Multi-Language Programming: The Challenge and
Promise of Class-Level Interfacing

Cyrille Comar, Matthew Gingell, Olivier Hainque, Javier Miranda
AdaCore

{comar, gingell, hainque, miranda}@adacore.com

Abstract reuse and extension of class hierarchies across
languages with minimal constraints. This pa-

M lcati q Vol per describes work we have conducted in this
any computer ‘applications today involve context, allowing direct binding of Ada exten-

modules Writt_en in di_fferent programming lan- sible tagged types with C++ classes. Motivated
guages, and integrating these modules togeth%li/ extensions to the Ada typing system made

'i a de_Illcs_tlt_a op}efratlonl._ This lf'rSt requireS4q part of the very recent language standard
the availability of formalisms 1o et program- o, iqion * this work leverages the GCC multi-

mers denote “foreign entltlgs like OpjeCtS andlanguage infrastructure and implementation of
subprograms as Welllas their associated type§,a jtanium C++ ABI. We will first survey the
Then, proper translation of what ProgrammerSqq e and mechanisms related to basic inter-

express often Ce_l”S for significant impl_e_menta'language operations, then present the interfac-
tion effort, possibly down to the specification ing challenges posed by modern object oriented

of]:/ery prel\(jlise ?BIS (AppLi)catic()jn Binary Ln' features after a brief overview of the Ada, C++,
terfaces). Meta-language based approaches 8hd Java object models. We will continue with

la CORBA/IDL are very powerful in this re- a description of our work on Ada/C++ class-

spect but_typ|cally aim at addressmg d'St”bUte_qevel interfacing facilities, illustrated by an ex-
systems issues as well, hence entail support 'rﬁmple

frastructure that not every target environment
needs or can afford. When component distri-
bution over a network is not a concern, straight
interfacing at the binary object level is muchl Interfacing Across Programming
more efficient. It however relies on numerous | anguages - Introduction

low level details and in practice is most often

only possible for a limited set of constructs.
Two general aspects of Multi-Language Pro-

Binary level interaction between foreign mod- gramming are the formalisms available to de-
ules is traditionally achieved through subpro-note and use “foreign” entities exposed from a
gram calls, exchanging simple data types andifferent language than the one in which they
relying on the target environment’s core ABI. are referred to, and the support infrastructure
Object Oriented features in modern language$or what programmers express. “Interfacing”

motivate specific additional capabilities in thiscan cover many different things, such as ac-
area, such as class-level interfacing to allowcess to foreign data, foreign type representa-

1

tion, calls to foreign subprograms, handling ofoperating system libraries.

foreign events like exceptions, and reuse of ob-

ject class hierarchies. In any case, an interfacn top of the common base conventions we
always implies agreement between the involvediave just surveyed, various standard devices are
parties. For instance, a subroutine call willavailable on the programming languages side.
only operate properly if the caller and the calleeAs a first example, the Ada Reference Man-
agree on how arguments are passed (in what o#al (ARM) includes a full annex dedicated to
der, using what machine resources), who allothe issue [22, Annex B], covering interfacing
cates/releases this or that part of the stack, howith C, Cobol, and Fortran, and allowing im-
aligned the stack pointer is expected to be, etddlementations to support other languages. The
Likewise, operating on a foreign variable re-minimum support specified in this annex con-
quires a way to describe or denote the variable’§ists of standard packages for each language,
“native” type to ensure a correct interpretationfor instance thénterfaces.C hierarchy for

of the actual value layout. Typically, more pow- C, and specific compilgrragmas:

erful formalisms make programmers lives eas-

ier at the price of more complicated underlying Pragma Import to import an entity de-

Infrastructure. fined in a foreign language into an Ada
program, thus allowing a foreign-language

1.1 Core Mechanisms - Basic Capabilities subprogram to be called from Ada, or a
foreign-language variable to be accessed
from Ada.

A first set of basic interfacing possibilities is
provided by explicit programming language ® Pragma Exportto export an Ada entity to
features associated with well establistudi- a foreign language.

ing conventionand low level rules for the tar-
get environment specified in baggplication
Binary Interface(ABI) documents.

e Pragma Conventionto specify that an
Ada entity should use the conventions of
another language for passing parameters

Among other things, base ABI documents de- t0 subprograms, or else to represent a data
scribe binary files formats, basic data type lay- type in memory (for example determining
outs, stack frame organization, and machine Matrix element ordering).

level conventions for passing parameters to and
returning results from subprograms. See [19]
and [12] for examples of such documents for
the i386 and amd64 architectures. Additional
calling conventions may apply in some envi-
ronments, such as thedcall /fastcall
variants on x86-Windows [17], or for some spe-The following code example illustrates the use
cific programming languages as illustrated byof some of these facilities to call a C func-
the differences between Pascal and C in arguion from Ada to print out annt value found
ments passing order. These conventions praat a provided address. It uses the standard
vide a common ground for basic inter-languagédnterfaces.C package to get access to the
interfacing capabilities and binary code inter-Ada type corresponding tmt , declares an
operability, ensuring for instance proper inter-Ada subprogram to represent the C service in-
action between GCC compiled code and targeterface, and imports the service by way of an

e Pragma Linker_Optionsto specify the
system linker parameters needed when a
given compilation unitis included in a pro-
gram.

