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 key insights
 ˽ Today, a few companies like NVIDIA 

are formally proving the correctness of 
their critical software using the SPARK 
language and verification technology.

 ˽ This advance was made possible by 
a careful design of the programming 
language, the specification language, 
and special "ghost" code intended for 
specification and verification. The support 
for reasoning about pointers is dependent 
on following an ownership policy like the 
one found in Rust.

 ˽ Industrial adoption rests on choosing the 
most appropriate assurance level for a 
given project, from prevention of basic 
defects, through memory-safety and 
type-safety, and finally to full functional 
correctness. SPARK supports that 
practical approach to formal proof.

T W EN T Y Y E A R S AG O,  Sir Tony Hoare proposed a grand 
challenge to the computing research community: to 
develop a verifying compiler [which] uses mathematical 
and logical reasoning to check the correctness of the 
programs that it compiles. Hoare went on to set 
demanding success criteria for this effort: If the project 
is successful, a verifying compiler will be available as 
a standard tool in some widely used programming 
productivity toolset.26

While there have been some notable successes with 
program verification systems,a the use of such systems 
is still perceived as a niche activity for the most critical 
and specialized projects1,23,29,30,34 Program verification 
systems based on automatic techniques have also emer-
ged.9,11,14,16,33 These systems occupy a middle ground 
a We prefer this term, since we have found that verifying compiler is all too easily confused with 

verified compiler which is altogether a different beast.

in the landscape of verification tech-
niques, between push-button tools 
that require minimal setup and fully 
interactive proof assistants. The ap-
proach has been called “auto-active”—
a portmanteau of “automatic” and 
“interactive”—where users develop 
the proof and the program at the same 
time through the use of assertions and 
other contracts in the programming 
language.

The open source SPARK technology 
is a prominent member of that family, 
with a history dating back to 1987. The 
objective of this article is to explain the 
auto-active approach for co-developing 
programs and their proof of correct-
ness, present the key design and tech-
nological choices that made SPARK 
industrially successful, and what this 
means for the future of SPARK or ana-
lyzers of that same family.

The Programming 
Language Matters
The language subset matters. The 
seeds of SPARK can be traced back 
to the mid-1980s at the University of 
Southampton in the U.K.12 Following 
modest success with verification of a 
Pascal subset, the team set an ambi-
tious target: the design of a verifica-
tion system that would be usable for 
the development of safety-critical soft-
ware. In retrospect, this seems like an 
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absurd proposition; systems program-
ming at the time was dominated by C 
which, with its overt dependence on 
pointer types, was considered out of 
the reach of verification tools.

The top-level design goals were as 
follows:

 ˲ Soundness. Verification results 
should be sound—that is, trustworthy 
for all compilers and target machines.

 ˲ Sufficient completeness. Verifica-
tion of non-trivial properties should 
offer a tolerably low false-alarm rate.

 ˲ Formality. The language should be 
amenable to the development of an un-
ambiguous formal definition.

 ˲ Scalability. Verification should 
scale to industrial code bases in rea-
sonable time.

 ˲ Modularity. Verification of incom-
plete programs should be possible dur-
ing their development.

 ˲ Expressiveness. The language 
should be usable for building embed-
ded, real-time, and critical software 
systems, not limited to “toy” examples. 
The verification system should allow 
the specification of non-trivial correct-
ness properties, not just a list of "com-
mon errors."

The provision of soundness for all 

compilers and target machines was 
particularly challenging. This meant 
the elimination of all undefined be-
havior (error cases where the language 
does not define a behavior) and, as a 
necessary simplification in an indus-
trial tool, removal of all dependence on 
unspecified language features (cases 
where the language does not define a 
unique behavior) through subsetting 
or analysis.

The team judiciously chose Ada as 
their base language, which brought 
key enabling features to the table. In 
particular, Ada features:

 ˲ Modules (aka packages) that come 
in two parts—a “specification” and a 
“body”—allowing contracts to be add-
ed where required to provide strictly 
modular analysis.

 ˲ Function calls are expressions, 
while procedure calls are statements. 
Functions in SPARK are also free of 
side effects, which greatly simplifies 
the formal definition and eliminates 
dependence on expression evaluation 
order—for example in evaluating argu-
ments of a call. Procedures can take 
inputs as in parameters, outputs as 
out parameters, and mutate in out 
parameters and global variables.

 ˲ User-defined scalar types. In Ada, 
it is normal to declare scalar types that 
model the problem-domain, not the 
target computer. These are critical in 
achieving an acceptable false-alarm 
rate for type-safety properties, especial-
ly freedom from integer or real overflow.

 ˲ Composite types (arrays and re-
cords) are “first class” in Ada, so they 
can be passed as parameters and re-
turned from functions without the ex-
plicit use of pointers. With a local anal-
ysis of aliasing, soundness is preserved 
regardless of a compiler's choice of 
parameter-passing mechanism.

The technology started to find its 
industrial niche in the early 1990s, 
when SPARK was selected for the 
development of all Risk Class 1 sys-
tems on the EuroFighter Typhoon 
program. Given the limitations of the 
automatic provers and available com-
puting resources at the time, the pro-
gram initially limited itself to adop-
tion of the language subset and the 
information flow analysis offered by 
the SPARK analyzer.

The development of Ada2012 
brought a significant change, add-
ing contracts as first-class citizens 
in the language, effectively render-
ing SPARK's special “annotation lan-
guage” redundant. This brought about 
a reboot of the language and tools.

The language design was restart-
ed from scratch, adopting Ada2012's 
contract language as part of the core. 
While earlier versions of SPARK con-
centrated on solely static verification 
of contracts, Ada2012 allowed for con-
tracts that could be verified both stati-
cally or dynamically, or some mix of 
both styles in the same program. We 
also took the opportunity to redevelop 
the entire analyzer, starting with the 
GNAT Ada compiler front end, and 
targeting the Why3 intermediate lan-
guage and toolset,22 supported by the 
plethora of SMT-based provers that 
had come to the fore. Given an anno-
tated program, the SPARK analyzer 
generates formulas, aka verification 
conditions (VCs), which are sent to au-
tomatic provers. If all VCs are success-
fully proved, the program correctly 
implements its (partial) specification. 
The full compiler front end also al-
lowed the return of several language 
features, such as generics, dynamic 
subtypes, and dynamically sized array 
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Figure 1. SPARK specification as contracts.

