
Co-Developing Programs
and Their Proof of Correctness

TECH PAPER

Paper from Communications of the ACM

http://adacore.com

 key insights
 ˽ Today, a few companies like NVIDIA

are formally proving the correctness of
their critical software using the SPARK
language and verification technology.

 ˽ This advance was made possible by
a careful design of the programming
language, the specification language,
and special "ghost" code intended for
specification and verification. The support
for reasoning about pointers is dependent
on following an ownership policy like the
one found in Rust.

 ˽ Industrial adoption rests on choosing the
most appropriate assurance level for a
given project, from prevention of basic
defects, through memory-safety and
type-safety, and finally to full functional
correctness. SPARK supports that
practical approach to formal proof.

T W EN T Y Y E A R S AG O, Sir Tony Hoare proposed a grand
challenge to the computing research community: to
develop a verifying compiler [which] uses mathematical
and logical reasoning to check the correctness of the
programs that it compiles. Hoare went on to set
demanding success criteria for this effort: If the project
is successful, a verifying compiler will be available as
a standard tool in some widely used programming
productivity toolset.26

While there have been some notable successes with
program verification systems,a the use of such systems
is still perceived as a niche activity for the most critical
and specialized projects1,23,29,30,34 Program verification
systems based on automatic techniques have also emer-
ged.9,11,14,16,33 These systems occupy a middle ground
a We prefer this term, since we have found that verifying compiler is all too easily confused with

verified compiler which is altogether a different beast.

in the landscape of verification tech-
niques, between push-button tools
that require minimal setup and fully
interactive proof assistants. The ap-
proach has been called “auto-active”—
a portmanteau of “automatic” and
“interactive”—where users develop
the proof and the program at the same
time through the use of assertions and
other contracts in the programming
language.

The open source SPARK technology
is a prominent member of that family,
with a history dating back to 1987. The
objective of this article is to explain the
auto-active approach for co-developing
programs and their proof of correct-
ness, present the key design and tech-
nological choices that made SPARK
industrially successful, and what this
means for the future of SPARK or ana-
lyzers of that same family.

The Programming
Language Matters
The language subset matters. The
seeds of SPARK can be traced back
to the mid-1980s at the University of
Southampton in the U.K.12 Following
modest success with verification of a
Pascal subset, the team set an ambi-
tious target: the design of a verifica-
tion system that would be usable for
the development of safety-critical soft-
ware. In retrospect, this seems like an

Co-Developing
Programs and
Their Proof of
Correctness

DOI:10.1145/3624728

The SPARK programming language
and analyzer.

BY RODERICK CHAPMAN, CLAIRE DROSS,
STUART MATTHEWS, AND YANNICK MOY

84 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

I
M

A
G

E
 B

Y
 B

A
L

E
I

N
/S

H
U

T
T

E
R

S
T

O
C

K

https://dx.doi.org/10.1145/3624728
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624728&domain=pdf&date_stamp=2024-02-22

research

absurd proposition; systems program-
ming at the time was dominated by C
which, with its overt dependence on
pointer types, was considered out of
the reach of verification tools.

The top-level design goals were as
follows:

 ˲ Soundness. Verification results
should be sound—that is, trustworthy
for all compilers and target machines.

 ˲ Sufficient completeness. Verifica-
tion of non-trivial properties should
offer a tolerably low false-alarm rate.

 ˲ Formality. The language should be
amenable to the development of an un-
ambiguous formal definition.

 ˲ Scalability. Verification should
scale to industrial code bases in rea-
sonable time.

 ˲ Modularity. Verification of incom-
plete programs should be possible dur-
ing their development.

 ˲ Expressiveness. The language
should be usable for building embed-
ded, real-time, and critical software
systems, not limited to “toy” examples.
The verification system should allow
the specification of non-trivial correct-
ness properties, not just a list of "com-
mon errors."

The provision of soundness for all

compilers and target machines was
particularly challenging. This meant
the elimination of all undefined be-
havior (error cases where the language
does not define a behavior) and, as a
necessary simplification in an indus-
trial tool, removal of all dependence on
unspecified language features (cases
where the language does not define a
unique behavior) through subsetting
or analysis.

The team judiciously chose Ada as
their base language, which brought
key enabling features to the table. In
particular, Ada features:

 ˲ Modules (aka packages) that come
in two parts—a “specification” and a
“body”—allowing contracts to be add-
ed where required to provide strictly
modular analysis.

 ˲ Function calls are expressions,
while procedure calls are statements.
Functions in SPARK are also free of
side effects, which greatly simplifies
the formal definition and eliminates
dependence on expression evaluation
order—for example in evaluating argu-
ments of a call. Procedures can take
inputs as in parameters, outputs as
out parameters, and mutate in out
parameters and global variables.

 ˲ User-defined scalar types. In Ada,
it is normal to declare scalar types that
model the problem-domain, not the
target computer. These are critical in
achieving an acceptable false-alarm
rate for type-safety properties, especial-
ly freedom from integer or real overflow.

 ˲ Composite types (arrays and re-
cords) are “first class” in Ada, so they
can be passed as parameters and re-
turned from functions without the ex-
plicit use of pointers. With a local anal-
ysis of aliasing, soundness is preserved
regardless of a compiler's choice of
parameter-passing mechanism.

The technology started to find its
industrial niche in the early 1990s,
when SPARK was selected for the
development of all Risk Class 1 sys-
tems on the EuroFighter Typhoon
program. Given the limitations of the
automatic provers and available com-
puting resources at the time, the pro-
gram initially limited itself to adop-
tion of the language subset and the
information flow analysis offered by
the SPARK analyzer.

The development of Ada2012
brought a significant change, add-
ing contracts as first-class citizens
in the language, effectively render-
ing SPARK's special “annotation lan-
guage” redundant. This brought about
a reboot of the language and tools.

The language design was restart-
ed from scratch, adopting Ada2012's
contract language as part of the core.
While earlier versions of SPARK con-
centrated on solely static verification
of contracts, Ada2012 allowed for con-
tracts that could be verified both stati-
cally or dynamically, or some mix of
both styles in the same program. We
also took the opportunity to redevelop
the entire analyzer, starting with the
GNAT Ada compiler front end, and
targeting the Why3 intermediate lan-
guage and toolset,22 supported by the
plethora of SMT-based provers that
had come to the fore. Given an anno-
tated program, the SPARK analyzer
generates formulas, aka verification
conditions (VCs), which are sent to au-
tomatic provers. If all VCs are success-
fully proved, the program correctly
implements its (partial) specification.
The full compiler front end also al-
lowed the return of several language
features, such as generics, dynamic
subtypes, and dynamically sized array

86 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

Figure 1. SPARK specification as contracts.

