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Abstract

The forthcoming Ada 2005 standard has been enhanced to better address
the needs of the real-time and high-integrity communities.This new standard
introduces new restriction identifiers that can be used to define highly efficient,
simple, and predictable run-time profiles. Among others, this language revi-
sion will standardize the Ravenscar profile, new schedulingpolicies, and will
include execution time clocks and timers. Flexible object-oriented features are
also supported without compromising performance or safety.

1 Introduction

For the development of safety-critical software, the choice of programming language
makes a significant difference in meeting the requirements of exacting safety stan-
dards and, ultimately, high-reliability applications.

The Ada language was first introduced in 1983 (ISO 1983). Usedprimarily for
large-scale safety and security critical projects, and embedded systems in particular,
where reliability and efficiency are essential, Ada experienced its last major revision
in 1995 (ISO 1995), making it the first internationally standardized object-oriented
language. The latest revision (Ada 2005) responds to requests for features in the
areas of multiple interface inheritance, real-time profiles, flexible task-dispatching
policies, and a unification of concurrency and object-oriented features.

One of the most important achievements of Ada 2005 is the standardization of
the Ravenscar restricted tasking profile. This profile defines a subset of the tasking
features of Ada which is amenable to static analysis for highintegrity system certifi-
cation, and that can be supported by a small, reliable run-time system. This profile is
founded on state-of-the-art, deterministic concurrency constructs that are adequate
for constructing most types of real-time software.

Measuring and limiting the execution time of tasks is also possible in Ada 2005
by using execution time clocks and timers. This functionality is equivalent to the



execution time monitoring existing in the real-time extension to POSIX (IEEE 2003),
allowing the implementation of flexible real-time scheduling algorithms, such as the
sporadic server in fixed priority systems, or the constant bandwidth server in dynamic
priority systems.

Timing events are also provided as an effective and efficientto execute user-
defined time-triggered procedures without the need to use a task or a delay statement.

There have been major improvements to the scheduling and task dispatching
mechanisms with the addition of further standard pragmas, policies, and packages
which facilitate many different mechanisms such as non-preemption within priori-
ties, timeslicing, and dynamic priority dispatching. Moreover, it is possible to mix
different policies according to priority ranges within a partition.

The following sections will describe the advantages of using Ada for develop-
ing embedded real-time high-integrity systems, paying special attention to the new
features that will be available in the forthcoming Ada 2005 standard.

2 Software engineering with Ada

The general design philosophy of the language promotes sound software engineering
techniques basing on its considerable expressive power andhigh abstraction level
features.

The original Ada 83 design introduced the package construct, a feature that sup-
ports encapsulation (information hiding) and modularization, and that allows the de-
veloper to control the namespace that is accessible within agiven compilation unit,
hence reducing data coupling. Ada 95 introduced the conceptof child units, adding
considerably flexibility and easing the design of very largesystems. Packages pro-
vide strict separation of specification from implementation, and allow the structuring
of code into a hierarchical set of components with strict control over visibility of en-
capsulated state data and methods.

One important capability of the child unit mechanism is thatit allows develop-
ers to write test programs that can access encapsulated state data that is inaccessible
to normal client code. This simplifies the job of meeting coverage analysis require-
ments from safety standards such as DO-178B (RTCA 1992), without compromising
the need to have state data hidden.

Generics are a powerful mechanism for constructing large-scale programs through
the parameterization of program units. The use of generics enhances program relia-
bility by means of facilitating reuse, easing maintenance,reducing source code size,
and helping avoid human replication error.

Ada 95 introduced direct support for object-oriented programming: encapsula-
tion (as just noted), objects (entities that have state and operations), classes (abstrac-
tions of objects), inheritance, polymorphism, and dynamicbinding.

Ada tasking provides a natural and powerful abstraction mechanism for decou-
pling application activities, including the functionality for sharing resources, com-
municating, and synchronizing.



3 Ada for embedded applications

Ada was designed with embedded applications in mind from thestart. For example,
the use of representation clauses, which have been extendedand made more powerful
in Ada 2005, allows close mapping of data structures to the hardware, and the built in
concurrency can be used to map handling of multi-tasking at the hardware level. Ad-
ditionally, many embedded applications require high reliability or are safety-critical,
which is where a language designed for maximum safety reallyshines.

