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Abstract. This article presents ERB, the ESA Ravenscar Benchmark. ERB aims
at providing a synthetic benchmark comparing the efficiency of various Ada
Ravenscar implementations and the RTEMS C implementation featuring the na-
tive threading model. ERB is original compared to existing Ada benchmarks,
such as the ACES or the PIWG, not only because it is the first Ada Ravenscar
benchmark, but also because it provides at the same time measurement of exe-
cution times and estimate of the memory footprint of the Ada runtime and stack
size requirements. ERB intends to become the standard benchmark for embedded
Ada Ravenscar applications. To facilitate this, the European Space Agency and
AdaCore plan to release it under the GNU GPL to interested third parties.

1 The ERB Project

1.1 Project Context

The European Space Agency (ESA) has devoted signifi cant resources to the develop-
ment of a radiation-hardened family of processors based on the SPARC architecture
[24] for use in European space applications. This family includes the ERC32 radiation-
hardened SPARC V7 processor and the Leon SPARC V8 VHDL model.

Themain programming languages currently used for space applications are Ada and
C. Various Ada and C compilation tool chains presently exist that target the space mar-
ket. Some of these tool chains are self-contained, allowing the creation of self-standing
embedded applications; others rely on a kernel to provide the complete environment
and services needed for the fi nal embedded application. This is particularly true for the
C language, which does not provide any facility for concurrent programming; the only
way to achieve this is by providing a kernel, such as RTEMS or VxWorks , with a C
API.

Several elements come into play when choosing the suitable compiler and/or kernel
for a given project: robustness and richness of the tools, quality of the support orga-
nization, run-time performance, trustworthiness of the organization behind the tools,
etc.

This work has been funded by ESA/ESTEC contract No. 16962/02/NL/LvH/bj and carried out
in cooperation between AdaCore, the Technical University of Madrid and the University of
Padua.



In the context of space applications, where reliability of code is paramount, adopt-
ing a restricted and standardized model for tasking and concurrency makes concurrent
applications easier to understand and implement. The Ravenscar model [7] has now
been approved byWG9 and will be incorporated into the new revision of Ada ISO stan-
dard specifi es due in late 2005 or early 2006. Such a restricted model is the natural fi eld
of experimentation for the Ada-related part of this study and, indirectly also for the C
part of it. It aims at providing a high-integrity effi cient Ada implementations standard
for real-time systems, at the cost of some restrictions to the standard Ada 95 tasking
model. All the restrictions facilitate the schedulability analysis of programs using the
model and allow several optimizations in the underlying run-time libraries.

Once a tool chain has been selected, it is important that the software development
team be able to easily recognize the run-time performance hot spots of their com-
piler/kernel so that the appropriate coding guidelines can be adopted for on-board soft-
ware development.

Last, but not least, in the case of Ada, the engineering team must be able to eval-
uate the cost of using high-level Ada features (e.g. exceptions, functions returning un-
constrained objects, etc.) and gauge the trade-off between their run-time cost and the
software engineering benefi ts for their project so as to choose the appropriate software
architecture for their space application. In the case of C, the performances you can mea-
sure are tightly related to the operating system: the language has no high-level features
and the compilation process produces the code in a straightforward manner. Therefore,
the performance of a C program is directly connected to the effi ciency of the operating
system.

The ESA Ravenscar Benchmark (ERB) [15] [18] [17] project has been awarded by
ESA to AdaCore to address those concerns and provide a composite synthetic bench-
mark targetingAda Ravenscar applications for the ERC32 processor. ERB also provides
a limited set of tests targeted to the C environment on RTEMS for the purpose of evalu-
ating the cost of high-level Ada features against their C counterparts, which have been
undertaken by a team of the Technical University of Madrid led by Juan-Antonio de la
Puente.

This article aims at presenting the ERB projects, showing how it is different from
existing benchmarks, how it is designed, and its intended future.

1.2 Some Prominent Benchmarks

A wide variety of benchmark suites are currently available to developers who wants
to quantify the performances of a run-time system; it is not the point of this paper to
provide a complete list. However, it is interesting to mention:

– The SPEC suites [2]: The Standard Performances Evaluation Corporation devel-
ops well-known benchmark suites for C compilers. Existing benchmarking suites
target CPU usage on workstations as well as mainstream applications for the In-
ternet, such as web servers, mail server or fi le sharing. Interestingly, SPEC uses
a set of high-level applications for measuring CPU usage, rather than doing syn-
thetic micro-benchmark. Applications used by their flagship CPU2004 benchmark



suite comprise for instance implementations of the GZIP and BZIP2 compression
algorithms or compilation of GCC.