1 type Index is new Integer;
2 type Element is new Integer;
3 type Table is array (Index range <>) of Element
4 with
5 Dynamic _ Predicate ⇒ Table’First = 1 and Table'Last ≥ 0;
6
7 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index)
8 with
9 Pre ⇒ From in T'Range and To in T'Range,
10 Post ⇒ T = (T’Old with delta From..To ⇒ 0);
11
12 function Is _ Range _ Zero(T : Table; From, To : Index) return Boolean is
13 (for all I in From..To ⇒ T(I) = 0)
14 with
15 Ghost,
16 Pre ⇒ (From ≥ 1) and (To in 0 | T'Range);
17
18 function Is _ All _ Zero(T : Table) return Boolean is
19 (Is _ Range _ Zero(T, T'First, T'Last))
20 with
21 Ghost;
22
23 function Search _ First _ Non _ Zero(T : Table) return Index
24 with
25 Post ⇒
26 (declare
27 NZ : constant Index := Search _ First _ Non _ Zero'Result;
28 begin
29 (if NZ in T'Range then T(NZ) ≠ 0 and Is _ Range _ Zero(T, 1, NZ-1)
30 else NZ = 0 and Is _ All _ Zero(T)));

research

types, that had been excluded from the
earlier designs.

The new version of SPARK, dubbed
SPARK 2014 when it was first released
in 2014, has undergone significant ex-
tensions with every passing year, add-
ing safe support for object-oriented
programming, concurrency, contracts
on types, and pointers. The language
subset is rigorously defined in a refer-
ence manual4 that follows the style of
the ISO/IEC definition of Ada. Similar-
ly to how “legality rules” define what it
means for a program to be accepted by
the Ada compiler, “verification rules”
define what it means for a program to
be accepted by the SPARK analyzer.

Today, SPARK is a large subset
of Ada, only excluding features that
would defeat the objectives of reason-
ably specifying or automatically verify-
ing programs.

The specification language matters.
SPARK's contract language inherits
from decades of research on behavioral
interface specification languages.24 It
started as special stylized comments,
with a mathematical semantics. Work
done by Chalin in the context of ESC/
Java showed that this was a source of
confusion for programmers,13 which
led to adopting an executable seman-
tics for contracts as part of their inclu-
sion in Ada2012; dividing by zero in
contracts is now an error, like in code.

Another great benefit of executable
contracts is that they can be tested and
debugged like regular code. This can be
very useful during development, as mis-
takes can be easily identified through
testing and investigated through de-
bugging. This can also be used to vali-
date assumptions made during formal
verification, by executing contracts dur-
ing tests (typically integration or valida-
tion tests). Of course, an essential prop-
erty is that a formally verified program
should not fail at runtime. Hence, static
checks performed by the SPARK analyz-
er should be a superset of the dynamic
checks during execution. They cannot
be the same in general, as dynamic
checks are designed for the compiler to
insert, which has limited knowledge of
side effects and aliasing in particular,
and the design of dynamic checks needs
to find a balance between runtime effi-
ciency and comprehensiveness.

Contracts in SPARK are attached to
packages, subprograms, and types in

the form of a pair of the contract name
and value separated by an arrow sym-
bol (⇒). Contracts on types come in
two flavors: predicates, which can never
be violated, and invariants, which can
be violated locally inside the package
defining the type. Consider the specifi-
cation expressed as contracts in Figure
1. Type Table on line 3 is an array of
Element, whose size is computed dy-
namically, with a value of Index start-
ing at 1 and ending at a positive index,
or 0 for the empty array. The allowed
range of values for the first and last
indexes are specified here through a
predicate, as the type system of SPARK
otherwise allows arbitrary integer val-
ues for both.

Contracts on subprograms con-
sist essentially in a precondition and a
postcondition. The precondition states
which combinations of values of input
parameters and global variables are al-
lowed when calling the subprogram.
The postcondition states which com-
binations of values of output param-
eters and global variables are allowed
when returning from the subprogram,
usually as a relation with input values,
where the input value of an expres-

sion X is denoted X'Old. Consider the
procedure Set _ Range _ To _ Zero
on line 7. Its precondition states that
the parameters From and To should
denote valid indexes in the array T. Its
postcondition states that the final val-
ue of T should be the same as its input
value, with the values between indexes
From and To zeroed out, using here a
delta-aggregate for a compact expres-
sion. Search _ First _ Non _ Zero,
the procedure on line 23, has a default
precondition of True and a postcondi-
tion stating that it returns the index of
the first non-zero element if any, using
a declare-expression to introduce a lo-
cal name for the value returned.

Ghost code: Code for specification
and verification. Functions such as
Is _ Range _ Zero on line 12 are only
meant for verification. They are not
needed in the final executable, which is
typically compiled without contracts.
In SPARK, such code is specially iden-
tified as ghost code by attaching the as-
pect Ghost to declarations, so that the
compiler can discard it.

In an ideal situation, a programmer
would only need to write contracts on
an API to get the code of their library

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 87

Figure 2. SPARK implementation and verification code.

1 -- first version
2 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index) is
3 begin
4 for J in From..To loop
5 T(J) := 0;
6 pragma Loop _ Invariant (Is _ Range _ Zero (T, From, J));
7 end loop;
8 end Set _ Range _ To _ Zero;
9
10 function Search _ First _ Non _ Zero (T : Table) return Index is
11 begin
12 for J in T’Range loop
13 if T(J) ≠ 0 then
14 return J;
15 end if;
16 pragma Loop _ Invariant (Is _ Range _ Zero (T, 1, J));
17 end loop;
18 return 0;
19 end Search _ First _ Non _ Zero;
20
21 -- second version
22 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index) is
23 T _ Entry : constant Table := T with Ghost;
24 begin
25 for J in From..To loop
26 T(J) := 0;
27 pragma Loop _ Invariant (Is _ Range _ Zero (T, From, J));
28 pragma Loop _ Invariant (for all K in T'Range ⇒
29 (if K not in From..To then T(K) = T _ Entry(K)));
30 end loop;
31 end Set _ Range _ To _ Zero;

research

is also provable inductively: First, the
SPARK analyzer proves that the invari-
ant holds during the first iteration of
the loop; second, assuming that the in-
variant holds at an arbitrary iteration,
the SPARK analyzer proves that it is
preserved during the next.

