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Abstract

The SPARK tool analyzes Ada programs statically. It can be used to verify both that a program is free from runtime exceptions
and that it conforms to a specification expressed through contracts. To facilitate dynamic analysis, Ada contracts are regular
Ada expressions which can be evaluated at execution. As a result, the annotation language of the SPARK tool is restricted
to executable constructs. In this context, high-level concepts necessary for specification by contracts need to be supplied as
libraries. For example, the latest version of the Ada language introduces unbounded integers and rational numbers to the
standard library. In this article, we present the functional containers library, which provides collections suitable for use in
specification. We then explain how they can be used to specify and verify complex programs through concrete examples
that have been developed over many years. Finally, we describe how these libraries are supported in the SPARK tool using
reusable specification features instead of built-in support, i.e., a hard-coded mapping of library functionalities to axiomatized
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theories for the underlying provers.
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1 Introduction

With software taking on increasingly large roles in criti-
cal embedded systems, it has become critical to verify soft-
ware in an efficient way. This leads more and more indus-
trial software companies to deploy formal verification tech-
niques [2, 15]. The SPARK tool [4] performs static analysis of
Ada programs. It can be used to verify that a program is free
from runtime exceptions, including but not limited to divi-
sion by zero, buffer overflows, null pointer dereferences, etc.
High-level functional properties can also be verified by the
tool. These properties need to be expressed as contracts —
pre- and post-conditions, type invariants, etc.

The SPARK tool performs deductive analysis: It takes
as its input an Ada program, annotated with contracts, and
generates from it logical formulas, called verification con-
ditions. These verification conditions are then given to au-
tomated solvers. If all the conditions are verified, then the
Ada program conforms to its specification. Deductive anal-
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ysis works modularly on a per-subprogram basis,' using the
subprogram’s contract to summarize its behavior while ana-
lyzing callers. As a result, it is necessary for the user to man-
ually annotate her subprograms with contracts for the tool
to work. For both the analysis and the annotation process to
remain tractable, some features of Ada have to be restricted;
the SPARK toolset rejects Ada programs including these fea-
tures as being non-conformant. In particular, SPARK does
not support side-effects in expressions (but they can occur
in statements) nor aliasing (when modifying one object can
change the value of another object).

Since 2012, contracts are part of the Ada language. They
are mostly used for dynamic analysis and can be verified at
runtime. Therefore, they have the same semantics as regular
Ada expressions. In the SPARK tool, we keep the executable
semantics of contracts. It makes it easier for developers to
write the contracts, both because they do not have to learn
a new language, and because the contracts can be tested and
debugged like normal code. However, it has the side-effect of
restricting the annotation language to executable constructs.
To alleviate this limitation, high-level concepts necessary
to write certain specifications can be added as libraries. Un-
bounded integers and rational numbers have been introduced

U In Ada, subprogram is a generic term meaning a function or a
procedure, that is, a function which does not return a result but works
by side-effects.
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recently into the Ada runtime. They can be used to avoid over-
flows in contracts, or to reason about the rounding error in
floating point computations [8].

Another concept which is commonly used in specification
is a collection: set, sequence, map etc. Collections used for
specification are different from their counterparts used dur-
ing development. They are more of a mathematical concept,
and less concerned about efficiency. In Sect. 2, we present
the functional containers library, which was introduced for
this purpose in 2016. In Sect. 3, we explain how it can be
used to enhance the specification and verification of complex
programs through concrete examples that have been devel-
oped through the years. Finally, we describe how this library
is supported in the SPARK verification tool in Sect. 4.

2 The formal and functional containers

The standard library of Ada provides implementations of
commonly-used standard containers: vectors, doubly-linked
lists, as well as sets and maps, both ordered and hashed.
These containers come in various flavors: bounded to avoid
dynamic allocations on embedded systems, indefinite to hold
elements of variable sizes, etc. To allow for efficient access,
these containers implement a notion of iterators, named cur-
sors. Cursors are basically pointers giving direct access to
an element in the container. They provide an easy way to
iterate over all the elements of a container. While cursors
are desirable in terms of usability, they are unfortunately
not compatible with the restrictions imposed on input by the
SPARK tool. Indeed, each cursor involves an alias of the con-
tainer it belongs to, as modifying the container might cause
the cursor to become invalid or designate a different element,
and SPARK does not support aliases.

