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Abstract—Artificial Intelligence extended the limits consider-
ably of what is technically feasible. In avionics, stakeholders
are also pushing AI. However, research results are usually
confronted with restrictions in avionics: Safety and certification
are often assumed as showstoppers. This is not quite precise, since
stakeholders are approaching each other. We collect the demand
for AI applications in avionics and develop a classification
scheme for these. For each identified AI class the status quo is
compiled. We conclude with an assessment of AI readiness and
the identification of necessary research effort for AI in avionics.

Index Terms—artificial intelligence, machine learning, percep-
tion, planning, reasoning, standards, certification, qualification

I. INTRODUCTION

Artificial Intelligence (AI) pushed the limits considerably
of what is technically feasible. Cutting-edge AI applications
have been implemented in many domains: In our daily lives
AI is used e.g. for face recognition to unlock smartphones,
for digital assistants with voice recognition, or in smart homes.
Substantial success is also achieved in e.g. health care, in smart
factories, or for advancing autonomous driving. In avionics, of
course, governments, funding agencies, industry, and academia
are heavily pushing AI, as well. Respective applications in-
volving AI can be deployed e.g. to drones, to air taxis, for crew
(work load) reduction, for flight path efficiency optimization,
for predictive maintenance, or for human-machine interac-
tion. However, research results are usually confronted with
restrictions in avionics: Safety, qualification, and certification
are often assumed as showstoppers. This picture is not quite
precise, since stakeholders are approaching each other: (i)
There are different use cases for AI that have less stringent
regulations. (ii) Standards for applying AI in avionics are on
their way. (iii) Promising verification, testing, and safeguarding
techniques for AI applications are under development. (iv) Due
to the daily use of AI its public acceptance increases steadily.

Already in 1983, Klos et al. required AI to reduce com-
plexity in the cockpit by an AI based electronic crew mem-
ber [1]. AI systems at that time however, were mainly rule-
based expert systems, such that the conclusion in terms of
certification was: ”[...] many of the algorithms required to
implement [...AI...] are already in today’s avionics”.

Ten years later, technologies for AI-based pilots have been
test-flown [2]. The tested systems showed superior perfor-
mance and were deterministic, but were judged to be hard
to certify due to their large input space as well as missing

intermediate artifacts and qualified tools. In general, however,
it was concluded that so-called deterministic knowledge-based
systems can be certified according to the RTCA DO-178B
objectives. Concerning neural networks (NN), the authors
stated that “AI-based systems with learning capability are
unlikely to appear in civil aircraft”. The situation is different
today. Gatti/Damine claim that AI is one of the three pillars of
future avionics systems [3], and also Annighöfer et al. assess
the integration of AI as one of the major current challenges
in avionics [4]. Today AI majorly means Learning Enabled
Components (LEC). Boeing [5] and Airbus [6] are actively and
publicly carrying out research projects of AI applications with
trained NNs including test flights. [7] report major advances in
the validation, verification, and explainability of AI , but also
identify fundamental incompatibilities of LECs with the ac-
cepted development and certification process of safety-critical
aircraft systems: (i) the data (invisibly) contains the require-
ments instead of human written requirements; (ii) practically
it is infeasible to achieve an equivalent level of confidence
compared to RTCA DO-178C objectives for complex AI
implementations by pure testing; (iii) supervising a complex
AI system by certified backup controllers will not be possible
for every application. However, the report makes optimistic
recommendations on two concepts: (i) Formal verification of
LECs by a theorem prover, which is possible if the input and
output space is restricted, the LEC has limited complexity,
and the pre conditions, post conditions, and the LEC itself
can be mathematically expressed. (ii) Runtime assurance by
certified backup controllers, which is possible if traditional
algorithms are available for the problem at hand and can
reliably judge the behavior of the LEC. Vidot et al. share the
optimism on formal methods for the verification of LECs [8].
In addition, authorities have reacted: EASA released a first set
of practically applicable objectives [9] for the assurance of AI
based human assistance applications (EASA AI level 1, see
Sec. IV-A). EASA’s AI roadmap [10] states that certification
of objectives for complex AI applications is ready by 2028.
However, up to the point of the first certified AI system in
avionics there are no Accepted Means of Compliance (AMC)
as we are used to in avionics.

Future capabilities driven by AI formed a central aspect
during the latest scientific workshop on Avionics Systems and
Software Engineering (AvioSE, [11]). During the workshop
OEMs, authorities, software developers, and pilots participated
in a panel discussion. This paper picks this up and delivers the
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Fig. 1: AI Categories

following contributions: (i) An up-to-date review on applica-
tions, standards, and assurance methods of AI in the avionics
context. (ii) A fine grained classification of AI applications,
which leads to clear suggestions for their further development
and certification. (iii) An up-to-date collection of open AI
challenges.

II. AI TECHNOLOGY DEFINITIONS

According to [12, p. 2-5] a system exhibiting AI can be
defined as acting humanly, thinking humanly, thinking ra-
tionally, and acting rationally. From a technical perspective
we define the AI categories demonstrating these AI properties
and implementing such systems as depicted in Fig. 1 and
explained as follows:

Artificial Super Intelligence (ASI) is the most advanced
form of AI. It refers to an intellect that is much smarter than
the best human brains in practically every field, including
scientific creativity, general wisdom, and social skills. This
is said to be the last man-made technology, as any subsequent
level of technological sophistication can be derived by this
kind of AI itself. Artificial General Intelligence (AGI):
Human level intelligence is applicable universally to a wide
variety of problems and capable of general intelligent action.
In other words, AGI seeks to emulate human-like intelli-
gence on a hardware substrate. Artificial Narrow Intelligence
(ANI): Machine intelligence that equals or exceeds human
intelligence or efficiency at a specific task. This category
is comprised of the domains perception (perceiving sensory
inputs and extracting relevant information), planning (devel-
oping an action plan to reach a desired goal), reasoning
(deducing logical implications from an observed state), and
machine learning (ML) describing a form of problem solving,
which is not explicitly programmed towards solving a specific
problem instance, but rather infers solutions by processing a
large set of examples. Perception, planning, and reasoning can
be implemented using ML. Thus, the mentioned four areas
have overlapping parts in Fig. 1. As the current research
is focusing on the development of ANI, from which robust

results are already available or expected in the short-term view,
this paper is limited to this category, as well.