Proving preservation is typically
harder, as the loop invariant expres-
sion should not only hold at the corre-
sponding program point, but it should
be inductive with respect to the loop
body. The elephant in the room is that
the VC may contain less information
than what the user assumes regarding
variables read or written in the loop. A
frequently forgotten part of the loop
invariant is the so-called frame con-
dition, which denotes the parts of a
modified variable preserved inside the
loop. While the SPARK analyzer has
heuristics to generate the frame condi-
tion, this is not sufficient in all cases.

It is not sufficient to know that T in
procedure Set _ Range _ To _ Zero
has been zeroed out between indexes
From and the current loop index J. To
prove the postcondition of the proce-
dure, we should maintain in the loop
invariant the information that, for all
indexes out of the From..To range, T
maintains the value it had at the entry
of the subprogram. The SPARK ana-
lyzer generates the frame condition
in this case, which is why the first ver-
sion of Set _ Range _ To _ Zero on
line 2 is proved. In the second version
on line 22, we add the frame condition
explicitly in a second loop invariant on
lines 28–29. Note the declaration of a
ghost variable T _ Entry on line 23 to
hold the value of T at entry, so we can
compare it with the values in T inside
the loop invariant. The aspect Ghost
attached to the declaration of T _ En-
try informs the compiler that this is a
ghost variable, which should be delet-
ed unless compiling with assertions.

Ghost variables are more generally
useful whenever specification or veri-
fication code needs to refer to values
which are not readily available in the
code like T _ Entry. Similarly, ghost
functions are useful to express queries
that are not part of the normal API,
such as functions Is _ Range _ Zero
and Is _ All _ Zero. Ghost proce-
dures make it possible to group ghost
declarations and statements. Ghost
code makes it possible to instrument

proven. While this may work in some
cases, this is not the most common
case: A subprogram defined in the
API may call other subprograms with-
out specifications, and it may contain
loops. Both calls and loops require spe-
cial handling to be proved; that may
require further specification of their
behavior. A programmer may have to
add contracts to called subprograms
and invariants to loops.

Subprogram contracts are essential
for modularity, scaling, and automa-
tion of proof. The SPARK analyzer can
deal with subprograms that bear no
contracts by inlining them at the point
of call, but this makes VCs more com-
plex, possibly to the point of defeating
automatic provers. Thus, such inlining
is reserved for private subprograms of
a package. For other subprograms, the
programmer must write a contract that
summarizes the behavior of the sub-
program for the analysis of its callers.

The case of loops is similar. When
the maximum number of loop itera-
tions is small, the SPARK analyzer can
deal with loops by unrolling them, but
this also makes VCs more complex and
does not work on unbounded loops. In
general, the programmer must write
a loop invariant that states properties
known to be maintained in the cor-
responding location at each iteration
of the loop. Consider the implementa-
tion for the previous specification in
Figure 2. Loop invariants summarize
the modifications on variables that
occur in previous loop iterations, like
in Set _ Range _ To _ Zero on line
2, and they accumulate information
about values seen in prior iterations,
like in Search _ First _ Non _ Zero
on line 10. Contrary to the original loop
invariants from Hoare,25 a loop invari-
ant in SPARK can be located anywhere
in the loop (although it is typically at
the start or the end of the loop body),
and it only has to hold when execution
reaches that point in the code.

The loop invariant in procedure
Set _ Range _ To _ Zero (first ver-
sion on line 2) is located at the end of
the loop body on line 6. It specifies
that table T holds value 0 between in-
dexes From and J. This summarizes
the behavior of the loop with enough
precision for the postcondition of
Set _ Range _ To _ Zero on line 10
in Figure 1 to be proved. The invariant

Systems
programming at the
time was dominated
by C which, with its
overt dependence
on pointer types,
was considered
out of the reach of
verification tools.

88 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

3. Procedure Set _ List _ To _ Zero
(incorrect version on line 25) imple-
ments a naive iteration. The declara-
tion of iterator X causes the parameter
L to lose the ownership of the list. As
X iteratively drops its handle to each
element of the list, there is no way to
return ownership to L at the end of
the procedure. On the contrary, recur-
sive traversals of such structures do
not conflict with the ownership policy
of SPARK, as can be seen in the ghost
function Is _ All _ Zero on line 8.
Indeed, as functions have no side ef-
fects in SPARK, aliasing between their
parameters is not a problem.

Using recursion—if only for ghost
functions—makes it necessary to
prove termination using a Subpro-

value is returned each time), which
would prevent doing it in (side-effect
free) functions. Deallocation must be
done manually, but the analyzer will
make sure that no leaks occur.

Even with the restrictions imposed
by the ownership policy, it is possible
to create recursive data structures in
SPARK, as long as they have no cycles
or sharing. For example, simple lists or
trees are fine, but doubly linked lists or
directed acyclic graphs cannot be con-
structed. Naive iteration over a recur-
sive data structure using a loop is in-
herently incompatible with ownership,
as the handle used for iteration is an
alias of the underlying structure. Re-
writing the code from Figure 2 to use
pointers gives us the variant in Figure

the code without risking interfering
with its behavior, as the SPARK analyz-
er checks that ghost code cannot have
any effect on the functional behavior
of the program. For example, a ghost
procedure is not allowed to contain an
assignment to a regular (non-ghost)
variable. Therefore, the guarantees ob-
tained by proving the implementation
including ghost code hold also for the
execution of the program where ghost
code is deleted.

Dealing with pointers through own-
ership. In the absence of pointers, the
SPARK analyzer can exclude problem-
atic aliasing through a simple com-
parison of the “names” (including field
names when referring to the subcom-
ponent of a record) of actual param-
eters and global variables at each call
site. This is sufficient for most SPARK
programs, as the language provides
separate features to pass parameters
by reference and to specify the address
of data in memory, so that source-level
pointers are essential only to deal with
heap-allocated memory. Until 2019,
SPARK did not support pointers and
heap-allocated memory, which was a
good match with its use in real-time
and embedded software. The lack of
pointers, however, disallowed stan-
dard design patterns, such as user-
defined recursive data structures or
access to a part of a structure in place.