2

Import pragma. The latter tells the compiler 1.2 Higher Level Facilities and Paper
that the subprogram is external with C conven- Overview
tion and states what symbol (link name) should

be used to refer to it. . .
. As time goes by, programming Ianguages
with Interfaces .C;use Interfaces;

procedure Binding_Example is evolve, higher level features are introduced,

. implementation choices are made, and binary
— Map and use C function

— void dump_int_at (intsptr); compatibility issues, especially with respect to
procedure Dump_Int_At (Ptr : accessC.Int); other Ianguages_’ a_’re nc.)t. always part of the p,IC_
ture upfront. This is legitimate, as a concept in
pr(agg‘rf‘v;’r‘:ﬁg;‘:> c. one language doesn’t necessarily have a coun-
Entity => Dump_Int_At, terpart in others, and because complex factors
Link_Name =>"dump_int_at"); come into play views inevitably vary on what
X Myint : aliased C.Int := 12; scheme is best in each specific case. Still, com-
egin

monalities do occur even for sophisticated fea-
tures, and the capability to interface across lan-
guages at these higher levels is often desirable
The Ada Access attribute used here in and an interesting challenge. For instance, an
Myint'/Access corresponds to th& unary Ada top-level subprogram might be interested
addressing operator in C: It produces an adin catching exceptions raised by C++ subcom-
dress, called araccess valuesaid to desig- ponents, or vice-versa. Although the concept of
nate the entity. Ada access values are norexception” is similar in both languages, there
mally subject toaccessibility checksiandated are variations in the way it is precisely mapped
by the language to prevent the creation of danon each side, and determining the appropriate
gling pointers [22, 3.10.2-24]. Roughly, an ac-semantics for such a facility is difficult to start
cess value may only be assigned to an objegjith.

of an access type if the value lifetime is guar-

anteed to be shorter than the lifetime of theThis paper describes work we have conducted
target type. Performing these checks require# this context, on GNU Ada/C++ “class-level
run-time code in some cases, raising the preddnterfacing,” to allow direct binding of Ada ex-
fined Program_Errorexception in case of fail- tensible tagged types hierarchies to C++ classes
ure. With GNAT, accessibility checks result in both directions. Motivated by extensions to
in automatic extra argument passing in calls tdhe Ada typing system made as part of the very
subprograms with access parameters. A no<€ecentlanguage standard revision [1], this work
ticeable effect of the C convention applied toleverages the GCC multi-language infrastruc-
Dump_Int_At in our example is to disable ture and implementation of the Itanium C++
this circuitry, as the extra parameter is not parABI [5] to simplify interfacing between OO
of the base interface and only makes sense fdanguages at the class-level.

Ada subprograms.

Dump_Int_At (Myint’Access);
end,;

In Section 2 we briefly describe the Ada OO
As other examples, C++ providéskage spec- model and its relationship with the C++ and
ifications such asextern "C" to allow the Java models. In Section 3 we present in greater
use of C++ entities in other languages, andletail what “class-level interfacing” involves
calls to foreign routines from Java are possibleand the various possible approaches. In Sec-
thanks to an exhaustive Java Native Interfacéion 4 we analyze the GNAT specific capabil-
specification [11]. ities for interfacing Ada with C++, illustrated

with a commented example in Section 5, andAda 83, Ada’s original definition, was con-
then offer our conclusions. sidered an Object-Based language. It was
based on the above principles without offering
any mechanism for dynamic polymorphism.
In fact, dynamic dispatching was deliberately
2 Static OO Models Comparison: banned from the language since it was, at the
Ada, Java, C++ time, considered incompatible with its safety
requirements. In this first model, a class is
represented by a private type along with its
Booch [2] defines Object Orientation aroundprimitive operations (methods) encapsulated in
seven principles: Abstraction, Encapsulation@ package. The implementation of the pri-
Modularity, Hierarchy, Typing, Concurrency Vate type is typically a record grouping all data
and Persistence. The first two principles ar¢nembers, and the implementation of methods
about separating how objects are defined andre hidden in the package body.
used from how they are represented and imple-
mented. Modularity is about organizing pro- The second revision of the language, known as
grams as a collection of separate componentdda 95, enriches its typing system with a new
with defined interactions and limited access tovariety of record called “tagged” records. The
data. Typing and Hierarchy are about distin-main characteristic of these records is that they
guishing different kinds of objects and structur-can be extended during derivation and thus are
ing them according to their common characterused as the basis for dynamic polymorphism
istics. A complete description of these princi-under a single inheritance model. Both C++
ples can also be found in [9, Section 1.3.2]. and Java fully support single inheritance. Con-
trary to those languages where polymorphism
In C++ and Java, the notion of “class” is cen-is implicit, Ada distinguishes it through an ex-
tral to all these principles even though mod-plicit notation: T'Class is the polymorphic,
ularity is also achieved through name-spacesalled class-wide version of a specific tagged
and separate files. In those languages, classegpe T, which means that the actual run-time
allow grouping of data members along withtype of an object declared of type T'Class can
their associated function members (methods)e T or any of its descendant.
They also specify their position in a hierarchy
by specifying their immediate parents and of-In Java, all methods are dispatching. In C++,
fer visibility restriction mechanisms for their methods are dispatching when they are de-
members. clared “virtual”. In Ada, all methods are poten-
tially dispatching and a call dispatches or not
In Ada, the first three concepts (Abstraction,depending on the nature of the object it applies
Encapsulation, and Modularity) are associatedo. Dispatching will only occur when the lat-

with packages and “private” declarations whileter has a polymorphic type, as illustrated by the
the Typing concept is clearly associated withcode excerpt below:

the Ada typing model. The Hierarchy princi- o R :
. R — A call is dispatching if the controlling
ple is found both in packages and types: the —_ argument type is classwide:
child package construct allows the programmer - TClass = -
to define a hierarchy of packages, and the type v : T =
derivation allows him to create hierarchies of X7 Method: — dispatching
types. Y.T_Method; — not dispatching