– EEMBC [14]: The Embedded Microprocessor Benchmark Consortium provides
suites of benchmarks targeted to embedded systems and C compilers; Interestingly,
this benchmark uses both high-level full implementations of common algorithms,
as well as low-level, simple, functions.

– MiBench [20] is another benchmark suite for embedded systems developed at the
University of Michigan; MiBench is very close to EEMBC.

– lmbench [21] is a good example of a micro-benchmark suite, used to measure the
cost of some specifi c features of an operating system, e.g. process creation.

The previous benchmarks are targeted to C compilers. Two well-known benchmark
suites are targeted to Ada tool-chains:

– PIWG [22]: The PIWG’s goal was to support performance assessment for Ada
compilation and execution systems. The original path to achieving this goal led
to the creation of a set of benchmark tests for Ada 83 which was developed and
distributed during the 80s and early 90s and contains about 80 Ada83 tests.

– ACES [5]: In response to the need for Ada developers to better know the tool-chain
they were using, both the US DoD and the British MoD funded a joint effort for
evaluating Ada compilers. This result of this project has been made later available
to the public and is now known as ACES. The ACES uses the dual-loop method
to provide reliable measurements of execution times. This allows measuring small
chunks of code as well as full algorithms. However, the ACES needs signifi cant
work and skills to be turned operational.

Whereas speed and throughput are common fi gures in a benchmark output, memory
use measurements are rarely performed. Some benchmark suites give static measures,
such as code size; EEMBC is an example, and ERB, as shown below, is too, but part
from this simple measure, only one benchmark suite gives dynamic memory behavior
among all the benchmarks we have studied.

In software systems, two memory areas are likely to grow dynamically: the heap
and the stack:

– Pennbench [16] is the only one benchmark suite providing heap usage measure-
ment. PennBench is a benchmark suite for Embedded Java; in that context, the heap
usage is a relevant memory measurement. A Ravenscar application typically does
not contain many dynamic allocations; In a safety-critical system, heap allocations
are typically allowed only in a initialization phase. Moreover, the Ravenscar profi le
adds some other constraints on the dynamic allocation; for example, it forbids con-
structs that require an implicit heap allocation. This is why ERB does not provide
this measure.

– No benchmark, to the best of our knowledge provides stack usage measurement.

1.3 Why A New Benchmark ?

The European Space Agency realized soon that none of the existing benchmarks were
relevant in the context of Ada Space applications. Like SPEC, most of those bench-



marks primarily target workstation environments. They are simply not suited for em-
bedded applications. The few benchmarks targeting Ada environments, like the PIWG
and the ACES, are not suited either for modern embedded applications: the PIWG do
not comply to Ada 95, while the ACES are not Ravenscar compliant.

Unfortunately, the Ada benchmarks are out of date in that respect. Most of the task-
ing test cases they provide break many of the above restrictions, and would not even
compile under the Ravenscar profi le. PIWG test t000003 is a perfect example of this: it
aims at measuring the task entry call and return time when the task is in a package. Of
course, it needs to use task entries, which are forbidden by the Ravenscar standard. As a
matter of fact, it is not only a matter of removing the test cases that cannot be compiled
under the Ravenscar profi le: it is also required to get a new set of test cases precisely
targeting the kind of constructs programmers actually use in real-time applications.

In embedded systems, memory is by every respect as important as timing. There is
no point in making a careful timing analysis of a system to make sure it is able to answer
quickly to critical conditions if the stack of one task overflows on another task space
and causes the program to malfunction. One the other hand, fi tting a lot of memory may
have a high cost, in terms of cost, weight and power consumption.

To make sure one has enough memory in his application, one needs not only to
know the stack size required by each task in the program, but also one needs to know
the runtime footprint in memory. This can be defi ned as the code corresponding to
functionalities the user code requires. For instance, when using Ada tasking, a program
depends on the task switching code provided by the system or the runtime. The order
of magnitude of the runtime can be signifi cant: the ORK [13] runtime has for instance
a 150KB footprint.