To alleviate this issue, SPARK-compatible versions of the
standard containers [11] have been implemented. They are
called formal containers and are designed to be as close to
the standard containers as possible. They provide cursors like
the Ada containers, but these cursors are nothing more than
indices in an array constituting the underlying memory of the
container. As a result, the formal container API is slightly
different from the standard one, as the container needs to
be passed along with the cursor to determine its validity or
access the corresponding element, as can be seen in Fig. 1.

Another important distinction between the standard Ada
containers and the formal ones is the use of contracts, as in-
troduced by the Pre and Post aspects. In Ada, they are primar-
ily meant for dynamic verification: they introduce boolean
expressions that should evaluate to true either before (for pre-
conditions) or after (for postconditions) a subprogram call.
However, the role of contracts in deductive verification is key,
as subprograms are analyzed modularly. The precondition is
then used to caracterize all possible calling contexts of the
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function Element

(Position Cursor) return Elem T;
—— Access an element in a standard map
function Element

(Container : Map;
Position Cursor) return Elem_T
with Pre = Has_Element (Container, Position),
Post = ...;

—-— Access an element in a formal map

Fig. 1 The Element function is used to access an element in a stan-
dard or a formal map. As the cursors no longer hold a reference to a
container in the formal container library, the Element function takes
the container as an additional parameter. It is annotated with a pre and
a postcondition that can be used to verify user code.

subprogram, while the postcondition summarizes the effect
of subprogram calls when analyzing their caller. As a con-
sequence, supplying contracts on libraries is necessary to be
able to verify code using them. Note that the formal contain-
ers are not themselves verified using SPARK, but they are
compatible with its restrictions and their primitives have been
annotated with contracts allowing user code that leverages
them to be analyzed. Though they have not been formally
verified, they have been tested like every other runtime unit
of Ada.

At the beginning, we attempted to use the formal con-
tainers in high-level specifications, but we quickly found
out that it was not tractable. Indeed, these containers are
onerous for verification, as they pull with them numerous
secondary considerations, like the order of iteration, or the
validity and position of cursors. A new library of contain-
ers, named functional containers, was introduced to alleviate
this issue. They are designed to be light-weight in terms of
specifications. They only offer a small number of functional
operations, with as few constraints as possible. They are un-
bounded, might contain any kind of elements (even with
variable sizes) and can be used easily (no need to provide a
hash or compare function for sets and maps in particular).

The functional containers library provides maps, se-
quences, and sets. Their API consists of functions for creating
new containers, as opposed to procedures for modifying ex-
isting ones. As an example, Fig. 2 shows a part of the API
of functional maps. The function Add can be used to create
a new map from all the mappings in an existing map and
an additional one. Functional maps are defined in terms of
three basic properties, a function Has_Key to check whether
a key has an association in the map, a function Get to retrieve
this association, and a function Length returning the number
of keys with an association in the map. Other primitives are
specified in terms of these properties, like the function Add.”

2 The operators and then and or else in Ada are alternative ver-
sions of the standard Boolean operators and and or using short-circuit
evaluation.
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function Length (M :
function Has_Key
(M : Map; K :
function Get
(M : Map; K : Key_T) return Elem T
with Pre = Has_Key (M, K);
function Add

Map) return Big_Natural;

Key_T) return Boolean;

(M : Map; K Key_T; E Elem_T) return Map
with
Pre = not Has_Key (M, K),
Post = Length (Add’Result) = Length (M) + 1
and then Has_Key (Add’Result, K)

and then Get
and then ...;

(Add’ Result, K) = E

Fig. 2 Part of the API of functional maps. The functions Length,
Has_Key, and Get are the only basic properties of a functional map.
All other primitives, like Add, are specified in terms of these properties.

(for some P in N + 1 2 * N= Is_Prime (P))

—— Chebyshev’s theorem

(for all E of A= E mod 2 = 0)
—— The array A only contains even numbers

Fig. 3 Quantified expressions in Ada

Even if they are mostly used for specifications, the func-
tional containers are executable. To remain reasonably ef-
ficient, their implementation involves several levels of shar-
ing. The memory is managed through reference counting. As
functional containers are unbounded, the function Length,
which computes their cardinality, returns a mathematical in-
teger using the big integers library of Ada. To make it easier
for a user to instantiate functional sets and maps, neither a
hash function nor a comparison operator is required. This ba-
sically forces the implementation to use a sequence instead
of a more appropriate structure, so searching for an element
in these containers might be inefficient.