1 type Index is new Integer;
2 type Element is new Integer;
3 type Table is array (Index range <>) of Element
4 with
5   Dynamic _ Predicate ⇒ Table’First = 1 and Table'Last ≥ 0;
6 
7 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index)
8 with
9   Pre ⇒ From in T'Range and To in T'Range,
10   Post ⇒ T = (T’Old with delta From..To ⇒ 0);
11 
12 function Is _ Range _ Zero(T : Table; From, To : Index) return Boolean is
13   (for all I in From..To ⇒ T(I) = 0)
14 with
15   Ghost,
16   Pre ⇒ (From ≥ 1) and (To in 0 | T'Range);
17 
18 function Is _ All _ Zero(T : Table) return Boolean is
19   (Is _ Range _ Zero(T, T'First, T'Last))
20 with
21   Ghost;
22 
23 function Search _ First _ Non _ Zero(T : Table) return Index
24 with
25   Post ⇒
26    (declare
27     NZ : constant Index := Search _ First _ Non _ Zero'Result;
28    begin
29     (if NZ in T'Range then T(NZ) ≠ 0 and Is _ Range _ Zero(T, 1, NZ-1)
30     else NZ = 0 and Is _ All _ Zero(T)));
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types, that had been excluded from the 
earlier designs.

The new version of SPARK, dubbed 
SPARK 2014 when it was first released 
in 2014, has undergone significant ex-
tensions with every passing year, add-
ing safe support for object-oriented 
programming, concurrency, contracts 
on types, and pointers. The language 
subset is rigorously defined in a refer-
ence manual4 that follows the style of 
the ISO/IEC definition of Ada. Similar-
ly to how “legality rules” define what it 
means for a program to be accepted by 
the Ada compiler, “verification rules” 
define what it means for a program to 
be accepted by the SPARK analyzer.

Today, SPARK is a large subset 
of Ada, only excluding features that 
would defeat the objectives of reason-
ably specifying or automatically verify-
ing programs.

The specification language matters. 
SPARK's contract language inherits 
from decades of research on behavioral 
interface specification languages.24 It 
started as special stylized comments, 
with a mathematical semantics. Work 
done by Chalin in the context of ESC/
Java showed that this was a source of 
confusion for programmers,13 which 
led to adopting an executable seman-
tics for contracts as part of their inclu-
sion in Ada2012; dividing by zero in 
contracts is now an error, like in code.

Another great benefit of executable 
contracts is that they can be tested and 
debugged like regular code. This can be 
very useful during development, as mis-
takes can be easily identified through 
testing and investigated through de-
bugging. This can also be used to vali-
date assumptions made during formal 
verification, by executing contracts dur-
ing tests (typically integration or valida-
tion tests). Of course, an essential prop-
erty is that a formally verified program 
should not fail at runtime. Hence, static 
checks performed by the SPARK analyz-
er should be a superset of the dynamic 
checks during execution. They cannot 
be the same in general, as dynamic 
checks are designed for the compiler to 
insert, which has limited knowledge of 
side effects and aliasing in particular, 
and the design of dynamic checks needs 
to find a balance between runtime effi-
ciency and comprehensiveness.

Contracts in SPARK are attached to 
packages, subprograms, and types in 

the form of a pair of the contract name 
and value separated by an arrow sym-
bol ( ⇒ ). Contracts on types come in 
two flavors: predicates, which can never 
be violated, and invariants, which can 
be violated locally inside the package 
defining the type. Consider the specifi-
cation expressed as contracts in Figure 
1. Type Table on line 3 is an array of 
Element, whose size is computed dy-
namically, with a value of Index start-
ing at 1 and ending at a positive index, 
or 0 for the empty array. The allowed 
range of values for the first and last 
indexes are specified here through a 
predicate, as the type system of SPARK 
otherwise allows arbitrary integer val-
ues for both.

Contracts on subprograms con-
sist essentially in a precondition and a 
postcondition. The precondition states 
which combinations of values of input 
parameters and global variables are al-
lowed when calling the subprogram. 
The postcondition states which com-
binations of values of output param-
eters and global variables are allowed 
when returning from the subprogram, 
usually as a relation with input values, 
where the input value of an expres-

sion X is denoted X'Old. Consider the 
procedure Set _ Range _ To _ Zero 
on line 7. Its precondition states that 
the parameters From and To should 
denote valid indexes in the array T. Its 
postcondition states that the final val-
ue of T should be the same as its input 
value, with the values between indexes 
From and To zeroed out, using here a 
delta-aggregate for a compact expres-
sion. Search _ First _ Non _ Zero, 
the procedure on line 23, has a default 
precondition of True and a postcondi-
tion stating that it returns the index of 
the first non-zero element if any, using 
a declare-expression to introduce a lo-
cal name for the value returned.

Ghost code: Code for specification 
and verification. Functions such as 
Is _ Range _ Zero on line 12 are only 
meant for verification. They are not 
needed in the final executable, which is 
typically compiled without contracts. 
In SPARK, such code is specially iden-
tified as ghost code by attaching the as-
pect Ghost to declarations, so that the 
compiler can discard it.

In an ideal situation, a programmer 
would only need to write contracts on 
an API to get the code of their library 
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Figure 2. SPARK implementation and verification code.