C++ offers full-scale multiple inheritance. That larations. The interface type has no data com-
is to say, a class may have several parents amqbnents and its primitive operations are either
inherits all their data and function members.abstract or null, in which case they behave as if
This is a powerful capability providing a great their body was empty. A data type that imple-

deal of expressive power. At the design levelments an interface must provide non-abstract
it is particularly convenient for composing con- versions of all the abstract operations of its par-
cepts represented by independent classes. Prents. Here is a code sample to illustrate the
gramming with full multiple inheritance re- declaration of interface types and the associated
quires familiarity with the answers provided multiple inheritance capability in Ada 2005:

by the language to tricky questions such as:package Interfaces_Exampleis

What happens when a class inherits multiple YP¢ I T® i(;te:rflalc)e;ewrn nteger

times from the same ancestor through different is abstract;

derivation paths? What happens when inherit- .\, s iitertace and 11;

ing methods with the same profile from differ- procedure Q (X : 11) is null;

ent parents? A thorough overview of how C++ Procedure R (X = 12) is abstract;

answers such questions is available from [21], type Root is tagged record with private;

along with many ideas on how multiple inheri- Zroot 0% 0¥ 1010 nieger

tance can be implemented efficiently. Nonethe- ,

less, although multiple inheritance has proven b, koot and 11 and 12 with private :

to be a very powerful paradigm for skilled pro- — DTl must implement P, and R

grammers, its extensive use may have negative

consequences for the readability and long term type DT2 is new DT with private ;

. . - — Inherits all the primitives and
malntalnablllty OfSOftware _ interfaces of the ancestor

rivate
In recent years, a number of language deS|gns type Root is tagged record with
[6, 7] have adopted a compromise between full ~ — Root components
multiple inheritance and strict single inheri- end record;

tance, which is to allow multiple inheritance :
type DT is

of specificationsand only single inheritance of new Root and 11 and 12 with record
implementations Typically this is obtained by —— DT components

means of‘interface” types. An interface con- end record;

_S|sts solely of a set of operation speC|f|ca_1t|or_15: type DT2 is new DT with record

it has no data components and no operationim- — DT2 components

plementations. Atype may implement multiple . " ecora:

interfaces, but can inherit code from only one end Interfaces_Example;;

parent type. This model has much of the power

of full-scale multiple inheritance, but without The interface 11 has one subprograf, The

most of the implementation and semantic diffi-interface 12 has the same operations as I1 plus

culties of the C++ multiple inheritance model two subprograms: the null subprogragmand

[10]. the abstract subprogra® Then, we define the
root of a derivation class that has two primitive

Ada 2005 provides support for such abstract inoperationsA andB. DT extends the root type

terface types [1, Section 3.9.4]. Its characterand also inherits the two interfaces 11 and 12, so

istics are introduced by means of an interfacaet is required to implement all the associated ab-

type declaration and a set of subprogram decstract subprograms. Finally, ty@®T2 extends

5

DT1, inheriting all the primitive operations and implementation of synchronized interfaces see
interfaces of its ancestor. [15].

OO0 languages that provide abstract interface

types [6, 7] have a run-time mechanism that

determines whether a given object implementg |nterfacing at the class level

a particular interface. Accordingly Ada 2005

extends the membership operation to interfaces

and allows the programmer to write the pred-3.1 Basic Requirements

icate O in I'Class Let us consider an exam-

ple that uses the types declared in the previous

fragment and displays both of these features: N general, reusing an object-oriented system

procedure Dispatch_Call requires two d_ist_inct capabilities: cre_at_ing in-
(Obj : 11'Class) is stances of existing classes and defining new
begin | inheriti £ h R .
1. dispatch call classes inheriting from them. Reusing an OO
= P (Obj); system written in a different language requires
—— 2. membership test the additional capability: to “see” foreign
if Obj in [2°Class then classes and use them with as few restrictions
— 3: interface conversion plus as possible. In particular it implies the possi-
— dispatch call ili i i i
R (12'Clasa (OB D): bility of deflnlpg in one Ianguage an mstgnce
end if; of a class which has been implemented in an-
other. Another interesting capability is inherit-

— 4: dispatch to predefined op.) . . . g
I1'Write (Stream, Obj) ing from foreign classes, which implies that dy-

end Dispatch_Call; namic binding can cross language boundaries
_ transparently. Although of less general inter-
The type of the formaDbj covers all the types est, Run Time Type Information (RTTI) queries

thatimplement the interface I1. At—1—we dis-sych as membership tests are also worth men-
patch a call to the primitiv® of I1. At—2—we {joning.

use the membership test to check if the actual

object also implements 12. In order to issue aFor such interfacing capabilities to make sense,
dispatching call to the subprogram R of inter-minimal commonalities between the OO mod-
face 12, at —3— we perform a conversion of theels are required to preserve coherence between

actual to the class-wide type of interface 12. Ifa class hierarchy defined on one side and used
the object does not implement the target interon the other.

face and we do not protect the interface con-

version with the membership test, then the pre-

defined exceptioonstraint_Erroris raised at 3.2 Common Approaches

run-time. Finally at —4— we see that, in addi-

tion to user-defined primitives, we can also dis- _

patch calls to predefined Ada operatioigize A Well-known approach to inter-language
'Alignment 'Read "Write, 'Input, ’Output, Ad- class-level interfacing consists of resorting to

just, Finalize, or the equality operator. a common meta language. CORBA [18] of-
fers an interesting case of the definition of such