Support for pointers was intro-
duced in 2019, based on the ownership
principle popularized by Rust.27 While
the technical details presented later in
this section may challenge the reader's
understanding, the idea is simple: A
single object, the owner, is allowed to
read or modify data through a pointer.
Ownership is transferred through
assignment statements and param-
eter passing. This is sufficient to rule
out problematic aliasing. As a result,
pointers are handled by the SPARK
analyzer like optional values: A pointer
can either be null or can contain a val-
ue, which is copied when copying the
pointer. The resulting VCs are similar
to those generated on programs with-
out pointers, and they pose no specific
difficulties to automatic provers. Note
that the pointer value itself is inten-
tionally not modeled. Otherwise, the
SPARK analyzer would need to consid-
er that allocating memory on the heap
has a side effect (as a different pointer

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 89

Figure 3. SPARK program with pointers.

1 type List _ Cell;
2 type List is access List _ Cell;
3 type List _ Cell is record
4 Data : Integer;
5 Next : List;
6 end record;
7
8 function Is _ All _ Zero(L : access constant List _ Cell) return Boolean is
9 (L = null or else (L.Data = 0 and then Is _ All _ Zero(L.Next)))
10 with
11 Ghost,
12 Subprogram _ Variant ⇒ (Structural ⇒ L); -- structural recursion on L
13
14 function At _ End(X : access constant List _ Cell)
15 return access constant List _ Cell is (X)
16 with
17 Ghost,
18 Annotate ⇒ (GNATprove, At _ End _ Borrow); -- only for prophecy values
19
20 procedure Set _ List _ To _ Zero(L : access List _ Cell)
21 with
22 Post ⇒ Is _ All _ Zero(L);
23
24 -- incorrect version
25 procedure Set _ List _ To _ Zero (L : access List _ Cell) is
26 X : List := L; -- ownership is transferred to X
27 begin
28 while X ≠ null loop
29 X.Data := 0;
30 X := X.Next; -- the first cell of X is no longer accessible
31 end loop; -- how can the ownership be returned to L?
32 end Set _ List _ To _ Zero;
33
34 -- correct version
35 procedure Set _ List _ To _ Zero(L : access List _ Cell) is
36 X : access List _ Cell := L; -- ownership is given to X temporarily
37 begin
38 while X ≠ null loop
39 X.Data := 0;
40 X := X.Next; -- X now designates a substructure of L
41 pragma Loop _ Invariant
42 (if Is _ All _ Zero(At _ End(X)) then Is _ All _ Zero(At _ End(L)));
43 end loop;
44 -- the ownership returns to L automatically
45 end Set _ List _ To _ Zero;

research

niques that can be selected by the end
user to provide a combination that
both suits the application and fits into
an overall verification strategy. More
recently, this range of options has
been encoded into guidance, which
defines a scale of software assurance
levels20 pictured in Figure 4. The es-
sence of the analysis involved in each
of these levels is described below,
along with examples of their success-
ful application.

Bronze: Correct data and informa-
tion flow. Ensuring that a program has
correct data and information flow is
a prerequisite for each of the levels of
assurance that we may wish to target.
For source code which conforms to the
basic rules of the SPARK language, we
can achieve this verification automati-
cally, giving us a guarantee that the
code has the following properties:

 ˲ Correct initialization: All variables
are initialized before being read for
the first time, preventing an undefined
behavior that would confound any fur-
ther verification activities.

 ˲ No aliasing: It is a principle of the
SPARK language that, within any giv-
en context, variables should uniquely
reference physical memory locations.
This includes preventing any potential
confusion between global variables
and subprogram parameters within a
subprogram body.

SPARK also provides an option to
use flow analysis to check user-speci-
fied data-dependency relations within
a program.

Silver: Absence of runtime errors.
With the foundations of Bronze level
in place, we can start to use proof to
gain extra assurance about the cor-
rectness of our SPARK software. At Sil-
ver level, the VCs generated are those
required to show that the program will
not raise any runtime exceptions. This
level of assurance is often referred to
as (showing) Absence of Runtime Er-
rors (AoRTE). Runtime exceptions
are a native mechanism built into the
Ada language to ensure there can be
no erroneous behavior within a run-
ning program—raising an exception
if such a condition arises which can
then be safely handled. At a detailed
level, there are many exceptions that
can potentially be raised in a SPARK
program. But broadly speaking, these
divide into two main classes that relate

the loop should make it possible to de-
rive the value of L from the value of X
at the end of the borrow. This is possi-
ble using the special identity function
At _ End marked with the annotation
At _ End _ Borrow on lines 14–18,
to designate prophecy values. When
referring to At _ End(X) and At _
End(L) in the loop invariant on lines
41–42 in Set _ List _ To _ Zero, in-
stead of X and L, we designate the val-
ues of X and L at the end of the borrow.
That loop invariant expresses that if
the borrower list X only contains value
zero at the end of its scope, then the
borrowed list L will also only contain
value zero at that point.

This loop invariant is all that is
needed to prove the postcondition of
Set _ List _ To _ Zero. Note that
the analyzer does not do any looka-
heads in the code to prove the loop
invariant itself, but only uses informa-
tion available at the current program
point. Here, the preservation of the
loop invariant follows from the fact
that the first cell of X cannot be modi-
fied after the reborrow on line 40. After
this point, it can no longer be accessed
through X, and modifications through
L during the borrow are illegal. As a
result, the SPARK analyzer can prove
that its value at the end of the borrow
will necessarily be zero.

Practical Formal Verification
Is Not All-or-Nothing
Levels of software assurance. With the
exception of carefully crafted train-
ing examples, conducting a proof of
any industrial code of typical size and
complexity against its full functional
specification can be highly challeng-
ing, requiring training, experience, and
expert knowledge. Later in this section,
we will reflect on why and when it may
be appropriate to invest such effort and
resources—in the cases where the very
highest levels of software integrity and
assurance are justified by the costs of
potential failure. However, to dismiss
formal verification in the general case
because it is challenging is to miss the
point: Formal verification is not an
all-or-nothing endeavor and there are
many dimensions to how it can be ap-
plied that make it an economically real-
istic option in a wide range of scenarios.

SPARK has always supported a
range of different verification tech-

gram _ Variant contract to provide
a metric which can be shown to de-
crease between recursive calls. For
structural variants like the one used in
Is _ All _ Zero on line 12, the SPARK
analyzer attempts to show that recur-
sive calls occur on strict substructures.
Since the ownership policy disallows
cyclic structures, this is enough to en-
sure termination.

Returning to iteration, the language
has a facility to temporarily transfer
ownership of a memory cell. This is
possible in SPARK through the con-
cept of borrows. The big idea is as fol-
lows. At the declaration of certain local
objects, called borrowers, the transfer
of ownership is considered to be tem-
porary for the duration of the lifetime
of the object. The original object is said
to be borrowed and cannot be used for
the duration of the borrow—it can no
longer be used to access the designat-
ed memory cell. Ownership returns to
the borrowed object automatically at
the end of the borrow. In SPARK, pro-
cedure parameters and local objects of
anonymous pointer type are treated as
borrowers. As an example, the type of X
was changed to an anonymous pointer
type on line 36, materialized by the use
of keyword access, in the correct ver-
sion of procedure Set _ List _ To _
Zero in Figure 3.