The ERB benchmark therefore provides not only execution time measurements but
also an estimate of the stack size required by each task in a test case to execute properly
as well as an estimate of the runtime and user code footprints.

Finally, in order to evaluate the cost of high-level language features in terms of
memory footprint, stack size and execution times compared to low-level C code, the
Agency required that some of the tests would be ported to C for running on the RTEMS
system.

This raised several issues. The semantics of Ada is much richer than one of C:
protected object, exception handling, tasking, distributed partitions do not exist in C. In
order to implement similar features, one has to rely on special-purpose libraries, such
as the native or POSIX threading library on RTEMS or the Remote Procedure Calls
library. In any event, real C programmingwould not try to match full Ada semantics, but
probably use simpler mechanisms: instead of a protected object, one would for instance
rather use System V message passing or queues. All of this makes any comparison
between C and Ada particularly delicate. The approach taken in ERB was to write a
set of C packages providing exactly the same semantics as the required Ada features.
Even if some ad-hoc Ada code could only implement a subset of those features for a
particular test case, a real space application would probably benefi t from the availability
of such semantics.

Another decision had to be make about using the RTEMS native threading inter-
face against the POSIX threading interface. The native threading model was fi nally se-



lected for two reasons: fi rst, it is the default mode when RTEMS gets installed; second,
Ada tasking is part of the runtime, therefore using a separate, probably less optimized,
POSIX library would be unfair to RTEMS.

In a nutshell, the ESA Ravenscar Benchmark (ERB) project aims at providing a
new benchmark targeting Ada Ravenscar implementations and RTEMS on the ERC32
processor. The choice of the ERC32 processor was obvious for ESA since the Agency
has spent signifi cant resources to turn it into a standard for the Space industry. Like the
ACES or the PIWG environments, the ERB benchmark uses mostly synthetic tests: each
of these tests is designed to exercise a particular, clearly identifi ed, Ada feature. A set
of applicative tests are provided anyway to compensate the lack of full-fledged, space-
specifi c application. Example of applicative tests include Cyclic Redundancy Checks
and the Data Encryption Standard. Additionally, each test is either designed to provide
execution time measurement or memory measurement, making ERB the fi rst multi-
purpose benchmark we are aware of. A subset of the Ada tests has been ported to
RTEMS using the C language and the native threading model. C code will be written to
exactly match the Ada code in the corresponding test cases.

2 Technical Overview

This section presents a quick overviewof the technical choicesmade in the ERB project.

2.1 Portability Considerations

Portability can have many different meanings in the context of a benchmarking project.
One has to consider target portability, host portability and environment portability.

Target portability is defi ned as the capability to use the test suite on a different tar-
get processor without signifi cant adaptation efforts. In the case of the ERB contract, the
ERC32 was the only mandatory target; AdaCore is nevertheless already considering
running it on PowerPC processors. As a consequence, target portability was considered
since the early stages of design: in order to facilitate adaptation to other processors, and
for cost-effi ciency reasons, it was decided to use a simulator. The choice for the ERC32
target was the sis64 [6] ERC32 simulator. Switching to another processor should there-
fore be as simple as using the corresponding simulator, adapting the interface between
the simulator and the harness program if needed, and modifying the support package
used for stack size measurements.

Host portability can be defi ned as the capability to run the test harness on a different
host workstation. The host is used for compiling each test, running the simulator and
getting static memory information. The Agency required the test harness to be usable
on Linux and Solaris; once again nothing in the design prevents it from being ported to
other work environments such as Microsoft Windows. The main harness driver is writ-
ten in Ada 95, for reliability and portability. Wherever Ada was not a possible choice,
Bourne Shell were used instead because it is probably the most widespread and portable
interpreter available. It is even part of the Cygwin package on Windows.

