

Making FACE™ Units of

Conformance Fully

Portable:

Coding Guidance for Ada

The Open Group FACE™ Army TIM Paper by:

Benjamin M. Brosgol

AdaCore

September, 2021

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 2

Table of Contents

Executive Summary .. 3

Introduction ... 4

Guidance for Vendor-Specific or Optional Language Features 6

Language extensions .. 6

Optional features .. 6

Guidance for Features with Implementation-Dependent Semantics

 ... 8

Order of evaluation in expressions ... 8

Parameter passing .. 9

References to uninitialized variables .. 10

Concurrency .. 10

Elaboration order ... 11

Guidance for Target Dependencies ... 12

System.* package hierarchy and representation clauses 12

Numeric type representation ... 12

Conclusions .. 13

References .. 14

About the Author ... 15

About The Open Group FACE™ Consortium 16

About The Open Group .. 16

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 3

Executive Summary1

Source code portability of airborne software is the keystone of the Future Airborne

Capability Environment (FACE™) approach and is realized through well-defined

application program interfaces (APIs) and widely used industry standards such as

IDL, POSIX, and ARINC-653. However, full portability of a Unit of Conformance

(UoC) requires more than usage of common APIs and standards. It entails adhering to

programming language-specific restrictions to ensure that the UoC has an equivalent

effect when ported to a new platform. This paper, geared to UoC developers and

project managers, offers guidance for Ada and its formally analyzable SPARK

subset. It shows how to deal with vendor-specific or optional language features, how

to avoid implementation dependencies, and how to manage target platform

dependencies. By adopting the recommended stylistic conventions (most of which

can be enforced by static analysis tools) developers of airborne software can use Ada

or SPARK to achieve full portability for their FACE UoCs while also realizing the

assurance benefits (extensive static checks that catch errors early) that these

languages provide.

1 This paper is an expanded and updated version of an article by the author that was published in March 2021 in Military

Embedded Systems [1]

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 4

Introduction

The FACE approach to reducing life cycle costs is based on reusing software components across different

platforms and airborne systems, and the FACE Technical Standard addresses this issue through a reference

architecture and data model, well-defined interfaces, and widely used underlying industry standards (such as

IDL, POSIX, and ARINC-653). Conformance with FACE requirements is a necessary condition for reuse

and demonstrates an important aspect of software portability, but full source code portability means more

than using a common set of interfaces. In order for a Unit of Conformance (UoC) in the Portable Components

Segment (PCS) to be fully portable, it should have equivalent behavior across different platforms and/or

compiler implementations. However, each of the programming languages called out in the FACE Technical

Standard – C, C++, Ada, and Java – has features whose effect may depend on the compiler or run-time

implementation, and hence may exhibit different behavior on different platforms. Writing a fully portable

PCS UoC in any of these languages involves understanding and avoiding potential implementation

dependencies. Where full portability is not possible, for example if there are intrinsic target dependencies, the

software structure should encapsulate such dependencies.

Portability, or what will be called functional portability below to distinguish it from portability in the sense of

FACE conformance, has been a goal of programming language design since the earliest days: abstracting

away the properties of the underlying hardware and providing a high-level problem-oriented notation that is

then compiled into processor-specific instructions. Ideally, functional portability means that a source program

can be compiled and run on one platform and then, possibly with a different vendor’s compiler toolset, the

same program can be successfully compiled and run on either the same platform or a different one and have

an equivalent2 effect. In practice, however, several impediments may arise.

• The usage of language features that are either non-standard (i.e., unique to a specific compiler vendor), or

else are standard but optional and not implemented by all compilers;

• The usage of standard language features with imprecisely defined semantics (behavior that depends on

the implementation and in some cases may be completely undefined); and

• Dependence on characteristics of the target platform.