III. DEMAND FOR AI APPLICATIONS IN AVIONICS

The deployment of ANI in avionics follows one or several of
these goals: (i) Replacing a function with a more sophisticated
one. (ii) Enabling a function not feasible without ANI. (iii)
Realizing an existing function with less effort. According
to this this Sec. compiles the demand for ANI in avionics.
First, general AI domains are reviewed according to possible
applications in avionics. Second, the latest applications of AI
involving avionics are summarized.

A. Transferring General AI Domains to Avionics

AI applications showed astonishing performance in appli-
cations, which were classified as almost infeasible a decade
ago, namely Machine Perception (MP), Natural Language
Processing (NLP), Control Theory (CT), Reasoning Systems
(RS), and Data Analysis (DA). These domains have possible
applications in the avionics context.

1) Machine Perception: MP is a provision of information
similar to what a human would consider to judge and to react
in certain situations. Whereas this definition holds true for
most avionics systems with sensors, AI based MP became
important, where the data is so complex that the information
required cannot be retrieved reliably and efficiently with
classical methods. Pretty prominent is Object Recognition, as
a sub-category of Computer Vision, which is the identification
of objects from image data. MP can also detect phenomena
humans cannot perceive, e.g. infrared images, radar data, or
LIDAR scans. From the perspective of avionics, AI based
MP adds artificial sensors for information that could not be
measured precisely before.

The identification of objects is assumed to be useful in
several situations: On ground an assistance during taxiing
for the confirmation of taxiways according to ATC instruc-
tions could prevent delays and incidents. Possible is, for
instance, a camera-based localization and mapping approach
and the automated reading of taxiway/runway signs. Another
application is the automatic detection of the taxiway/runway
centerline, in order to enable automated taxiing, take-off, and
landing. Moreover, automated object detection could assure
the appropriate clearance from obstacles. During flight, the
detection of other traffic without transponder (e.g. Automatic
Dependent Surveillance – Broadcast (ADS-B) or FLARM),
i.e. non-cooperative participants, has the potential to reduce
the crew workload and is a major enabler for autonomous
air traffic. In the race towards unmanned piloted vehicles,
the sense-and-avoid sensor is a considerable challenge. Most
promising seems an (AI-)fused perception of optical, radar,
and LIDAR data. Last, the detection of visual landing cues
during approaches with low visibility could increase safety.
Within the aircraft, object recognition could be deployed for
the detection of flight crew fatigue, stress, abnormal situations,
and health issues.



2) Natural Language Processing: NLP deals with under-
standing natural language. A recent benchmark showed that
trained NNs can perform even better than humans [13]. In the
cockpit NLP could be used for automated processing for radio
(ATC) calls and for cross-checking with the corresponding
crew actions (e.g. flight management system (FMS) entries,
or changes in altitude, speed, and for tracks). In general,
voice-controlling in the cockpit might simplify the aircraft
management. The dynamic synthesis of speech could be used
to provide the flight crew detailed audio advice in situations
where other senses are distracted, which could provide assis-
tance in critical and abnormal situations. Within the cabin, it
is only a matter of time when passengers demand voice-based
control of their in-flight entertainment system.

3) Reasoning Systems: RSs have the purpose to draw con-
clusions. Rule-based Expert Systems are already state-of-the-
art, e.g. for the situation-adaptive system pages in the Airbus
A320. However, recent advances in learning-based RSs (e.g.
the Google phone call assistant [14]) show that almost human
behaving RS might be possible (like the “electronic crew
member” desired by [1]). An RS could manage the checklists
for crew members and present these according to the current
situation and supervise the proper execution. A virtual co-
pilot could assist the pilot by a second opinion during decision
making especially in critical situations. For instance, the virtual
co-pilot could carry out a what-if planning if one engine is
inoperative. It could calculate the ceiling and range objectively
while the pilot is busy getting the situation under control. It
could also pre-plan the all engine out gliding distance, suggest
en-route alternate airports, and remind the pilot on the point of
no return. A virtual co-pilot could also relief the pilot partially
from air traffic management (ATM) by accomplishing tasks
from air navigation services automatically. This could lead
to an improved air transportation performance, e.g. by the
possibility to reduced separation distances. Another task for
the virtual co-pilot could be the runway exit prediction. On the
path to single or no pilot cockpit there seems no way around
automating those tasks and especially LECs seem to be a
complementary method when trained by millions of flight data.
In addition, AI based RSs could improve warning systems. For
instance, wind shear detection and associated decision making
and landing vs. go-around decision making. In general, the
prediction of threats from terrain, traffic, and airspace data
increases the threat awareness of the flight crew and helps
to anticipate and prevent critical situations, e.g. by in-flight
weather circumnavigation. Last, the steadily increasing com-
plexity of aircraft systems, especially in abnormal situations,
results in the demand for expert systems assisting in taking
the right decision and for providing engineering support, for
instance by autonomously identifying failure root causes and
mitigation strategies. Reasoning Systems based on formal
methods and theorem proving might support the development
of safety-critical systems, but currently no airborne application
is foreseen.

