of code per day during the coding phase while achieving the ultra-
high reliability that was required.

Conclusions
Software testing has never been adequate for guaranteeing the dependability of critical
software, as was proven mathematically in the 1990s. Moreover, as software has
continued to grow exponentially, the inadequacy of software testing has manifested itself
with increasing frequency in the form of costly system failures caused by latent software
defects.

Now more than ever, developers of critical software need to join the leaders in their
industry and embrace formal methods. Advances in technology and improvements to
usability have made the application of formal methods feasible and practical for software
verification. Current formal methods-based tools have made it easier than ever to get
started.

Using formal methods, leading companies are now obtaining guarantees of correct
functionality and dependability, while saving total life cycle cost. Far from a research-
focused, esoteric application, formal methods have become a key differentiator in high-
profile applications — a point underscored by Byron Cook, Director of Automated
Reasoning at AWS. “AWS customers love this work!” says Cook, referring to Amazon’s use
of formal verification. “Soundness is key. Customers don’t want to hear about how many
more hours we’ve spent on testing. But when you talk about proof, the conversation
changes.”

Additional Information
Besides software verification, formal methods are also being applied in related disciplines.
Follow the links below to find more information on some of those domains, including:

System requirements
• www.ccs.neu.edu/home/pete/pub/re-2018.pdf
• http://loonwerks.com/tools/spear.html
• http://loonwerks.com/publications/wagner2017nfm_spear.html

Software architecture
• http://loonwerks.com/tools/agree.html

Model-based design
• https://www.mathworks.com/products/sldesignverifier.html
• https://ieeexplore.ieee.org/document/7423151

Software specification
• http://pvs.csl.sri.com/
• https://en.wikipedia.org/wiki/Z_notation

Notable formal methods centers include:

NASA LaRC: https://shemesh.larc.nasa.gov/fm/

AdaCore white paper – Formal Methods for Software Verification

SRI CSL: http://www.csl.sri.com/programs/formalmethods/

Collins Aerospace (http://loonwerks.com)

Galois (https://galois.com/)

About AdaCore
Founded in 1994, AdaCore supplies software development and verification tools for
mission-critical, safety-critical and security-critical systems. Four flagship products
highlight the company’s offerings:

• The GNAT Pro development environment, a complete toolset for designing, implementing,
and managing applications that demand high reliability and maintainability. GNAT Pro is
available for Ada and also for C and C++.

• The CWE-Compatible CodePeer advanced static analysis tool, an automatic Ada code
reviewer and validator that can detect and eliminate errors both during development and
retrospectively on existing software. CodePeer can detect a number of the “Top 25 Most
Dangerous Software Errors” in the MITRE Corporation’s Common Weakness Enumeration
(CWE).

• The SPARK Pro verification environment, a toolset providing full formal verification oriented
toward high-assurance systems with stringent security requirements.

• The QGen model-based development tool suite for safety-critical control systems, providing
a qualifiable and customizable code generator and static verifier for a safe subset of
Simulink® and Stateflow® models, and a model-level debugger.

Over the years customers have used AdaCore products to field and maintain a wide range of critical
applications in domains such as commercial and military avionics, automotive, railway, space,
defense systems, air traffic management/control, medical devices, and financial services. AdaCore
has an extensive and growing worldwide customer base; see www.adacore.com/industries/ for
further information.

AdaCore products are open source and come with expert online support provided by the developers
themselves. The company has North American headquarters in New York and European
headquarters in Paris. www.adacore.com/.

For a more in-depth look at how your organization can get started on an incremental
approach to formal verification, download our free guide, Implementation Guidance for the
Adoption of SPARK.

If you are interested in pricing information on SPARK Pro, please fill out our online pricing
request form.

AdaCore white paper – Formal Methods for Software Verification

References
i Motivation for Advancing the SAVI Program, Aerospace Vehicle Systems Institute, Texas A&M University

(accessed: August 2019).
ii Khan, Z. H. and Khan, A.H., Perspectives in Automotive Embedded Systems: From manual to fully

autonomous vehicles, SAME, November 2015.
iii Jackson, D., Thomas, M. and Millett, L., editors, Committee on Certifiably Dependable Software Systems,

National Research Council, Software for Dependable Systems: Sufficient Evidence?, National Academy of
Sciences, 2007.

iv Burke, D., All Circuits are Busy Now: The 1990 AT&T Long Distance Network Collapse, California
Polytechnic State University, November 1995.

v 465,000 Abbott pacemakers vulnerable to hacking, need a firmware fix, CSO, September 2017.
vi Snow, J., Top 5 most notorious cyberattacks, Kaspersky, December 2018.
vii Butler, R. and Finelli, G., The Infeasibility of Experimental Quantification of Life-Critical Software Reliability,

NASA, December 1991.
viii Van Eijk, C. A. J., Formal Methods for the Verification of Digital Circuits, Technische Universiteit Eindhoven,

September 1997.
ix Marques-Silva, J. and Guerra e Silva, L., Solving Satisfiability in Combinational Circuits, IEEE, July 2003.
x MacCarthaigh, Colm, Automated Reasoning and Amazon s2n, Amazon Web Services, September 2016.
xi Tomb, A., Magill, S., et al, Proving Amazon’s s2n correct, Galois, 2016.
xii Cook, B., Formal reasoning about the security of Amazon Web Services (paper), FLoC, July 2018.
xiii Cook, B., Formal reasoning about the security of Amazon Web Services (presentation), FLoC. July 2018.
xiv Rushby, J., The Design and Verification of Secure Systems, Eighth ACM Symposium on Operating System

Principles, pp. 12-21, Asilomar, CA, December 1981. (ACM Operating Systems Review, Vol. 15, No. 5)
xv Potts, D., et al, Mathematically Verified Software Kernels: Raising the Bar for High Assurance

Implementations, General Dynamics, July 2014.
xvi Buerki, R. and Rueegsegger, A., Muen - An x86/64 Separation Kernel for High Assurance, University of

Applied Sciences Rapperswil, August 2013.
xvii Cooper, D. and Barnes, J., Tokeneer ID Station EAL5 Demonstrator: Summary Report, August

2008.
https://www.adacore.com/uploads/downloads/Tokeneer_Report.pdf

	Formal Methods Cover — A4.pdf
	S417-005 Formal Methods White Paper Final-A4.pdf