When writing specifications, being able to quantify over
the elements of a container is key. Fortunately, this require-
ment was foreseen when Ada contracts were designed, so
quantified expressions are supported natively in the language.
However, because of the primarily executable semantics of
contracts, this quantification is restricted. It is possible to
quantify over the values of a range of integers, or over the
elements of an array, but not over all values of an arbitrary
type. Figure 3 demonstrates quantified expressions in Ada.
The for all .. syntaxes provide respec-
tively universal and existential quantification. The keyword
in is used to refer to values in a range, while the keyword of
is for elements of an array.

It is possible for users to provide their own primitives that
can be used to iterate and quantify over data structures. This
capability is used in particular in the standard container li-
brary of Ada to iterate or quantify either over all cursors valid
in a container using the keyword in or over its elements us-

and for some ..
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function "<"

(Left Set; Right
is

(for all E of Left = Contains

Set) return Boolean

(Right, E));

Fig. 4 The operator < implements set inclusion.

function Count
(S : Set;
Test : not null access
function (E Elem_T) return Boolean)
return Big_Natural
with Post = Count’Result < Length (S);

Fig. 5 Function counting the number of elements in a set on which the
input function Test returns True

ing the keyword of. The iteration primitives provided by the
user are then used by the compiler to expand the quantified
expression into a loop. As the Ada feature for user-defined
iterators relies on aliases, the SPARK tool defines a variant
called the Iterable annotation, which we present in more
details in Sect. 4. It makes it possible to quantify over the
elements of a functional set or the keys of a functional map,
as can be seen on Fig. 4.

The Ada standard containers allow for providing a user-
defined equivalence relation that is used to check inclu-
sion into sets and maps. The functional containers offer the
same facility. The Contains function on functional sets and
the Has_Key function on functional maps both work mod-
ulo equivalence. As the functional containers primitives are
specified in terms of these basic operations only, it is not
possible to track the exact value of elements inserted inside
functional sets, or of keys inserted inside functional map if
the supplied equivalence relation is not the equality.

Finally, the functional container library provides a set of
higher-order functionalities. As Ada is not a functional lan-
guage, they take function pointers as parameters. They pro-
vide container comprehension (construction, filtering, trans-
formation...) as well as common operations like summation
or counting. The signature of the Count function is given in
Fig. 5. It counts the number of elements in the set with a
given property. This function is only well-defined if function
Test given as parameter to the call returns the same value on
all elements of an equivalence class.

Both the formal and the functional containers libraries are
available online.’

3 Functional containers as models
Mathematical-like collections are often used in specifi-

cations. They appear in particular when describing data-
structures, as the common understanding of how they should

3 https://github.com/AdaCore/SPARKIib/tree/master/src.
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behave: a pointer-based singly-linked data-structure might
represent a sequence, a red-black-tree implement a set, etc.
They can also occur during the verification process to ex-
press why an algorithm is correct: we will speak about sets of
reachable elements or multisets, representing permutations
of an array in a sort. These collections are really conceptual
objects, which do not actually exist in the program. They are
generally called models. As they are lightweight and close
to mathematical collections, functional containers are well
suited to this usage. In this section, we present common uses
of collections as models, and how they can be applied using
functional containers.

3.1 Specifying data-structures

When the functional containers were designed, the first ob-
jective was to use functional containers to specify the formal
containers library. Indeed historically, the formal contain-
ers were axiomatized in WhyML, the input language of the
Why3 tool used as part of the SPARK backend [12]. This re-
quired special handling so the formal containers were recog-
nized specifically and linked to the correct WhyML module.
This mechanism had the advantage of making it possible to
use the rich specification features offered by WhyML (ab-
stract logic functions, unrestricted quantifiers, axioms, etc.)
most of which cannot be mirrored in SPARK as they are not
executable. However, the maintenance cost was prohibitive,
as the mechanism had to be kept up-to-date through succes-
sive updates of both SPARK and WhyML.

Replacing this special handling by regular SPARK con-
tracts without degrading the provability was a challenge. We
decided to go for model functions, returning functional con-
tainers. A model function is a ghost function, meaning it can
only be used in specifications. It takes as a parameter a con-
crete object and returns its model: another object, generally
simpler to reason with. The operations on the concrete object
are then described in terms of their effects on the abstract
model. In Fig. 6, the model of a FIFO queue implemented as
a ring buffer is a sequence giving the elements of the buffer
in the order in which they will be retrieved. Using this model,
its primitive operations can be specified in a straightforward
way.