4) Planning Systems: PSs, also known as Automated Plan-
ning and Scheduling, comprise problems where a list of
actions and execution times needs to be compiled to (opti-
mally) achieve a higher-level goal. This can be accomplished

with classical methods of (combinatorial) optimization, but
also LECs are promising methods. Planning applications in
avionics are primarily the planning and optimization of flight
paths, e.g. an emission-optimal in-flight fuel planning by an
optimal selection of cruise speed and flight level, which are
dynamically adapted according to the situation. In general,
flight path support, flight profile optimization, descent plan-
ning (e.g. continuous descent approach) are promising fields
for the application of AI. Also, the complete execution of a
flight or mission might be realized by LECs and leads to a
virtual pilot. It is likely that such an AI pilot will in future
outperform the human in at least some tasks, e.g. flight path
precision, maneuver dynamics, and response time. This is
especially important for military applications, but could also
increase the efficiency of civil air transportation.

5) Control Theory: Control algorithms are a mandatory
part of many aircraft functions to ensure numerical out-
puts of a system to be in a range of desired values and
compensating for changing inputs, which works well if the
input parameter range and dynamics are well-known and the
system behavior does not change. The benefits envisioned
by LECs are, first, better capabilities to cope with unknown
situations, i.e. unknown changes in the system behavior or
(partially) faulty inputs. Second, the controller performance
might be increased by dynamically adapting to the current
environment. This is also known as Adaptive Control. LECs
have the potential to increase the performance and operation
range of Adaptive Controllers and ease their development
[15]. A flight control law that is able to adapt to structural
damages, degraded performance (e.g. due to airframe icing),
load changes, or (partially) faulty sensors, actuators, and
systems without knowing the degradations beforehand, would
increase safety and the level of autonomy. This might be a
back-up system carrying out an emergency landing in case
of crew incapacitation. Other applications are upset recovery
or a proactive prevention of critical situations, e.g. by an
extended flight-envelope-protection that takes into account fuel
status, aircraft status, crew status, airspaces, and terrain. Last,
NN based controllers show superior performance in existing
applications or are easier to develop, because they are learned
and not implemented. A prominent example is the optimization
of flight-control laws.

6) Data Analysis: DA deals with the extraction of previ-
ously unknown, unquantifiable, or unusable information from
large (heterogeneous) data sets. Advances in DA methods,
massive available data, and high processing power created
the field of data mining. Concerning avionics, the number of
sensors increases steadily and a recording of massive amounts
of data is state-of-the-art. During runtime DA methods could
be used to create virtual sensors from values existing al-
ready. For instance, altitude, velocity, or orientation can be
estimated from other values and provide an additional degree
of redundancy or sanity checking. This is also called Analytic
Sensors. Other examples are the fuel tank quantity evaluation
or icing detection from regular flight data. The detection
and classification of failures by finding abnormalities in data
streams are additional applications. Furthermore, maintenance
can be improved by detecting indicators of uprising malfunc-



tions, and deriving countermeasures before the malfunction
occurs. Learning enabled DA could also support preventing
cyber-attacks on the avionics system. DA methods could
distinguish between normal behavior and attack behavior, by
continuously monitoring data streams. In cooperation with
reasoning system, countermeasures might automatically be
deployed and their effectiveness is learned and considered for
future reactions. Last, DA methods might assist the develop-
ment process of avionics hardware and software. Development
artifacts can be analyzed by AI and support information can
be generated. For instance, the quality of textual requirements
might be evaluated by AI, and similar, malformed, duplicated,
or contradicting requirements might be identified. Moreover,
identifying possible errors or critical sections of source code
is possible [16].

B. Reported applications

In order to judge the importance of general AI domains and
applications for avionics we review the most recent reports on
applications in avionics:

• Within the Intelligent Flight Control System (IFCS) re-
search project, NASA built a self-healing IFCS on top of
fly-by-wire. The IFCS compensates changes in the control
behavior of the aircraft, e.g. by structural damage. It uses
pre-trained and online learning NNs. The IFCS was tested
with an F-15 in flight and showed good capabilities in
handling of abnormal configurations.

• Advanced flight control laws based on NNs have
been proposed for fighter aircraft [17], UAVs [18],
Drones [19], and CS-25 aircraft [20]. The motivation is
commonly a better performance in changing dynamics or
environments.

• Boeing’s Airpower Teaming System (loyal wingman) uses
LECs to fly a fighter aircraft autonomously or to support
a crewed aircraft with maintaining a safe distance be-
tween aircraft [5]. AI controlled formation flights were
successfully carried out with five small scale jets [21].
Test flights with the real fighter aircraft were carried out
with a single fighter aircraft and a predefined route [22].

• DARPA carried out a benchmark for AI controlled fight-
ers in a simulated environment, the so-called AlphaDog-
fight trials [23]. Heron Systems’ F-16 AI Agent outper-
formed the other AI pilots and a human. It is based on
an NN that was trained with dogfight data [24].

• Within the EU’s FIVER project an advanced FMS was
developed, which uses LECs. It is trained with to-
pographic and meteorological data to derive the most
energy-efficient flight trajectory [25].

• A vision-based runway detection LEC was developed by
Airbus in the ATTOL project for an autarkic automated
take-off and landing system. It was demonstrated success-
fully with an A350 for take-off. The sources are not clear
about landings, but it is likely that theses have only been
carried out virtually, because of potential catastrophic
consequence of a malfunction. During demonstration
flights safety-pilots were on board and ILS was available
as a backup [6], [26].

• Airport navigation by voice-control was demonstrated by
Nilfa et al. utilizing Google’s speech-to-text engine in
a simulation [27]. The demonstrator showed a robust
understanding of commands followed by an auto-taxiing
procedure. Image processing was used to hold the cen-
terline and detect junctions. Safety was ensured by the
pilots who could always stop auto-taxiing.