Ada 2005 also extends abstract interfaces foa model. CORBASs main goal is to support
its use in concurrency, but this topic is not dis-the development of Object-Oriented distributed
cussed in this paper. For details on the GNATsystems. Thus inter-computer communication

6

plays an important role. If we abstract the com-different OO models: OCaml and C#. The IDL
munication component however, CORBA of- used in this context is very close to Java syn-
fers a model for interfacing systems that maytax and the paper gives a good description of
be written in different languages and thus of-the notion of shadow (or Proxy) classes, an-
fers a language independent object model. Thisther typical model for class level interfacing
model is described using an Interface Defini-between two incompatible worlds.
tion Language (IDL). The CORBA IDL defines
the concepts needed to describe the most conf-he “shadow/proxy class” idea is to define two
mon abstractions: basic and composite dataatching class hierarchies on each side of the
types, modules, exceptions, and class hieratanguage fence. For each class implemented on
chies, possibly with multiple inheritance. Not one side, a shadow class is defined on the other
being an implementation language, only theside where all its methods are wrappers that ul-
definition part of a class needs to be providedimately call the corresponding foreign method.
in the CORBA IDL and corresponds to a JavaOn the shadow side, each class instance needs
interface. In fact they are also called interfacedo be associated to a real instance on the other
in IDL jargon. Hence, CORBA IDL seems an side, which can be done as part of the initializa-
ideal solution for interfacing at the class leveltion of the shadow instance.
since it offers the common ground on which
languages with different object models can useThe SWIG system [20] is worth mentioning
fully communicate. in this context. SWIG is a software develop-
ment tool that connects programs written in C
At the practical level, however, the situation isand C++ with a variety of high-level program-
not ideal. Within the CORBA framework, each ming languages such as Java, Python, Ruby
language requires a binding between its nativer Scheme, most of which offer their own OO
OO model and the Definition Language, an IDLmodel. As with CORBA, SWIG uses an IDL.
compiler is needed to transform IDL modelslts syntax is very close to C/C++ header files, so
into a set of native specifications or header filesinterface files can be written quickly by simpli-
and these then have to be connected to the exidying the existing header files of the system to
ing system. So, not only does the user need tmterface. SWIG automatically creates the hier-
learn and use a yet another language, the finarchy of shadow classes that will allow those
system ends up with a thick layer for the inter-various OO languages to access pre-existing
facing part composed of the two bindings men-C++ class hierarchies.
tioned above connected by a complete commu-
nication middleware (Object Request Broker,The shadow class mechanism becomes com-
ORB). In situations where the various subsysplicated when the original language features
tems are not intended to be deployed on differgarbage collection, since the shadow object
ent machines, this can represent a very signifmay end up being the only valid reference to the
icant overhead both in development effort andreal object and is usually hidden from the orig-
in the amount of code dedicated to interfacing.inal environment. When the language does not
provide garbage collection, the opposite prob-
The use of an Interface Definition Languagelem can arise: how to make sure that those
is not limited to CORBA. It is also used in shadow objects or their counterpart are released
other contexts where interfacing at class leveproperly before becoming unreachable? All
is sought. [4] offers a good description of suchthese issues are described in great detail in the
a case for interfacing two languages with quiteSWIG documentation.

7

Apart from the aforementioned families of ap-to encompass the class concept and its associ-
proaches, direct interfacing at the binary levelated mechanisms, such as dynamic dispatching.
can sometimes be achieved, alleviating thélhis is possible thanks to the commonalities
need for intermediate software layers. This isbetween the Ada and the C++ object models:
what we have done for Ada/C++ interfacinga C++ class maps naturally to an Ada tagged
with the GNAT compiler, as described in the type, a class data member is a tagged record
following section. component, a virtual function member maps to
an Ada primitive operation, and static members
functions or constructors can be mapped to Ada
operations on the classwide type. The follow-
4 The GNAT Approach to ing subsections describe two different schemes

Ada/C++ Interfacing we have developed to achieve this goal.

The interfacing mechanisms mentioned in the#.1 Original Scheme for Ada95

previous section have been designed to be in-

dependent of compiler technologies. They gen-

erate potentially heavy glue code whose onlyWhen the original Ada95/C++ interfacing
requirements are related to the semantics of thelechanism was designed in the mid 90s, a

languages to interface and not to their actuastudy of various C++ compilers showed wide
implementation. variation in the layout of C++ objects and their

virtual function tables. As a consequence, we
As compiler implementors with full control decided to provide a model of interfacing to
over code generation on one side of the inC++ which depended as little as possible on
terface, our perspective is different. Our pur-the choices made by particular C++ implemen-
pose is to provide a low-level mechanism thatations. In this approach, the GNAT compiler
simplifies interfacing and allow production of made no assumptions about how objects gen-
lighter glue code when possible. For instancegrated by the C++ compiler were laid out, and
when an object is part of an Ada/C++ interface required that the user determine and provide a
a heavy duty interfacing mechanism such asorrect matching representation in Ada them-
CORBA requires the following steps: 1) mar- selves.
shall the object to transform it from its Ada rep-
resentation to a machine independent represefror instance, the compiler made no assump-
tation such as CDR inthe CORBA case; 2) sendions about where a virtual function table
this encoded data through the communicatiorpointer would appear in an imported object.
channel (ORB for CORBA); and 3) unmarshall Hence, in the declaration of the correspond-
the data into its C++ representation. ing type in Ada the user had to provide a

dummy pointer field and mark it explicitly with
From the compiler viewpoint, a much simpler a pragma CPP_Vtable . Additionally the
method can be used if one side can mimic theompiler had no special knowledge of how
data representation expected by the other. Ia virtual function table was actually laid out,
such a situation interfacing becomes as simleaving it up to the user to determine whether
ple as sharing a name or a reference. In thisr not he needed to provide specific offsets
context, our goal is to extend the base Adan his method bindings vigopragma CPP_
interfacing pragmas introduced in Section 1.1Virtual