As the formal containers are relatively complex, we de-
cided to use several model functions for their specification.
Each formal container provides a main model function called
Model, which returns a functional container giving a high-
level view of the data-structure. We use sequences for vectors
and doubly-linked lists, and functional sets and maps for or-
dered and hashed sets and maps respectively. Unfortunately,
this high-level model is not enough to verify subprograms
using cursors to iterate over a formal container. Indeed, it
does not represent the cursors, nor the order in which the
elements occur during an iteration over a set or a map. To
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function Model
(R : Ring_Buffer) return Sequence
with Ghost;

procedure Enqueue
(R : in out Ring_Buffer;
E : Integer)

with
Pre = not Is_Full (R),
Post = Model (R) = Add (Model (R)’0ld, E);

—— The new model of R is its old model with
—-— E added at the end.

procedure Dequeue
(R : in out Ring_Buffer;
E : out Integer)

with
Pre = not Is_Empty (R),
Post = Model (R) = Remove (Model (R)’01ld, 0)
and then E = Get (Model (R)’01d, 0);

—-— The new model of R is its old model
-— without the first element. E is set to
—-— the first element of the old model of R.

Fig. 6 The model of a ring buffer is a functional sequence of elements
in the order in which they were added to the buffer. The Dequeue and
Enqueue functions are defined in terms of their effect on the model of
their parameter.

alleviate this issue, one or two additional model functions are
defined for each container. The Positions function returns
a functional map which associates the cursors that are valid
in a container to an integer standing for their position in the
container. For sets and maps, the Elements or Keys function
returns a sequence of elements or keys to model their order
in the container. Note that this order is defined both for the
hashed and ordered containers, as both define an order of
iteration on their elements.

This layered approach allows users of the formal contain-
ers library to choose the level of granularity they need. As an
example, the procedure Set_All_To_Zero sets the elements
associated with each key in a map to 0. Its postcondition is
given in Fig. 7. It only uses the high-level model of the map,
as it does not care about the cursors or order of iteration in the
container. However, these considerations are necessary when
verifying its implementation. In particular, many algorithms
involving containers use loops to iterate over them. Verify-
ing a loop in deductive verification requires the use of loop
invariants. They are propositions which should summarize
precisely the effect of the loop up to the current iteration.
Verification tools use them as cut points to flatten the control
flow graph when generating verification conditions. The loop
invariant in Fig. 8 is one of the annotations used to verify
the loop setting each element to O in its body. It uses the
Positions function to get the position of the current cursor,
and then the Keys function to state that the elements asso-
ciated with all the keys occurring before this position have
already been replaced.
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procedure Set_All_To_Zero (M :
with
Post =
(for all K of Model (M)’0ld =
Has_Key (Model (M), K))
and then
(for all K of M =
Has_Key (Model (M)’01ld, K)
and then Get (Model (M), K) = 0);

in out Map)

Fig. 7 The procedure Set_All_To_Zero has a postcondition which
states that the keys of M are preserved by the call and that every key in
the map is associated to O after the call. This can be expressed using
only the Model function. The order of iteration and the validity of
cursors is not relevant here.

pragma Loop_Invariant
(for all P in
1 .. Get (Positions (M), Cu) -1
= Get (Model (M), Get (Keys (M), P)) = 0);

Fig. 8 A loop invariant used to verify the procedure
Set_All_To_Zero. It uses the Positions map to query the
position of the current cursor Cu and the Keys sequence to retrieve the
keys situated before this position in the map.

3.2 Verifying data-structures

Even though it was not done for the formal containers library,
it is possible to use SPARK to verify these annotations. For
the verification to be possible, it is necessary to describe
precisely the link between the underlying data-structure and
its model in the postcondition of the model function. In Fig. 9,
the function Valid_Model links the value of a ring buffer
implemented as an array with a first index and length field
to the value of the sequence that models it. It can be used in
the postcondition of Model, so the contracts in Fig. 6 can be
verified.