• An optical tracking of the centerline was used to demon-
strate a runtime assurance architecture for LECs [28]. The
runtime assurance allowed for go, slow, and stop inter-
vention of the LEC, which was demonstrated successfully
in a simulation.

• Chen et al. used NNs for the identification of faults in
avionics hardware for rectifier units and improved the
classification rate significantly [29].

• Adhikare et al. reported numerous ML based approaches
for predictive maintenance of aircraft components [30].
They state a great opportunity for an increased opera-
tional reliability, but also a massive training data demand,
which can probably only be fulfilled by artificially gen-
erated data.

• Garcia et al. defined five categories for applying AI to
aviation cyber-security and conducted a literature review.
Mainly anomaly detection and component fault identifi-
cation show reasonable work and promising results.

• Lüttig et al. demonstrated an automatic detection of
peripherals connected to Integrated Modular Avionics
(IMA) modules that uses NNs to identify LEDs and
electric motors based on their electric properties [31].

• Girard et al. used ML for GPU performance approxima-
tion in avionics hardware development [32].

• The upcoming KASIMIR project will investigate
learning-based AI Assistants in the development of safety-
critical software and hardware [33].

IV. AI CLASSIFICATION SCHEME IN AVIONICS

A. AI Autonomy Levels

AI is assumed to be a key enabler for system autonomy.
For a device to operate autonomously , it needs to be capable
of taking over several tasks typically assigned to a human
operator. A widely adopted categorization of autonomy is
presented in Tab. I.

Next to the autonomy levels introduced by [34], SAE
International™ have specified the levels of driving automation
in SAE J3016™ (Fig. 2). In addition, EASA have suggested
a classification for AI/ML applications (Fig. 3, [10, p. 16],
which was evolved in [9, p. 9]). [34] and SAE J3016 classify
autonomy, while the EASA classification focuses on the role
played by AI in the overall system, including the interaction
with the human. We propose the mapping between these
classifications as presented in Tab. II.

B. Certification Baseline

This Sec. describes the certification baseline which is neces-
sary from the perspectives of both certification authorities and
development organizations. The accepted path to airworthy



Level Description
1 Human does the whole job up to the point of turning it over

to the computer to implement.
2 Computer helps by determining the options.
3 Computer helps determine options and suggests one, which

human need not follow.
4 Computer selects action and human may or may not do it.
5 Computer selects action and implements it if human approves.
6 Computer selects action, informs human in plenty of time to

stop it.
7 Computer does whole job and necessarily tells human

what it did.
8 Computer does whole job and tells human what it did only if

human explicitly asks.
9 Computer does whole job and tells human what it did and it,

the computer, decides he should be told.
10 Computer does whole job if it decides it should be done, and

if so tells human, if it decides he should be told.

TABLE I: AI Autonomy Levels [34]

Level 0

You are driving
when system is engaged

You must constantly
supervise the system

You are not driving
when system is engaged

When requested,
you must drive

The system will not require you
to take over driving

Driver Support Systems Automated Driving Systems

Warnings and
momentary 
assistance

§ blind spot 
warning

§ lane departure 
warning

§ automatic 
emergency 
braking

Steering or
brake/acceleration 

support

§ lane centering

or

§ adaptive cruise 
control

Steering and
brake/acceleration 

support

§ lane centering

and

§ adaptive cruise 
control

Level 1 Level 2 Level 3 Level 4 Level 5

The system can drive under limited 
conditions and will not operate unless 

conditions are met

The system can 
drive under all 

conditions

§ traffic jam 
chauffeur

§ local driverless 
taxi

§ steering/pedals 
may or may not 
be installed

§ same as level 4, 
but system can 
drive 
everywhere in 
all conditions

Fig. 2: SAE J3016 Levels of Driving Automation [35]

avionics applications follows the principles of intent, correct-
ness, and innocuity [36], i.e. the certification process must
ensure the safety of the function by proofing the correct and
complete execution of the intended function and the absence
of any harmful unintended function. Usually, this is achieved
in a requirements based development process with exhaustive
review, testing, and reporting activities as well as clear test
coverage objectives. For the certification of safety-critical
software for the deployment to aircraft, certification authorities
(EASA, FAA) require particular development processes. These
cover both hardware and software. For the purposes of this
paper we focus on software only. The most important standard
documents guiding the development process are AMC 2x.1309

§ Level 1A
Human augmentation

§ Level 1B
Human cognitive 
assistance in decision
and action selection

§ Level 2
Human and AI-based 
system collaboration

§ Level 3A
AI-based system performs 
decisions and actions, 
overridable by the human

§ Level 3B
AI-based system performs 
non-overridable decisions 
and actions

Level 1 AI
Assistance to

Human

Level 2 AI
Human/Machine 

Collaboration

Level 3 AI
More Autonomous

Machine

Fig. 3: EASA Classification of AI/ML Applications [9, p. 9]

AI SAE J3016™ EASA
Autonomy Automation AI/ML

Level Level Classification
1 0 1A
2 1 1A
3 1 1B
4 2 2
5 2 2
6 2 2
7 3 3A
8 4 3A
9 4 3A
10 5 3B

TABLE II: Mapping of AI/ML Levels

(Certification Specifications for Normal Aeroplanes/etc., Ac-
cepted Means of Compliance, System Design and Analysis),
ARP 4754A (Guidelines for Development of Civil Aircraft and
Systems), ARP 4761 (Guidelines and Methods for Conducting
the Safety Assessment Process on Civil Airborne Systems
and Equipment), RTCA DO-178C (Software Considerations in
Airborne Systems and Equipment Certification), RTCA DO-
331 (Model-Based Development and Verification Supplement
to DO-178C and DO-278A), RTCA DO-332 (Object Oriented
Technology and Related Techniques Supplement to DO-178C
and DO-278A), and RTCA DO-333 (Formal Methods Supple-
ment to DO-178C and DO-278A).