The Ada standard includes a normative annex which specifies additional capa-
bilities provided for low-level programming (ISO 1995, Annex C). It allows access
to hardware-specific features, such as:

• Insertion of assembly and intrinsic subprograms. Intrinsic subprograms are
built-in to the compiler provided for convenient access to any machine opera-
tions that provide special capabilities or efficiency and that are not otherwise
available through the language constructs. Examples of such instructions in-
clude atomic read-modify-write operations, standard numeric functions, string
manipulation operations, vector operations, direct operations on I/O ports, etc.

• Representation clauses for specifying the desired address, size, alignment, and
layout of data in memory.

• Shared variable control. Read and update operations can be forced to either be
performed directly to memory, or in a indivisible (atomic) manner.

• Interrupt support. There is a language-defined model for hardware interrupts
which includes the mechanisms for handling interrupts.

• Storage management. Specific storage pools can be specified with user-defined
managers that may be placed in specific memory regions. They may be suit-
able for real-time systems because they can be made predictable.

Another important feature of Ada is that its functionality,notably its tasking
capabilities, maps very well to the typical embedded operating systems used in many
applications.

4 Ada for high-integrity applications

Ada is the language of choice for many high-integrity systems due to its careful
design and the existence of clear guidelines for building high integrity systems (ISO
2000, Burns, Dobbing & Vardanega 2003).

Fitting its commitment to safety and reliability, a formal validation process ex-
ists based on an ISO (International Standards Organization) standard (ISO 1999).
Ada is the only language for which such a validation standardexists. An Ada Con-
formity Assessment Test Suite (ACATS) (ACAA 2005) has been developed for this
conformity testing, which exercises both the compiler and the run-time system.



The use of a standardized language (ISO 1999) ensures that your program will
behave as you want (as it is designed to) even when changing target platforms or
compilers. The effect of a program can be predicted from the language definition
with few implementation dependencies of interactions among language features. The
semantics of Ada programs are well defined even in error situations. The Ada stan-
dard includes a normative annex which specifies additional capabilities provided for
systems that are safety critical or have security constraints (ISO 1995, Annex H).

When writing high reliability software, the full Ada language is inappropriate
since the generality and flexibility may interfere with traceability and certification
requirements. Ada addresses this issue by supplying configuration directives (that
may restrict individual features or define a complete set of restrictions) that allows
you to constrain the language features to a well-defined subset that facilitate analy-
sis and safety, and avoids error prone or hard to analyze features. The ISO 15942
technical report (ISO 2000) contains a detailed analysis ofthe different Ada fea-
tures with respect to their suitability for different verification techniques. The use
of restricted profiles and restrictions also allows the compiler to remove unnecessary
run-time support, simplifying the certification process and preventing the inclusion
of inactive code in the final application.

One of the most interesting subsets for high-integrity systems is the Ravenscar
profile, a collection of concurrency features that are powerful enough for real-time
programming but simple enough to make certification practical. Another notable
example is SPARK (Barnes 2003) that includes Ada constructsregarded as essen-
tial for the construction of complex software, but removes all the features that may
jeopardize the requirements of verifiability, bounded space and time, and minimal
run-time system.

Apart for the advantages derived from the high abstraction level provided by
the language (encapsulation, data abstraction, reusability, tasking, etc.), there are
many others features in the language that promote safety andreliability. Ada code is
very readable, making code maintenance easier and simplifying certification steps,
including peer review and walkthroughs. Strong typing ensure that most errors are
detected statically at compile time, and many remaining errors are automatically
detected at execution.

Access types in Ada have been designed in a way to prevent the occurrence of
dangling references because they can never designate objects that have gone out of
scope. Users can also further restrict the use of allocatorsand deallocators through
appropriate restrictions.

Ada provides an exception mechanism for detecting and responding to excep-
tional run-time conditions in a controlled manner, providing well-defined semantics
even under error conditions. It allows residual errors to bedetected and handled,
so the exception features are potentially a key part of a language for high-integrity
applications (Motet, Marpinard & Geffroy 1996). Its use makes verification more
difficult, unless restrictive strategies (ISO 2000) are used which simplify the verifi-
cation process.