This method was used successfully in case-studies of var-
ious sizes through the years. The first use of the functional
containers to verify a SPARK program was developed to
showcase the capability in 2016 [9]. It features a simple
allocator inside a memory array modeled using a set of al-
located cells and a sequence for the free list. A substantially
more complex example is the proof of the insertion inside
a red-black tree encoded inside a memory array [10]. The
complexity of the specification is handled by building the
concrete structure incrementally, starting from binary trees,
to search trees, to finally implement and verify the insertion in
a red-black tree. More recent examples use functional con-
tainers to model pointer-based data-structures, which have
been supported by the SPARK tool only for the last couple
of years [7]. To support this new use-case, the functional
containers library had to be updated. Indeed, sequences are
bounded by the machine integer type used to index them, and
functional sets and maps used to have a theoretical bound on
their cardinality due to the machine integer type used for their
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type Ring_Buffer is record

Content Content_Array;
First Positive range 0 Max - 1 := 0;
Length : Natural range O Max := 0;

end record;

function Valid_Model
(R : Ring_Buffer;
M : Sequence) return Boolean

is
(Length (M) = R.Length
and then
(for all I in O R.Length - 1 =
R.Content ((R.First + I) mod Max) =

Get (M, I)))
with Ghost;

function Model

(R : Ring_Buffer) return Sequence
with

Ghost,

Post = Valid_Model (R, Model’Result);

Fig.9 The function Valid_Model links the element of the ring buffer
to their corresponding value in the model sequence. It is used as a
postcondition of the Model function. It makes it possible to verify the
implementation of Enqueue and Dequeue procedures presented in
Fig. 6.

Length function. The restriction on sets and maps has been
lifted by replacing the return type of their Length functions
by unbounded integers, and a new type of sequence indexed
by unbounded integers was introduced in the library.

On complex data-structures, it is possible to use several
levels of models to perform a proof by refinement. Basically,
a lower-level model, close to the concrete data-structure, is
used to annotate and verify the basic operations. Then, one
or several higher-level models might be introduced to further
abstract away the operations. As an example, we are currently
working on using SPARK to verify the implementation of the
bounded formal hashed sets. As schematized in Fig. 10, these
sets are implemented in an array. A hash function is used to
choose a bucket for each element of the set. Each bucket is
the head of a list implemented through a Next field in the
memory array. For the verification to remain tractable, we
have introduced two levels of models. The lower-level model
keeps a memory array, but only to store the values, as repre-
sented in Fig. 11. The buckets contain functional sequences
that store the corresponding allocated indices. At this level,
an invariant enforces that the list structure encoded in the
memory array is well-formed (there are no cycles), that the
reachable indices in each bucket and the free list are disjoint,
and that they cover the whole memory (there are no leaks).
The notion of buckets disappears completely in the higher
level model, see Fig. 12. It simply represents the set as the
memory for values and a big sequence, containing the al-
located indices in the order in which they will be traversed
when iterating over the set. Here, we verify that the sequence
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+ value
next index

Free list

Fig. 10 Concrete implementation of a formal hashed set. The content
of the set is stored in a bounded memory array. Each cell of this array
contains both a value and a Next field, used to represent linked lists in
the memory. The array of buckets holds the heads of the lists associated
to each hashed value. The cells which are not allocated yet are linked
together in the same way, and their head is stored separately.

v T8 2 =] T T T T T T

Buckets Values only

Sequences of indexes

Fig. 11 Low-level model of a formal hashed set. The values contained
in the set are still stored in a bounded array. The linked structure however
has been removed from the memory. Instead, each bucket now uses a
functional sequence to store the indices of the corresponding values in
the order of iteration. The free list is also represented as a sequence.

models the correct order of iteration over the set, and that
elements stored in the set are unique up to an equivalence
relation. The final objective is to be able to verify the speci-
fication written in terms of the three model functions Model,
Elements, and Positions presented in Sect. 2.

3.3 Going further

Modeling the content of other data-structures is by far the
most common use-case for functional containers in our expe-
rience. However, more exotic use-cases also exist. In partic-
ular, the container might model a state which is not actually
present in the program, but represents a concept used in the
specification only. It makes it possible to address properties
which are not generally in the domain of SPARK. In this
section, we focus on two such use cases.

The SPARK tool enforces an ownership policy to ensure
non-aliasing when dealing with pointers. As a result, the
built-in support for pointers does not allow verifying pro-
grams that rely on aliasing. In particular, data-structures
involving sharing or cycles—doubly-linked lists, directed
acyclic graphs, etc.—cannot be handled by the SPARK tool.
To work around this restriction, it is possible to hide the
pointers and model them as indices in a memory map. The
implementation still uses pointers though, so the map does
not represent any actual structure in the code. It makes it
possible to reason about pointers with aliasing by annotating
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explicitly which pointers can be aliases of each other. Using
a single memory object standing for all allocated data makes
both annotation and verification more difficult however, so
the built-in support of pointers stays more efficient when it
applies.