The last kind of portability one has to consider is the environment portability. In
this document, an environment is an Ada 95 Ravenscar tool chain able to compile code



for the target processor. The system has been designed so that adding support for a
new environment in the harness is not diffi cult. Support for a particular environment
is customized by a set of confi guration variables contained in two fi les. One is global
and contains mostly the name of the environment and of the simulator being used; the
harness comprises a tool for changing it. The other confi guration fi le is environment-
specifi c and contains all the information required to run the test harness in the con-
sidered environment. This includes information such as the comment delimiter in test
source code as well as the commands used for compiling each test case and checking
the environment. Average users do not need to modify this fi le. Adapting the harness to
a new environment is therefore only a matter of writing those two command scripts,
which invoke environment-specifi c commands. Adapting the support packages to a
new environment is no more complicated. By defi nition, environment-independent sup-
port packages do not need any adaptation. Environment-dependent packages all have
an environment-independent specifi cation; only the implementation of the package is
environment-dependent. In environments which contain a fully-featured Ada runtime,
implementation will mostly contain renames of runtime routines. On high-integrity en-
vironments that contain a tightly controlled set of runtime features, like GNAT Pro for
ERC32, the implementation needs to contain full implementations.

2.2 Timing Measurement

As we said above, most of the existing benchmarks compute metrics on real applica-
tions. This approach, inspired by the desire to mitigate the influence of low-level issues
and get a global fi gure, is not very well suited for a fi ne-grained analysis of the contri-
bution of individual language feature to the overall benchmarking results. That’s why
the PIWG and the ACES benchmarks take a different approach. The method they use is
known as the dual-loop method, and it provides accurate measurements for individual
language features.

The Dual-loop Method A complete study of the dual-loop method is beyond the scope
of this paper. For a complete description, the reader is welcome to read [5].

The dual loop method is based on a careful analysis of the possible systematic errors
related to timing measurements. The two most prominent ones are the jitter, which is
basically the random variations of clock precisions, and the quantization error, which
is mostly caused by the analog-digital conversion of the physical phenomenon used to
generate the clock signal. A program is fi rst executed on the target to estimate the order
of magnitude of those errors, which repeatedly counts the number of system ticks in
one milliseconds to determine the accuracy of the clock and the jitter.

The dual loop strategy is to repeat each test case a number of times, so that the
overall execution time is signifi cantly longer than the possible jitter and quantization
error estimates. “Signifi cantly longer” here has been arbitrary set to 100 times longer.
In order to do this, the test code is surrounded by two loop: the inner loop just executes
the test code a fi xed NCount number of times. NCount is fi xed by the outermost loop,
and keep increasing1 until the the execution time of the inner loop meets the condition
1 The number of counts follows a geometric series: NcountN 1 2 NcountN 1 starting with
N0 1. Additionally, a maximum upper bound is provided to avoid infinite loops.



above. Once it is the case, the inner loop is executed MCount number of times with the
same NCount to demonstrate that the measurement is stable. MCount is fi xed so that:

1. It is lower than an arbitrary bound to avoid infi nite recursion;
2. Each test does not take longer than 30 minutes to execute;
3. A Student’s t-test indicates that, to the requested confi dence level of 90%, the tim-
ing measurements are being drawn from a sample with the same mean.

If the test case ends with condition 1 or 2 above, an error is reported.
The ACES have demonstrated that the dual loop method provides very good results

with the compilers they have been using. They have in particular used advanced heuris-
tics to handle compiler optimizations, processor cache issues and memory paging. But
one problem remains: if the code being tested has side-effects, the dual loop method
reaches some limits. In a sort algorithm, for instance, the fi rst run of the code will ex-
ecute much faster than any subsequent run that acts upon the already sorted array. Of
course it is possible to add in the test case some initialization code to “unsort” the data;
but in that case, you do not measure the sort algorithm only. Another issue that appears
when using the dual loop method is the impossibility to measure elaboration code, since
it is out of the reach of user instrumentation.

In order to address both of these issues, it was decided to implement two additional
strategies for timing measurements.

Other strategies The fi rst strategy is very simple: once it is compiled, the test case is
just loaded and executed on the simulator, using the simulator timing facility to retrieve
the execution time. The harness is responsible for repeating the test a number of times
so that it is possible to make statistically sure that the results are meaningful. In our
case, this is done by checking that all the measurements fi ts into a 90% confi dence
interval. This strategy is called “run-all”.

The second additional strategy we provide is known as “run-it-once”. It is particu-
larly intended for code using side effect. Instead of surrounding the test code by a dual
loop, this method just uses the target environment timing facility to get the execution
time of a single execution of the test. The harness is responsible for repeating the test
a number of times, so that it is possible to make statistically sure that the results are
meaningful using the same kind of proof as the “run-all” strategy.