Ada 2005 contains determinism and hazard mitigation issuesrelating to task ac-
tivation and interrupt handler execution semantics, in response to certification con-



cerns about potential race conditions that could occur due to tasks being activated
and interrupt handlers being executed prior to completion of the library-level elab-
oration code. A new configuration pragma has been added (ARG 2005d) for guar-
anteeing the atomicity of program elaboration, that is, no interrupts are delivered
and task activations are deferred until the completion of all library-level elaboration
code. This eliminates all hazards that relate to tasks and interrupt handlers accessing
global data prior to it having been elaborated, without having to resort to potentially
complex elaboration order control.

Another major hazard in high-integrity systems, tasks terminating silently, has
been addressed in Ada 2005 with a new mechanism for setting user-defined handlers
which are executed when tasks are about to terminate. These procedures are invoked
when tasks are about to terminate (either normally, as a result of an unhandled ex-
ception, or due to abort), allowing controlled responses atrun time and also logging
these events for post-mortem analysis.

5 Ada for real-time applications

Concurrency is a core part of the language, and there is a normative annex intended
for real-time systems software (ISO 1995, Annex D) that supports sound real-time
development techniques, such as Rate Monotonic Analysis (Liu & Layland 1973),
Response Time Analysis (RTA) (Joseph & Pandya 1986), and some others intro-
duced in the Ada 2005 revision that will be described later.

Ada provides well-defined semantics for scheduling, avoiding the disadvantages
associated with the use of low-level constructions for taskhandling and synchro-
nization. Task cooperate using synchronous message passing (rendezvous) and safe
and efficient data-oriented communication and synchronization through protected
objects.

Asynchronous capabilities are also very important for somereal-time applica-
tions, and they are supported with the following mechanisms:

• Asynchronous Transfer of Control (ATC) is a mechanism that allows the ex-
ecution of an abortable part to be cancelled by a triggering event (time event
or another task), in which case an optional sequence of code can be executed
after the abortable part is left.

• Preemptive task abortion can trigger asynchronously the termination of one or
more target tasks.

• Asynchronous task control is a simple and efficient capability to suspend and
resume the execution of another task.

• Asynchronous external events are modelled by interrupts, alanguage-defined
class of events that are detected by the hardware or the system software.

A high-resolution monotonic clock together with support for both absolute and
relative delays are also part of the Ada standard, which defines minimum require-
ments in terms of range and accuracy.



6 The Ravenscar profile

As the functionality and complexity of embedded software increases, more atten-
tion is being devoted to high level, abstract development methods. The Ada tasking
model provides concurrency as a means of decoupling application activities, and
hence making software easier to design and test (Vardanega &van Katwijk 1999).

The tasking model in Ada 95 is extremely powerful, but it has always been rec-
ognized that, in the case of high-integrity systems, it is appropriate to choose a subset
of these facilities because accurate timing analysis is difficult to achieve. Advances
in real-time systems timing analysis methods have paved theway to reliable tasking
in Ada. Accurate analysis of real-time behavior is possiblegiven a careful choice of
scheduling/dispatching method together with suitable restrictions on the interactions
allowed between tasks.

The Ravenscar profile (ARG 2005f) is a subset of Ada tasking that provides the
basis for the implementation of deterministic and time analyzable applications. This
subset is amenable to static analysis for high integrity system certification, and can
be supported by a small, reliable run-time system. This profile is founded on state-
of-the-art, deterministic concurrency constructs that are adequate for constructing
most types of real-time software (Burns et al. 2003). Major benefits of this model
are:

• Improved memory and execution time efficiency, by removing high overhead
or complex features.

• Increased reliability and predictability, by removing non-deterministic and non
analyzable features.

• Reduced certification cost by removing complex features of the language, thus
simplifying the generation of proof of predictability, reliability, and safety.

The profile is based on a computation model similar to the one proposed by
Vardanega (Vardanega 1998), which is based on the HRT-HOOD method (Burns &
Wellings 1995), that includes the following features:

• A single processor.

• A fixed number of tasks.

• A single invocation event per task (either time-triggered or event-triggered
tasks).

• Task interaction only by means of shared data (protected objects) with mutu-
ally exclusive access.