Note that, whereas the first assign-
ment in the loop on line 39 uses X to
modify the underlying structure, the
second assignment on line 40 only
modifies X so that it designates a sub-
structure of itself. It is called a rebor-
row. It is also possible to create subpro-
gram parameters and local objects as
observers, which can only be used to
read the underlying structure using an
anonymous pointer type introduced
with the syntax access constant T.
In this case, the observed objects re-
main readable during the lifetime of
the observer.

The proof of programs using local
borrowers sometimes requires the
use of so-called prophecy values, which
designate the values of the borrowed
object and the borrower at the end of
the borrow.36 This is especially useful
in invariants of loops, which iterate
over recursive data structures. As an
example, let us consider the contract
of Set _ List _ To _ Zero on line 22.
For it to be provable, the invariant in

90 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

research

specification and implementation
into a set of VCs (added to those it al-
ready automatically generated to dem-
onstrate AoRTE), and then attempt to
prove each one in turn using the auto-
active approach described later in this
article.

Although extra effort is required
at Gold level, there are two important
points to note. First, if errors are un-
detected at the coding stage, they will
leak into later stages of the lifecycle.
They might be detected during test-
ing—but there are no guarantees of
that—or they might in the worst case
remain in the delivered system. It is
well understood that the cost of fix-
ing errors increases the later they are
found in the development and deploy-
ment cycle, so additional effort at the
coding stage can be seen as an invest-
ment that prevents incurring greater
costs at a later date. Second, this
incremental approach to assurance
means we are focusing our effort on
properties and areas where additional
effort is justified by the cost of poten-
tial failure.

There are a number of industrial
examples which have successfully
achieved Gold level. In this article, we
focus on two more recent examples,
SPARKNaCl and NVIDIA, which are
presented in the sidebars.

Platinum: Full functional correct-
ness. Beyond Gold level, we can con-
tinue to add contracts to the code until

an electronic display. iFACTS enables
air traffic controllers to increase the
amount of air traffic they can handle,
providing capacity increases and en-
hancing safety. The iFACTS source
code consisted of more than 200kloc
of SPARK, from which over 120,000
VCs are generated to prove AoRTE. iF-
ACTS was successfully introduced into
NATS' Swanwick Area Centre in No-
vember 2011 and is now a core part of
the Area Control operation.

Gold: Proof of functional properties.
Gold level introduces an element of
functional correctness into the pro-
gram, which will be co-developed
along with its implementation, using
SPARK contracts to specify what a par-
ticular abstract data type, procedure,
or function should do.

The idea at Gold level is to focus our
specification effort on the key proper-
ties we want the program to deliver.
These properties will depend on the
nature of the application. So, for exam-
ple, a safety-related system of the type
found in rail or aerospace will have key
safety requirements relating sensor
inputs to the state of the outputs. We
might specify that an alarm should
sound if a particular sensor input is
outside a safe range.

Once we have specified the key
properties and we have a candidate
implementation, then we can prove
that the properties hold. The SPARK
analyzer will translate our combined

to type-safety (ensuring that numeric
types stay within range; ensuring no
divide-by-zero) and memory-safety (en-
suring that array indexing stays within
bounds; ensuring that pointer derefer-
ences are valid).

In our recent experience of the in-
dustrial application of SPARK, we have
come to regard Silver as the default
minimum we should aim for. This is
because it represents a very significant
increase in software integrity and reli-
ability for what is typically a relatively
small additional investment. Con-
clusively demonstrating AoRTE by
dynamic testing alone is a practical
impossibility for all but the most triv-
ial of programs. Yet, this is a common
class of errors which can introduce sig-
nificant hazards into digital systems,
making them vulnerable to buffer
overflow exploitations, denial-of-ser-
vice attacks, or loss of safety functions.
It also gives us the option to disable
runtime exception checking while hav-
ing the certainty that such errors will
not occur.

Among the successful industrial ap-
plications at Silver level, perhaps the
best example owing to its significance
and size is iFACTS,11 a set of tools used
by Air Traffic Controllers at NATS, the
U.K.'s leading air traffic services pro-
vider. iFACTS provides tools for trajec-
tory prediction, conflict detection, and
monitoring aids, and replaced tradi-
tional paper information strips with

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 91

Figure 4. Assurance levels with SPARK.

Full functional requirements
Highest assurance level—merited by the most critical applications

Key integrity properties
Only for a subset of the code subject to specific key integrity
properties (functional, safety, security)

Absence of Runtime Errors
The default target level for high-integrity software

Correct Data and Information Flow
For the largest part of the code possible

PLATINUM

GOLD

SILVER

BRONZE

EF
FO

RT
 A

N
D

 B
EN

EF
IT

S

research

the importance of making provers col-
laborate.10

This collaboration comes naturally
from the different strengths and weak-
nesses of individual provers, so that
one prover may prove more easily a giv-
en category of VCs. We exploit further
this division of work by specializing
the generation of VC for each prover.
For example, while all three SMT prov-
ers support the theory of bitvectors to
represent machine integers, we chose
to represent all machine integers as
mathematical integers (type int in
SMT-LIB2 format) for the prover Alt-Er-
go,17 while representing some of them
as bitvectors for provers cvc57 and Z3,19
to benefit from the specific strengths
of each prover.

The SPARK analyzer exploits the
collaboration of provers at a very fine-
grain level. Every conjunct in every as-
sertion leads to a distinct VC which can
be tackled by any prover. Such massive
parallelism benefits greatly from mod-
ern multicore architectures and/or us-
ing cloud computing resources to run
the provers.

The auto-active approach. As prop-
erties or code gets more complex, au-
tomatic provers cannot prove every
property that is provable in theory.
As a result, it is sometimes necessary
to supply guidance to the underlying
provers, most commonly in the form
of intermediate assertions in the code.
While trying to understand why some
property is not verified by the analyzer,
the programmer adds assertions, typi-
cally containing intermediate steps in
the reasoning toward the property of
interest until the intermediate asser-
tions and the final property are proved
automatically.