Common Instrumentation Code Each of the timing test cases is executed with all three
strategies. It is possible to have several test cases into a single test source fi le. The tests
have some markers in the their sources that get expanded differently according to the
strategy actually being used:

– <init_loop>: In the dual-loop strategy, this is expanded into the initialization
code for the variables used in the dual loop code, which directly uses the output
of erb_pretest program. In other strategies, this does not get expanded at all.
There should not be more than one instance of this tag in the source code 2.

2 But having several of them does not harm either, since it would only duplicate some variable
initialization code



– <start_measure>: In the dual-loop strategy, this is expanded into the fi rst part
of the dual loop code. In the run-it-once, this just expanded to some code reading
the clock. This is not expanded at all in the run-all strategy. There can be multiple
instances of this tag, provided they are separated by an instance of end_measure.

– <end_measure>: In the dual-loop strategy, this is expanded into the second part of
the dual loop code. In the run-it-once strategy, this is expanded to the code reading
the clock and printing out the overall execution time. This is not expanded at all in
the run-all strategy.

Note that those markers are contained in Ada comments so that unexpanded test cases
are still legal Ada programs. C test cases on RTEMS use exactly the same mechanism.

A complete example coming from test ar_t_a_03 follows. It shows how the mark-
ers must be inserted into the test source.

Test conversions between fixed point type and Float
For: Ravenscar
Measurement: Timing
Based on: ACES ar cx conv fixed 04

——————————————-

Interestingly, we are able to have several tests in the same
test case. Here we have:

10
(A) Conversion from delta 0.01 to Float 6 digits
(B) Conversion from delta 0.01 to Float 12 digits
(C) Conversion from delta 0.001 to Float 6 digits

——————————————-

with Support; use Support;
with Support Types; use Support Types;

procedure Ar T A 03 is 20

pragma Suppress (Access Check);
pragma Suppress (Discriminant Check);
pragma Suppress (Index Check);
pragma Suppress (Length Check);
pragma Suppress (Range Check);
pragma Suppress (Division Check);
pragma Suppress (Overflow Check);
pragma Suppress (Elaboration Check);
pragma Suppress (Storage Check); 30

A Float 1 : Float6 := Simple Float6 Random;
A Float 2 : Float12 := Float12 (Simple Float6 Random);
A Fixed 1 : Afix1 := Simple Afix1 Random;
A Fixed 2 : Afix3 := Afix3 (Simple Afix1 Random);



begin
init variables

This tag is expanded to the initialization code
required by the dual-loop strategy 40

Test (A)
start measure

A Float 1 := Float6 (A Fixed 1);
end measure

Test (B)
start measure

A Float 2 := Float12 (A Fixed 1);
end measure 50

Test (C)
start measure

A Float 1 := Float6 (A Fixed 2);
end measure

end Ar T A 03;

Typical output of this test when executed with the dual-loop strategy looks as shown
below:

--------------------------------------------------------------------------------
| Name | Min | Mean | Sigma | MCnt | NCnt | Msg |
--------------------------------------------------------------------------------
| ar_t_a_03 | 2.16235590E+0 | 2.16235590E+0 | 0.00000000% | 5 | 127 | Ok |
| ar_t_a_03 | 2.01235628E+0 | 2.01235628E+0 | 0.00000000% | 5 | 127 | Ok |
| ar_t_a_03 | 2.16235590E+0 | 2.16235590E+0 | 0.00000000% | 5 | 127 | Ok |
--------------------------------------------------------------------------------

– Name is the name of test case. There is exactly one for individual test inside the test
case;

– Min is the minimal execution time of the test;
– Mean is the average execution time of the test;
– Sigma is the standard deviation computed on the series of test case;
– NCnt is the number of times each test case was executed by the inner loop;
– MCnt is the number of times that each test case has been iterated NCnt times. These
repetitions are carried out by the outer loop as explained above;

– Msg indicates whether the test is actually valid (OK) or not (KO).