An intermediate step towards a certification of AI based
applications is already in place: It is possible to certify AI
systems comprised of trained (deep) NNs, whose models have
been frozen and tested, in order to demonstrate a deterministic
behavior. However, this sacrifices the self-learning capability
of AI systems in the operational environment. Moreover, this
requires that the AI is testable with the required coverage
and that (manually created) requirements exist that can be
verified. Thus, an appropriate certification framework is re-
quired: The standards mentioned above form the baseline for
the certification of AI technology as well, but need to be
adapted [10], [37]. Existing FAA FAR Part 21 (Certification
Procedures for Products and Articles) might be used as a
framework for the development and certification of AI/ML
solutions, where certain paragraphs like CS 25.1309 could
be valid for the assessment of the safety of AI/ML-based
systems [10]. However, current standards are not going to
be adopted completely for the certification of AI based ap-
plications. Existing gaps need to be covered as required by
EASA’s AI Roadmap [10]. For this purpose, the international
committee SAE G-34/EUROCAE WG-114 (Artificial Intelli-
gence in Aviation) has been established in 2019 and is tasked
with the development of the required standard documents for
the deployment of AI technologies.

C. Classification Scheme

We propose to classify the applications involving AI in
avionics as given in Tab. III. The applications can be put
into six major domains from flight automation to development
automation. The sub-domains comprise the most mentioned
AI applications for avionics. In each domain, these are sorted
according to the degree of autonomy required. In terms of



learning, two categories are differentiated: First, offline trained
AI, that got its behavior before its execution and behaves
deterministically during runtime with respect to its input, and,
second, online trained AI, which can adapt according to its
input during runtime and changes its behavior, e.g. to improve
its performance. In most cases, a higher degree of autonomy
results in more severe malfunction consequences as well as
NNs with online learning being used. The demand is judged
to be rather urgent only for the application of sense-and-avoid
and cyber-security detection. Most others are nice to have and
a few are already implemented. The Technology Readiness
Level (TRL) is low for applications with highest demand and
autonomy level. We also assessed the need for certification
and whether experience with the certification of such an
application is existing. The degree of autonomy determines
the constraints regarding the effort for the certification: The
higher the autonomy level is, the more effort is required for
the certification for the deployment of AI to aircraft.

We identify an urgent demand for AI based solutions where
no other solution exists and the demand for a solution is
prevalent. Most prominently this seems to be the case for
unmanned vehicles that require an autarkic sense-and-avoid
system. Currently, no classical technology seems sufficient. A
certified solution is mandatory. In addition, autonomous flying
by AI seems mandatory in the military domain, to stay on par
with possible opponents. Certification is an issue, but currently
does not seem to be the primary concern. In the civil domain
autonomous flying has a strong commercial impact and is a
game changer in aircraft operations, but we do not state an
urgent demand today.

An application of LECs that could become mandatory but
is hard to judge today, is autonomous cyber-threat protec-
tion. The non-predictive, ever-changing nature of cyber-threats
make learning-based methods a possible tool to meet the
cyber-security regulations CS-2x 1319 (Certification Specifica-
tions for Normal Aeroplanes/etc., Notice of Proposed Amend-
ment 2019-01: Equipment, systems and network information
security protection). However, the importance will depend on
what level of effectiveness AI based cyber-security proves in
the field.

The other applications, such as virtual assistance, predictive
maintenance, flight path optimization, and cockpit voice con-
trol seem to be AI applications which increase the efficiency,
comfort, safety, or added value of the aircraft, but are not
mandatory. For most of them safety can be achieved without
the certification of LECs.

V. AI TECHNOLOGY STATUS QUO

The classification scheme highlighted that at least two
of the envisioned applications use methods that have not
been certified successfully yet. Methods considering the (self-
)learning nature of AI will be required. This Sec. summarizes
the status quo of AI assurance methods in order to identify
missing elements on the path to certified AI applications. We
assume here the most challenging conditions of an AI used in a
safety-critical function with catastrophic failure conditions. We
focus on the qualification of the software since it is assumed

that AI hardware is not special from the certification point-
of-view. This does not mean that hardware accelerating AI
algorithms is already completely certified. On the contrary,
the certification for the deployment of e.g. GPGPUs with their
considerable intrinsic parallelismis a particular challenge also
know from the still missing certification of multi-core CPUs.

A. AI Trustworthiness Analysis
For the technical implementation of trust EASA have in-

troduced the concept of trustworthiness analysis (including
human-machine interaction, HMI, see Section IV-A), which in-
cludes the building blocks Learning Assurance, AI Explain-
ability, and AI Safety Risk Mitigation [10, p. 16-20]. This
analysis framework is to guide the development and evaluation
of AI technology for certification: Learning assurance ensures
the selection of correct and complete training data, of appropri-
ate learning facilities (e.g. convolutional NNs) including their
hyper parameters for configuration, and verification aspects
for the inference phase (e.g. formal methods or Generative
Adversarial Networks) for ML applications. Explainability
(Explainable Artificial Intelligence, XAI) requires that humans
are able to understand how e.g. an ML implementations is
generating its results. XAI can be reached using the following
approaches:

Layer-wise relevance propagation (LRP) denotes a
”methodology that allows to visualize the contributions of
single pixels to predictions for kernel-based classifiers over
Bag of Words features and for multilayered neural networks.
These pixel contributions can be visualized as heatmaps” [39,
p. 1]. Thus, certain input is determined which contributes most
to the provided result. This in turn helps an AI expert to focus
on these aspects for understanding how an input determines
output. The approach suggested by Bach et al. is suitable for
NNs implemented for object recognition. Thus, methods for
the XAI of other AI technologies are missing. In addition,
there is no approach for the objective quality evaluation of the
generated heatmap.