Constructions that are difficult to analyze, such as dynamictasks and protected
objects, task entries, dynamic priorities, select statements, asynchronous transfer of
control, relative delays, or calendar clock, are forbidden. It allows memory usage
and execution to be deterministic.



The concurrency model promoted by the Ravenscar Profile is consistent with
the use of tools that allow the static properties of programsto be verified. Potential
verification techniques include information flow analysis,schedulability analysis,
execution-order analysis and model checking.

The Ravenscar profile will be part of the Ada 2005 standard, socompiler vendors
must implement it. The intention is that not only will they support it, but in appro-
priate environments (notably embedded environments), efficient implementations of
the Ravenscar tasking model will also be supplied.

7 Scheduling and dispatching policies

An important area of increased flexibility in Ada 2005 is thatof task dispatching poli-
cies. In Ada 95, the only predefined policy is fixed-priority preemptive scheduling,
although other policies are permitted. Ada 2005 provides further pragmas, policies,
and packages which facilitate many different mechanisms such as non-preemption
within priorities (ARG 2005c), round robin using timeslicing (ARG 2005e), and
Earliest Deadline First (EDF) policy (ARG 2005g). Moreover, it is possible to mix
different policies according to priority levels within a partition.

Time sharing the processor using round robin scheduling is adequate for non-
real-time systems, and also in some soft real-time systems requiring a level of fair-
ness. Many operating systems, including those compliant with the POSIX real-time
scheduling model, support this scheduling policy that ensures that if there are multi-
ple tasks at the same priority one of them will not monopolizethe processor.

In order to reduce non-determinism and to increase the effectiveness of testing,
non-preemptive execution is sometimes desirable (Burns 2001). The standard way
of implementing many high-integrity applications is with acyclic executive (Baker
& Shaw 1989). Using this technique a sequence of procedures is called within a
defined time interval. Each procedure runs to completion andthere is no concept of
preemption. Data is passed from one procedure to another viashared variables and
no synchronization constraints are needed, since the procedures never run concur-
rently. The major disadvantage with non-preemption is thatit will usually (although
not always) lead to reduced schedulability.

Ada 2005 supports the notion of deadlines (the most important concept in real-
time systems) via a predefined task attribute. The deadline of a task is an indication
of the urgency of the task. EDF scheduling allocate the processor to the task with
the earliest deadline. EDF has the advantage that higher levels of resource utilization
are possible, although it is less predictable, compared to fixed-priority scheduling, in
case of overload situations.

8 Execution time monitoring and control

Monitoring and control execution time is important for manyreal-time systems.
Ada 2005 provides an additional timing mechanism (ARG 2005a, ARG 2005b)
which allows for:



• monitoring execution time of individual tasks,

• defining and enabling timers and establishing a handler which is called by the
run-time system when the execution time of the task reaches agiven value,
and

• defining a execution budget to be shared among several tasks,providing means
whereby action can be taken when the budget expires.

This functionality is easily supported on top of operating systems compliant to
the real-time extensions to POSIX (IEEE 2003), that has recently incorporated sup-
port for execution time monitoring and budgeting.

Monitoring CPU usage of individual tasks can be used to detect at run time an ex-
cessive consumption of computational resources, which areusually caused by either
software errors or errors made in the computation of worst-case execution times.

Schedulability analysis are based on the assumption that the execution time of
each task can be accurately estimated. Measurement is always difficult, because,
with effects like cache misses, pipelined and superscalar processor architectures, the
execution time is highly unpredictable. Run-time monitoring of processor usage
permits detecting and responding to wrong estimations in a controlled manner.

CPU clocks and timers are also a key requirement for implementing some mod-
ern real-time scheduling policies which need to perform scheduling actions when
a certain amount of execution time has been consumed. Providing common CPU
budgets to groups of tasks is the basic support for implementing aperiodic servers,
such as sporadic servers and deferrable servers (Sprunt, Sha & Lehoczky 1989) in
fixed priority systems, or the constant bandwidth server (Ghazalie & Baker 1995) in
EDF-scheduled systems.

9 Timing events

Timing events (ARG 2005h) allow for a handler to be executed at a future point in
time in a efficient way, as it is a stand-alone timer which is execute directly in the
context of the interrupt handler (it does not need a server task).

