
CASE STUDY

Raising the Reliability of 
Scientific Space Exploration



How Ada is helping the Laboratory for Atmospheric 
and Space Physics minimize risk, reduce cost, and 

assure reliable control of software used for 
spacecraft and instrument operations


 
The Laboratory for Atmospheric and Space Physics (LASP) at 
the University of Colorado Boulder was founded in 1948, a 
decade before NASA. It began as the Upper Air Laboratory, 
using captured German V2 rockets to send scientific 
instruments into our planet’s upper atmosphere.


Today, LASP continues to focus on scientific research, both in 
the earth’s upper atmosphere and beyond. LASP partners with 
government agencies like NASA and the National Oceanic and 
Atmospheric Administration (NOAA), commercial entities like 
Ball Aerospace, and other universities like the University of 
Arizona and Northern Arizona University, to develop, test, and 
operate spacecraft and scientific instruments.


Projects in which LASP has participated include NASA’s 
Kepler space telescope mission, the Mars Atmosphere and 
Volatile Evolution Mission (MAVEN), the Solar Radiation and 
Climate Experiment (SORCE), the Total and Spectral Solar 
Irradiance Sensor (TSIS-1) currently aboard the International 
Space Station (ISS), the Emirates Mars Mission (EMM), and 
many others.


A highly scalable command and control 
system

One of LASP’s key tools for fulfilling its mission is the Operations and Science Instrument Support–
Command & Control (OASIS-CC) software suite. OASIS-CC is LASP’s in-house-developed, ground-
based, real-time command and control system for spacecraft and instruments. It can be scaled from 
low-level development through integration, test, and flight ops. LASP has been using OASIS-CC in all its 
mission roles for more than thirty years.


The OASIS-CC project began in 1985 and chose Ada as the implementation language. Although Ada 
was relatively new at the time, its software engineering benefits were clear to aerospace systems 
procurement agencies and developers. The language has been used on OASIS-CC ever since.


According to Jason Gurgel, the OASIS-CC program manager at LASP, OASIS-CC uses a client server 
model. The core server makes network connections to scientific instruments, spacecraft systems, 
ground control systems, other ground stations, ground instrumentation, simulators, and other systems. 
The OASIS-CC client GUIs (Graphical User Interfaces) allow users to design workspaces to display 
command control panels, telemetry data, and additional information.


OASIS-CC can be used to develop and test scientific instruments in the laboratory and control those 
same instruments during missions aboard spacecraft. By using OASIS-CC throughout the life of a 
program, project managers can greatly reduce both risk and cost by leveraging re-use.


Customer

The Laboratory for Atmospheric 
and Space Physics (LASP) at the 
University of Colorado Boulder (CU 
Boulder)


Challenge

Upgrading and maintaining a 
mission-critical command and 
control system for scientific 
instruments aboard spacecraft


Solution

The Ada programming language, 
AdaCore's GNAT Pro Ada 
development environment, and 
AdaCore technical support


Results

LASP’s highly reliable and 
maintainable OASIS-CC command 
and control system has stood the 
test of time for over 35 years and 
should continue to do so for 
decades to come



Mission-critical software must remain reliable

The heart of the OASIS-CC system—the client server portion—is written in Ada. It has been certified as 
NASA Class B software (Non-Human Space Rated Software Systems or Large Scale Aeronautics 
Vehicles). One of LASP’s big challenges, according to Gurgel, is making sure that the mission-critical 
software remains reliable. 


LASP is constantly modifying OASIS-CC to control new instruments. And they need to be sure those 
expensive instruments will work perfectly throughout their mission when doing so. Neither LASP nor 
their partners can afford to have undefined code behavior or other bugs waste the money spent 
developing and testing an instrument and sending it into space.


“Naturally, any changes or new features have to be thought about and then thoroughly tested,” Gurgel 
says. “That's just the nature of the software; it’s mission-critical.” 


Keeping a 30-year-old system modern and efficient

One of the big challenges of maintaining the reliability of a 30-year-old real-time system is keeping it 
up-to-date, manageable, and efficient. That’s why, in 2010, LASP decided to undertake a major overhaul 
of OASIS-CC.


Until then, OASIS-CC had been a monolithic system—a single program written in Ada 83. To make the 
system more efficient and maintainable, LASP decided to repartition it and update its code to a more 
modern version of Ada.