The counterfactual method helps to determine the impact
of changes of the ML models and to determine the ramifica-
tions after editing input data [40]. Wexler et al. have presented
a GUI based tool for this purpose. Although it can be applied
to ML solutions in general, it is still necessary for an expert to
assess the tool’s findings. Thus, additional work for reducing
the expertise level is necessary e.g. for identifying outliers and
parts of the data for which the ML model needs improvements.

Local interpretable model-agnostic explanations (LIME)
is a ”technique that explains the predictions of any classifier
in an interpretable and faithful manner, by learning an inter-
pretable model locally around the prediction” [41]. Ribeiro et
al. introduced this for the text and image domains. However,
the approach needs to be extended for handling also speech
recognition and object recognition in videos as well as other
ML methods.

Risk mitigation suggests that an AI application is super-
vised by additional means to make sure that it is working
according to its specification. For the certification of AI for
its deployment to avionics the required trustworthiness needs
to be established.



TABLE III: Classification of AI Applications in Avionics

Domain Sub-domain Learning
Autonomy
level

Malfunction
severity*****

AI methods Demand TRL*
Certification
required

Certification
experience

online,

offline

1-10 (general);

1a-3b (EASA)

NSE, MIN,

MAJ, HAZ,

CAT

Neural Network (NN),

Classical ML** (CML),

Rule-based (RB)

As soon as possible (ASAP),

nice to have (NTH),

state of the art (SOTA)

1-9

mandatory,

preferred,

not required

none, possible,

done, N/A

Flight automation

Fully autonomous
flight

online 10; 3b CAT NN NTH/ASAP**** 3 mandatory none

Sense-and-avoid offline 7-10; 3a/b CAT NN ASAP 3 mandatory none
Visual navigation*** offline 7-10; 3a/b CAT NN NTH 3 mandatory possible
Partial task automation offline 6-8; 3a CAT RB, NN, NTH N/A mandatory done
Adaptive pilot assistant online 2-5; 1a/b NSE NN,CML NTH N/A preferred N/A
Rule-based pilot assis-
tant

offline 2-4; 1a NSE RB SOTA 9 preferred N/A

Flight controls
Adaptive controller online 10; 3b CAT NN, CML NTH 7 required none
Efficient controller offline 10; 3b CAT NN NTH 7 mandatory possible

NLP

Autonomous process-
ing of ATC calls

offline 7-10; 3a/b CAT NN NTH 3 required none

Assistance in process-
ing ATC calls

offline 6-8; 3a MIN NN NTH 5 mandatory none

Cockpit voice control offline 5-6; 2 MAJ NN NTH 6 mandatory possible
Advanced audio advice offline 3;1a MIN NN NTH 7 preferred N/A
Voice-control for pas-
sengers

offline 2;1a NSE NN NTH 7 not required N/A

Cyber-security
Anomaly detection online 2-3; 1a/b NSE NN ASAP 3 not required N/A
Autonomous counter
measure

online 5-10; 2-3a/b NSE NN NTH 2 mandatory none

Predictive maintenance
Learning predictors online 3;1b NSE NN,CML NTH 4 not required N/A
Pre-trained predictors offline 3;1b NSE NN,CML SOTA 6 not required N/A

Development assistant
Qualified tool offline 2-4;1b-2 CAT NN NTH 2 mandatory none
Unqualified support online 2-4;1b-2 NSE NN SOTA N/A not required N/A

* Technology Readiness Level according to [38]; ** Fuzzy logic, Decision tree, SVM, KNN, etc.; *** Runway detection, centerline detection, obstacle clearance, etc.;
**** Currently only military and UAV stakeholders have an ASAP demand. For civil air transportation it is judged to be NTH.
***** According to AMC 25.1309: No safety effect (NSE), minor (MIN), major (MAJ), hazardous (HAZ), catastrophic (CAT).

B. Runtime Assurance

Runtime Assurance is the application of architectural prin-
ciples that make it possible to run an application in a critical
context without trusting it, because its runtime behavior is
continuously monitored, and control is transferred to a trusted
application in case the untrusted application deviates from
the set of allowed safe behaviors. One means for Runtime
Assurance is the provision of redundancy [42] for safety-
critical systems and of re-configuration after the occurrence
of failures [43]. EASA suggested such an architecture as one
way of mitigating the safety risk of AI applications [10]:
monitoring of the output of the AI/ML and passivation of the
AI/ML application with recovery through a traditional backup
system (e.g. safety net). In that scenario, a backup and hot
standby system is developed according to the current standards
(Sec. IV-B). This system is checking the validity of the results
of the AI algorithms. If a malfunction or unexpected results
are detected, the AI component is deactivated and the backup
is used instead. EASA suggest additional ways of mitigating
the safety risk of AI applications:

i. The human operator is supposed to stay in command
(human in command, HIC) or in the loop (HITL), where
the the operator accepts AI suggestions or is observing the
AI’s decisions and is able to override them, respectively.

ii. The risk of creating wrong results by the AI is reduced by
the encapsulation of ML algorithms in rule-based systems.

iii. The robustness and dependability of an AI component
can be enhanced by adding an independent AI module

checking the results of the component and releasing them
only after the passed validity check.