8

In addition, no knowledge about what might bedispatch table for each abstract interface type
needed to call a C++ method was encapsulateitherited by the tagged type. This model incurs
in the compiler itself. Instead, the compiler storage costs, in the form of additional point-
delegated the responsibility for accessing thers to dispatch tables in each object dimagnks
vtable and calling methods through it to a sethat adjust the value of the pointer to the object

of routines in the run-time with a well defined implementing abstract interface types.

procedural interface. This abstraction meant
it was possible to adapt GNAT to changes in
C++ compilers or to adapt it to new compilers

very easily at the run-time level without actu-

ally having to make any changes in the com-
piler itself.

Root Object

Root’Tag

Root Components

On the one hand, this approach enabled a suf-

;
ficiently motivated user to find a way of inter- |

Offset_To_Top =0
RTTI Pointer

A’Address
B’ Address

—— e e

Primary Dispatch Table

Offset_To_Top =0
RTTI Pointer

N

facing to C++ objects generated by a wide vari- 5 DTD::“)/L
ety of compilers. For instance, users interesteqn: : =z
enough in finding the virtual function pointerin | |
objects generated by the Sun C++ compiler and ¥ ;
determining at what offsets it had placed what
methods could, with enough effort, put together

a useful Ada binding.

T Components

11’Tag
12’Tag

DT Componekts

On the other hand, this process was labor in-

Secondary Table of 11
Offset_To_Top = -m
RTTI Pointer

|
|
|
|
|
|
|
|
|
P’Address —1+—>
|
|
|
|

A’Address
_ _B'Address _ _
P’ Address
Q’Address
R’Address

.
|
|
|
|
|

Thunk of 11.P

Secondary Table of 12

Offset_To_Top =-n

tensive and error prone, and required a level of R Pointer ,,,.
. . P’Address — |

knowledge about the implementation of both Q' Address | [Thunkor20]

compilers that the user may not have had L L = Tkorizr

and was unlikely to be interested in acquir-
ing. While in principle the facilities the user
required were provided, in practice there was a
great deal left to be desired.

Figure 1: Layout compatibility with C++

Following with the example presented in sec-
.) tion 2, Figure 1 represents the layout of the
4.2 Redesignfor Ada 2005 - Leveraging the tagged type®Rootand DT. The dispatch table

C++ ABI has a header containing the offset to the top

and the Run Time Type Information Pointer

An alternate approach recently added to th€éRTTI). For a primary dispatch table, the first
GNAT compiler takes advantage of knowledgefield is always set to 0. The tag of the object
of the C++ ABI [5]. This approach takes re- points to the first element of the table of point-
sponsibility for the details and complexities ers to primitive operations. At the bottom of the
which the previous approach left to the endsame figure we have the layout of DT, type de-
user. This ABI is also followed by GCJ, the rived from Root that implements two interfaces
GNU Java compiler [8, Section 12.1]. For (I1and I2). The layout of the object (left side of
each tagged type the compiler generates a prthe figure), shows that the derived object con-
mary dispatch table associated with its singletains all the components of its parent type plus
inheritance line of derivation and a secondaryl) the tag of all the implemented interfaces, and

9

2) its own user-defined components. Concern- [Primary Dispatch Table | 1ype Sperfic Data
- - H ffset_To_Top = |
ing the contents of the dispatch tables, the pri- prowe | | o boer o T [Acces Leve

Expanded_Name
A’Address .
——————— B’Address _ | |
P’Address
Q’Address

R’Address

mary dispatch table is an extension of the pri- .
mary dispatch table of its immediate ancestor,’“i
and thus contains direct pointers to all the prim- +
itive subprograms of the derived type. Toi- -- -
set_to_topcomponent of the secondary tables '
holds the displacement to the top of the object
from the object component containing the inter-
face tag. The offset-to-top values of interfaces e
I1 and 12 arem andn respectively. This off- QAdiress —i-~
set provides a way to find the top of the object e ==
from any derived object that contains secondary
dispatch tables and is necessary in type conver-
sions. In addition, rather than containing direct

pointers to the primitive operations associatedor cannot be used with tagged types imported

with the interfaces, the secondary dispatch tafrom the Ada side. We are working on this area
bles contain pOinterS to small fragments of COdQO reduce these |ay0ut differences.

calledthunks These thunks are generated by

the compiler, and used to adjust the pointer tqRegarding the C++ ABI's [5] completeness for
the base of the object. use in the implementation of other OO lan-
guages, we have found that the case of variable
The main difference between the current ABlgj,e(d tagged objects is not supported. Compli-
layout provided by the Ada compiler and the cations arise when a tagged type has a parent
official C++ ABI [5] is the contents of the RTTI {hat includes some component whose size is de-
pointer. On the Ada side this pointer refer-iermined by a discriminant and the type is also

ences a record containing information requireterived from abstract interface types. For ex-
to support Ada semantics (accessibility level.gmpje:

expanded name of the tagged type, etc.) plus . o

two additional tables: a table containing the ty?ﬁ,lmzo?t gfﬁi,;gp?f't_'_ve[)));'s tagged record

tag of all the immediate ancestors of the type, end record;

and a table containing the tag of all the abstract type bt is new Root and 11 and 12 with ...

interface types implemented by the type plus ©bi @ DT (N); . .

