Ada 2005 Abstract Interfaces in GNAT
(Extended Abstract)

Gary Dismukes! and Javier Miranda?

! dismukes@adacore.com
AdaCore
104 Fifth Avenue, 15th floor
New York, NY 10011

2 jmiranda@iuma.ulpgc.es
Applied Microelectronics Research Institute
University of Las Palmas de Gran Canaria

Spain

Abstract. One of the most salient object-oriented issues of Ada 2005 are
Abstract Interfaces. Although the concept is not new (it is based on Java
interfaces), being Ada a language for reliable and real-time applications
its implementation must be efficient and have a bounded worst-case exe-
cution time. This paper summarizes part of the work done by the GNAT
Development Team to have an efficient implementation of this language
feature.

Keywords: Ada 2005, Abstract Interfaces, GNAT.

1 Introduction

During the design of Ada 95 there was much debate on whether the language
should incorporate multiple inheritance. The outcome of the debate was to sup-
port single-inheritance only. In recent years, a number of language designs [5,
6] have adopted a compromise between full multiple inheritance and strict sin-
gle inheritance, which is to allow multiple inheritance of specifications but only
single inheritance of implementations. Typically this is obtained by means of
“interface” types. An interface consists solely of a set of operation specifications:
the interface type has no data components and no operation implementations.
A type may implement multiple interfaces, but can inherit code from only one
parent type [2]. This model has been found to have much of the power of multiple
inheritance, without most of the implementation and semantic difficulties.

During the last year the GNAT Development Team has been working in
the implementation of the new Ada 2005 issues [8]. For the implementation of

abstract interfaces it has been taken into account that, being Ada a language for
reliable and real-time applications, its implementation must be efficient and have
a bounded worst-case execution time [10, Section 3.9(1.e)]. In addition, it is also
desirable for the implementation to facilitate the interface with other languages.

At compile-time, abstract interfaces are conceptually a special kind of ab-
stract tagged types and hence they do not add special complexity to the compiler
(most of the current compiler support for abstract tagged types can be reused).
However, at run-time additional structures must be added to give support to
membership tests and dynamic dispatching through interfaces, and this is the
contents of this paper.

This paper is structured as follows: In Section 2 we summarize the main
features of Ada 2005 abstract interfaces. In order to understand its implemen-
tation, the reader needs to be familiar with the run-time support for tagged
types. Hence, in Section 3 we summarize the current GNAT run-time support
for tagged types. In Section 4 we describe the implementation of abstract inter-
faces: Section 4.1 discusses an implementation of the membership test applied to
interfaces, and Section 4.2 presents two approaches to give support to dynamic
dispatching through interfaces. In Section 5 we give an overview of related work.
We close with some conclusions and the bibliography.

2 Abstract Interfaces in Ada 2005

An Ada 2005 interface consists solely of a set of operation specifications: the
interface type has no data components and no operation implementations. The
specifications may be either abstract or null by default. A type may implement
multiple interfaces, but can inherit code from only one parent type [2]. For
example:

package Pkg is
type I1 is interface; -1
procedure P (A : I1) is abstract;
procedure Q (X : I1) is null;

type I2 is interface I1; -- 2
procedure R (X : I2) is abstract;

type Root is tagged record ... -3
type DT1 is new Root and I2 with ... -4
-- DT1 must provide implementations for P and R

type DT2 is new DT1 with ... -5
-- Inherits all the primitives and interfaces of
-- the ancestor

end Pkg;

The interface Il defined at —1- has two subprograms: the abstract subpro-
gram P and the null subprogram) (a null procedure is introduced by AI-348 [3]
and behaves as if it has a body consisting solely of a null_statement.) The in-
terface 12 defined at —2— has the same operations of I1 plus operation R. At
—3— we define the root of a derivation class. At —4— DT'1 extends the root type,
with the added commitment of implementing all the subprograms of interface
I2. Finally, at -5— we extend DT1, thus inheriting all the primitive operations
and interfaces of the ancestor.

The power of multiple inheritance consists in the ability to dispatch calls
through interface subprograms, when the controlling argument is of a classwide
interface type. In addition, languages providing interfaces [5, 6] also have a mech-
anism to determine at run-time whether a given object implements a particular
interface. Ada 2005 extends the membership operation to interfaces, so that one
can write O in I’Class. Let us see an example that uses both features:

procedure Dispatch_Call (0 : I1’Class) is

begin
if 0 in I2’Class then -— 1: Membership test
R (0); -- 2: Dispatching call
else
P (0); -- 3: Dispatching call
end if;

end Dispatch_Call;

I1’Class’Write (...) -- 4: Dispatching call to
-- predefined operation

The formal O covers all the objects that implement the interface I1, and
hence at —3— the subprogram can safely dispatch the call to P. However, because
12 is an extension of I1, an object implementing I1 may also implement I2.
Hence, at —1— we use the membership test to check at run-time if the object
also implements 12 and then call subprogram R instead of P. Finally, at —4—
we see that, in addition to user defined primitives, we can also dispatch calls to
predefined operations (that is, ’Size, ’Alignment, 'Read, 'Write, ’Input, 'Output,
"Assign, ’Adjust, 'Finalize, and the operator “=").