The use of timing events may reduce the number of tasks in a program, and
hence reduce the overheads of context switching. It provides an effective solution
for programming short time-triggered procedures, and for implementing some spe-
cific scheduling algorithms, such as those used for imprecise computation (Liu, Lin,
Shih, Chuang-Shi, Chung & Zhao 1991). Imprecise computation increase the uti-
lization and effectiveness of real-time applications by means of structuring tasks into
two phases (one mandatory and one optional). Scheduling algorithms that try to
maximize the likelihood that optional parts are completed typically require chang-
ing asynchronously the priority of a task, which can be implemented elegant and
efficiently with timing events.



10 Object-oriented programming

Object-oriented programming is a term that covers a broad spectrum of ideas and
features. At one end we have traditional object-oriented design (in which a problem
is modeled as a set of objects with message passing). Such designs can be pro-
grammed in languages with no object-oriented features, anddo not necessarily raise
any special issues in the safety-critical arena. At the other end, we have the features
that traditionally appear in what are known as object-oriented languages, namely
type extension, inheritance and dynamic dispatching.

Programmers writing high-integrity systems want to take advantage of the pow-
erful notions of object-oriented programming, and work is being done in the direc-
tion of providing guidelines for certifying object-oriented applications (FAA 2004).
Ada 2005 is ideally suited as the vehicle for exploiting whatis safe in this area, while
avoiding what is dangerous.

Given Ada’s emphasis on high-integrity applications, Ada 2005 directly addresses
the use of object-oriented methods within the constraints of these kinds of systems.
Type extension and inheritance do not cause any problems, but dynamic dispatching
is worrisome, and there is no general agreement on how to handle dynamic dispatch-
ing, where the actual flow of controls is not known staticallybut at run time, from a
certification perspective (based on knowing the flow of control statically so it can be
tested). One conservative approach is to allow type extension and inheritance, but to
avoid dynamic dispatching. Ada 2005 facilitates this approach in a number of ways.
First there is a sharp distinction between inheritance (tagged types) and dynamic dis-
patching (their associated class-wide types). In Ada, methods are statically bound by
default. If class-wide types are avoided, then dynamic dispatching never occurs, and
it is still possible to make full use of inheritance and type extension, thus facilitating
code reuse. Second, this can be enforced by use of a language defined restriction
(No_Dispatch). Finally, Ada 2005 offers very fine-grained control over inheritance
by allowing each operation to declare explicitly whether itis intended to inherit, and
the compiler checks that the intention is met (this avoids accidentally confusingIni-
tializeandInitialise for example, a well known hazard in object-oriented languages).

A conscious decision was made in the design of Ada 95 to not implement gen-
eral multiple inheritance, because the complexities introduced to the language ap-
peared to overwhelm the benefits. Idiomatic usage of Ada 95 object-oriented facil-
ities still provided the ability to implement multiple inheritance at the application
level through such features as access discriminants and generic units with class-wide
formal parameters. But more recently, the notion of interfaces (or roles) has been
developed as an effective alternative that gives the power of interfacing to multiple
abstractions without the additional complexity of full multiple inheritance. Java in-
troduced the idea of interfaces, and Ada 2005 builds on the concept to create a new
and powerful form of the interface abstraction, which also extends to the unique Ada
notions of task and concurrent object, maintaining the important design principle
that concurrency is a first class citizen.



11 Conclusions

Ada’s reliability has been field-proven for decades, even asthe language evolves
through real world innovation. The latest Ada 2005 respondsto requests for fea-
tures in the areas of multiple interface inheritance, real-time profiles, flexible task-
dispatching policies, and a unification of concurrency and object-oriented features.

Safe tasking is promoted by the Ravenscar profile, which defines a deterministic
and certifiable tasking subset, providing the high-level abstraction and expressive
power needed for making software easy to design and test. Major hazards related to
tasks terminating silently and potential race conditions at elaboration time have been
addressed by new mechanisms added to Ada 2005.

The new language revision constitutes also the reference framework for high-
integrity object-oriented programming, supporting powerful and flexible object-orien-
ted features while avoiding those that jeopardize system certification.

Ada continues to be the reference language for high-integrity systems, providing
high-level abstractions without compromising performance or safety.
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