A non-portability may manifest itself in several ways. If a program uses a vendor-specific feature, then it may

simply fail to compile on a different implementation. On the other hand, if it uses a standard feature whose

effect is not precisely defined, then different compilers (or even the same compiler at different times) may

generate executables that produce non-equivalent results. A non-portability may also arise from the use of

different options for the same compiler on the same source code. For example, an aggressive level of

2 “Equivalent” informally means that the program has the same external effects except for those resulting from

permissible timing differences. A real-time program has a limited concept of which timing differences are

permissible – i.e., some of its timing constraints are essential -- since missing a deadline may mean that the

program fails to meet its requirements.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 5

optimization may remove “busy wait” code that is present for timing purposes, and disabling run-time checks

can result in a hard crash instead of a handled error.

These issues have been a fact of life since the earliest days of high-order languages. Indeed, the proliferation

of incompatible and vendor-specific dialects for the languages used within the Department of Defense (DoD)

in the 1970s (TACPOL, CMS-2, JOVIAL) was one of the factors that motivated the original development of

Ada. Ada has strong advantages to FACE UoC developers in terms of software engineering support and

program reliability, and source code functional portability has been a primary goal of the language

throughout its history, but even with Ada there are features that have implementation dependencies. To

maximize functional portability, an Ada UoC developer should follow a number of stylistic conventions.

This paper summarizes Ada functional portability guidance – how to avoid the impediments listed above –

with a focus on features allowed by the Security and Safety-capability sets of the FACE Technical Standard,

Edition 3.1 [2]. The guidance covers both Ada 95 [3] and Ada 2012 [4] and, where applicable, shows how the

SPARK [5] Ada subset3 can be used to mitigate potential non-portabilities. (Throughout this paper the

language name “Ada” refers to both Ada 95 and Ada 2012 unless indicated otherwise.) This guidance is not

an exhaustive list; additional information on Ada functional portability may be found in the Software

Productivity Consortium’s Ada 95 Quality and Style [6], and a complete set of implementation-defined

characteristics is listed in Annex M of the Ada reference manual [3][4].

3 The SPARK programming language is an extensive subset of Ada 2012, designed to support formal methods-based

source code static analysis. Using the SPARK language and its associated toolset, the developer can verify a range of

assurance properties with mathematical rigor; examples include correct information flow, absence of run-time errors, key

integrity constraints, and even functional correctness with respect to formally specified requirements. Evidence from

these verification activities can reduce the effort in demonstrating that software meets the objectives in assurance

standards such as DO-178C [9]. Since SPARK is an Ada subset, a SPARK program can be compiled by any Ada

compiler that implements the Ada 2012 standard. On a historical note, the initial version of SPARK was developed in the

1980s at the University of Southampton in the UK as a successor to the Pascal-based SPADE project, and the name

“SPARK” originally stood for SPADE Ada Kernel. (“SPADE” is itself an acronym for Southampton Program Analysis

and Development Environment). The SPARK language is currently maintained by AdaCore and Capgemini Engineering

(formerly Altran).

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 6

Guidance for Vendor-Specific or Optional Language Features

Language extensions

In the interest of functional portability, the DoD’s certification policy for Ada compilers has included a “no

supersets” directive from the outset. That policy, however, has always recognized the utility of vendor-

specific functionality as long as no new syntax is introduced, and thus allows certain kinds of language

extensions:

• Implementation-defined libraries

• Implementation-defined pragmas

• Implementation-defined attributes4

• Implementation-defined arguments to pragma Restrictions

• Implementation-defined aspects (Ada 2012)

The FACE Safety-Extended and Safety-Base & Security capability sets impose a few restrictions in this area

– for example, implementation-defined pragmas are not allowed for data structures composed from FACE

interfaces – but do not otherwise restrict such language extensions. Indeed, further restrictions are not likely

needed if a FACE UoC ported to a new platform will be compiled using the same vendor’s technology.

However, and this is the case for the UoC on both the original platform and the new one, the UoC developer

will need to verify that the implementation of any subprogram from an implementation-defined library that is

called from the UoC satisfies the restrictions in the relevant capability set. Evidence supplied by the library

vendor can assist in this process.