1 -- first version
2 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index) is
3 begin
4   for J in From..To loop
5    T(J) := 0;
6    pragma Loop _ Invariant (Is _ Range _ Zero (T, From, J));
7   end loop;
8 end Set _ Range _ To _ Zero;
9 
10 function Search _ First _ Non _ Zero (T : Table) return Index is
11 begin
12   for J in T’Range loop
13    if T(J) ≠ 0 then
14     return J;
15    end if;
16    pragma Loop _ Invariant (Is _ Range _ Zero (T, 1, J));
17   end loop;
18   return 0;
19 end Search _ First _ Non _ Zero;
20 
21 -- second version
22 procedure Set _ Range _ To _ Zero (T : in out Table; From, To : Index) is
23   T _ Entry : constant Table := T with Ghost;
24 begin
25   for J in From..To loop
26    T(J) := 0;
27    pragma Loop _ Invariant (Is _ Range _ Zero (T, From, J));
28    pragma Loop _ Invariant (for all K in T'Range ⇒
29     (if K not in From..To then T(K) = T _ Entry(K)));
30   end loop;
31 end Set _ Range _ To _ Zero;



research

is also provable inductively: First, the 
SPARK analyzer proves that the invari-
ant holds during the first iteration of 
the loop; second, assuming that the in-
variant holds at an arbitrary iteration, 
the SPARK analyzer proves that it is 
preserved during the next.

Proving preservation is typically 
harder, as the loop invariant expres-
sion should not only hold at the corre-
sponding program point, but it should 
be inductive with respect to the loop 
body. The elephant in the room is that 
the VC may contain less information 
than what the user assumes regarding 
variables read or written in the loop. A 
frequently forgotten part of the loop 
invariant is the so-called frame con-
dition, which denotes the parts of a 
modified variable preserved inside the 
loop. While the SPARK analyzer has 
heuristics to generate the frame condi-
tion, this is not sufficient in all cases.

It is not sufficient to know that T in 
procedure Set _ Range _ To _ Zero 
has been zeroed out between indexes 
From and the current loop index J. To 
prove the postcondition of the proce-
dure, we should maintain in the loop 
invariant the information that, for all 
indexes out of the From..To range, T 
maintains the value it had at the entry 
of the subprogram. The SPARK ana-
lyzer generates the frame condition 
in this case, which is why the first ver-
sion of Set _ Range _ To _ Zero on 
line 2 is proved. In the second version 
on line 22, we add the frame condition 
explicitly in a second loop invariant on 
lines 28–29. Note the declaration of a 
ghost variable T _ Entry on line 23 to 
hold the value of T at entry, so we can 
compare it with the values in T inside 
the loop invariant. The aspect Ghost 
attached to the declaration of T _ En-
try informs the compiler that this is a 
ghost variable, which should be delet-
ed unless compiling with assertions.

Ghost variables are more generally 
useful whenever specification or veri-
fication code needs to refer to values 
which are not readily available in the 
code like T _ Entry. Similarly, ghost 
functions are useful to express queries 
that are not part of the normal API, 
such as functions Is _ Range _ Zero 
and Is _ All _ Zero. Ghost proce-
dures make it possible to group ghost 
declarations and statements. Ghost 
code makes it possible to instrument 

proven. While this may work in some 
cases, this is not the most common 
case: A subprogram defined in the 
API may call other subprograms with-
out specifications, and it may contain 
loops. Both calls and loops require spe-
cial handling to be proved; that may 
require further specification of their 
behavior. A programmer may have to 
add contracts to called subprograms 
and invariants to loops.

Subprogram contracts are essential 
for modularity, scaling, and automa-
tion of proof. The SPARK analyzer can 
deal with subprograms that bear no 
contracts by inlining them at the point 
of call, but this makes VCs more com-
plex, possibly to the point of defeating 
automatic provers. Thus, such inlining 
is reserved for private subprograms of 
a package. For other subprograms, the 
programmer must write a contract that 
summarizes the behavior of the sub-
program for the analysis of its callers.

The case of loops is similar. When 
the maximum number of loop itera-
tions is small, the SPARK analyzer can 
deal with loops by unrolling them, but 
this also makes VCs more complex and 
does not work on unbounded loops. In 
general, the programmer must write 
a loop invariant that states properties 
known to be maintained in the cor-
responding location at each iteration 
of the loop. Consider the implementa-
tion for the previous specification in 
Figure 2. Loop invariants summarize 
the modifications on variables that 
occur in previous loop iterations, like 
in Set _ Range _ To _ Zero on line 
2, and they accumulate information 
about values seen in prior iterations, 
like in Search _ First _ Non _ Zero 
on line 10. Contrary to the original loop 
invariants from Hoare,25 a loop invari-
ant in SPARK can be located anywhere 
in the loop (although it is typically at 
the start or the end of the loop body), 
and it only has to hold when execution 
reaches that point in the code.

The loop invariant in procedure 
Set _ Range _ To _ Zero (first ver-
sion on line 2) is located at the end of 
the loop body on line 6. It specifies 
that table T holds value 0 between in-
dexes From and J. This summarizes 
the behavior of the loop with enough 
precision for the postcondition of 
Set _ Range _ To _ Zero on line 10 
in Figure 1 to be proved. The invariant 

Systems 
programming at the 
time was dominated 
by C which, with its 
overt dependence 
on pointer types, 
was considered 
out of the reach of 
verification tools.
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3. Procedure Set _ List _ To _ Zero 
(incorrect version on line 25) imple-
ments a naive iteration. The declara-
tion of iterator X causes the parameter 
L to lose the ownership of the list. As 
X iteratively drops its handle to each 
element of the list, there is no way to 
return ownership to L at the end of 
the procedure. On the contrary, recur-
sive traversals of such structures do 
not conflict with the ownership policy 
of SPARK, as can be seen in the ghost 
function Is _ All _ Zero on line 8. 
Indeed, as functions have no side ef-
fects in SPARK, aliasing between their 
parameters is not a problem.

Using recursion—if only for ghost 
functions—makes it necessary to 
prove termination using a Subpro-

value is returned each time), which 
would prevent doing it in (side-effect 
free) functions. Deallocation must be 
done manually, but the analyzer will 
make sure that no leaks occur.