For the latter, LASP needed a new compiler. They had been using a Verdix/Vads Ada 83 compiler from 
the 1980s. What they wanted was a modern Ada compiler supported by a vendor with deep Ada 
expertise. They were looking for a partner who would aid them in their Ada upgrade and help them make 
sure their software remained certified to NASA Class B.


A total system migration and upgrade

LASP decided to refactor their entire code base and 
migrate it from a SPARC/Solaris system to a Linux 
platform. They removed all the GUI portions from the 
Ada code and reworked the rest as a distributed 
client server, upgrading the code from Ada 83 to Ada 
95. Then, they wrote brand new C++ code for the 
front end and the displays on all the GUIs.


For their new Ada compiler, they chose AdaCore’s 
GNAT Pro compiler.


“The main reason was support,” said Gurgel of why 
they went with GNAT. "We wanted a supported 
compiler. We also wanted Ada language support to 
help with the transition [to Ada 95] and to check the 
box for keeping that software certification in place."


“The	main	reason	[we	went	with	
AdaCore’s	GNAT	Pro]	was	
support.	We	wanted	a	supported	
compiler.	We	also	wanted	Ada	
language	support	to	help	with	
the	transition	and	to	check	the	
box	for	keeping	that	software	
certification	in	place.”

— Jason Gurgel, OASIS-CC program manager, LASP



A full user spectrum of customer support—direct from AdaCore’s expert 
developers

AdaCore realizes that teams exist on a spectrum, from those who simply wait for new versions and 
features to be released through AdaCore’s continuous release download page, to those who require 
ultra-reliable, long-term support. 


For the latter, AdaCore provides GNAT Pro Assurance, a version of the standard GNAT Pro Enterprise 
product augmented by a service known as “sustained branch”—a stable development line in which 
critical fixes can be back-ported and accompanied by a thorough impact analysis. GNAT Pro Enterprise 
customers, like LASP, are welcome and encouraged to make technology enhancement requests. 
Through this system, many customer suggestions have been implemented and incorporated into GNAT 
Pro over the past several years.


For all its product subscriptions, AdaCore provides industry-leading support directly from the experts 
who develop AdaCore’s GNAT Pro technology. Not only do customers receive timely, expert support, 
this process also helps AdaCore’s developers better understand how the technology is being used. And 
that, in turn, helps them provide both pragmatic guidance and useful technology upgrades. 


Gurgel calls AdaCore support the biggest benefit of porting to the GNAT compiler. “It was a huge benefit 
during the upgrade, when we really needed expert support,” he said. “Now, things are pretty stable. 
We've had a few issues come up, and AdaCore has always been responsive. We use the support much 
less now, but it's good to know AdaCore is there when we need them.”


The Ada language—designed for high reliability in mission-critical, real-
time systems

Gurgel says Ada’s features make it the best language choice for the mission-critical portions of OASIS-
CC. Two features he cited as essential are concurrency (tasking) and data type security.


Concurrency support


A concurrent program is one in which different parts of the program can execute in interleaved fashion 
on a single processor/core, or with actual parallelism on a multiprocessor/multicore architecture. 
Advantages include increased program throughput and better input/output responsiveness, and, for a 
real-time program, a software design that aligns to the external environment with which the program is 
dealing. The challenge is that concurrent programming is beset with issues (such as deadlock, race 
conditions, livelock, and corruption of shared data) that do not arise with sequential programming. 
Ada’s concurrency support gives the developer the expressiveness to address this challenge and to 
write reliable, portable, predictable, and efficient real-time software. 


In Ada, the unit of concurrency is known as a task. A task is a module that has a specification (an 
interface visible to other program units) and a separate body that encapsulates its local data and 
behavior. A task executes as a separate thread of control with its own stack. Its interface consists of its 
"entries" (names for synchronization points), which can be called from other tasks. A task reaching a 
synchronization point is suspended (the so-called "rendezvous") until another task takes some action 
to unblock it.


Ada features that make the language ideal for developing real-time multi-tasking programs include:


• A powerful but easy to use protected object abstraction, including an object locking policy that 
maximizes schedulability for a set of periodic and event-driven tasks; and 




• An efficient subset of the concurrency features (the so-called Ravenscar profile) that facilitates 
formal demonstration of program properties and that is appropriate for small-footprint embedded 
target platforms.


Data type security


Ada’s data type facility helps users detect data misuses early, with a combination of compile-time 
checks to make sure that a data object is only accessed via operations permitted for its type, and run-
time checks to enforce type-specific constraints. 