If porting to a different compilation system is anticipated, then the use of implementation-defined language

extensions should be minimized. Documentation supplied by the vendor, such as the GNAT Reference

Manual [7], can be consulted to identify the relevant features. Ada 2012 has explicit support for enforcing the

absence of implementation-defined extensions, through arguments to pragma Restrictions [3, §13.12.1];

for example, No_Implementation_Pragmas and No_Implementation_Units. In practice, vendors can

also mitigate the issue by supporting implementation-defined features provided by other vendors, thereby

easing the transition path.

Optional features

Another impediment to functional portability is to use a feature defined in the language standard and

supported by the implementation on the original platform but not by the implementation on the new platform.

4 An attribute is a property of a program entity denoted by the syntax Entity'AttributeName (e.g., X'Length is the number of elements in a one-

dimensional array X).

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 7

The certification policy for Ada addresses this issue as well (the “no subsets” directive). Every Ada compiler

has to implement the full language. Nevertheless, the revision process that led to the design of Ada 95

recognized that particular domains have specialized (and sometimes conflicting) requirements: for example,

aborting a task at the earliest possible point is critical in a real-time program but might be impractical or

infeasible on some mainframe operating systems. This realization led to the development of the Specialized

Needs Annexes in the Ada 95 language standard, which are optional with respect to compiler certification.

The certification policy for Ada 95 and later versions of the standard requires a compiler to implement the

full “core” language, including the predefined environment (standard library) and the inter-language

interfacing facilities, whereas the Specialized Needs Annexes (Systems Programming, Real-Time Systems,

Distributed Systems, Numerics, Information Systems, Safety and Security) are optional.

In practice this optionality has not been an issue, since the annexes of relevance to most Ada users – Systems

Programming and Real-Time Systems – are supported by the vendors in the Ada ecosystem. Moreover, the

FACE Safety and Security capability sets prohibit the Distributed Systems, Numerics and Information

Systems Annexes, so their optionality is not relevant to functional portability. Nevertheless, the Systems

Programming and Real-Time Annexes raise a few issues that might affect FACE UoC developers:

• Some of the services defined in these annexes and permitted by the FACE Safety and Security capability

sets are intrinsically system dependent (for example, interrupt handling) and thus will require revision on

porting to a different execution environment. Designing the application to encapsulate such dependencies

will ease the porting effort.

• The FACE Safety and Security capability sets significantly restrict the functionality supplied by these

annexes. The UoC developer will need to demonstrate (through link-time tests, static analysis, and/or

code review/inspection) that prohibited features in these annexes are not used. The Ada compiler itself

can check for many of these, if the UoC includes5 pragma Profile(Ravenscar),

pragma Restrictions(No_IO), and pragma Restrictions(No_Dependence => …) for

prohibited packages. A tool such as AdaCore’s GNATcheck coding standard enforcer can provide a

more complete check on the absence of prohibited features.

5 pragma Profile(Ravenscar) was introduced in Ada 2005 and is available in Ada 2012. Its Ada 95 equivalent is a

set of pragmas as specified in [3, §D.13].

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 8

Guidance for Features with Implementation-Dependent Semantics

Functional portability requires well defined semantics, so that the same program when compiled for different

target platforms (or by different compilers on the same platform) will have an equivalent effect on each. In

practice, however, there is sometimes a tradeoff between precisely defined semantics and efficient run-time

performance. Since efficiency is typically a critical requirement for programmers, language standards6

contain features whose effect may vary across different implementations. This section identifies several areas

in Ada where FACE UoC developers may encounter such features, with guidance on how to mitigate the

potential non-portability.

Order of evaluation in expressions

To facilitate optimization, Ada does not specify the order of evaluation of the terms comprising an arithmetic

expression, but in some cases the result can be affected by the order that is chosen. As an example, suppose a

function F(X) increments a global variable by X and then returns the resulting value. The expression

F(1)-F(1) computes as -1 if the F(1) on the left is evaluated first, and as +1 if the F(1) on the right is

evaluated first7.

One way to mitigate this issue is to ensure that arithmetic expressions with multiple terms do not invoke

functions with side effects, either directly or indirectly. Rather than writing the expression as F(1)-F(1) the

programmer can express the logic deterministically as one of the following:

The potential non-portability of expression evaluation is eliminated completely in the SPARK Ada subset,

since functions in SPARK are not allowed to have side effects and thus cannot assign to non-local variables.

