
Investing in SPARK: 
Formal methods for automotive functional safety 

Tech Paper

adacore.com

https://www.adacore.com
https://www.adacore.com


adacore.com

Executive Summary
Software-related issues are becoming an increasingly common cause of safety recalls in 
the automotive industry, with their share rising significantly in recent years. In this context, 
compliance with ISO 26262, the international standard for functional safety in automotive 
systems, is no longer merely a technical requirement but a critical business priority.

To meet the industry’s growing demand for high-assurance software, some developers are 
turning to formal verification to improve system reliability and security significantly. To achieve 
the highest level of ISO 26262 assurance for DriveOS as efficiently as possible, NVIDIA adopted 
Ada and SPARK and recently published its reference process to support this approach.

Introduction

Software issues are increasingly causing 
safety recalls in the automotive industry, with 
the proportion of software-related recalls 
rising significantly in recent years. This trend 
is driven by the growing complexity of vehicle 
software, particularly with the rise of advanced 
driver-assistance systems (ADAS) and electric 
vehicles. 

An article in Ars Technica states* that software 
fixes are now responsible for more than 1 in 5 
automotive recalls and that software-related 
recalls often involve electrical systems, ADAS 
features like automatic emergency braking, 
and powertrain components. 

Software has become the primary enabler of 
innovation, functionality, and safety. However, as 
vehicle software grows in scale and complexity, 
so do the challenges, particularly in ensuring 
safety in life-critical scenarios.

ISO 26262 is an international standard for 
functional safety in the automotive industry. 
The standard applies to electrical and electronic 
systems comprising vehicle hardware and 
software components. It defines requirements 
to be met by the system’s safety-relevant 
function and processes, methods, and tools 
used in the development process.

Why does ISO 26262 matter? 
Adherence to ISO 26262 is not just a technical 
obligation but a business imperative. With 
vehicles increasingly reliant on complex 

software systems, ensuring the functional 
safety of E/E (Electrical and Electronic) 
components has become essential to 
protecting human life and preventing accidents 
caused by system failures.

Compliance demonstrates due diligence and 
accountability, which are crucial in an industry 
subject to intense public scrutiny and stringent 
liability regulations. Failure to conform to ISO 
26262 can result in serious consequences, 
including vehicle recalls, litigation, regulatory 
penalties, and long-term reputational damage.

Moreover, aligning development practices 
with ISO 26262 can act as a catalyst for 
improved engineering discipline. It encourages 
a structured approach to system design, 
promotes traceability and documentation, 
and helps organisations maintain consistency 
across geographically distributed teams and 
suppliers. In addition, for original equipment 
manufacturers (OEMs) and suppliers alike, ISO 
26262 compliance can be a key differentiator 
in competitive tenders and partnerships, 
signalling a commitment to safety and quality.

adacore.com

Ensuring the functional 
safety of E/E (Electrical and 

Electronic) components 
has become essential to 

protecting human life and 
preventing accidents caused 

by system failures.

https://www.adacore.com
https://www.adacore.com


adacore.com

What does ISO 26262 cover? 
The standard covers the entire lifecycle 
of automotive systems, from concept 
and design to production, operation, and 
decommissioning. Central to ISO 26262 are 
its Automotive Safety Integrity Levels (ASIL), 
which categorize risk into four levels—A 
through D—based on the severity, exposure, 
and controllability of potential hazards. These 
ASIL levels guide the safety measures required 
for different components, with higher levels 
demanding more stringent verification and 
validation processes.

There are four ASILs identified by ISO 26262: 
A, B, C, and D. 

The determination of ASIL is the result of 
hazard analysis and risk assessment. In the 
context of ISO 26262, a hazard is assessed 
based on the relative impact of hazardous 
effects related to a system, as adjusted for 
the likelihood of the hazard manifesting those 
effects. Each hazard is evaluated in terms 
of the severity of possible injuries within the 
context of how often a vehicle is exposed to 
the possibility of the hazard happening, as well 
as the relative likelihood that a typical driver 
can act to prevent the injury.

The ASIL ranges from ASIL D, representing 
the highest degree of automotive hazard 
and the highest degree of rigor applied in 
ensuring the resultant safety requirements, 
to QM, representing an application with no 
automotive hazards and, therefore, no safety 
requirements to manage under the ISO 26262 

safety processes. The intervening levels are a 
range of intermediate degrees of hazard and 
degrees of assurance required.

