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Abstract

The forthcoming Ada 2005 standard has been enhanced to betleess
the needs of the real-time and high-integrity communiti€kis new standard
introduces new restriction identifiers that can be used fio@éighly efficient,
simple, and predictable run-time profiles. Among otherts tanguage revi-
sion will standardize the Ravenscar profile, new schedyoigcies, and will
include execution time clocks and timers. Flexible objegénted features are
also supported without compromising performance or safety

1 Introduction

For the development of safety-critical software, the chaitprogramming language
makes a significant difference in meeting the requiremeigxacting safety stan-
dards and, ultimately, high-reliability applications.

The Ada language was first introduced in 1983 (ISO 1983). Usedarily for
large-scale safety and security critical projects, andesidbd systems in particular,
where reliability and efficiency are essential, Ada experéal its last major revision
in 1995 (ISO 1995), making it the first internationally stantized object-oriented
language. The latest revision (Ada 2005) responds to régj@sfeatures in the
areas of multiple interface inheritance, real-time prefiliéexible task-dispatching
policies, and a unification of concurrency and object-dadreatures.

One of the most important achievements of Ada 2005 is thelataivation of
the Ravenscar restricted tasking profile. This profile dsfasubset of the tasking
features of Ada which is amenable to static analysis for iitggrity system certifi-
cation, and that can be supported by a small, reliable me-gystem. This profile is
founded on state-of-the-art, deterministic concurrermystructs that are adequate
for constructing most types of real-time software.

Measuring and limiting the execution time of tasks is alsegiae in Ada 2005
by using execution time clocks and timers. This functidy&al equivalent to the



execution time monitoring existing in the real-time exiengo POSIX (IEEE 2003),
allowing the implementation of flexible real-time schedglialgorithms, such as the
sporadic server in fixed priority systems, or the constantiaédth server in dynamic
priority systems.

Timing events are also provided as an effective and effidiergxecute user-
defined time-triggered procedures without the need to usskadtr a delay statement.

There have been major improvements to the scheduling akddiapatching
mechanisms with the addition of further standard pragmelsips, and packages
which facilitate many different mechanisms such as nompgtion within priori-
ties, timeslicing, and dynamic priority dispatching. Maver, it is possible to mix
different policies according to priority ranges within artitégon.

The following sections will describe the advantages of g#haa for develop-
ing embedded real-time high-integrity systems, payingigpattention to the new
features that will be available in the forthcoming Ada 20@hsard.

2 Software engineering with Ada

The general design philosophy of the language promotegisaftware engineering
techniques basing on its considerable expressive powehigihdabstraction level
features.

The original Ada 83 design introduced the package constauetature that sup-
ports encapsulation (information hiding) and modulait@atand that allows the de-
veloper to control the namespace that is accessible witgimean compilation unit,
hence reducing data coupling. Ada 95 introduced the corafegitild units, adding
considerably flexibility and easing the design of very lasgstems. Packages pro-
vide strict separation of specification from implementat@nd allow the structuring
of code into a hierarchical set of components with strictiz@over visibility of en-
capsulated state data and methods.

One important capability of the child unit mechanism is titailows develop-
ers to write test programs that can access encapsulatedistatthat is inaccessible
to normal client code. This simplifies the job of meeting cage analysis require-
ments from safety standards such as DO-178B (RTCA 199Z)pwitcompromising
the need to have state data hidden.

Generics are a powerful mechanism for constructing lacgéeprograms through
the parameterization of program units. The use of genenibarces program relia-
bility by means of facilitating reuse, easing maintenaneducing source code size,
and helping avoid human replication error.

Ada 95 introduced direct support for object-oriented pamgming: encapsula-
tion (as just noted), objects (entities that have state gedations), classes (abstrac-
tions of objects), inheritance, polymorphism, and dynalimcling.

Ada tasking provides a natural and powerful abstractionhraeism for decou-
pling application activities, including the functionglifor sharing resources, com-
municating, and synchronizing.



3 Ada for embedded applications

Ada was designed with embedded applications in mind fronstiet. For example,
the use of representation clauses, which have been extandedade more powerful
in Ada 2005, allows close mapping of data structures to theviiare, and the builtin
concurrency can be used to map handling of multi-taskingeahardware level. Ad-
ditionally, many embedded applications require high kelity or are safety-critical,
which is where a language designed for maximum safety rshlhyes.