Even with the restrictions imposed 
by the ownership policy, it is possible 
to create recursive data structures in 
SPARK, as long as they have no cycles 
or sharing. For example, simple lists or 
trees are fine, but doubly linked lists or 
directed acyclic graphs cannot be con-
structed. Naive iteration over a recur-
sive data structure using a loop is in-
herently incompatible with ownership, 
as the handle used for iteration is an 
alias of the underlying structure. Re-
writing the code from Figure 2 to use 
pointers gives us the variant in Figure 

the code without risking interfering 
with its behavior, as the SPARK analyz-
er checks that ghost code cannot have 
any effect on the functional behavior 
of the program. For example, a ghost 
procedure is not allowed to contain an 
assignment to a regular (non-ghost) 
variable. Therefore, the guarantees ob-
tained by proving the implementation 
including ghost code hold also for the 
execution of the program where ghost 
code is deleted.

Dealing with pointers through own-
ership. In the absence of pointers, the 
SPARK analyzer can exclude problem-
atic aliasing through a simple com-
parison of the “names” (including field 
names when referring to the subcom-
ponent of a record) of actual param-
eters and global variables at each call 
site. This is sufficient for most SPARK 
programs, as the language provides 
separate features to pass parameters 
by reference and to specify the address 
of data in memory, so that source-level 
pointers are essential only to deal with 
heap-allocated memory. Until 2019, 
SPARK did not support pointers and 
heap-allocated memory, which was a 
good match with its use in real-time 
and embedded software. The lack of 
pointers, however, disallowed stan-
dard design patterns, such as user-
defined recursive data structures or 
access to a part of a structure in place.

Support for pointers was intro-
duced in 2019, based on the ownership 
principle popularized by Rust.27 While 
the technical details presented later in 
this section may challenge the reader's 
understanding, the idea is simple: A 
single object, the owner, is allowed to 
read or modify data through a pointer. 
Ownership is transferred through 
assignment statements and param-
eter passing. This is sufficient to rule 
out problematic aliasing. As a result, 
pointers are handled by the SPARK 
analyzer like optional values: A pointer 
can either be null or can contain a val-
ue, which is copied when copying the 
pointer. The resulting VCs are similar 
to those generated on programs with-
out pointers, and they pose no specific 
difficulties to automatic provers. Note 
that the pointer value itself is inten-
tionally not modeled. Otherwise, the 
SPARK analyzer would need to consid-
er that allocating memory on the heap 
has a side effect (as a different pointer 
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Figure 3. SPARK program with pointers.

1 type List _ Cell;
2 type List is access List _ Cell;
3 type List _ Cell is record
4   Data : Integer;  
5   Next : List;
6 end record;
7 
8 function Is _ All _ Zero(L : access constant List _ Cell) return Boolean is
9   (L = null or else (L.Data = 0 and then Is _ All _ Zero(L.Next)))
10 with
11   Ghost,
12   Subprogram _ Variant ⇒ (Structural ⇒ L); -- structural recursion on L
13 
14 function At _ End(X : access constant List _ Cell)
15   return access constant List _ Cell is (X)
16 with
17   Ghost,
18   Annotate ⇒ (GNATprove, At _ End _ Borrow); -- only for prophecy values
19 
20 procedure Set _ List _ To _ Zero(L : access List _ Cell)
21 with
22   Post ⇒ Is _ All _ Zero(L);
23 
24 -- incorrect version
25 procedure Set _ List _ To _ Zero (L : access List _ Cell) is
26   X : List := L; -- ownership is transferred to X
27 begin
28   while X ≠ null loop
29    X.Data := 0;
30    X := X.Next; -- the first cell of X is no longer accessible
31   end loop; -- how can the ownership be returned to L?
32 end Set _ List _ To _ Zero;
33 
34 -- correct version
35 procedure Set _ List _ To _ Zero(L : access List _ Cell) is
36   X : access List _ Cell := L; -- ownership is given to X temporarily
37 begin
38   while X ≠ null loop
39    X.Data := 0;
40    X := X.Next; -- X now designates a substructure of L
41    pragma Loop _ Invariant
42     (if Is _ All _ Zero(At _ End(X)) then Is _ All _ Zero(At _ End(L)));
43   end loop;
44   -- the ownership returns to L automatically
45 end Set _ List _ To _ Zero;



research

niques that can be selected by the end 
user to provide a combination that 
both suits the application and fits into 
an overall verification strategy. More 
recently, this range of options has 
been encoded into guidance, which 
defines a scale of software assurance 
levels20 pictured in Figure 4. The es-
sence of the analysis involved in each 
of these levels is described below, 
along with examples of their success-
ful application.

Bronze: Correct data and informa-
tion flow. Ensuring that a program has 
correct data and information flow is 
a prerequisite for each of the levels of 
assurance that we may wish to target. 
For source code which conforms to the 
basic rules of the SPARK language, we 
can achieve this verification automati-
cally, giving us a guarantee that the 
code has the following properties:

 ˲ Correct initialization: All variables 
are initialized before being read for 
the first time, preventing an undefined 
behavior that would confound any fur-
ther verification activities.

 ˲ No aliasing: It is a principle of the 
SPARK language that, within any giv-
en context, variables should uniquely 
reference physical memory locations. 
This includes preventing any potential 
confusion between global variables 
and subprogram parameters within a 
subprogram body.

SPARK also provides an option to 
use flow analysis to check user-speci-
fied data-dependency relations within 
a program.

Silver: Absence of runtime errors. 
With the foundations of Bronze level 
in place, we can start to use proof to 
gain extra assurance about the cor-
rectness of our SPARK software. At Sil-
ver level, the VCs generated are those 
required to show that the program will 
not raise any runtime exceptions. This 
level of assurance is often referred to 
as (showing) Absence of Runtime Er-
rors (AoRTE). Runtime exceptions 
are a native mechanism built into the 
Ada language to ensure there can be 
no erroneous behavior within a run-
ning program—raising an exception 
if such a condition arises which can 
then be safely handled. At a detailed 
level, there are many exceptions that 
can potentially be raised in a SPARK 
program. But broadly speaking, these 
divide into two main classes that relate 

the loop should make it possible to de-
rive the value of L from the value of X 
at the end of the borrow. This is possi-
ble using the special identity function 
At _ End marked with the annotation 
At _ End _ Borrow on lines 14–18, 
to designate prophecy values. When 
referring to At _ End(X) and At _
End(L) in the loop invariant on lines 
41–42 in Set _ List _ To _ Zero, in-
stead of X and L, we designate the val-
ues of X and L at the end of the borrow. 
That loop invariant expresses that if 
the borrower list X only contains value 
zero at the end of its scope, then the 
borrowed list L will also only contain 
value zero at that point.