ASIL D, an abbreviation of Automotive 
Safety Integrity Level D, refers to the highest 
classification of initial hazard (injury risk) 
defined within ISO 26262 and to that 
standard’s most stringent safety measures to 
apply for avoiding an unreasonable residual 
risk. In particular, ASIL D represents a likely 
potential for severely life-threatening or 
fatal injury in the event of a malfunction and 
requires the highest level of assurance that the 
dependent safety goals are sufficient and have 
been achieved. An example of a dangerous 
hazard that warrants the ASIL D level is loss of 
braking on all wheels. Any product compliant 
with ASIL D requirements would also comply 
with any lower level. ASIL C is associated with 
moderate to high risk, ASIL B is for moderate 
risk, such as headlights and brake lights, ASIL A 
is associated with low risk, such as rear lights, 
and QM relates to non-safety components, 
such as GPS.

Achieving compliance with ISO 26262 is not 
merely a regulatory checkbox but a strategic 
investment in product quality, customer 
trust, and organisational reputation. By 
understanding the scope of the standard, 
rigorously applying verification techniques, 
incorporating formal methods, qualifying 
tools, and aligning safety goals with risk levels 
through ASILs, automotive developers can 
systematically reduce hazards and enhance 
the dependability of their systems. 

https://www.adacore.com


adacore.com

How can formal methods help with 
ISO 26262 certification?

To support the automotive sector’s evolving 
needs for high-assurance software, automotive 
developers can significantly enhance the 
reliability and security of their systems 
by considering formal verification in their 
processes. Formal methods are particularly 
valuable in adherence to ASIL levels D and C. 

Formal verification frameworks are instrumental 
in assessing the correctness of hardware 
and software design operations by applying 
formal mathematical proofs. Unlike traditional 
methods, which focus on testing, reviews, 
static analysis, and in-depth coding standards 
such as MISRA-C, formal verification seeks to 
provide mathematical assurances regarding 
the adherence of a system to specified safety 
and/or security requirements. Whereas testing 

depends on extrapolating from a limited sample 
of inputs and inferring that the software meets 
its required properties, formal methods can 
demonstrate, with mathematical rigor, that 
these properties hold for all possible inputs. 
Formal methods can help verify properties 
such as secure information flows, absence of 
run-time errors, and functional correctness 
concerning formally specified requirements. 
With advances in proof technology and 
hardware support, formal methods are a 
practical component of an organization’s 
software production infrastructure for high-
assurance systems.

NVIDIA introduces Formal Methods

The demand for ever more capable ADAS and 
autonomy in cars has led to a proliferation 
of ECUs (Electronic Control Units) and an 
associated increase in software complexity, 
communication, and wiring. NVIDIA addresses 
this challenge with DRIVE® AGX, which 
combines the functionality of multiple ECUs 
into a full-stack hardware and software 

platform supporting ADAS and autonomous 
driving. NVIDIA DriveOS is responsible for 
ensuring the isolation of integrated software 
components of differing criticality levels, 
enabling this reduction in the number of ECUs 
and simplification of communication and 
wiring. To reach the highest level of assurance 
under ISO 26262 for DriveOS as quickly and 
efficiently as possible, NVIDIA selected Ada 
and SPARK.

About Ada and SPARK

The Ada programming language, together 
with SPARK (deductive formal verification 
for the Ada language), is among the most 
reliable programming languages available for 
developing high-integrity applications. 

The SPARK language and SPARK analyses 
provided by SPARK Pro work together to 
automatically verify correctness of software 
properties at the source code level, such as 
component requirements and absence of 
weaknesses, before you even build and test 
your software. 

To reach the highest level of 
assurance under ISO 26262 
for DriveOS as quickly and 

efficiently as possible, NVIDIA 
selected Ada and SPARK.

https://www.adacore.com


adacore.com

SPARK Pro brings the power of deductive 
program verification through formal proof to 
your development team, allowing you to scale 
smoothly from memory ownership checking 
and dataflow analysis through absence 
of runtime errors to proofs of functional 
correctness. This is the only language, tool, or 
methodology that can compete at this scale. 

The result is software with an exceptionally 
low defect density, leading to significant cost 
savings post-deployment. 

SPARK Ada reference process for 
ISO-26262 development

In collaboration with AdaCore, NVIDIA has 
published an off-the-shelf reference process 
that enables the automotive community to 
replicate its success in using Ada and SPARK 
to develop software certified under ISO 26262.