2.3 Footprint And Stack Measurement

ERB fi rst features static memory measurements. For each test case, the overall size of
the code and data section is computed for the support packages binary fi les, the test case



binary fi le ($test.o fi le) and the linked test case executable fi le. The runtime footprint
is computed by subtracting the size of the test case sections and the support packages
sections to the overall binary fi le sections. This is obviously only an approximation,
since some runtime code might be for instance inlined, but this proved suffi ciently ac-
curate.

Most of the tools used to determine the memory behavior after execution are ana-
lyzing heap allocations. There are indeed usually used for detection of anomalous heap
use such as memory leaks. But the different techniques used to achieve this goal can be
applied to stack measurement as well.

– External monitoring: A simulator, a virtual machine or a debugger is used to
run the program; some inspection points are set, e.g. breakpoints. For example,
gnatmem [9] and Valgrind [3] uses this method. For heap usage, the inspection
points are the library routine used for dynamic allocation and deallocation, e.g.
malloc and free. As for stack usage, the inspection points would be every stack-
modifying instruction in the code. Needless to say, it has a great cost as every time
a stack-modifying instruction is hit, the program is stopped; and such an event
happens very often in a program execution. This method is very precise; however,
our preliminary tests showed that this method was not adapted to benchmarking:
hours were needed to run a simple benchmark, e.g. Dhrystone, on a fairly fast
PC machine. Moreover, this solution is highly target-dependent and technology-
dependent.

– Instrumentation: the user code is instrumented at some particular locations, known
as inspection points, by the user, the compilation tool-chain or by a binary patching
utility. If they are set in the user source code, many stack variations will be lost and
the result will be highly imprecise, with no way to evaluate the error; setting them
automatically is highly technology-dependent and target-dependent.

– Pattern filling: memory is fi lled with a known pattern, traditionally 0xdeadbeef,
before execution. After execution, the content of the memory is read to deter-
mine the areas that have been modifi ed. This is the kind of technology GNAT’s
Debug_Pools [9] use. The memory can be fi lled either externally, by a debugger,
or internally, by calling a support library. In our context, the second method is less
technology-dependent, and should be easier to port. This method has several sys-
tematic errors, but they are limited and measurable as shown below. It is important
to note that when the stack grows into the pattern zone, not all the patterns are de-
stroyed: because of alignment constraints, allocations without actual writings, some
of the pattern are always left.

For the purpose of a portable harness, only the third solution is practical and has
been selected for ERB: we provide instrumentation routines for fi lling stacks with a
given pattern, reading the stack after execution and output the results.

The systematic errors have been carefully studied. They are mainly caused by the
effects on the stack of the instrumentation routines themselves:

– Bottom offset: The procedure used to fi ll the stack with a given pattern has itself
a stack frame. The value of the stack pointer in this procedure is therefore different



from the value before the call to the instrumentation procedure. In order to mini-
mize this error, the user should get the address of variable defi ned on the stack and
pass it to the procedure. That value will be used for indicating the bottom limit of
the stack instead of the value the procedure could guess.

– Instrumentation clobber when writing the pattern: The procedure used to fi ll
the stack with a given pattern will itself have a stack frame. Therefore, it will only
be able to fi ll the stack after its own stack frame. This part of the stack will appear
as used in the fi nal measure. As the user pass the value of the bottom of stack to the
instrumentation to deal with the bottom offset error, and as as the instrumentation
procedure knows where the pattern fi lling start on the stack, the difference between
the two values is the minimum stack usage accessible through this method. If the
pattern zone has been left untouched at the end of the test, it is possible to conclude
that the stack usage is inferior to this minimum stack usage.

– Instrumentation clobber when reading the pattern: The procedure used to read
the stack at the end of the execution clobbers the stack by allocating its stack frame.
If this stack frame is bigger than the total stack used by the user code at this point, it
will increase the measured stack size. In order to fi nd out whether such a situation
actually happens, it is possible to augment this stack frame and see if it changes
the measure. To do that, an additional array of is allocated in this frame. A specifi c
discriminant can be used to change its size.

– Pattern zone overflow: If the stack grows outer than the outermost bound of the
pattern zone, the outermost regionmodifi ed in the pattern is not the maximumvalue
of the stack pointer at execution. At the end of the execution, the difference between
the outermost memory regionmodifi ed in the pattern zone and the outermost bound
of the pattern zone can be understood as the biggest allocation that the method
could have detect, provided that there is no "Untouched allocated zone" error and
no "Pattern usage in user code" error. If no object in the user code is likely to have
this size, this is not likely to happen.