The Ada standard includes a normative annex which specifigéi@nal capa-
bilities provided for low-level programming (ISO 1995, A&nC). It allows access
to hardware-specific features, such as:

e Insertion of assembly and intrinsic subprograms. Intdrsibprograms are
built-in to the compiler provided for convenient accessrg machine opera-
tions that provide special capabilities or efficiency anat #re not otherwise
available through the language constructs. Examples ¢f sistructions in-
clude atomic read-modify-write operations, standard mimfenctions, string
manipulation operations, vector operations, direct gjara on I/O ports, etc.

o Representation clauses for specifying the desired addiigesalignment, and
layout of data in memory.

e Shared variable control. Read and update operations camdssifto either be
performed directly to memory, or in a indivisible (atomicanner.

e Interrupt support. There is a language-defined model faivaare interrupts
which includes the mechanisms for handling interrupts.

e Storage management. Specific storage pools can be spedifiatber-defined
managers that may be placed in specific memory regions. Tlagybm suit-
able for real-time systems because they can be made piadicta

Another important feature of Ada is that its functionalitptably its tasking
capabilities, maps very well to the typical embedded ojreyatystems used in many
applications.

4 Ada for high-integrity applications

Ada is the language of choice for many high-integrity systedne to its careful
design and the existence of clear guidelines for buildiny ftegrity systems (ISO
2000, Burns, Dobbing & Vardanega 2003).

Fitting its commitment to safety and reliability, a formallidation process ex-
ists based on an ISO (International Standards Organiadtendard (ISO 1999).
Ada is the only language for which such a validation stan@aists. An Ada Con-
formity Assessment Test Suite (ACATS) (ACAA 2005) has beevetbped for this
conformity testing, which exercises both the compiler dreruin-time system.



The use of a standardized language (ISO 1999) ensures thapyagram will
behave as you want (as it is designed to) even when changiget talatforms or
compilers. The effect of a program can be predicted from éingliage definition
with few implementation dependencies of interactions aganguage features. The
semantics of Ada programs are well defined even in errort@ttg The Ada stan-
dard includes a normative annex which specifies additicayébilities provided for
systems that are safety critical or have security congg &S8O 1995, Annex H).

When writing high reliability software, the full Ada langge is inappropriate
since the generality and flexibility may interfere with teability and certification
requirements. Ada addresses this issue by supplying caafign directives (that
may restrict individual features or define a complete seesfrictions) that allows
you to constrain the language features to a well-definedesubat facilitate analy-
sis and safety, and avoids error prone or hard to analyzarésat The 1SO 15942
technical report (ISO 2000) contains a detailed analysithefdifferent Ada fea-
tures with respect to their suitability for different vectition techniques. The use
of restricted profiles and restrictions also allows the cib@npo remove unnecessary
run-time support, simplifying the certification processl aameventing the inclusion
of inactive code in the final application.

One of the most interesting subsets for high-integrityeayst is the Ravenscar
profile, a collection of concurrency features that are pémt@nough for real-time
programming but simple enough to make certification prattidnother notable
example is SPARK (Barnes 2003) that includes Ada constrnegfarded as essen-
tial for the construction of complex software, but removitstee features that may
jeopardize the requirements of verifiability, bounded gpaied time, and minimal
run-time system.

Apart for the advantages derived from the high abstractamellprovided by
the language (encapsulation, data abstraction, reuyaldlsking, etc.), there are
many others features in the language that promote safetsetintility. Ada code is
very readable, making code maintenance easier and sinmgjibertification steps,
including peer review and walkthroughs. Strong typing easbat most errors are
detected statically at compile time, and many remainingrsrare automatically
detected at execution.

Access types in Ada have been designed in a way to preventtharence of
dangling references because they can never designatetijat have gone out of
scope. Users can also further restrict the use of allocatwisdeallocators through
appropriate restrictions.

Ada provides an exception mechanism for detecting and repg to excep-
tional run-time conditions in a controlled manner, proriglivell-defined semantics
even under error conditions. It allows residual errors talbtected and handled,
so the exception features are potentially a key part of auagg for high-integrity
applications (Motet, Marpinard & Geffroy 1996). Its use raakverification more
difficult, unless restrictive strategies (ISO 2000) areduséich simplify the verifi-
cation process.