The value of an expression is the same, regardless of the compiler’s choice of evaluation order.

6 Java is often cited as a language with precise semantics, but the thread facility leaves many facets of the scheduling policy implementation dependent.
7 This example assumes that the sum will not overflow, and that the global variable has been initialized.

declare

 N1 : Integer := F(1);

 N2 : Integer := F(1);

begin

… N1-N2…

end;

declare

 N1 : Integer := F(1);

 N2 : Integer := F(1);

begin

… N2-N1…

end;

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 9

Parameter passing

Formal parameters are defined in Ada by specifying the direction of data flow:

• “in”, from the caller to the called subprogram8;

• “out”, from the called subprogram back to the caller when the subprogram returns; or

• “in out”, from the caller to the called subprogram, and then from the called subprogram back to the

caller when the subprogram returns.

For each parameter to a subprogram, the compiler chooses whether the parameter is passed by copy or by

reference. For certain classes of types -- in particular, scalar types and access types (“pointers”) – the

semantics of parameter passing is by copy. For other classes of types (including tagged types, which are used

in object-oriented programming) the semantics of parameter passing is by reference. But for types that do not

fall into these categories, the compiler can choose either strategy, and it typically uses the type’s object size

as the determining factor: if the size of each object is smaller than some threshold value, then by copy is used,

otherwise it will be by reference. For example, the compiler will typically choose by copy for a record

(analogous to a C struct) that contains two Boolean values; and by reference for a record containing an array

of several hundred integers.

The potential functional portability issue for such a type is that in some situations the effect of the program

may depend on the compiler’s choice. This can occur in cases of aliasing (a global variable is both passed as

a parameter to, and assigned from, the called subprogram) or exception handling (a formal “out” or

“in out” parameter is assigned from the called subprogram but an exception is propagated out of the

subprogram before the subprogram returns).

These issues may arise in the context of the FACE Safety and Security capability set restrictions but can be

mitigated in several ways.

For a type that may be implemented with either by copy or by reference parameter passing, the first issue can

be avoided by ensuring that a global variable is not passed as a parameter to a subprogram that can assign to

the variable. This can be detected by code review/inspection or static analysis and in fact is automatically

detected by the SPARK toolset (which prohibits such aliasing) if the developer adheres to the SPARK Ada

subset.

The second issue can be avoided by appropriate programming style: deferring any assignment to the formal

parameter until after it can be assured that exception propagation will not occur. This can be arranged by

declaring a local variable to hold the value that will be ultimately assigned to the formal parameter, updating

this variable according to the subprogram logic, and then assigning it back to the formal parameter just before

the return. The potential non-portability can be completely avoided with SPARK without the need for such a

local variable, since the proof tools can demonstrate the absence of run-time exceptions.

8 A subprogram in Ada corresponds to a function in C or C++ or a method in Java. A subprogram in Ada is either a function (which returns a value to

the caller) or a procedure (which is invoked as a statement and is analogous to a void-returning function in C).

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 10

References to uninitialized variables

The Ada language does not require that all variables be initialized. Such a rule would be problematic, since in

some cases there might not be a sensible initial value, and the program logic might require initialization to be

supplied by an external input at system startup. Also, during the initial language design the analysis required

to detect potential references to uninitialized variables was considered outside the scope of a compiler; a

sound analysis that ensured no false negatives would generate too many false alarms. There was also the

question of what would be required in terms of initialization enforcement for array elements.

That raises the possibility of a reference to a variable before it has been initialized. In the absence of a

guaranteed value, the Ada semantics leave the effect of such a reference undefined. Ensuring that variables

are assigned before being referenced is outside the scope of the restrictions in the FACE Safety and Security

capability sets, and thus needs to be enforced through other means.

Several Ada language features can help:

• Some types do require a default initial value; in particular when an access value (pointer) is declared, it

will be set to the special value null unless the declaration provides an explicit initialization. This avoids

the error of using an uninitialized value as a pointer; an attempt to dereference the null value raises an

exception.