– Pattern usage in user code: The pattern can be found in the object of the user code.
In this case, the address space where this object has been allocated will appear as
untouched. To avoid this situation, we have chosen a pattern which is unusual in
user code, namely 0xdeadbeef. We also enforced a rule forbidding the use of this
pattern in the test cases.

– Stack overflow: If the pattern zone does not fi t on the stack, this may override
the stack space of another task and lead to some erroneous execution. To work
around this, we specifi ed large enough task sizes and adapted the pattern zone size
accordingly.

– Inlined instrumentation code: If the instrumentation code is inlined, the objects
allocated by the instrumentation procedures are allocated on the caller stack frame,
which is therefore augmented. to avoid this, none of the instrumentation procedures
is inlined.

– Untouched allocated zone: The user code may allocate objects that are never mod-
ifi ed. In this case, the pattern will not be changed. Unfortunately, there is no way
to detect this error. This error does not happen often, and it is most probably due to
bugs in the user code, e.g. some uninitialized variable. It is most of the time harm-



less, since it influences the measure only if the untouched allocated zone happens
to be located at the outermost value of the stack pointer for the whole execution.

These systematic errors are documented precisely and methods for evaluating them
are provided. The instrumentation routines are also designed to limit them by having a
stack frame as small as possible.

The instrumentation code is regular Ada code, so it is not technology-dependent.
Only one parameter of this implementation is target-dependent and must be adapted to
a each confi guration: this parameter indicates whether the stack grows up (from low ad-
dresses to high addresses) or down. It is designed as a general stack usage measurement
library, so it is not only usable for benchmarking purposes but also could be useful for
evaluating the stack usage of the tasks of an Ada application.

A typical usage of the memory instrumentation package would be similar to what
is shown below:

A : Stack Analyzer (16#DEAD BEEF#, Proposed Storage Size / 2, 0);
This private object is used by the memory instrumentation code.

task T is
pragma Storage Size (Proposed Storage Size);

end T;

task body T is
Bottom Of Stack : aliased Integer;

Bottom Of Stack’Address will be used as an approximation of 10
the bottom of stack. A good practise is to avoid allocating
other local variables on this stack, as it would degrade
the quality of this approximation.

begin
Fill Stack (A, To Stack Address (Bottom Of Stack));
Some User Code;
Compute Result (A);
Report Result (A);

end T; 20

A typical output of the harness looks like what follows3:

+-----------------------------------------------+
| Test | Stack | Gap | Fill | Comp |
+-----------------------------------------------+
| hl_m_a_02 | 664 | 261948 | 464 | 472 |
| hl_m_a_03 | 976 | 261368 | 196 | 204 |
| hl_m_a_04 | 2336 | 260052 | 240 | 248 |
| hl_m_a_05 | 1204 | 261264 | 320 | 328 |

3 All figures are in bytes



| hl_m_a_06 | 8408 | 261996 | 8256 | 8264 |
| hl_m_a_07 | 10916 | 259488 | 8256 | 8264 |
| hl_m_a_08 | 8352 | 262060 | 8264 | 8272 |
| hl_m_a_09 | 41904 | 260524 | 40280 | 40288 |
+-----------------------------------------------+

– Test is the name of the test being done. If there are several tasks in the test, there
is one line per task;

– Stack is an evaluation of the stack consumption;
– Gap is the size of the space fi lled by the pattern that is beyond the last modifi ed
area;

– Fill is the size of the Fill_Stack stack frame;
– Comp is the size of the Compute_Result stack frame;

A consequence of the above defi nitions is the following relation:
Fill Pattern_Size Gap Stack, where Pattern_Size is the size of the memory
space fi lled with 0xdeadbeef.

2.4 Test Base

In order to provide a signifi cant test base on a cost-effective basis, we decided to lever-
age on the extensive test bases from existing Ada benchmarks and test suites, namely
the ACES project, the PIWG project, the ACATS and the ORK project Ravenscar test
suite.