Ada 2005 contains determinism and hazard mitigation iseelating to task ac-
tivation and interrupt handler execution semantics, ipoase to certification con-



cerns about potential race conditions that could occur duagks being activated
and interrupt handlers being executed prior to completiothe library-level elab-
oration code. A new configuration pragma has been added (ABRIBJR for guar-
anteeing the atomicity of program elaboration, that is, mterrupts are delivered
and task activations are deferred until the completion [dftakry-level elaboration
code. This eliminates all hazards that relate to tasks aedirpt handlers accessing
global data prior to it having been elaborated, without hgwo resort to potentially
complex elaboration order control.

Another major hazard in high-integrity systems, tasks beatng silently, has
been addressed in Ada 2005 with a new mechanism for setterepesined handlers
which are executed when tasks are about to terminate. Thesedures are invoked
when tasks are about to terminate (either normally, as dtresan unhandled ex-
ception, or due to abort), allowing controlled responsesiatime and also logging
these events for post-mortem analysis.

5 Ada for real-time applications

Concurrency is a core part of the language, and there is aatiwaerannex intended
for real-time systems software (ISO 1995, Annex D) that suggpsound real-time
development techniques, such as Rate Monotonic Analysis&llayland 1973),
Response Time Analysis (RTA) (Joseph & Pandya 1986), anck saihers intro-
duced in the Ada 2005 revision that will be described later.

Ada provides well-defined semantics for scheduling, avgjdhe disadvantages
associated with the use of low-level constructions for tagkdling and synchro-
nization. Task cooperate using synchronous message gdssintezvous) and safe
and efficient data-oriented communication and synchradioizahrough protected
objects.

Asynchronous capabilities are also very important for soead-time applica-
tions, and they are supported with the following mechanisms

e Asynchronous Transfer of Control (ATC) is a mechanism tilate the ex-
ecution of an abortable part to be cancelled by a triggeruggie(time event
or another task), in which case an optional sequence of calée executed
after the abortable part is left.

e Preemptive task abortion can trigger asynchronously timeitation of one or
more target tasks.

e Asynchronous task control is a simple and efficient capghi suspend and
resume the execution of another task.

e Asynchronous external events are modelled by interrugemguage-defined
class of events that are detected by the hardware or thersgstitware.

A high-resolution monotonic clock together with support fmth absolute and
relative delays are also part of the Ada standard, which égfminimum require-
ments in terms of range and accuracy.



6 The Ravenscar profile

As the functionality and complexity of embedded softwareréases, more atten-
tion is being devoted to high level, abstract developmenhods. The Ada tasking
model provides concurrency as a means of decoupling apiplicactivities, and
hence making software easier to design and test (Vardanega &atwijk 1999).

The tasking model in Ada 95 is extremely powerful, but it hiegags been rec-
ognized that, in the case of high-integrity systems, it grapriate to choose a subset
of these facilities because accurate timing analysis ficdif to achieve. Advances
in real-time systems timing analysis methods have paved#yeo reliable tasking
in Ada. Accurate analysis of real-time behavior is possiien a careful choice of
scheduling/dispatching method together with suitabl&ict®ns on the interactions
allowed between tasks.

The Ravenscar profile (ARG 20)3s a subset of Ada tasking that provides the
basis for the implementation of deterministic and time prale applications. This
subset is amenable to static analysis for high integrityesgcertification, and can
be supported by a small, reliable run-time system. This lerafifounded on state-
of-the-art, deterministic concurrency constructs that aequate for constructing
most types of real-time software (Burns et al. 2003). Majenédfits of this model
are:

¢ Improved memory and execution time efficiency, by removiigitoverhead
or complex features.

¢ Increased reliability and predictability, by removing rdeterministic and non
analyzable features.

e Reduced certification cost by removing complex featureb@fanguage, thus
simplifying the generation of proof of predictability, r@bility, and safety.

The profile is based on a computation model similar to the aopgsed by
Vardanega (Vardanega 1998), which is based on the HRT-HO®@thad (Burns &
Wellings 1995), that includes the following features:

A single processor.

A fixed number of tasks.

A single invocation event per task (either time-triggeredewent-triggered
tasks).

Task interaction only by means of shared data (protectesttd)j with mutu-
ally exclusive access.