• The programmer can define default initial values for record fields. Declaring a variable of such a type

will create an object with well-defined values for these fields.

• In Ada 2012 any scalar type can define a default initial value.

Data flow analysis technology has made considerable progress since Ada’s inception, and references to

uninitialized variables for other types are detected in many instances by the Ada compiler, especially at

higher optimization levels where sophisticated flow analysis is used. Static analysis tools such as AdaCore’s

CodePeer can also address this issue. And as with all the other potential non-portabilities discussed in this

section, references to uninitialized variables are completely prevented in SPARK since they will be detected

by the SPARK proof tools.

Concurrency

Ada has a powerful and high-level concurrency model, but in the interest of supporting a wide range of target

processors and operating systems the language allows a number of scheduling policy decisions to be

determined by the implementation. One example is the choice of which queue should be served when a

server task providing multiple services (with callers queued on several) is ready. This nondeterminism is

mitigated by the Ravenscar profile [8] [3, §D.13], a simple, deterministic, and efficient subset of the Ada

tasking features. Both the FACE Safety-Extended and Safety-Base & Security capability sets restrict the Ada

tasking facility to the Ravenscar subset and thus avoid the functional portability issues of the full tasking

model.

The Ravenscar subset is supported by SPARK, and thus a SPARK program will avoid the concurrency

nondeterminism of the full Ada tasking model.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 11

An Ada UoC developer can also achieve portable concurrent programming through Ada bindings to the

ARINC 653 APEX or POSIX pthreads APIs permitted by the targeted profile, instead of using Ada’s

Ravenscar features.

Elaboration order

An Ada program typically consists of a main subprogram together with the modules (“packages”) that the

main subprogram depends on, directly or indirectly. Program execution entails first executing any run-time

code in the various dependent packages (for example to initialize global data) – a step known as “package

elaboration” – and then invoking the main subprogram. The order in which the packages are elaborated is

partially constrained by language semantics but in general is also implementation dependent, and different

orders can yield different results, including the possibility of a run-time error known as “access before

elaboration”. (Implementation dependence is intrinsic to the language semantics, since any attempt to

completely specify the elaboration order would end up prohibiting useful cases such as interdependent

packages.)

Several techniques are available to avoid the potential non-portability:

• Add appropriate pragmas to fully constrain the elaboration order (or to partially constrain the order but

where different choices all have the same effect).

• Avoid elaboration-time code in the dependent packages; move such code into procedures and invoke the

procedures explicitly at the start of the main subprogram. Since no code is being run at elaboration time,

the order of elaboration does not matter.

Elaboration order nondeterminism can also be avoided by using SPARK, since the SPARK restrictions

prevent “access before elaboration” errors and prohibit constructs (such as one package making an

elaboration-time assignment to a global variable in another package) that could make a program’s effect

sensitive to the chosen elaboration order.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 12

Guidance for Target Dependencies

System.* package hierarchy and representation clauses

Although low-level programming involves accessing target-specific characteristics, the Ada standard helps to

mitigate the non-portability through standard language features. The package System declares a type

Address and associated operations, and the child packages System.Storage_Elements and

System.Address_To_Access_Conversions offer standard facilities for dealing with “raw storage” and

for treating a pointer as a physical address or vice versa. Representation clauses allow the program to define

low-level properties of program entities, such as the layout of a record or the address of a variable. These

features are permitted by the FACE Safety and Security capability sets. Although their usage is platform

specific, encapsulating such code in the bodies of packages will localize and help minimize the adaptation

needed when porting the code to a new target platform.

Numeric type representation

The predefined numeric types in Ada (Integer, Float, etc.) have implementation-defined ranges /

precisions. Thus an Integer may be 16 bits on some target processors and 32 bits on others. This can cause

functional portability issues if the programmer implicitly assumes that an Integer always has some

minimum range; an arithmetic expression may overflow when the code is ported to a platform where

Integer has a narrower range. (In Ada the overflow will raise an exception, which is arguably preferable to

having the operation implicitly “wrap around” to a negative value.)