This loop invariant is all that is 
needed to prove the postcondition of 
Set _ List _ To _ Zero. Note that 
the analyzer does not do any looka-
heads in the code to prove the loop 
invariant itself, but only uses informa-
tion available at the current program 
point. Here, the preservation of the 
loop invariant follows from the fact 
that the first cell of X cannot be modi-
fied after the reborrow on line 40. After 
this point, it can no longer be accessed 
through X, and modifications through 
L during the borrow are illegal. As a 
result, the SPARK analyzer can prove 
that its value at the end of the borrow 
will necessarily be zero.

Practical Formal Verification 
Is Not All-or-Nothing
Levels of software assurance. With the 
exception of carefully crafted train-
ing examples, conducting a proof of 
any industrial code of typical size and 
complexity against its full functional 
specification can be highly challeng-
ing, requiring training, experience, and 
expert knowledge. Later in this section, 
we will reflect on why and when it may 
be appropriate to invest such effort and 
resources—in the cases where the very 
highest levels of software integrity and 
assurance are justified by the costs of 
potential failure. However, to dismiss 
formal verification in the general case 
because it is challenging is to miss the 
point: Formal verification is not an 
all-or-nothing endeavor and there are 
many dimensions to how it can be ap-
plied that make it an economically real-
istic option in a wide range of scenarios.

SPARK has always supported a 
range of different verification tech-

gram _ Variant contract to provide 
a metric which can be shown to de-
crease between recursive calls. For 
structural variants like the one used in 
Is _ All _ Zero on line 12, the SPARK 
analyzer attempts to show that recur-
sive calls occur on strict substructures. 
Since the ownership policy disallows 
cyclic structures, this is enough to en-
sure termination.

Returning to iteration, the language 
has a facility to temporarily transfer 
ownership of a memory cell. This is 
possible in SPARK through the con-
cept of borrows. The big idea is as fol-
lows. At the declaration of certain local 
objects, called borrowers, the transfer 
of ownership is considered to be tem-
porary for the duration of the lifetime 
of the object. The original object is said 
to be borrowed and cannot be used for 
the duration of the borrow—it can no 
longer be used to access the designat-
ed memory cell. Ownership returns to 
the borrowed object automatically at 
the end of the borrow. In SPARK, pro-
cedure parameters and local objects of 
anonymous pointer type are treated as 
borrowers. As an example, the type of X 
was changed to an anonymous pointer 
type on line 36, materialized by the use 
of keyword access, in the correct ver-
sion of procedure Set _ List _ To _
Zero in Figure 3.

Note that, whereas the first assign-
ment in the loop on line 39 uses X to 
modify the underlying structure, the 
second assignment on line 40 only 
modifies X so that it designates a sub-
structure of itself. It is called a rebor-
row. It is also possible to create subpro-
gram parameters and local objects as 
observers, which can only be used to 
read the underlying structure using an 
anonymous pointer type introduced 
with the syntax access constant T. 
In this case, the observed objects re-
main readable during the lifetime of 
the observer.

The proof of programs using local 
borrowers sometimes requires the 
use of so-called prophecy values, which 
designate the values of the borrowed 
object and the borrower at the end of 
the borrow.36 This is especially useful 
in invariants of loops, which iterate 
over recursive data structures. As an 
example, let us consider the contract 
of Set _ List _ To _ Zero on line 22. 
For it to be provable, the invariant in 
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specification and implementation 
into a set of VCs (added to those it al-
ready automatically generated to dem-
onstrate AoRTE), and then attempt to 
prove each one in turn using the auto-
active approach described later in this 
article.

Although extra effort is required 
at Gold level, there are two important 
points to note. First, if errors are un-
detected at the coding stage, they will 
leak into later stages of the lifecycle. 
They might be detected during test-
ing—but there are no guarantees of 
that—or they might in the worst case 
remain in the delivered system. It is 
well understood that the cost of fix-
ing errors increases the later they are 
found in the development and deploy-
ment cycle, so additional effort at the 
coding stage can be seen as an invest-
ment that prevents incurring greater 
costs at a later date. Second, this 
incremental approach to assurance 
means we are focusing our effort on 
properties and areas where additional 
effort is justified by the cost of poten-
tial failure.

There are a number of industrial 
examples which have successfully 
achieved Gold level. In this article, we 
focus on two more recent examples, 
SPARKNaCl and NVIDIA, which are 
presented in the sidebars.

Platinum: Full functional correct-
ness. Beyond Gold level, we can con-
tinue to add contracts to the code until 

an electronic display. iFACTS enables 
air traffic controllers to increase the 
amount of air traffic they can handle, 
providing capacity increases and en-
hancing safety. The iFACTS source 
code consisted of more than 200kloc 
of SPARK, from which over 120,000 
VCs are generated to prove AoRTE. iF-
ACTS was successfully introduced into 
NATS' Swanwick Area Centre in No-
vember 2011 and is now a core part of 
the Area Control operation.

Gold: Proof of functional properties. 
Gold level introduces an element of 
functional correctness into the pro-
gram, which will be co-developed 
along with its implementation, using 
SPARK contracts to specify what a par-
ticular abstract data type, procedure, 
or function should do.

The idea at Gold level is to focus our 
specification effort on the key proper-
ties we want the program to deliver. 
These properties will depend on the 
nature of the application. So, for exam-
ple, a safety-related system of the type 
found in rail or aerospace will have key 
safety requirements relating sensor 
inputs to the state of the outputs. We 
might specify that an alarm should 
sound if a particular sensor input is 
outside a safe range.

Once we have specified the key 
properties and we have a candidate 
implementation, then we can prove 
that the properties hold. The SPARK 
analyzer will translate our combined 

to type-safety (ensuring that numeric 
types stay within range; ensuring no 
divide-by-zero) and memory-safety (en-
suring that array indexing stays within 
bounds; ensuring that pointer derefer-
ences are valid).