For example, in a weakly typed language an integer can be treated as a pointer, and vice versa, leading to 
errors that can be time-consuming to correct, and, if undetected, can introduce security vulnerabilities. 
Ada prevents these errors at compile time. In systems-level programming where such low-level data 
manipulation may be necessary, Ada provides the relevant features, but with explicit syntax to make the 
programmer’s intent clear.


A data type may be considered a compile-time invariant property of a data object. Additionally, a data 
object has, either implicitly based on its type or else explicitly provided at its creation,  a run-time 
constraint that establishes the permitted set of values that the object can take.  Through run-time 
checks, Ada ensures that each data object only takes values that satisfy its constraint. This prevents 
insecurities such as buffer overrun, integer overflow, and scalar range violations. 


Ada training for new employees

Another challenge for LASP is one that many Ada organizations face when hiring new employees. “Few 
candidates know anything about the language,” says Gurgel, “but if we want them to work on the 
system, we've got to train them in Ada. Our OASIS-CC team is small, so that's a big challenge for us.”


Help with Ada training is also a big benefit of partnering with AdaCore. AdaCore provides live training, 
as well as online self-study courses through their learn.AdaCore.com website. 


AdaCore also offers a broad library of how-to books in PDF format to help software engineers become 
proficient with Ada. These include publications tailored for C, C++, Misra C, and Java developers, and 
several which address specific industries and industry standards. All can be downloaded from 
AdaCore’s website at adacore.com/books.


LASP has availed itself of several of AdaCore’s training opportunities, including a live, 5-day Ada 
Fundamentals course. The feedback that LASP provided to AdaCore regarding the course was 
overwhelmingly positive. Participants found the exercises helpful and had no trouble understanding the 
concepts presented.


“We don't have a formal training program,” says 
Gurgel. “From my experience in hiring a few new 
people, I think it's a little difficult for them to pick 
up Ada without some kind of basic training. If 
you just throw them in the deep end, I think 
they'll be overwhelmed at first. But once they get 
a little AdaCore training, it’s fairly easy for new 
team members to adapt to Ada.”


“Once	they	get	a	little	AdaCore	
training,	it’s	fairly	easy	for	new	
team	members	to	adapt	to	Ada.”

— Jason Gurgel, OASIS-CC program manager, LASP

https://learn.adacore.com
https://www.adacore.com/books


Outstanding system reliability and cost-effectiveness

According to Gurgel, OASIS-CC’s robust baseline has stood the test of time. "We make sure we 
maintain that baseline moving forward," he says. “The software's been around for so long. It's been a 
very reliable system.”


It has also been extremely cost-effective. “If we were to go out and get a commercial command and 
control system, that would cost us a lot of money, a lot of time configuring the system, and a lot of time 
training," says Gurgel. He maintains that the OASIS-CC and Ada fulfill all their needs for reliability and 
maintainability. “Ada does everything we need it to do. Plus, it lets us do everything we need to do 
ourselves. As far as the server backend goes, with its tasking features, its reliability, and its type safety, I 
think Ada is still the best and only choice for this critical software.”


Years of reliable service still to 
come

Gurgel says the time and effort LASP 
invested in rearchitecting and upgrading the 
system ten years ago is still paying dividends 
today. He expects it will continue to do so for 
many years.


“That effort has extended the system’s life 
well into the future,” he says. “We don't have 
any plans to rewrite it. It's definitely fulfilling 
our needs.”

“With	its	tasking	features,	its	
reliability,	and	its	type	safety,	I	
think	Ada	is	still	the	best	and	only	
choice	for	this	critical	software.”

— Jason Gurgel, OASIS-CC program manager, LASP

AdaCore has a long history of 
providing tools and expertise 
to the Space industry.

For more information please visit:  
adacore.com/industries/space. 
 
And check out our latest book on AdaCore 
Technologies for Space Systems Software.

https://www.adacore.com/books/adacore-technologies-for-space-systems-software
https://www.adacore.com/industries/space

	How Ada is helping the Laboratory for Atmospheric and Space Physics minimize risk, reduce cost, and assure reliable control of software used for spacecraft and instrument operations
	A highly scalable command and control system
	Mission-critical software must remain reliable
	Keeping a 30-year-old system modern and efficient
	A total system migration and upgrade
	A full user spectrum of customer support—direct from AdaCore’s expert developers
	The Ada language—designed for high reliability in mission-critical, real-time systems
	Ada training for new employees
	Outstanding system reliability and cost-effectiveness
	Years of reliable service still to come
	AdaCore has a long history of providing tools and expertise to the Space industry.