This approach, using a mix of auto-
mated verification and user-supplied
assertions, is called auto-active verifi-
cation.32 The process can involve not
only simple assertions but whole piec-
es of ghost code, as the verification pro-
cess becomes closer to programming
itself. The help provided by the analyz-
er to identify provability issues37 and
facilitate interaction with the users
inside IDEs is paramount here, as work
at the source level has replaced inspec-
tion of formulas in earlier generations
of SPARK and similar technologies.
That includes in particular counterex-
amples generated by provers, that is,

only be appropriate for the most criti-
cal applications. However, it is worth
considering a reduction in unit testing
for functional verification if Platinum-
level proof has been achieved, since we
know that the program will return the
correct result for all inputs, not just for
those we have been able to test.

Although it is not typical to aim for
Platinum level, it has been successfully
achieved on a number of industrial ap-
plications, most notably:

 ˲ SHOLIS, an instrumentation sys-
tem that assists with the safe operation
of helicopters on naval ships, saw the
first successful application of the U.K.
Ministry of Defense's DEFSTAN 00-55,
a standard for high-integrity software
development for military applications.
SHOLIS is also an interesting example
of how we can partition the source
code into different integrity levels and
apply different levels of verification
within the same program: Platinum
for the SIL-4 (highest integrity) subset
and Silver for the remainder.28

 ˲ Tokeneer, a biometric access-con-
trol system, was developed for the NSA
to demonstrate that the application of
formal methods was practicable for
high-assurance, secure systems.6

 ˲ GNAT Light Runtime Library is a
recent example of the targeted use of
full functional proof on a critical sub-
set of the Ada runtime library, subject
to certification in the context of vari-
ous certification standards.38

Pushing the boundary of automa-
tion. The highest levels of software
assurance necessitate the automation
of proof. This rests ultimately with the
automatic provers that are called in
the back end of the SPARK analyzer,
as illustrated in Figure 5. While the
use of Why3 as proof platform allows
in principle calling more than a dozen
automatic provers, the SPARK analyzer
mostly uses three of the Satisfiabil-
ity Modulo Theories (SMT) family of
provers, plus a constraint solver. These
open source provers were selected be-
cause they collectively provide the best
results on the VCs generated by SPARK.

In real life, while a majority of VCs
are proved by more than one prover, a
small percentage is typically proved by
only one prover. On large projects with
many thousands of VCs, this small
percentage amounts to hundreds or
thousands of VCs, which emphasizes

every subprogram has a fully function-
al specification. By this we mean that
every subprogram has a postcondition
that specifies the value of each of its
outputs and a precondition as required
to constrain the input space. Further
type invariants may also be added over
and above those already present from
Gold level. Once the implementation
has been completed against this full
specification and all VCs generated by
the analyzer have been proved, we have
reached Platinum level of SPARK as-
surance.

Due to the additional effort in-
volved in developing the specification
and proof to this level, Platinum will

92 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

SPARKNaCl is an open source rewrite
of the TweetNaCl cryptographic
library. The code adopts an auto-
active verification style and achieves
a completely automated proof of
absence of runtime errors and some
key correctness properties. Given
SPARK’s guarantees of correctness, the
code can be compiled with aggressive
optimization, and all contracts
and runtime checking disabled.
Verification also led to several proof-
driven optimizations in the code. On
a 32-bit RISC-V target, the resulting
code is more than three times faster
than TweetNaCl for a single Ed25519
signature generation.15

SPARKNaCl

NVIDIA selected SPARK to face the
challenge of delivering safer and more
secure products without incurring a
large increase in development time
and cost. NVIDIA began implementing
SPARK in its security strategy in
2019 on select pieces of firmware,
then expanded its use by training
additional personnel in SPARK and
eventually developing an in-house
training program. Several NVIDIA
teams use SPARK for a wide range of
applications, including high-integrity
data pipelining, image authentication
and integrity checks for the overall
GPU firmware image, hypervisors,
BootROM, secure monitor firmware,
device drivers for automotive safety,
and formally verified components of
an isolation kernel for an embedded
operating system.5

NVIDIA
Corp.

research

Using this library to model the con-
tent of an array as a multiset, it is pos-
sible to prove the full functional cor-
rectness of a sorting algorithm, with
as much ghost code as normal code.2
The specification and verification of
complex data structures or numeri-
cal algorithms requires notably more
ghost code than normal code. For the
specification of a library of red-black
trees for bare-metal target (no dynam-
ic allocation), the size of contracts (in-
cluding data structure invariants) was
twice the size of the code, and the size
of ghost code was five times the size of
the code.21 For the specification of a li-
brary of multi-place integer arithmetic
as part of the GNAT compiler runtime
library, the size of contracts was only
a tenth of the size of the code, but the
size of ghost code was again five times
the size of the code.38

With as much ghost code to guide
automatic provers, many VCs are
proved by only one prover. Hence,
changes in the code or in the analyzer
may lead to some VCs not being proved
anymore by any prover. This fragility of
automatic proofs of functional correct-
ness has a cost for users, who need to
occasionally repair the proof by engag-
ing again in auto-active proof. Advanc-
es in automatic proof technology will
be needed to improve this situation.

What you get is only as strong as
your assumptions. John Rushby, in his
pioneering work on the use of proof for
critical software,39 pointed at two cave-
ats of proof compared to tests: the need
for internal consistency to ensure that
specifications are not inconsistent, as
this would allow proving anything, and
the need for external fidelity to ensure

gram verification is unusable. But
perhaps not useless."32 Indeed, prov-
ing full functional correctness of pro-
grams will remain hard for the foresee-
able future. As we saw, this is only one
of the options when considering assur-
ance levels. But there are cases where
we would like to achieve that Platinum
level of verification. The auto-active ap-
proach makes it possible, but some dif-
ficulties remain.

To both simplify the annotation
process and make the verification
easier, some mathematical concepts
are provided as libraries along with
the SPARK analyzer. In particular,
Ada2022 defines libraries for big (un-
bounded) integers and big rational
numbers. The SPARK analyzer offers
built-in support for them so they can
be used in an efficient way. The big in-
tegers of Ada are handled by the ana-
lyzer as mathematical integers, which
avoids the need for overflow checks in
contracts and allows verifying algo-
rithms that deal with very large num-
bers, for example in crypto libraries.
Big rationals can be used to reason
about the rounding error in floating
point algorithms, for example.