Constructions that are difficult to analyze, such as dynadasks and protected
objects, task entries, dynamic priorities, select statgmeasynchronous transfer of
control, relative delays, or calendar clock, are forbiddirallows memory usage
and execution to be deterministic.



The concurrency model promoted by the Ravenscar Profilerisistent with
the use of tools that allow the static properties of progranise verified. Potential
verification techniques include information flow analysishedulability analysis,
execution-order analysis and model checking.

The Ravenscar profile will be part of the Ada 2005 standardosapiler vendors
must implement it. The intention is that not only will theypgort it, but in appro-
priate environments (notably embedded environmentsgjeffiimplementations of
the Ravenscar tasking model will also be supplied.

7 Scheduling and dispatching policies

Animportant area of increased flexibility in Ada 2005 is thftask dispatching poli-
cies. In Ada 95, the only predefined policy is fixed-prioritgemptive scheduling,
although other policies are permitted. Ada 2005 provideth&r pragmas, policies,
and packages which facilitate many different mechanisnh si3 non-preemption
within priorities (ARG 2005), round robin using timeslicing (ARG 208h and
Earliest Deadline First (EDF) policy (ARG 20§56 Moreover, it is possible to mix
different policies according to priority levels within antigion.

Time sharing the processor using round robin schedulinglézjaate for non-
real-time systems, and also in some soft real-time systemsnng a level of fair-
ness. Many operating systems, including those compliatht tve POSIX real-time
scheduling model, support this scheduling policy that essthat if there are multi-
ple tasks at the same priority one of them will not monopdieeprocessor.

In order to reduce non-determinism and to increase thetaféeess of testing,
non-preemptive execution is sometimes desirable (Bur@420The standard way
of implementing many high-integrity applications is witttyclic executive (Baker
& Shaw 1989). Using this technique a sequence of procedsrealled within a
defined time interval. Each procedure runs to completiontaeck is no concept of
preemption. Data is passed from one procedure to anothehwsigd variables and
no synchronization constraints are needed, since the guoeg never run concur-
rently. The major disadvantage with non-preemption is ithaill usually (although
not always) lead to reduced schedulability.

Ada 2005 supports the notion of deadlines (the most impbdamcept in real-
time systems) via a predefined task attribute. The deadfiadask is an indication
of the urgency of the task. EDF scheduling allocate the mameto the task with
the earliest deadline. EDF has the advantage that highelslefrresource utilization
are possible, although it is less predictable, compareded{priority scheduling, in
case of overload situations.

8 Execution time monitoring and control

Monitoring and control execution time is important for margal-time systems.
Ada 2005 provides an additional timing mechanism (ARG 2005RG 200%)
which allows for:



e monitoring execution time of individual tasks,

¢ defining and enabling timers and establishing a handleriwikicalled by the
run-time system when the execution time of the task reaclggem value,
and

o defining a execution budget to be shared among several faskiding means
whereby action can be taken when the budget expires.

This functionality is easily supported on top of operatiggtems compliant to
the real-time extensions to POSIX (IEEE 2003), that hasmticécorporated sup-
port for execution time monitoring and budgeting.

Monitoring CPU usage of individual tasks can be used to detean time an ex-
cessive consumption of computational resources, whichsurally caused by either
software errors or errors made in the computation of waase@xecution times.

Schedulability analysis are based on the assumption tkatxacution time of
each task can be accurately estimated. Measurement is sabfiffigult, because,
with effects like cache misses, pipelined and superscatergssor architectures, the
execution time is highly unpredictable. Run-time monitgriof processor usage
permits detecting and responding to wrong estimations imndrolled manner.

CPU clocks and timers are also a key requirement for impléimgsome mod-
ern real-time scheduling policies which need to performedciing actions when
a certain amount of execution time has been consumed. Brgwidmmon CPU
budgets to groups of tasks is the basic support for impleimgaiperiodic servers,
such as sporadic servers and deferrable servers (Sprun& &khoczky 1989) in
fixed priority systems, or the constant bandwidth server{falie & Baker 1995) in
EDF-scheduled systems.