Such a Runtime Assurance architecture is already described
in [28] for monitoring the LEC detecting the runway. However,
it was demonstrated that the taxiing speed needed to be slowed
down or even set to zero due to the LEC not being capable any
more to process the provided input data in time. While this
approach might be an option for fail-passive applications, it
is definitely excluded for fail-active applications. The monitor
as part of a runtime assurance architecture can itself be based
on AI for better accuracy and performance, as demonstrated
in [44, RTSA] where the meta-controller is trained by re-
inforcement learning, providing here an example for item
iii) above integrated in a runtime assurance architecture. An
AI-based monitor does not solve the certification issue but
complicates it by shifting it to an additional component.

C. Computer-aided (Formal) Verification for AI

Classical testing means are not sufficient for advanced AI
applications: ”Current test-based verification processes will
never be sufficient to assess the behavior of adaptive sys-
tems” [37]. Considerable progress has been reached in the
domain of formal verification during the previous years: The
formal verification of software of considerable size has been
demonstrated to be feasible [45]. Also the automation of corre-
sponding verification tools has also seen major improvements
regarding the fully automatic analysis of realistically sized
software [46]. To conclude, even the formal verification of



verification tools can be reached according to the current state-
of-the-art. The challenge is to apply these for the verification
of AI applications. Urban and Miné come to the conclusion
”that we are still far away from being able to verify the entire
machine learning pipeline, which we argue is necessary to
ensure the safe use of machine learning software in safety-
critical applications” [47]. Urban and Miné suggest these
future works:

i. Data preparation: Urban and Müller conclude that ”ver-
ification methods that detect [...] reused and duplicated
data would be a valuable complement to existing ap-
proaches. More generally, approaches for tracking data
provenance would provide important traceability guar-
antees” [48]. The authors require further progress for
the ”inference of assumptions on the input data that are
embedded in data preparation software guarantees”.

ii. Model training: Formal guarantees on the training pro-
cess need to be enhanced. In particular, it is necessary to
determine how the trained model evolves as an answer
to certain input values. Furthermore, constraints on the
training phase have to be developed, which accomplish
the needed behavior regarding the provided input data.

iii. Model deployment: Previous effort is required for the
verification of global robustness properties instead of local
ones only. This means the verification of the model regard-
ing any conditions and not only a limited input area. If
the verification fails the source needs to be identified [49]
for improving the model.

D. Tools

The ML domain is the one which is most mature, is in
the focus of researchers, and is adopted widely. We give
an overview of selected tools, which are useful for the de-
velopment of ML applications. In this context we see the
layers (i) distributed computing and (ii) AI frameworks. We
compile a non-exhaustive list of prominent examples. These
tools are representing the state-of-the-art, are widely adopted
for the development of ML applications, and thus subject to
permanent improvements:

i. Managing distributed computing: For the conduction of
the learning phase a vast amount of training data is neces-
sary. These can be managed only by using dedicated tools.
Kubeflow (https://www.kubeflow.org/) manages ML de-
velopment processes in heterogeneous infrastructures,
which are based on Kubernetes (https://kubernetes.io/).
Kubernetes is used for orchestrating containerized ap-
plications. Containers are often created using Docker
(https://www.docker.com/). Apache Spark™ (https://
spark.apache.org/) is an analytics framework for enabling
processing of huge data sets. Apache™ Hadoop® (https:
//hadoop.apache.org/) provides management facilities for
processing large data sets in an distributed computing
environment with several clusters.

ii. AI frameworks: TensorFlow (https://www.tensorflow.
org/) is a library for general purpose ML. Keras offers
an API for creating ML environments with a focus on

readability by humans. It hides e.g. TensorFlow’s func-
tionalities behind its API and thus enhances the program-
ming model. Caffe (https://caffe.berkeleyvision.org/) adds
an abstraction layer e.g. for using different AI accelerating
hardware and renders in-depth knowledge of the hardware
superfluous.

On top of these layers the actual ML model has to be
selected and configured. The robustness of the developed AI
application is still a challenge. For the creation and auditing
of assurance cases the AdvoCATE tool for robust software
engineering can be used [50], [51]. It provides the manual
creation and editing of assurance arguments in the Goal Struc-
turing Notation (GSN). Describing the task of autonomous
software components using goals is well-known in software
agent engineering [52] and thus exhibits already high maturity.

VI. AI READINESS ASSESSMENT

The state of LEC applications in avionics seems to be that
an in-flight demonstration is feasible with sufficient safety
nets, but the reported applications show that the trust is not
high enough for scenarios with severe consequences. In the
following an attempt is made to answer the primary questions
of the applicability of AI in avionics.

A. What AI applications are ready?

i. Any AI application that does not require certification, be-
cause it cannot cause severe consequences on malfunction,
i.e. the function is rated as DAL E.

ii. Any AI application that is fully testable, i.e. the number
of inputs and states is of manageable size and it is
computationally feasible to test each of them and it is
developed and verified in accordance to the DO-178C.
A subset of such a category are ML applications for
which the input data set is limited to certain values during
runtime.

iii. Runtime assurance is a technology that complies fully
with the current certification regulations. The prerequisite
is that the safety monitor and the backup function can
be implemented by currently certifiable methods and are
strictly segregated from the potentially unsafe AI. If the
prerequisite holds, we see no reason, why not any kind
of AI (offline and online learning) can be flown in such
a “safety container”. We see parallels here to the strict
segregation of low DAL partitions in IMA modules.

B. What AI applications are almost ready?

Formal verification has shown to be feasible for smaller
AI implementations, e.g. control laws. If it is computation-
ally feasible and the required pre and post conditions can
be described and shown to be complete, formal verification
should provide an acceptable means of compliance for the
certification. RTCA DO-333 provides a baseline for that. This
concerns the method of formal verification itself if carried out
by an engineer, which will be infeasible in many cases. If
theorem provers are used, they might need a tool qualification
as long as the output cannot be checked by a human, which

https://www.kubeflow.org/
https://kubernetes.io/
https://www.docker.com/
https://spark.apache.org/
https://spark.apache.org/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://caffe.berkeleyvision.org/


is likely to occur. A qualified theorem prover is not known
to us. Moreover, the formal verification of AI currently lacks
successfully certified examples.