The potential non-portability can be avoided by declaring custom numeric types instead of using the

predefined types. For example, a type representing values that are known to be in a specific range, say

-1,000,000 through +1,000,000 inclusive, can be declared explicitly:

type Sensor_Range is range -1_000_000 .. 1_000_000;

The compiler will map this type to a twos-complement machine integer representation that covers at least the

specified range. On a 16-bit machine this would correspond to the Long_Integer type; on a 32-bit machine

it would be Integer. A program using the Sensor_Range type can be ported from a 32-bit machine to a

16-bit machine without changing the source code. The explicit declaration of a new type has the added

benefit of protecting against data mismatches; for example an attempt to assign either an Integer or a

Long_Integer to a Sensor_Range variable (or vice versa) without an explicit conversion would be

compile-time error.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 13

Conclusions

UoC full portability is key to realizing the benefits that the FACE approach offers, but it entails more than

adhering to the interfaces allowed in the FACE standard and obeying the restrictions defined for the relevant

capability set and profile. Writing fully portable code requires not only FACE conformance but also

functional portability. That means following appropriate usage patterns, especially for features whose

semantics are not completely defined by the language standard.

Ada is, in general, a language with strong support for functional portability, and over the years system

modernizations have ported large Ada programs to new hardware and new compiler implementations with

minimal problems. Nonetheless, functional portability does not come automatically, it must be planned for,

and a variety of stylistic guidelines can help. A critical point is to be aware of features whose effect may be

implementation dependent, and to use programming idioms that avoid the nondeterminism. This is especially

important for applications that need to adhere to one of the FACE Safety and Security capability sets /

profiles. Such applications have strong assurance requirements, which are difficult to demonstrate if the code

uses language features that are not precisely defined. The SPARK subset of Ada is particularly relevant here,

since the SPARK language restrictions ensure deterministic semantics.

In brief, adopting appropriate stylistic conventions for Ada (most of which can be enforced by static analysis

tools) or using SPARK can help developers achieve full portability for their FACE UoCs while also realizing

the assurance benefits that these languages bring.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 14

References

(Please note that the links below are valid at the time of writing but cannot be guaranteed for the future.)

[1] B.Brosgol, “Making Software FACE™ Conformant and Fully Portable: Coding Guidance for Ada,”

in Military Embedded Systems, March 15, 2021

https://militaryembedded.com/avionics/software/making-software-face-conformant-and-fully-

portable-coding-guidance-for-ada

[2] The Open Group, FACE™ Technical Standard, Edition 3.1.

https://publications.opengroup.org/standards/face/c207

[3] Ada Reference Manual ISO/IEC 8652:1995(E) with Technical Corrigendum 1, Language and

Standard Libraries

https://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-TTL.html

[4] Ada Reference Manual ISO/IEC 8652:2012(E) with Technical Corrigendum 1, Language and

Standard Libraries

http://www.ada-auth.org/standards/rm12_w_tc1/html/RM-TTL.html

[5] AdaCore and Altran; SPARK 2014 Reference Manual;

http://docs.adacore.com/spark2014-docs/html/lrm/

[6] C. Ausnit-Hood, K.A. Johnson, R.G. Pettit IV, S.B. Opdahl (Eds.), Ada 95 Quality and Style;

Lecture Notes in Computer Science 1344, Springer; 1995.

[7] AdaCore, GNAT Reference Manual

http://docs.adacore.com/live/wave/gnat_rm/html/gnat_rm/gnat_rm.html

[8] B. Dobbing and A. Burns; The Ravenscar Tasking Profile for High Integrity Real-Time Programs.

http://www.sigada.org/conf/sigada2001/private/SIGAda2001-CDROM/SIGAda1998-

Proceedings/dobbing.pdf

[9] RTCA/EUROCAE DO-178C/ED-12C – Software Considerations in Airborne Systems and