9 Timing events

Timing events (ARG 200 allow for a handler to be executed at a future point in
time in a efficient way, as it is a stand-alone timer which is@xe directly in the
context of the interrupt handler (it does not need a sergk)ta

The use of timing events may reduce the number of tasks in gramg and
hence reduce the overheads of context switching. It prevéseeffective solution
for programming short time-triggered procedures, andrfgglémenting some spe-
cific scheduling algorithms, such as those used for impeesgsnputation (Liu, Lin,
Shih, Chuang-Shi, Chung & Zhao 1991). Imprecise computdtiorease the uti-
lization and effectiveness of real-time applications byamseof structuring tasks into
two phases (one mandatory and one optional). Schedulirayitdms that try to
maximize the likelihood that optional parts are completgadally require chang-
ing asynchronously the priority of a task, which can be impated elegant and
efficiently with timing events.



10 Object-oriented programming

Object-oriented programming is a term that covers a broadtsym of ideas and
features. At one end we have traditional object-orientesigahe(in which a problem
is modeled as a set of objects with message passing). Sui@nslean be pro-
grammed in languages with no object-oriented featuresgdanmbt necessarily raise
any special issues in the safety-critical arena. At theraghd, we have the features
that traditionally appear in what are known as object-dgdrianguages, namely
type extension, inheritance and dynamic dispatching.

Programmers writing high-integrity systems want to takesadiage of the pow-
erful notions of object-oriented programming, and work énlgf done in the direc-
tion of providing guidelines for certifying object-oriextt applications (FAA 2004).
Ada 2005 is ideally suited as the vehicle for exploiting wisatafe in this area, while
avoiding what is dangerous.

Given Ada’s emphasis on high-integrity applications, A@82directly addresses
the use of object-oriented methods within the constraifiteese kinds of systems.
Type extension and inheritance do not cause any problerhdybhamic dispatching
is worrisome, and there is no general agreement on how tdéndgdamic dispatch-
ing, where the actual flow of controls is not known statically at run time, from a
certification perspective (based on knowing the flow of cartatically so it can be
tested). One conservative approach is to allow type exiarsid inheritance, but to
avoid dynamic dispatching. Ada 2005 facilitates this appfoin a number of ways.
First there is a sharp distinction between inheritanceg@ddypes) and dynamic dis-
patching (their associated class-wide types). In Ada, ouslare statically bound by
default. If class-wide types are avoided, then dynamicatidpng never occurs, and
it is still possible to make full use of inheritance and typéeasion, thus facilitating
code reuse. Second, this can be enforced by use of a langefigedirestriction
(No_Dispatch. Finally, Ada 2005 offers very fine-grained control ovehénitance
by allowing each operation to declare explicitly whethés intended to inherit, and
the compiler checks that the intention is met (this avoidsdantally confusindni-
tialize andinitialise for example, a well known hazard in object-oriented lan@sag

A conscious decision was made in the design of Ada 95 to noleimgnt gen-
eral multiple inheritance, because the complexities duoed to the language ap-
peared to overwhelm the benefits. Idiomatic usage of Ada $§&ctbriented facil-
ities still provided the ability to implement multiple intimnce at the application
level through such features as access discriminants aratigemits with class-wide
formal parameters. But more recently, the notion of intsaa(or roles) has been
developed as an effective alternative that gives the pofimterfacing to multiple
abstractions without the additional complexity of full rtiple inheritance. Java in-
troduced the idea of interfaces, and Ada 2005 builds on theeqat to create a new
and powerful form of the interface abstraction, which als@eds to the unique Ada
notions of task and concurrent object, maintaining the irtgod design principle
that concurrency is a first class citizen.



11 Conclusions

Ada’s reliability has been field-proven for decades, evethaslanguage evolves
through real world innovation. The latest Ada 2005 respdod®quests for fea-
tures in the areas of multiple interface inheritance, taé profiles, flexible task-
dispatching policies, and a unification of concurrency api@-oriented features.

Safe tasking is promoted by the Ravenscar profile, which egfindeterministic
and certifiable tasking subset, providing the high-levedtegrtion and expressive
power needed for making software easy to design and tesbriMagards related to
tasks terminating silently and potential race conditiared@boration time have been
addressed by new mechanisms added to Ada 2005.

The new language revision constitutes also the referemeeeivork for high-
integrity object-oriented programming, supporting pdiwkaind flexible object-orien-
ted features while avoiding those that jeopardize systetification.

Ada continues to be the reference language for high-irtiesystems, providing
high-level abstractions without compromising perform@acsafety.
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