Before we discuss the implementation of abstract interfaces in GNAT, the
reader needs to be familiar with the GNAT run-time support for tagged types.
This is summarized in the next section.

3 Tagged Types in GNAT

In the GNAT run-time the _Tag is a pointer to an structure that, among other
things, has the Dispatch Table and the Ancestors Table (cf. Figure 1). The Dis-
patch Table contains the pointers to the primitive operations of the type. The
Ancestors Table contains the tags of all the ancestor types; it is used to com-
pute in constant time the membership test involving class-wide types, that is
“X in T’Class”. For further information on the other fields read the comments
available in the GNAT sources (read files a-tags.ads and i-cpp.ads).

| Type Specific Data

T'Tag— | TSD Ptr ——| Inheritance Depth

Expanded Name

Dispatch External Tag
Table Hash Table Link
Remotely Callable
Rec Ctrler Offset

Ancestors
Table

Fig. 1. Run-time structure for tagged types

Let us briefly summarize the elaboration of this structure with the help of
Figure 2. In the right side the reader can see a tagged type T" with two primitive
operations P and Q). In the left side of the same figure we have a simplified version
of the structure described above. For clarity reasons, only the dispatch table,
the table of ancestor tags, and the inheritance level have been represented. The
elaboration of a root tagged type carries out the following actions: 1) Initialize
the Dispatch Table with the pointers to the primitive operations, 2) Set the
inheritance level I-Depth to one, and 3) Initialize the table of ancestor tags with
the self tag.

In case of derived types GNAT does not build the new run-time structure
from the scratch, but it copies the contents of the ancestor tables. Figure 3
completes our previous example with a derived type DT. The elaboration of
the tables corresponding to DT involves the following actions: 1) Copy the con-
tents of the dispatch table of the ancestor, 2) Complete the contents of the
new dispatch table with the pointers to the overriding subprograms (as well
as the new primitive operations), 3) Initialize the inheritance level to one plus
the inheritance level of the ancestor, 4) Copy the contents of the ancestor tags
table in a stack manner, that is copy the 0 to ¢ elements of the ancestor tags
table in positions 1 to ¢ + 1 and save the self tag at position 0 of this table.

Dispatch | type T is tagged null record;

I
T | Table | procedure P (X : T) is
a g .
£ v l P’Address -) begin
/ : Q’Address (.-
! end P;
\ | I-Depth=1 [(2)
\\ : Ancestors ~ procedure Q (X : T) is
N Table | begin
| 3 ..
______ end Q;

Fig. 2. Elaboration of a root tagged types

Thus the self tag is always found at position 0, the tag of the parent is found
at position 1, and so on, and knowing the level of inheritance of two types, the
membership test O in T’Class can be computed in constant time by the formula:
O'Tag.Ancestors_Table(O'Tag.Idepth — T'Tag.Idepth) = T'Tag

| Dispatch | type T is tagged null record;
) | Table | procedure P (X : T) is
T'Tag | / .
<7 | P’Address 4 | begin
! | Q’Address e
s | end P;
: procedure Q (X : T) is
begin
end Q;
DT Tag type DT is new T w1th.. ..
/:/—> procedure Q (X : DT) is
|(2) begin
R’Address v
I-Depth =2 (3) end Q;
|
Ancestors procedure R (X : DT) is
— Ta}) le | begin
DT @ ..
| end R;

Fig. 3. Elaboration of a derived type

In addition to the user-defined primitive operations, the dispatch table con-
tains the pointers to all the predefined operations of the tagged type (that is,
’Size, *Alignment, 'Read, *Write, ’Input, ’Output, ’Assign, ’Adjust, ’Finalize, and
the operator “=”). From these primitives, ’Size is the only operation that is

always placed at a fixed position of the dispatch table because it is needed at
run-time to compute the size of the parent.

4 Abstract Interfaces in GNAT

As we have seen in Section 2, at run-time the implementation of Interfaces
involves two main parts: the implementation of the membership test applied to
interfaces, and dispatching calls through interfaces. These topics are analyzed in
the following sections.