NVIDIA selected these languages to develop 
some of the most critical components of its 
software stack. This required establishing a 
development process that takes advantage 
of formal methods and other safety 
characteristics of Ada and SPARK, thus fully 
leveraging their capabilities.

AdaCore and NVIDIA have decided to publish 
this reference process freely as an open-
source and evolving document, allowing the 
industry to adopt Ada and SPARK. And you can 
find the documentation via these links:

https://github.com/NVIDIA/spark-process

https://nvidia.github.io/spark-process/

Leveraging the Ada and SPARK 
beyond Safety - the NVIDIA 
Firmware Security Caset

In an increasingly hostile cybersecurity 
environment, NVIDIA examined all aspects of 
its software development methodology, asking 
themselves which parts needed to evolve. 
They began questioning the cost of using the 
traditional languages and toolsets they had in 
place for their critical embedded applications. 

NVIDIA’s software security team examined 
various methods and strategies that offered 
measurability. They soon recognized that 
the bases of many of these methods were 
mathematical formal methods and the use 
of formal provers. They also discovered that 
these tools had undergone a major evolution 
over the past decade or so. 

They asked themselves, “What alternative 
languages and tools are available to support 
the use of formal methods?” In trying to answer 
this, NVIDIA discovered SPARK.

James Xu is the senior manager of GPU 
software security at NVIDIA. 

“The main reason why we use SPARK is for the 
guarantees it provides,” said Xu. “One of the key 
values we wanted to get out of this language 
was the absence of runtime errors. It’s very 
attractive to know your code avoids most of 
the common pitfalls. You tend to have more 
confidence when coding in SPARK because the 
language itself guards against the common, 
easily made mistakes people make when 
writing in C”. “It’s very nice to know that once 
you’re done writing an app in SPARK—even 
without doing a lot of testing or line-by-line 
review—things like memory errors, off-by-one 
errors, type mismatches, overflows, underflows 
and stuff like that simply aren’t there,” Xu said. 
“It’s also very nice to see that when we list our 
tables of common errors, like those in MITRE’s 
CWE list, large swaths of them are just crossed 
out. They’re not possible to make using this 
language.”

You tend to have more 
confidence when coding in 

SPARK because the language 
itself guards against the 

common, easily made mistakes 
people make when writing in C.

James Xu, Senior Manager
GPU Software Security, NVIDIA 

https://www.adacore.com


NVIDIA has demonstrated groundbreaking leadership and innovation in the software security 
domain. They had a very challenging goal and took an ambitious path to accomplish something 
that had never been done before in the semiconductor industry. For several years now, they have 
successfully demonstrated time and time again that their choice to adopt SPARK was the right 
one, and they have paved the way for anyone interested in following NVIDIA’s lead.

Conclusion

SPARK offers a practical, scalable pathway to verifiable software assurance. By eliminating 
classes of vulnerabilities at the language level and providing mathematical proof of correctness, 
SPARK allows organisations to move beyond reactive testing and towards measurable trust in 
their systems.

NVIDIA’s adoption of SPARK and decision to openly share the associated ISO 26262 reference 
process marks a significant step forward for the industry. It demonstrates that formal methods 
are not only viable but invaluable in achieving the high levels of safety demanded by today’s 
automotive systems.

By investing in SPARK, organizations position themselves to meet regulatory expectations, reduce 
development risk, and deliver robust, future-ready software, not through guesswork or tradition, 
but through proof.

References

https://arstechnica.com/cars/2024/09/more-than-20-of-vehicle-recalls-are-software-

fixes-now/#:~:text=In%202022%2C%20almost%2022%20percent,fully%20charging%20to%20

100%20percent.

adacore.com

https://arstechnica.com/cars/2024/09/more-than-20-of-vehicle-recalls-are-software-fixes-now/#:~:text=In%202022%2C%20almost%2022%20percent,fully%20charging%20to%20100%20percent.
https://arstechnica.com/cars/2024/09/more-than-20-of-vehicle-recalls-are-software-fixes-now/#:~:text=In%202022%2C%20almost%2022%20percent,fully%20charging%20to%20100%20percent.
https://arstechnica.com/cars/2024/09/more-than-20-of-vehicle-recalls-are-software-fixes-now/#:~:text=In%202022%2C%20almost%2022%20percent,fully%20charging%20to%20100%20percent.
https://www.adacore.com


adacore.com

https://www.adacore.com
https://www.adacore.com
https://www.linkedin.com/company/adacore/
https://github.com/AdaCore
https://x.com/AdaCoreCompany
https://bsky.app/profile/adacore.bsky.social