A list of tests was agreed upon with the Agency, specifying for each test whether
execution time and/or memory measurements were required. The list comprises 174
Ada timing tests, 92 Adamemory tests, 92 RTEMS timing tests and 50 RTEMSmemory
tests, divided in twelve categories:

– high level algorithms
– arithmetic tests
– data storage
– data structure
– tasking and protected objects
– exception handling
– runtime checks
– iterations
– procedure and function calls
– generics
– object oriented
– miscellaneous

Those categories globally match the traditional categories used in the PIWG and
ACES projects.

Adapting the tests to the project is a challenging task, since they come from different
backgrounds. The tests coming from the PIWG and ACES projects are easy to port,
because they rely only on a limited number of support packages. We enforced a simple



porting policy: support package required for several tests were merged into our own
support packages, while support packages required for a single, or a very small set of
test cases was merged into the test case itself.

Additionally, we used the gnatpp tool to give to all the test cases a common style,
since it was not homogeneous: not only the ACES and PIWG have different coding
styles, but also the ACES source code is far from uniform. gnatpp, the GNAT pretty
printer, can be used to control the indentation layout and the casing of some Ada code.
The same thing was done for C tests, this time using the indent GNU tool, which
basically does the same thing for C code.

Rather than trying to port general-purpose Ada 95 tasking tests from other bench-
marks, it appeared soon that the best way to go for the tasking and protected object part
was to adapt the Open Ravenscar project [12] test cases. The ORK test suite, which was
initially written by EADS-CASA for the Open Ravenscar project , aims at checking
compliance of given Ravenscar implementations to the profi le. It was the best starting
point for writing a comprehensive Ravenscar benchmark because it uses typical Raven-
scar constructs.

Porting those tests was not a trivial work though. Those tests are validation tests and
not performance tests, which caused some adaptation effort. Paradoxically, the simple
tests caused more trouble: because of the fi ne-grain, user code-oriented approach of
the dual loop method, the measurement of execution time for creating a null task, for
instance, were beyond the measurement capabilities of the harness. In that particular
case, most of the task creation code is in the elaboration code coming from the runtime,
which cannot possibly be instrumented. In order to workaround this limit, we decided
to implement the complementary “run-all” and “run-it-once” measurement strategies.

In order to validate the set of tests, a simple strategy of consistency checking was
adopted. Since the whole point of this project is making comparison between Ravenscar
tool-chains, the emphasis was not put on ensuring correctness of the test cases, but more
making sure that a given test case behaves consistently on all target environments. For
instance, if a test raises a Program_Error exception with GNAT Pro, we made sure that
it does the same thing at the same place with the other target environments.Additionally,
reusing many test cases from existing, well-known benchmarks provides a guaranty that
most of the tests are correct and have a meaningful target.

3 Conclusion

The European Space Agency and AdaCore agreed to make available upon completion
of the project both the test harness and the test suite to the Ada real-time community
under the terms of the GNU General Public License. As part of the original contract,
an advocacy effort, undertaken by Tullio Vardanega from the University of Padua, will
be carried out to increase project awareness among the community. Concrete actions
that might be done possibly include advertisement in specialized newsgroups, stan-
dardization bodies, such as the IRTW group or the ARG ISO/WG9 subgroup, as well
as traditional conferences.

The fi rst audience targeted by ERB is the Ada vendors community. Running the har-
ness with other Ada tool-chains is a good way to compare them and fi nd areas where



a given technology could be improved with respect to competition. Ada vendors could
therefore use the harness to fi nd out the strength and weaknesses of their technology,
and fi x them. They are also welcome to write test exercising particular languages fea-
tures or stressing the implementation in a particular fashion. The next revision of the
Ada standard is an excellent opportunity for extending the current test base so that it
covers the newest language features. In any event, AdaCore will take into account com-
ments issued by Ada vendors and feed them back into the harness,

Another example of what Ada vendors could do is also provided by AdaCore, which
plans to use ERB internally to monitor the evolution of GNAT Pro and verify that per-
formance changes match development expectations.

The second target audience we envision for the ERB project is the Ada Space com-
munity. The ERB project can be used to defi ne guidelines for avoiding the use of lan-
guages features that cost too much for a particular application. Note that the fi ndings
about which features are to be avoided can change from one project to another, accord-
ing to particular constraints or requirements.

If the interest we have in this project is shared by the community, AdaCore will be
glad to provide some support for the long-term life of the ERB project, for example
by making it, as well as third-parties contributions, a part of its effort to support libre
software.
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