4.1 Interface Membership Test: O in I’Class

Similar to the Ada 95 membership test applied to class-wide types (described
in Section 3), at run-time we can have a compact table containing the tags of
all the implemented interfaces (cf. Figure 4). However, because each type can
implement many interfaces, the run-time cost of the membership test is the cost
of a search for the interface in this table.

| Type Specific Data
T’Tag—» TSD Ptr ——| Inheritance Depth
Table of Expanded Name
primitive External Tag
operation Hash Table Link
pointers Remotely Callable
Rec Ctrler Offset

Ancestor Tags

Fig. 4. The Table of Interfaces

This simple approach has the advantage that the elaboration of derived types
containing interfaces is simple and efficient: similar to the elaboration of the An-
cestors Table (described in Section 3) we can elaborate the new table of inter-
faces as follows: 1) Copy the contents of the table of interfaces of the immediate
ancestor (because the derived type inherits all the interfaces implemented by its
immediate ancestor), and 2) Add the new interfaces.

In order to evaluate if this simple approach is acceptable, we have analyzed
the current usage of interfaces in Java. For this purpose we have used the sources

available with the Java 2 Platform, Standard Edition (J2SE 5.0) [7]. Figure 5
summarizes the results. From a total of 2746 Java classes, 99.3 per cent imple-
ment a maximum of 4 interfaces, and there is a single class (AWTEventMulti-
caster) that implements 17 interfaces.

Number of Implemented Interfaces

0 1 2 3 4 5 6 7 8 17

22 1998 508 160 40 6 7 2 2 1

Number of Java Classes

Fig. 5. Usage of interfaces in J2SE 5.0

As a consequence this simple approach has been considered valid for GNAT.
However, if the constant-time requirement is required for the Ada applications,
some of the efficient type inclusion tests available in the literature [9,11] can
be implemented (these approaches have not been considered because they intro-
duce additional complexity and data structures to the run-time —-described in
Section 5).

4.2 Dispatching calls through Abstract Interfaces

Two approaches have been considered to implement dispatching calls through
abstract interfaces: 1) Dispatch tables, and 2) Permutation Maps. The former
approach consists in the generation of a dispatch table for each implemented in-
terface. Thus, dispatching a call through an interface has exactly the same cost
than any other dispatching call. The latter approach consists in the building of
supplementary tables containing indices into the dispatch table; each index es-
tablishes the correspondence between the interface subprograms and the tagged
type subprograms (permutation maps are discussed in [2]).

The major advantages of a dispatch tables by interface are: 1) Facilitate
interfacing with C++, and 2) Efficiency, because at run-time we have direct
pointers to the subprograms implementing the interface, and thus the indirection
introduced by the permutation map is not needed. By contrast, its major dis-
advantage is compiler complexity because the compiler must handle the creation
and elaboration of all these additional dispatch tables. However, the implemen-
tation of the permutation map approach is more simple because the indices in
the permutation maps never change (and can be inherited by the derived type).

Currently we have a prototype implementation of the permutation map ap-
proach. However, because interfacing with C++ is really important for the Ada

type I1 is interface;
procedure P (X : I1);

type 12 is interface;
procedure Q (X :12);
procedure R (X : 12);

T'Tag — I Dispatch Tabl . . e ——— S D
€ | ispateh 24D } type T is new I1 and I2 with ... ; I Dispatch Table ‘ a8
| P’ Address "‘ -=-< _ ,}— — = TPAddress ¢+
| QAddress T~ — > - _ -7 o — 1 QAddress |
| R’Address T }~ - \’\,_ :procedure PX:T) l‘S et -7 ‘, — — 7 R’Address J A
| Dispateh Table of 11 L~ > cpprocedure Q (X: T is...47 _ - - /} P ion Map of I1 Ty
| P - [- _sprocedureR (X:T)is...a” ‘ ermutation Map o J’ /Qk
} ‘ PAddreAss 1,7, - [[j’ | N
| Dispatch Tableof 12 | ~ | Permutation Map of 12 |71

7/ 7
| Q’Address)‘ ‘ Q--1, 4
| R’Address /] ‘ R -4+
777777777 e |

a) Separate Dispatch Tables b) Permutation Maps

Fig. 6. Separate dispatch tables versus permutation maps

community, we are now evaluating another prototype that implements the sep-
arate tables approach to be compatible with g++.

4.3 Dispatching calls to predefined operations

Ada 2005 allows to dispatch calls to predefined operations through abstract
interfaces (for example I'Class' Input(...)). Conceptually this introduces no ad-
ditional complexity: similar to any other interface operation, the permutation
map associated with each interface can contain contain the index of the right
pointer to issue the indirect call.

In order to reduce the size of the tables (either permutation maps or dispatch
tables) GNAT will probably fix the position of all the predefined operations in
the dispatch table associated with any tagged type. This simple scheme avoids
the need to duplicate the entries related with predefined primitive operations in
all the interface’s dispatch tables (they are always available in the dispatch table
of the type).