C. What AI applications are not ready?

i. AI with intractable input that cannot be runtime assured,
seems currently infeasible to certify. For instance, in
object recognition and NLP the input space can never be
completely tested or be meaningfully restricted. There are
many counterexamples for fooling image recognition [53]
and NLP [54]. These are usually triggered by generating
adversarial examples and subjecting the NN to these:
Tank images classified by the weather conditions instead
of the actual tanks [55]; road sign detection distortion
by special symbols [56]; fooling autonomous cars by
generating a pattern in the image which renders the optical
flow algorithm inoperative [57]; horse images classified
by image watermarks and boats classified by water [58].
For image recognition and NLP approaches methods
such as LRP or LIME provide insights into such effects
and help to achieve a certain robustness, but currently
these methods provide no meaningful quantity that can
be used in certification, e.g. the probability of correct
classification. This will be even worse for AI with inputs
not easily sensible (see, hear, feel) by humans, e.g. as
necessary for AI pilots. Although LRP and LIME are in
principle applicable it will be difficult to draw conclusions
from the results.

ii. AI with online-learning capabilities that cannot be runtime
assured seem incompatible with certification regulations,
because their behavior is not deterministic and depends
on the environment the AI is confronted with in future.

D. What is necessary to make more use of AI in avionics?

i In order to enhance the robustness of ML applications such
as object recognition and NLP, Generative Adversarial
Networks [59, GAN] are used widely. In this approach
possible input for training an NN is generated and assessed
according to its validity and usefulness with two separate
NNs before it is provided to the NN as input. Though
this is promising, the convergence of GANs is still a
challenge [60].

ii Online-learning AI could become airworthy if parts of
the qualification activities can be carried out during the
runtime of the system, i.e. enabling some sort of self-
qualification also known as self-assurance. For instance,
safety or security assessments could be carried out online
if the system possesses sufficient knowledge about the
intended function. This is tried in the PAFA-ONE project
for self-organizing avionics modules [61], but having the
self-assurance methods implemented in a certifiable way
and having this accepted by the authority has by far not
been accomplished.

iii Empirical reliability validation of AI methods with larger
complexity such as image recognition might become pos-
sible with massive processing power and advanced (qual-
ified) simulations or by testing the AI passively in real-
world products for a long period of time.

VII. CONCLUSION AND OUTLOOK

Integrating Al into the avionics engineering environment is
not a novel idea, in fact it is the title of an article published in
1986 [62], in a context where AI meant mainly expert systems.
In our current context, AI subsumes especially (online) LECs,
but similar concerns regarding the applicability of using more
complex critical applications remain. We conclude that the
most demanded AI applications today are sense-and-avoid,
virtual (safety) pilot, and cyber-security protection. These
applications if using AI are certifiable today as long as rule-
based approaches or runtime assurance are used. When using
NNs, formal methods seem to become AMC for certification.
Currently, they suffer, however, from insufficient performance,
trust, and experience. Especially online learning methods will
need new methods. One possibility is self-assurance, but certi-
fiable self-assurance methods are not available today. Though
considerable challenges have been identified, there are also
applications with small development effort and high benefit,
i.e. those applications without safety effect, with runtime
assurance, or being fully testable.
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[47] C. Urban and A. Miné, “A Review of Formal Methods applied to
Machine Learning,” 2021.

[48] C. Urban and P. Müller, “An Abstract Interpretation Framework for Input
Data Usage,” in Programming Languages and Systems, A. Ahmed, Ed.
Cham: Springer International Publishing, 2018, pp. 683–710.

[49] C. Deng and P. Cousot, “Responsibility Analysis by Abstract Inter-
pretation,” in Static Analysis, B.-Y. E. Chang, Ed. Cham: Springer
International Publishing, 2019, pp. 368–388.

[50] E. Denney and G. Pai, “Tool support for assurance case development,”
Automated Software Engineering Journal, 2017.

[51] NASA, “AdvoCATE: Assurance Case Automation Toolset,” 2021.
[Online]. Available: https://ti.arc.nasa.gov/tech/rse/research/advocate/

[52] M. Wooldridge, An Introduction to MultiAgent Systems, 2nd ed. Wi-
ley, 2011.

[53] D. Heaven, “Why deep-learning ais are so easy to fool,” nature,
2019. [Online]. Available: https://www.nature.com/articles/d41586-019-
03013-5

[54] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust?
a strong baseline for natural language attack on text classification
and entailment,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 05, pp. 8018–8025, Apr. 2020. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/6311

[55] G. Branwen, “The neural net tank urban legend,” Aug. 2019. [Online].
Available: https://www.gwern.net/Tanks

[56] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal,
“Darts: Deceiving autonomous cars with toxic signs,” 2018.

[57] A. Ranjan, J. Janai, A. Geiger, and M. J. Black, “Attacking optical flow,”
2019.

[58] S. Bach, A. Binder, G. Montavon, K.-R. Müller, and W. Samek,
“Analyzing classifiers: Fisher vectors and deep neural networks,” 2015.

[59] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial nets,” in Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Q. Weinberger, Eds., vol. 27. Curran Associates, Inc.,
2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[60] L. Mescheder, A. Geiger, and S. Nowozin, “Which
Training Methods for GANs do actually Converge?” in
Proceedings of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 3481–3490. [Online].
Available: http://proceedings.mlr.press/v80/mescheder18a.html
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