. .) — N is not necessarily static

its corresponding offset-to-top values in the ob-

ject layout. These tables give run-time support

to the membership test and interface converin this example it is clear that the final posi-

sions respectively. Figure 2 completes the runtion of the components containing the tags as-

time data structure described in previous secsociated with the secondary dispatch tables of

tion with the GNAT Type Specific Dateecord. DT depends on the actual value of the discrimi-
nant at the point the object Obj is elaborated.

It is clear that this difference introduces severalTherefore the offset-to-top values can not be

incompatibilities. For example, on the Ada sideplaced in the header of the secondary dispatch

we cannot make use of the membership test otables because these tables are shared by all

a class imported from the C++ side, and simi-the objects of the type. The C++ ABI does

larly on the C++ side the dynamic cast opera-not address this problem for the simple reason

Root’Tag Table of
DT Tag Ancestors

I'Tag ! m | Table of
12’Tag ! n_|Interfaces

Secondary Table of I1
Offset_To_Top =-m
RTTI Pointer

|
|
|
|
|
|
|
|
|
P’Address —+»| Thunkof I1.P
|
|
|
|

Secondary Table of 12

Offset_To_Top = -n
Thunk of I12.P
L

Figure 2: GNAT Layout

10

that C++ classes do not have non-static compds.1 Importing from C++
nents.

. . The root of our derivation will be thé&nimal
In order to solve this problem we decided to : : : .
: . class, with a single private attribute (tAgeof
store the offset-to-top values immediately fol- . L
: . .__the animal) and two public primitives to set and
lowing each of the interface tags of the object ot the value of this attribute
(that is, adjacent to each of the object’s sec? . '
ondary dispatch table pointers). In this way,® 355 2" |
this offset can be retrieved when we need to ad- virtual void Set_Age (int New_Age);
just a pointer to the base of the object. There /,rat ™ "9 O
are two basic cases where this value needs to int Age_Count;
be obtained: 1) The thunks associated with d’
secondary dispatch table for such a type must _ _ _
fetch this offset value and adjust the pointerAbstract interface types are defined in C++ by
to the ObJeCt appropnate'y before d|spatch|ngmeans Of C|aSS€'S W|th pure Vll‘tua| funC'[Ion.S
a call; 2) Class-wide interface type conversiongnd no data members. In our example we will
need to adjust the value of the pointer to ref-use two interfaces that provide support for the
erence the secondary dispatch table associaté@Mmmon management darnivore and Do-
with the target type. In this second case thignesticanimals:
field allows us to reach the object’s base adslf;)sls Carnivore {
dress, but we also need this value in the tabl€ ", i7{ua int Number of Teeth () = o
of interfaces to be able to displace down the}:
pointer to reference the field associated with th&jass pomestic {
target interface. For this purpose the compilerublic .
. . . . virtual void Set_Owner charx Name) = 0;
generates object specific functions which read;

the value of the offset-to-top hidden field, and

stores pointers to these functions in the table ODsing these declarations, we can now say that
interfaces. For further information see [16]. 4 Dog is an animal that is both Carnivore and
Domestic, that is:

class Dog : Animal, Carnivore , Domestic {
public:
virtual int Number_Of _Teeth ();

5 A Commented Examp|e virtual void Set_Owner gharx Name);

Dog(); // Constructor
private :
int Tooth_Count;

In this section we present the new GNAT fea- ~ char =Owner;
tures for interfacing with C++ by means of =
an example. This example consists of a clas-

sification of animals; classes have been uself! the following examples we will assume
to model our main classification of animals. that the previous declarations are located in a

and interfaces provide support for the managelll® Namedanimals.h The following package

ment of secondary classifications. We will first démonstrates how to import these C++ declara-

present a case in which the types and construdions from the Ada side:
tors are defined on the C++ side and imported
from the Ada side, and latter the reverse case.

11

with Interfaces.C.Strings; Regarding the abstract interfaces, we must in-

use Interfaces.C. Strings; H i

package Animals is dicate to the GNAT compiler by means of
type Carnivore is interface; a pragma Convention (CPP) , the con-
function Number_Of Teeth (X : Carnivore) :

feturn Integer is abstract; ve.ntllo.n useq to pass the arguments to the called
pragma Convention (CPP, Number_Of_Teeth); primitives will be the same as for C++. For
type Domestic is interface: the imported classes we ugeagma CPP_
procedure Set_Owner Class to indicate that they have been de-

(X : in out Domestic; - C A P :

Name : Chars_Ptr)is abstract: flned_on the C++ side; th_ls is requwed because
pragma Convention (CPP, Set_Owner); the dispatch table associated with these tagged
type Animal is tagged private: types will be built on the C++ side and therefore
pragma CPP_Class (Animal); will not contain the predefined Ada primitives
procedure Set Age which Ada would otherwise expect.