SPARK also provides a functional
containers library with unbounded se-
quences, sets, and maps. As opposed
to containers generally used in pro-
gramming languages, the main con-
cern in their design is not efficiency,
but the simplicity of the model used for
the verification, as well as a proximity
with the structures generally used in
higher-level reasoning. Similarly to big
numbers, these containers are meant
to be used primarily in contracts,
where efficiency might not be an issue.

values of inputs that lead to a failure.18

We have identified a number of
“proof patterns” for Ghost code:

Exhibiting a witness. Proving exis-
tentially quantified formulas is hard
for provers, as it requires guessing an
appropriate value. To help the analyzer,
it is possible to exhibit a witness—a value
which has the expected property. For ex-
ample, to prove the existential property
(for some X in A..B => Prop(X)),
one can prove first Prop (Witness) for
a value Witness in the range A..B.

Reasoning by induction. In general,
inductive reasoning is out of reach of
automated provers. It is possible to
help the analyzer using a loop with
a loop invariant or using recursive
calls. For example, to prove that any
two elements in T are in the same or-
der as their respective indexes from
the knowledge that consecutive ele-
ments are sorted, one can write a loop
increasing the maximum distance
Len between such indexes, consisting
only of a loop invariant stating that ele-
ments whose indexes are no more than
Len apart are sorted.

Factoring out common reasoning.
A lemma is a ghost procedure with a
contract but no other effect. The pre-
condition contains the premises of
the lemma and the postcondition is
the conclusion. When the procedure
is analyzed, the analyzer verifies the
lemma itself, namely, that the conclu-
sion follows from the premises in every
context. The body might contain ghost
code to help the proof. As SPARK analy-
sis is modular on a per subprogram ba-
sis, when the procedure is called, the
premises are verified and the conclu-
sion is assumed.

Simplifying the proof context. Lem-
mas have the advantage of reducing
the proof context, as only the relevant
hypotheses are kept as a precondition.
It makes it easier for the automatic
provers to find a proof. Some lemmas
can be proved with an empty body even
though the same assertion was not
verified in the subprogram context. It
is the case in particular for non-linear
arithmetic lemmas which are theo-
retically provable but hard for provers.
SPARK comes with a standard library
of such lemmas.

Full functional correctness is chal-
lenging. Researchers Rustan Leino
and Michał Moskal once said, "Pro-

MARCH 2024 | VOL. 67 | NO. 3 | COMMUNICATIONS OF THE ACM 93

Figure 5. Structure of the open source SPARK analyzer.

SPARK Code

COLIBRI

cvc5

SMT Provers

Automatic Provers

Proof Assistants

Z3

Alt-Ergo

Coq

GNAT
Frontend

Why3 tool

GNAT2Why

IDE (GNAT Studio, VS Code)

research

20. Dross, C. et al. Climbing the software assurance
ladder—Practical formal verification for reliable
software. Electron. Commun. Eur. Assoc. Softw. Sci.
Technol. 76 (2018).

21. Dross, C. and Moy, Y. Auto-active proof of red-black
trees in SPARK. In NASA Formal Methods. C. Barrett,
M. Davies and T. Kahsai (Eds.). Springer Intern.
Publishing (2017), 68–83.

22. Filliâtre, J. and Paskevich, A. Why3—Where programs
meet provers. In Programming Languages and
Systems. M. Felleisen and P. Gardner (Eds.). Springer
Berlin Heidelberg (2013), 125–128.

23. Fonseca, P., Zhang, K., Wang, X., and Krishnamurthy,
A. An empirical study on the correctness of formally
verified distributed systems. In Proceedings of the 12th
European Conf. on Computer Systems. Association
for Computing Machinery (2017), 328–343;
10.1145/3064176.3064183

24. Hatcliff, J. et al. Behavioral interface specification
languages. ACM Comput. Surv. 44, 3, Article 16 (Jun.
2012), 58; 10.1145/2187671.2187678

25. Hoare, C.A.R. An axiomatic basis for computer
programming. Commun. ACM 12, 10 (Oct. 1969),
576–580; 10.1145/363235.363259

26. Hoare, T. The verifying compiler: A grand challenge
for computing research. J. ACM 50, 1 (2003), 63–69;
10.1145/602382.602403

27. Jung, R., Jourdan, J., Krebbers, R., and Dreyer, D. Safe
systems programming in rust. Commun. ACM 64, 4
(Mar. 2021), 144–152; 10.1145/3418295

28. King, S., Hammond, J., Chapman, R., and Pryor, A.
Is proof more cost-effective than testing? IEEE
Trans. on Software Eng. 26, 8 (2000), 675–686;
10.1109/32.879807

29. Klein, G. et al. Formally verified software in the real
world. Commun. ACM 61, 10 (Sep. 2018), 68–77;
10.1145/3230627

30. Klein, G. et al. Ten challenges for making automation
a "team player" in joint human-agent activity. IEEE
Intelligent Systems 19, 6 (2004), 91–95; 10.1109/
MIS.2004.74.

31. Leino, K.R.M. Program Proofs. The MIT Press (2023).
32. Leino, K.R.M. and Moskal, M. Usable auto-active

verification. In Proceedings of the Usable Verification
Workshop (2010).

33. Leino, K.R.M. Accessible software verification with
Dafny. IEEE Software 34, 6 (2017), 94–97; 10.1109/
MS.2017.4121212

34. Leroy, X. A formally verified compiler back-end. J.
Autom. Reason. 43, 4 (Dec. 2009), 363–446; 10.1007/
s10817-009-9155-4

35. Limoncelli, T.A. Automation should be like Iron Man,
not Ultron. ACM Queue (2015); https://bit.ly/3voiz9D

36. Matsushita, Y., Denis, X., Jourdan, J., and Dreyer,
D. RustHornBelt: A semantic foundation for
functional verification of rust programs with
unsafe code. In Proceedings of the 43rd ACM
SIGPLAN Intern. Conf. on Programming Language
Design and Implementation. Association
for Computing Machinery (2022), 841–856;
10.1145/3519939.3523704

37. Moy, Y. How the analyzer can help the user help
the analyzer. Electronic Proceedings in Theoretical
Computer Science 338 (Aug. 2021), 97–104; 10.4204/
eptcs.338.12

38. Moy, Y. Proving the Correctness of GNAT Light Runtime
Library (2022); https://bit.ly/3NQCvbk

39. Rushby, J. Formal methods and the certification of
critical systems. Technical Report (1993).

40. Zhao, Y., Sanán, D., Zhang, F., and Liu, Y. High-
assurance separation kernels: A survey on formal
methods. CoRR abs/1701.01535 (2017); http://arxiv.
org/abs/1701.01535

Roderick Chapman* (rodchap@amazon.co.uk) is a senior
principle applied scientist at Amazon Development Centre,
London, U.K.