In our recent experience of the in-
dustrial application of SPARK, we have 
come to regard Silver as the default 
minimum we should aim for. This is 
because it represents a very significant 
increase in software integrity and reli-
ability for what is typically a relatively 
small additional investment. Con-
clusively demonstrating AoRTE by 
dynamic testing alone is a practical 
impossibility for all but the most triv-
ial of programs. Yet, this is a common 
class of errors which can introduce sig-
nificant hazards into digital systems, 
making them vulnerable to buffer 
overflow exploitations, denial-of-ser-
vice attacks, or loss of safety functions. 
It also gives us the option to disable 
runtime exception checking while hav-
ing the certainty that such errors will 
not occur.

Among the successful industrial ap-
plications at Silver level, perhaps the 
best example owing to its significance 
and size is iFACTS,11 a set of tools used 
by Air Traffic Controllers at NATS, the 
U.K.'s leading air traffic services pro-
vider. iFACTS provides tools for trajec-
tory prediction, conflict detection, and 
monitoring aids, and replaced tradi-
tional paper information strips with 
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Figure 4. Assurance levels with SPARK.
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the importance of making provers col-
laborate.10

This collaboration comes naturally 
from the different strengths and weak-
nesses of individual provers, so that 
one prover may prove more easily a giv-
en category of VCs. We exploit further 
this division of work by specializing 
the generation of VC for each prover. 
For example, while all three SMT prov-
ers support the theory of bitvectors to 
represent machine integers, we chose 
to represent all machine integers as 
mathematical integers (type int in 
SMT-LIB2 format) for the prover Alt-Er-
go,17 while representing some of them 
as bitvectors for provers cvc57 and Z3,19 
to benefit from the specific strengths 
of each prover.

The SPARK analyzer exploits the 
collaboration of provers at a very fine-
grain level. Every conjunct in every as-
sertion leads to a distinct VC which can 
be tackled by any prover. Such massive 
parallelism benefits greatly from mod-
ern multicore architectures and/or us-
ing cloud computing resources to run 
the provers.

The auto-active approach. As prop-
erties or code gets more complex, au-
tomatic provers cannot prove every 
property that is provable in theory. 
As a result, it is sometimes necessary 
to supply guidance to the underlying 
provers, most commonly in the form 
of intermediate assertions in the code. 
While trying to understand why some 
property is not verified by the analyzer, 
the programmer adds assertions, typi-
cally containing intermediate steps in 
the reasoning toward the property of 
interest until the intermediate asser-
tions and the final property are proved 
automatically.

This approach, using a mix of auto-
mated verification and user-supplied 
assertions, is called auto-active verifi-
cation.32 The process can involve not 
only simple assertions but whole piec-
es of ghost code, as the verification pro-
cess becomes closer to programming 
itself. The help provided by the analyz-
er to identify provability issues37 and 
facilitate interaction with the users 
inside IDEs is paramount here, as work 
at the source level has replaced inspec-
tion of formulas in earlier generations 
of SPARK and similar technologies. 
That includes in particular counterex-
amples generated by provers, that is, 

only be appropriate for the most criti-
cal applications. However, it is worth 
considering a reduction in unit testing 
for functional verification if Platinum-
level proof has been achieved, since we 
know that the program will return the 
correct result for all inputs, not just for 
those we have been able to test.

Although it is not typical to aim for 
Platinum level, it has been successfully 
achieved on a number of industrial ap-
plications, most notably:

 ˲ SHOLIS, an instrumentation sys-
tem that assists with the safe operation 
of helicopters on naval ships, saw the 
first successful application of the U.K. 
Ministry of Defense's DEFSTAN 00-55, 
a standard for high-integrity software 
development for military applications. 
SHOLIS is also an interesting example 
of how we can partition the source 
code into different integrity levels and 
apply different levels of verification 
within the same program: Platinum 
for the SIL-4 (highest integrity) subset 
and Silver for the remainder.28

 ˲ Tokeneer, a biometric access-con-
trol system, was developed for the NSA 
to demonstrate that the application of 
formal methods was practicable for 
high-assurance, secure systems.6

 ˲ GNAT Light Runtime Library is a 
recent example of the targeted use of 
full functional proof on a critical sub-
set of the Ada runtime library, subject 
to certification in the context of vari-
ous certification standards.38

Pushing the boundary of automa-
tion. The highest levels of software 
assurance necessitate the automation 
of proof. This rests ultimately with the 
automatic provers that are called in 
the back end of the SPARK analyzer, 
as illustrated in Figure 5. While the 
use of Why3 as proof platform allows 
in principle calling more than a dozen 
automatic provers, the SPARK analyzer 
mostly uses three of the Satisfiabil-
ity Modulo Theories (SMT) family of 
provers, plus a constraint solver. These 
open source provers were selected be-
cause they collectively provide the best 
results on the VCs generated by SPARK.

In real life, while a majority of VCs 
are proved by more than one prover, a 
small percentage is typically proved by 
only one prover. On large projects with 
many thousands of VCs, this small 
percentage amounts to hundreds or 
thousands of VCs, which emphasizes 

every subprogram has a fully function-
al specification. By this we mean that 
every subprogram has a postcondition 
that specifies the value of each of its 
outputs and a precondition as required 
to constrain the input space. Further 
type invariants may also be added over 
and above those already present from 
Gold level. Once the implementation 
has been completed against this full 
specification and all VCs generated by 
the analyzer have been proved, we have 
reached Platinum level of SPARK as-
surance.