(X : in out Animal; Age : Integer);
pragma Import (CPP, Set_Age); Finally, for each user-defined primitive op-
function Age (X : Animal) return Integer; eration we must indicate by means of a
pragma Import (CPP. Age):; pragma Import (CPP) that they are im-
type Dog is new Animal ported from the C++ side.

and Carnivore and Domestic with private ;
pragma CPP_Class (Dog); . . .
As the reader can see there is no need to indi-

function ’I\‘n”t”;gifr—_Of—Teeth (A : Dog) cate the C++ mangled names associated with
pragma Import (CPP, Number_Of Teeth); each subprogram because it is assumed that all
procedure Set_Owner _the calls to these prlmltlvqs w_|II be dispatch-

(A : in out Dog; Name : Chars_Ptr); ing calls. The only exception is the construc-
pragma Import (CPP, Set_Owner); tor, which must be registered in the compiler
function New_Dog return Dog’'Class; by means ofpragma CPP_COI’]StI‘UCtOI’
pragma CPP_Constructor (New_Dog); . . :
pragma Import (CPP, New_Dog, *_zNaDogczev'); ~and needs to provide its associated C++ man-

private | .) gled name because the Ada compiler generates
type Animal is tagged recor . . . -

Age : Integer := 0 dlrect.calls toit. In order to further simplify in-
end record; terfacing with C++, we are currently working
type Dog is new Animal on a utility for GNAT that automatically gen-

and Carnivore and Domestic with erates the proper mangled names for C++ im-
record

Tooth_Count : Integer: ported subprograms, as generated by the G++

Owner . Chars_Ptr; Comp”er_
end record;

end Animals;

With the above packages we can now declare

objects of type Dog on the Ada side and dis-

run-time structures and the C++ ABI, interfac- patch calls tp the corresponding subprograms

ing with these C++ classes is easy. The onl on the C++ side. We can also extend the tagged
'){ype Dog with further fields and primitives, and

requirement is that all the pr|m|t|ve§ and com override some of its C++ primitives on the Ada
ponents must be declared exactly in the same. :

: Side. For example, here we have a type deriva-
order in the two languages. The code makes n

i of e GNATspecic pragms P Vbl =114 1 1 A e ot ricrs ol e
and CPP_Virtual described in Section 4.1. P gp

C++ side.

Thanks to the compatibility between GNAT

12

with Animals; use Animals;

package Vaccinated_Animalsis function New_Dog return access Dog’Class;
type Vaccinated_Dogis pragma Export (CPP, New_Dog);
new Dog with null record ;
function Vaccination_Expired private
(A : Vaccinated_Dog)return Boolean; type Animal is tagged record
pragma Convention Age : Integer := 0;
(CPP, Vaccination_Expired); end record;

end Vaccinated_Animals;
type Dog is new Animal
and Carnivore and Domestic with

It is important to note that, because of the ABI record _ .

Ly Tooth_Count : Integer;
compatibility, the programmer does not need to owner . Chars_Ptr;
add any further information to indicate eitherenzningacaj;dj

the object layout or the dispatch table entry as-

sociated with each dispatching operation. Compared with our previous example the only

difference is the use of pragnkportto indi-

5.2 Exporting to C++ cate to the_GNAT compiler that the primitives
will be available to C++. Thanks to the ABI
compatibility, on the C++ side there is nothing

Now let us define all the types and constructors|se to be done; as explained above, the only

on the Ada side and export them to C++, usingrequirement is that all the primitives and com-

the same hierarchy of our previous example: ponents are declared in exactly the same or-

with Interfaces.C.Strings; der. For completeness, let us see a brief C++
use Interfaces.C. Strings; : : .
package Animals is main program that uses the.declargtlons avail-
type Carnivore is interface; able inanimals.h(presented in our first exam-
function Number_Of_Teeth (X : Carnivore) . .
return Integer is abstract: ple) to import and use t_h_e _d(_aclaratlon_s fr_om
pragma Convention (CPP, Number_Of_Teeth); the Ada side, properly initializing and finaliz-
type Domestic is interface: ing the Ada run-time system along the way:
procedure Set_Owner _ #include "animals.h"
(X : in out Domestic; #include <iostream >
Name : Chars_Ptr)is abstract; using namespacestd ;
pragma Convention (CPP, Set_Owner);
)) _ void Check_Carnivore (Carnivorecobj) { ... }
type Animal is tagged private; void Check_Domestic (Domestisobj) { ...}
pragma Convention (CPP, Animal); void Check_Animal (Animalxobj) {...}
void Check_Dog (Dogx* obj) { .}
procedure Set_Age
(X : in out Animal; extern "C" {
Age : Integer); void adainit (void);
pragma Export (CPP, Set_Age); void adafinal (void);
Dogx new_dog ();
function Age (X : Animal) return Integer; }
pragma Export (CPP, Age);
]) void test ()
type Dog is new Animal { Dog *obj = new_dog(); // Ada constructor
and Carnlvqre)) Check_Carnivore (obj);// Check secondary DT
and Domestic with private ; Check_Domestic (obj); // Check secondary DT
pragma Convention (CPP, Dog); Check_Animal (obj); /l Check primary DT
Check_Dog (obj); I/l Check primary DT
function Number_Of_Teeth (A : Dog) }
return Integer;
pragma Export (CPP, Number_Of_Teeth); int main ()
procedure Set_Owner adainit (); test(); adafinal ();
(A : in out Dog; return O;
Name : Chars_Ptr); }

pragma Export (CPP, Set_Owner);

13

6 Conclusion developing such a tool since it provides all the
technology for generating shadow class hierar-

chies. In this context, languages with ABI com-

patibility have an important benefit: shadow

a new processor ABI, but it has evolved into a
. . methods would not be wrappers anymore but
processor independent ABI for C++ which can, . .
direct” views of the real methods because the

be used as a de-facto standard for other Ianﬁeed for shadow obiects can be replaced by di-
guages (ie. currently the GNU C++, Ada and) P y

:) . rect views of the real object, thus improving the
Java compilers support this ABI). This evolu- __. . o
: - . efficiency of the code and eliminating all the
tion not only allows mixing C++ objects com- complexity related to memory management
piled with different compilers in the same exe- plexity y 9 '

cutable, but also allows multi-language object-

oriented programs compiled into a single exe-
cutable. The common ABI allows the program-

mer to mix objects from different languages

and also permits him the use of features such
as dynamic dispatching, which are not limited

by language boundaries.