Claire Dross is SPARK team lead at AdaCore, Île-de-
France, Paris, France.

Stuart Matthews is a senior architect at Capgemini
Engineering, Bath, U.K.

Yannick Moy is head of the Static Analysis Unit at
AdaCore, Île-de-France, Paris, France.

*The work reported in this article was completed before
Chapman joined AWS.

and secure software, the future looks
bright for SPARK!

Acknowledgments
SPARK is the result of decades of work
from past and current members of the
SPARK development team, whom we
represent here. The current version of
SPARK owes much to the collabora-
tion with research team Toccata of In-
ria on Why3. The anonymous review-
ers made many suggestions to make
this article more accessible. We are
indebted to all of you.

References
1. Abrial, J. Formal methods: Theory becoming practice.

J. Univers. Comput. Sci. 13 (2007), 619–628.
2. AdaCore. A Concrete Example: A Sort Algorithm

(2023); https://bit.ly/41KawzQ
3. AdaCore. Managing Assumptions (2023); https://bit.

ly/41RDX35
4. AdaCore. SPARK Reference Manual (2023); https://bit.

ly/3TIsDEx
5. AdaCore and NVIDIA. Case Study (2022); https://bit.

ly/4aKXvKo
6. AdaCore. Tokeneer (2008); https://www.adacore.com/

tokeneer
7. Barbosa, H. et al. cvc5: A versatile and industrial-

strength SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems. D. Fisman and
G. Rosu (Eds.). Springer Intern. Publishing (2022),
415–442.

8. Barnett, M. et al. Specification and verification: The
spec# experience. Commun. ACM 54, 6 (Jun. 2011),
81–91; 10.1145/1953122.1953145

9. Baudin, P. et al. The dogged pursuit of bug-free
C programs: The frama-C software analysis
platform. Commun. ACM 64, 8 (Jul. 2021), 56–68;
10.1145/3470569

10. Bobot, F. et al. Why3: Shepherd your herd of provers.
In Proceedings of Boogie 2011: First Intern. Workshop
on Intermediate Verification Languages (2011), 53–64;
https://hal.inria.fr/hal-00790310

11. Bobot, F., Filliâtre, J., Marché, C., and Paskevich, A.
Let’s verify this with Why3. Intern. J. on Software
Tools for Technology Transfer 17, 6 (2015), 709–727;
10.1007/s10009-014-0314-5

12. Carré, B. and Garnsworthy, J. SPARK—An annotated
Ada subset for safety-critical programming. In
Proceedings of the Conf. on TRIADA ’90, Association
for Computing Machinery (1990), 392–402;
10.1145/255471.255563

13. Chalin, P. A sound assertion semantics for the
dependable systems evolution verifying compiler.
In Proceedings of the 29th Intern. Conf. on Software
Engineering (2007), 23–33; 10.1109/ICSE.2007.9

14. Chalin, P., Kiniry, J.R., Leavens, G.T., and Poll, E.
Beyond assertions: Advanced specification and
verification with JML and ESC/Java2. In Formal
Methods for Components and Objects. F.S. de Boer,
M.M. Bonsangue, S. Graf, and W. de Roever (Eds.).
Springer Berlin Heidelberg (2006), 342–363.

15. Chapman, R. SPARKNaCl GitHub project (2020);
https://bit.ly/48CPsgR

16. Chapman, R. and Schanda, F. Are we there yet? 20
years of industrial theorem proving with SPARK. In
Interactive Theorem Proving. G. Klein and R. Gamboa
(Eds.). Springer Intern. Publishing (2014), 17–26.

17. Conchon, S., Coquereau, A., Iguernlala, M., and
Mebsout, A. Alt-Ergo 2.2. In Proceedings of the Intern.
Workshop on Satisfiability Modulo Theories (2018);
https://hal.inria.fr/hal-01960203

18. Dailler, S., Hauzar, D., Marché, C., and Moy, Y.
Instrumenting a weakest precondition calculus
for counterexample generation. J. of Logical and
Algebraic Methods in Programming 99 (2018),
97–113; 10.1016/j.jlamp.2018.05.003

19. de Moura, L. and Bjørner, N. Z3: An efficient SMT
solver. In Proceedings of the Theory and Practice of
Software, 14th Intern. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems.
Springer-Verlag (2008), 337–340.

that specifications are correctly for-
malizing the environment in which the
software operates, otherwise voiding
the guarantees provided by proof. We
are collectively referring to these cave-
ats as proof assumptions that should be
listed and reviewed.

Some assumptions are explicitly ac-
knowledged by users when they justify
that some checks cannot be violated
in their operational context. Other
assumptions relate to the boundary
of the SPARK program, which may
be linked with libraries in other pro-
gramming languages, or rely on the
behavior of an operating system or a
specific hardware. All these assump-
tions should be carefully reviewed by
users to ensure the verification results
provided by the analyzer are correct for
the target context.3

SPARK in the Future
SPARK continues to evolve to support
programming language features used
in critical software and to reap benefits
from improvements in the underlying
automatic prover technologies. SPARK
is also used as the target programming
language for code generators from
higher-level representations in domain-
specific languages. The challenges in
proving generated code are different
from those with manually written code,
as generated code is more regular but
also much larger in general.

Since the publication of the results
of the Spec# experience in 2011 in
Communications,8 some parts of the
software industry have adopted pro-
gram proofs as one of the paradigms of
programming. Further adoption rests
essentially with education of the active
and future workforce, which will be
helped by the publication of more re-
sources on the auto-active approach.31

But as we push the boundary of
what can be automated, we are faced
with the well-known Left-Over Prin-
ciple of automation: Automation fails
humans precisely on the more com-
plex cases, where humans would need
more help.35 A large part of our effort is
therefore dedicated to designing bet-
ter interaction mechanisms to grace-
fully transition from automation to
interaction where needed.

Finally, with more software teams
reconsidering their choice of program-
ming languages for producing safe

This work is licensed under a
http://creativecommons.org/licenses/by/4.0/

94 COMMUNICATIONS OF THE ACM | MARCH 2024 | VOL. 67 | NO. 3

Unlock the power of secure, reliable
software with SPARK Pro

adacore.com

https://bit.ly/3wrmPW9
https://www.linkedin.com/company/39996/http://
https://github.com/AdaCore
https://twitter.com/AdaCoreCompany
https://www.adacore.com
https://www.adacore.com
http://adacore.com

	244831-adacore-tech-paper-cover-v2
	3624728 (1)