Due to the additional effort in-
volved in developing the specification 
and proof to this level, Platinum will 
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SPARKNaCl is an open source rewrite 
of the TweetNaCl cryptographic 
library. The code adopts an auto-
active verification style and achieves 
a completely automated proof of 
absence of runtime errors and some 
key correctness properties. Given 
SPARK’s guarantees of correctness, the 
code can be compiled with aggressive 
optimization, and all contracts 
and runtime checking disabled. 
Verification also led to several proof-
driven optimizations in the code. On 
a 32-bit RISC-V target, the resulting 
code is more than three times faster 
than TweetNaCl for a single Ed25519 
signature generation.15 

SPARKNaCl

NVIDIA selected SPARK to face the 
challenge of delivering safer and more 
secure products without incurring a 
large increase in development time 
and cost. NVIDIA began implementing 
SPARK in its security strategy in 
2019 on select pieces of firmware, 
then expanded its use by training 
additional personnel in SPARK and 
eventually developing an in-house 
training program. Several NVIDIA 
teams use SPARK for a wide range of 
applications, including high-integrity 
data pipelining, image authentication 
and integrity checks for the overall 
GPU firmware image, hypervisors, 
BootROM, secure monitor firmware, 
device drivers for automotive safety, 
and formally verified components of 
an isolation kernel for an embedded 
operating system.5

NVIDIA 
Corp.
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Using this library to model the con-
tent of an array as a multiset, it is pos-
sible to prove the full functional cor-
rectness of a sorting algorithm, with 
as much ghost code as normal code.2 
The specification and verification of 
complex data structures or numeri-
cal algorithms requires notably more 
ghost code than normal code. For the 
specification of a library of red-black 
trees for bare-metal target (no dynam-
ic allocation), the size of contracts (in-
cluding data structure invariants) was 
twice the size of the code, and the size 
of ghost code was five times the size of 
the code.21 For the specification of a li-
brary of multi-place integer arithmetic 
as part of the GNAT compiler runtime 
library, the size of contracts was only 
a tenth of the size of the code, but the 
size of ghost code was again five times 
the size of the code.38

With as much ghost code to guide 
automatic provers, many VCs are 
proved by only one prover. Hence, 
changes in the code or in the analyzer 
may lead to some VCs not being proved 
anymore by any prover. This fragility of 
automatic proofs of functional correct-
ness has a cost for users, who need to 
occasionally repair the proof by engag-
ing again in auto-active proof. Advanc-
es in automatic proof technology will 
be needed to improve this situation.

What you get is only as strong as 
your assumptions. John Rushby, in his 
pioneering work on the use of proof for 
critical software,39 pointed at two cave-
ats of proof compared to tests: the need 
for internal consistency to ensure that 
specifications are not inconsistent, as 
this would allow proving anything, and 
the need for external fidelity to ensure 

gram verification is unusable. But 
perhaps not useless."32 Indeed, prov-
ing full functional correctness of pro-
grams will remain hard for the foresee-
able future. As we saw, this is only one 
of the options when considering assur-
ance levels. But there are cases where 
we would like to achieve that Platinum 
level of verification. The auto-active ap-
proach makes it possible, but some dif-
ficulties remain.

To both simplify the annotation 
process and make the verification 
easier, some mathematical concepts 
are provided as libraries along with 
the SPARK analyzer. In particular, 
Ada2022 defines libraries for big (un-
bounded) integers and big rational 
numbers. The SPARK analyzer offers 
built-in support for them so they can 
be used in an efficient way. The big in-
tegers of Ada are handled by the ana-
lyzer as mathematical integers, which 
avoids the need for overflow checks in 
contracts and allows verifying algo-
rithms that deal with very large num-
bers, for example in crypto libraries. 
Big rationals can be used to reason 
about the rounding error in floating 
point algorithms, for example.

SPARK also provides a functional 
containers library with unbounded se-
quences, sets, and maps. As opposed 
to containers generally used in pro-
gramming languages, the main con-
cern in their design is not efficiency, 
but the simplicity of the model used for 
the verification, as well as a proximity 
with the structures generally used in 
higher-level reasoning. Similarly to big 
numbers, these containers are meant 
to be used primarily in contracts, 
where efficiency might not be an issue.

values of inputs that lead to a failure.18

We have identified a number of 
“proof patterns” for Ghost code:

Exhibiting a witness. Proving exis-
tentially quantified formulas is hard 
for provers, as it requires guessing an 
appropriate value. To help the analyzer, 
it is possible to exhibit a witness—a value 
which has the expected property. For ex-
ample, to prove the existential property 
(for some X in A..B => Prop(X)), 
one can prove first Prop (Witness) for 
a value Witness in the range A..B.

Reasoning by induction. In general, 
inductive reasoning is out of reach of 
automated provers. It is possible to 
help the analyzer using a loop with 
a loop invariant or using recursive 
calls. For example, to prove that any 
two elements in T are in the same or-
der as their respective indexes from 
the knowledge that consecutive ele-
ments are sorted, one can write a loop 
increasing the maximum distance 
Len between such indexes, consisting 
only of a loop invariant stating that ele-
ments whose indexes are no more than 
Len apart are sorted.

Factoring out common reasoning. 
A lemma is a ghost procedure with a 
contract but no other effect. The pre-
condition contains the premises of 
the lemma and the postcondition is 
the conclusion. When the procedure 
is analyzed, the analyzer verifies the 
lemma itself, namely, that the conclu-
sion follows from the premises in every 
context. The body might contain ghost 
code to help the proof. As SPARK analy-
sis is modular on a per subprogram ba-
sis, when the procedure is called, the 
premises are verified and the conclu-
sion is assumed.

Simplifying the proof context. Lem-
mas have the advantage of reducing 
the proof context, as only the relevant 
hypotheses are kept as a precondition. 
It makes it easier for the automatic 
provers to find a proof. Some lemmas 
can be proved with an empty body even 
though the same assertion was not 
verified in the subprogram context. It 
is the case in particular for non-linear 
arithmetic lemmas which are theo-
retically provable but hard for provers. 
SPARK comes with a standard library 
of such lemmas.

Full functional correctness is chal-
lenging. Researchers Rustan Leino 
and Michał Moskal once said, "Pro-
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Figure 5. Structure of the open source SPARK analyzer.
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and secure software, the future looks 
bright for SPARK!

Acknowledgments
SPARK is the result of decades of work 
from past and current members of the 
SPARK development team, whom we 
represent here. The current version of 
SPARK owes much to the collabora-
tion with research team Toccata of In-
ria on Why3. The anonymous review-
ers made many suggestions to make 
this article more accessible. We are 
indebted to all of you. 

References
1. Abrial, J. Formal methods: Theory becoming practice. 