5 Related Work

Compiler techniques for implementing polymorphic calls can be grouped in two
major categories [4]: Static Techniques, techniques that precompute all data
structures at compile or link time and do not change those data during run-time,
and Dynamic Techniques, techniques that may precompute some information at
compile or link time, but they update these information and the corresponding
data structures at run-time. For efficiency reasons, for the GNAT implementation
we have considered static techniques.

The static techniques for implementing polymorphic calls are: Selector Table
Indexing, Selective Colouring, Row Displacement, Compact Selector-indexed Dis-
patch Tables, and Virtual Function Tables. The Selector Table Indexing scheme
uses a two-dimensional matrix indexed by class and selector codes. Both classes
and selectors are represented by unique, consecutive class or selector codes. Un-
fortunately, the resulting dispatch table is too large and very sparse, and thus
this scheme is generally not valid to be implemented. Selective Colouring, Row
Displacement, and Compact Selector-Index Dispatch Tables are variants of STT
that reduce the size of the table. Virtual Function Tables (VIBL) are the pre-
ferred mechanism for virtual function call resolution in Java and C++. An VITBL
contains is a virtual method table for a class, restricted to those methods that
match a particular interface. Instead of assigning selector codes globally, VIBL
assigns codes only within the scope of a class. Typically, the system stores the
VTBL in an array reachable from the class object, and search for the relevant
table at run-time. Most Java compilers augment the basic search approach of the
VTBL with some form of cache or move-to-front algorithm to exploit temporal
locality in the table usage to reduce expected search times [1].

Concerning the membership test, [11] and [9] review the previous work in the
field of efficient type inclusion tests and discuss several techniques that can be
used to implement type inclusion tests in constant time: the packed encoding, the
bit-packed encoding and the compact encoding. The former is the most efficient,
and the latters are more compact.

6 Conclusions

This paper summarizes part of the work done by the GNAT Development Team
to implement Ada 2005 abstract interfaces [2]. Because interfaces are conceptu-
ally a special kind of abstract tagged types, at compile-time most of the current
support for abstract tagged types has been reused. At run-time it is clear that
additional structures are required to give support to membership tests as well
as dynamic dispatching through interfaces.

At present we already have a prototype implementation of this critical issue
that uses a combination of dispatch table for the primitive operations of the
type, and permutation maps that establish how a given interface is satisfied
by existing primitive operations. Although this model supports the Ada 2005
semantics, we are currently evaluating more efficient alternatives to simplify the
interfacing with C++ (at least for the g++ compiler).

References

1. B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber. Efficient
Implementation of Java Interfaces: Invokeinterface Considered Harm-
less. Proceedings of the Conference on Object-Oriented Programming,

10.

11.

Systems, Languages, and Applications (OOPSLA’2001), ACM Press.
http://www.research.ibm.com /jalapeno/publication.html, October 2001.

ARG. Abstract interfaces to provide multiple inheritance. Ada Issue 251,
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/Als/AI-00251.TXT.

ARG. Null procedures. Ada Issue 348, http://www.ada-auth.org/cgi-
bin/cvsweb.cgi/Als/AI-00348.TXT.

. K. Driesen. Software and Hardware Techniques for Efficient Polymorphic Calls.

University of California, Santa Barbara (Phd Dissertation), TRCS99-24, June
1999.

J. Gosling, B. Joy, G Steele, and G. Bracha. The Java Language Specification (2nd
edition). Addison-Wesley, 2000.

ECMA International. C# Language Specification —Standard ECMA-334 (2nd
edition). Standardizing Information and Communication Systems, December, 2002.
Sun MicroSystems. Java 2 Platform, Standard Edition (J2SE 5.0). Awailable at
http://java.sun.com/j2se/, 2004.

J. Miranda and E. Schonberg. GNAT: On the Road to Ada 2005. ACM
Si9gAda’2004, November 2004.

K. Palacz and J. Vitek. Java Subtype Tests in Real-Time. Pro-
ceedings of the European Conference on Object-Oriented Programming,
http://citeseer.ist.psu.edu/660723.html, 2003.

S.Tucker Taft, Robert A. Duff, and Randall L. Brukardt and Erhard Ploed-
ereder (Eds). Consolidated Ada Reference Manual with Technical Corrigendum
1. Language Standard and Libraries. ISO/IEC 8652:1995(E). Springer Verlag.
ISBN: 3-540-43038-5, 2000.

J. Vitek, R.N Horspoo, and A. Krall Efficient Type Inclusion
Tests. Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA’97), ACM Press.
http://citeseer.ist.psu.edu/vitek97efficient.html, 1997.