Equipment Certification, December 2011

https://militaryembedded.com/avionics/software/making-software-face-conformant-and-fully-portable-coding-guidance-for-ada
https://militaryembedded.com/avionics/software/making-software-face-conformant-and-fully-portable-coding-guidance-for-ada
https://publications.opengroup.org/standards/face/c207
https://www.adaic.org/resources/add_content/standards/95lrm/ARM_HTML/RM-TTL.html
http://www.ada-auth.org/standards/rm12_w_tc1/html/RM-TTL.html
http://docs.adacore.com/spark2014-docs/html/lrm/
http://docs.adacore.com/live/wave/gnat_rm/html/gnat_rm/gnat_rm.html
http://www.sigada.org/conf/sigada2001/private/SIGAda2001-CDROM/SIGAda1998-Proceedings/dobbing.pdf
http://www.sigada.org/conf/sigada2001/private/SIGAda2001-CDROM/SIGAda1998-Proceedings/dobbing.pdf

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 15

About the Author

Dr. Benjamin Brosgol is a member of AdaCore's senior technical staff. He has been involved with

programming language design and implementation throughout his career, concentrating on languages and

software engineering technologies for high-assurance systems. He was a member of the design team for Ada

95, and he also served in the Expert Group for the Real-Time Specification for Java (Java Specification

Request JSR-001).

As one of AdaCore’s representatives on the FACE Consortium, Ben is currently serving as Vice Chair of the

Technical Working Group (TWG) and is an active member of the TWG’s Operating Systems Subcommittee

as well as the Enterprise Architecture EA-25 subteam. He has written papers and delivered talks at several

FACE TIMs, and his articles on technical aspects of the FACE approach have appeared in professional

publications for the defense industry.

Ben has presented papers and tutorials on high-assurance software topics at numerous conferences and

workshops including ESC (Embedded Systems Conference), ICSE (IEEE/ACM International Conference on

Software Engineering), IEEE Security Development (SecDev), STC (Software Technology Conference), and

conferences run by the ACM Special Interest Group on Ada (SIGAda) and Ada-Europe.

He holds a BA in Mathematics (with honors) from Amherst College, and MS and PhD degrees in Applied

Mathematics from Harvard University.

Making FACE™ Units of Conformance Fully Portable: Coding Guidelines for Ada

www.opengroup.org T h e O p en G r ou p F AC E ™ A rm y T IM P a pe r 16

About The Open Group FACE™ Consortium

The Open Group Future Airborne Capability Environment™ Consortium (the FACE™ Consortium), was

formed as a government and industry partnership to define an open avionics environment for all military

airborne platform types. Today, it is an aviation-focused professional group made up of industry suppliers,

customers, academia, and users. The FACE Consortium provides a vendor-neutral forum for industry and

government to work together to develop and consolidate the open standards, best practices, guidance

documents, and business strategy necessary for acquisition of affordable software systems that promote

innovation and rapid integration of portable capabilities across global defense programs.

Further information on the FACE Consortium is available at www.opengroup.org/face.

About The Open Group

The Open Group is a global consortium that enables the achievement of business objectives through

technology standards. Our diverse membership of more than 800 organizations includes customers, systems

and solutions suppliers, tools vendors, integrators, academics, and consultants across multiple industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™ achieved by:

• Working with customers to capture, understand, and address current and emerging requirements,

establish policies, and share best practices

• Working with suppliers, consortia, and standards bodies to develop consensus and facilitate

interoperability, to evolve and integrate specifications and open source technologies

• Offering a comprehensive set of services to enhance the operational efficiency of consortia

• Developing and operating the industry’s premier certification service and encouraging procurement of

certified products

Further information on The Open Group is available at www.opengroup.org.

http://www.opengroup.org/face
http://www.opengroup.org/

	Making FACE™ Units of Conformance Fully Portable: Coding Guidance for Ada
	Benjamin M. Brosgol AdaCore
	September, 2021

	Table of Contents
	Executive Summary
	Introduction
	Guidance for Vendor-Specific or Optional Language Features
	Language extensions
	Optional features

	Guidance for Features with Implementation-Dependent Semantics
	Order of evaluation in expressions
	Parameter passing
	References to uninitialized variables
	Concurrency
	Elaboration order

	Guidance for Target Dependencies
	System.* package hierarchy and representation clauses
	Numeric type representation

	Conclusions
	References
	About the Author
	About The Open Group FACE™ Consortium
	About The Open Group