J. Univers. Comput. Sci. 13 (2007), 619–628.
2. AdaCore. A Concrete Example: A Sort Algorithm 

(2023); https://bit.ly/41KawzQ
3. AdaCore. Managing Assumptions (2023); https://bit.

ly/41RDX35
4. AdaCore. SPARK Reference Manual (2023); https://bit.

ly/3TIsDEx
5. AdaCore and NVIDIA. Case Study (2022); https://bit.

ly/4aKXvKo
6. AdaCore. Tokeneer (2008); https://www.adacore.com/

tokeneer
7. Barbosa, H. et al. cvc5: A versatile and industrial-

strength SMT solver. In Tools and Algorithms for the 
Construction and Analysis of Systems. D. Fisman and 
G. Rosu (Eds.). Springer Intern. Publishing (2022), 
415–442.

8. Barnett, M. et al. Specification and verification: The 
spec# experience. Commun. ACM 54, 6 (Jun. 2011), 
81–91; 10.1145/1953122.1953145

9. Baudin, P. et al. The dogged pursuit of bug-free 
C programs: The frama-C software analysis 
platform. Commun. ACM 64, 8 (Jul. 2021), 56–68; 
10.1145/3470569

10. Bobot, F. et al. Why3: Shepherd your herd of provers. 
In Proceedings of Boogie 2011: First Intern. Workshop 
on Intermediate Verification Languages (2011), 53–64; 
https://hal.inria.fr/hal-00790310

11. Bobot, F., Filliâtre, J., Marché, C., and Paskevich, A. 
Let’s verify this with Why3. Intern. J. on Software 
Tools for Technology Transfer 17, 6 (2015), 709–727; 
10.1007/s10009-014-0314-5

12. Carré, B. and Garnsworthy, J. SPARK—An annotated 
Ada subset for safety-critical programming. In 
Proceedings of the Conf. on TRIADA ’90, Association 
for Computing Machinery (1990), 392–402; 
10.1145/255471.255563

13. Chalin, P. A sound assertion semantics for the 
dependable systems evolution verifying compiler. 
In Proceedings of the 29th Intern. Conf. on Software 
Engineering (2007), 23–33; 10.1109/ICSE.2007.9

14. Chalin, P., Kiniry, J.R., Leavens, G.T., and Poll, E. 
Beyond assertions: Advanced specification and 
verification with JML and ESC/Java2. In Formal 
Methods for Components and Objects. F.S. de Boer, 
M.M. Bonsangue, S. Graf, and W. de Roever (Eds.). 
Springer Berlin Heidelberg (2006), 342–363.

15. Chapman, R. SPARKNaCl GitHub project (2020); 
https://bit.ly/48CPsgR

16. Chapman, R. and Schanda, F. Are we there yet? 20 
years of industrial theorem proving with SPARK. In 
Interactive Theorem Proving. G. Klein and R. Gamboa 
(Eds.). Springer Intern. Publishing (2014), 17–26.

17. Conchon, S., Coquereau, A., Iguernlala, M., and 
Mebsout, A. Alt-Ergo 2.2. In Proceedings of the Intern. 
Workshop on Satisfiability Modulo Theories (2018); 
https://hal.inria.fr/hal-01960203

18. Dailler, S., Hauzar, D., Marché, C., and Moy, Y. 
Instrumenting a weakest precondition calculus 
for counterexample generation. J. of Logical and 
Algebraic Methods in Programming 99 (2018), 
97–113; 10.1016/j.jlamp.2018.05.003

19. de Moura, L. and Bjørner, N. Z3: An efficient SMT 
solver. In Proceedings of the Theory and Practice of 
Software, 14th Intern. Conf. on Tools and Algorithms 
for the Construction and Analysis of Systems. 
Springer-Verlag (2008), 337–340.

that specifications are correctly for-
malizing the environment in which the 
software operates, otherwise voiding 
the guarantees provided by proof. We 
are collectively referring to these cave-
ats as proof assumptions that should be 
listed and reviewed.

Some assumptions are explicitly ac-
knowledged by users when they justify 
that some checks cannot be violated 
in their operational context. Other 
assumptions relate to the boundary 
of the SPARK program, which may 
be linked with libraries in other pro-
gramming languages, or rely on the 
behavior of an operating system or a 
specific hardware. All these assump-
tions should be carefully reviewed by 
users to ensure the verification results 
provided by the analyzer are correct for 
the target context.3

SPARK in the Future
SPARK continues to evolve to support 
programming language features used 
in critical software and to reap benefits 
from improvements in the underlying 
automatic prover technologies. SPARK 
is also used as the target programming 
language for code generators from 
higher-level representations in domain-
specific languages. The challenges in 
proving generated code are different 
from those with manually written code, 
as generated code is more regular but 
also much larger in general.

Since the publication of the results 
of the Spec# experience in 2011 in 
Communications,8 some parts of the 
software industry have adopted pro-
gram proofs as one of the paradigms of 
programming. Further adoption rests 
essentially with education of the active 
and future workforce, which will be 
helped by the publication of more re-
sources on the auto-active approach.31

But as we push the boundary of 
what can be automated, we are faced 
with the well-known Left-Over Prin-
ciple of automation: Automation fails 
humans precisely on the more com-
plex cases, where humans would need 
more help.35 A large part of our effort is 
therefore dedicated to designing bet-
ter interaction mechanisms to grace-
fully transition from automation to 
interaction where needed.

Finally, with more software teams 
reconsidering their choice of program-
ming languages for producing safe 

This work is licensed under a  
http://creativecommons.org/licenses/by/4.0/

94    COMMUNICATIONS OF THE ACM   |   MARCH 2024  |   VOL.  67  |   NO.  3



Unlock the power of secure, reliable 
software with SPARK Pro

adacore.com

https://bit.ly/3wrmPW9
https://www.linkedin.com/company/39996/http://
https://github.com/AdaCore
https://twitter.com/AdaCoreCompany
https://www.adacore.com
https://www.adacore.com
http://adacore.com

	244831-adacore-tech-paper-cover-v2
	3624728 (1)