The C++ ABI [5] was first defined as part of

It is well known that several modern static
Object-Oriented languages offer similar sup-
port for single inheritance and multiple inher-
itance of abstract interface types. However, the
current C++ ABI does not completely fulfill all
the requirements of these languages. For exam-
ple, in this paper we have shown that this ABI
should be extended for languages with vari-
able sized objects like Ada. We think that it
would be desirable to extend this ABI with new
sections covering the basic data structures sup-
porting Object Oriented features, such as dy-
namic dispatching, in a language independent
way to give GCC full support to multi-language
programming at the class level. This would
improve interfacing capabilities between the
OO languages supported by GCC and would
open new opportunities for software reuse in
a world where programming language trends
evolve rapidly.

For this work to be of direct use to the GCC
users interested in reusing libraries written in
several languages (ie. Ada, C++, Java), a tool
for automating the generation of the interface
files would be hightly desirable. SWIG [20]
seems to offer a very promising framework for

14

References

[1] Ada Rapporteur GroupAnnotated Ada Reference [14]

[2] G. Booch Object-Oriented Analysis and De- [15]

Manual with Technical Corrigendum 1 and Amend-
ment 1 (Draft 16): Language Standard and Li-
braries (Working Document on Ada 2005). Ada-

Europe, 2006.

sign Addison-Wesley, 2nd edition,1993. ISBN:
0805353402

[3] J. Byous. Java Technology: The Early Years

[4]

[5]

[6]

2006. http://java.sun.com/features/
1998/05/birthday.html

E. Chailloux, G. Grégoire, R. Montelatid#lixing
the Objective Caml and C+ Programming Models
in the .NET FrameworRhe 3rd International Con-

ference on .NET Technologies, Plenz, Czech Re{17]

public May 30-June 1, 2005

CodeSourcery, Compagq, EDG, HP, IBM, Intel, Red
Hat, and SGl.ltanium C++ Application Binary

Interface (ABI) Revision 1.86, 2005http:// (18

www.codesourcery.com/cxx-abi

E. International.C# Language Specification (2nd

edition) Standard ECMA-334. Standardizing In-

formation and Communication Systems, Decem-
ber, 2002.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha.

[8]

[9]

[10]

[11]

[12]

The Java Language Specification (3rd edition)
Addison-Wesley, 2005. ISBN: 0-321-24678-0.

Guide to GNU GCJ2005.http://gcc.gnu.
org/onlinedocs/gcj/

Handbook for Object-Oriented Technology in Avi-
ation http://www.faa.gov/aircraft/
air_cert/design_approvals/air_

software/oot/

ISO/IEC.Programming Languages: C++ (1st edi-
tion). ISO/IEC 14882: 1998(E). 1998.

S. Liang.The Java Native Interface: Programmer’s
Guide and SpecificationlSBN: 0-201-32577-2,
Addison-Wesley Professional; 1st edition (June 10,
1999).

M. Matz, J. Hubicka, A. Jaeger, M. Mitchell.
System V Application Binary Interface - AMD64
Architecture Processor Supplemertune 2005,
Available from http://www.x86-64.org/
documentation/

15

(16]

(19]

(20]
(21]

(22]

[13] J. Miranda, E. Schonber@&NAT: On the Road to

Ada 2005 SigAda’2004, November 14-18, Pages
51-60. Atlanta, Georgia, U.S.A.

J. Miranda, E. Schonberg, G. Dismuk&ke Imple-
mentation of Ada 2005 Interface Types in the GNAT
Compiler. 10th International Conference on Re-
liable Software Technologies, Ada-Europe’2005,
20-24 June, York, UK.

J. Miranda, E. Schonberg, K. KirtchoVhe Imple-
mentation of Ada 2005 Synchronized Interfaces in
the GNAT CompilerSigAda’2005, November 13-
17. Atlanta, Georgia, U.S.A.

J. Miranda, E. Schonberébstract Interface Types
in GNAT: Conversions, Discriminants, and C++
11th International Conference on Reliable Soft-
ware Technologies, Ada-Europe’2006, June, Porto,
Portugal.

N. Trifunovic. Calling Conventions Demystified
http://www.codeproject.com/cpp/
calling_conventions_demystified.

asp

Object Management Grouommon Object Re-
quest Broker Architecture: Core Specificatider-
sion 3.0.3, March 2004.

System V Application Binary Interface - In-
tel 386 Architecture Processor Supplement
Prentice Hall Trade, Third Edition 1994,
ISBN: 0-131-04670-5. Fourth Edition avail-
able from http://www.caldera.com/
developers/devspecs/abi386-4.pdf

Welcome to SWIGhttp://www.swig.org/

B. Stroustrup Multiple Inheritance for C++
The C/C++ Users Journal, May 1999 issue
http://www-plan.cs.colorado.edu/
diwan/class-papers/mi.pdf

S. Taft, R. A. Duff, and R. L. Brukardt and E.
Ploedereder (Eds)Consolidated Ada Reference
Manual with Technical Corrigendum 1. Language
Standard and LibrariesISO/IEC 8652:1995(E).

Springer Verlag, 2000. ISBN: 3-540-43038-5.