Figure 13 shows the contracts provided for the procedure
Allocate. It allocates a memory region, initialized with the
provided value, and returns a pointer to this memory region.
Its contract expresses that it modifies a global ghost object
called Memory. This object is the functional map standing for
the model of the actual program heap. In the postcondition of
Allocate, it is necessary to describe its effect on the whole
abstract memory map. We use two universally quantified
formulas to state that P is the only newly allocated cell, and
that the values designated by other pointers are preserved.
For comparison, the procedure Allocate in Fig. 14 uses the
built-in support for pointers in SPARK. It is not considered to
read or modify any global state as allocated cells are treated
as parts of the pointer that owns them, so its contract is far
simpler.

As another example, functional sequences can be used to
model a restricted form of temporal logic. Here, a history
is represented as a ghost sequence of events, where events
would be, for example, a call to a particular subprogram or
the reception of a message. Each time an event occurs, it is
added at the end of the sequence. Using the ghost sequence,
it is then possible to express properties over the order in
which the events occurred. The SPARK tool can be used to
verify that these properties are maintained through the pro-
gram. The snippet in Fig. 15 is extracted from the code of
OpenUxAS, a framework developed by Air Force Research
Labs for mission-level autonomy for teams of cooperating
unmanned vehicles [1]. This framework is implemented as
several services communicating through message passing.
In this example, the history records the emission and re-
ception of messages. The function No_Route_Request_Lost
uses the history to express that all received messages of kind
Route_Request have been handled: they are either in the set
of pending requests or a response has been sent. As can be
seen in the contract of Handle_Route_Request, this prop-
erty is stated both in preconditions and in postconditions of
subprograms handling messages in the service. It allows the
SPARK tool to verify that it is an invariant maintained by the
service.

4 Tool support — a hybrid solution

Libraries that introduce high-level concepts for use in spec-
ifications usually define one or more private types for this
concept along with functions providing the necessary func-
tionalities. Their actual implementation is in general hidden
from the proof tool, both to keep the concepts as simple as
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Fig. 12 High-level model of a formal hashed set. The memory array of values remains the same as in the low-level model. The buckets and the
free list are not represented anymore. Instead, we use a single functional sequence containing all the allocated indices in the order of iteration.

type Pointer is private;
procedure Allocate

(O : Obiject; P
with

Global = (In_Out = Memory),

-— P is a valid pointer in Memory

out Pointer)

—-— designating the value O.
Post = Has_Key (Memory, Address (P))
and then Get (Memory, Address (P)) = O

—-— Every pointer previously valid in Memory
—-— remains valid and keeps designating the
-— same value.
and then (for all K of Memory’0Old =

Has_Key (Memory, K)

and then Get (Memory, K) =

Get (Memory’Old, K))

—-— P is the only address allocated by the
-— call.
and then (for all K of Memory =

Has_Key (Memory’0Old, K)

or else K = Address (P));

Fig. 13 The function Allocate allocates a new memory region for
its input object 0. After the call, its parameter P is a pointer to this
newly allocated region. The fact that P is a pointer is hidden from the
SPARK tool using privacy. The effect on the program heap is modeled
through a ghost Memory map.

type Builtin_Pointer is access Object;
procedure Allocate
(O : Object;
P : out Builtin_Pointer)
with
—-— P is not null and designates the value O
Post = P # null and then P.all = O;

Fig. 14 The function Allocate allocates a new memory region for
its input object 0. After the call, its parameter P is a pointer to this newly
allocated region. As built-in pointers are handled through ownership
by the SPARK tool, the part of the program heap designated by P is
treated as a part of P for the verification. Therefore, there is no need to
model the memory in the contracts of Allocate.

possible and because they use features that are out of the
scope of SPARK (sharing, finalization...). Some of these li-
braries, like the big numbers library of Ada, are specifically
recognized by the tool. It allows mapping them to built-in
concepts in the underlying logic. As an example, the big
integers library is recognized and mapped to mathemati-
cal integers and arithmetic operations over them. Libraries
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function Route_Response_Sent
(Id : Int64) return Boolean
is
(for some E of History =
E.Kind = Send_Route_Response
and then E.Id = Id);

function No_Route_Request_Lost
(Pending_Requests Set) return Boolean
is
(for all E of History =
(if E.Kind = Receive_Route_Request then
Contains (Pending_Requests, E.Id)
or else Route_Response_Sent (E.Id)));

procedure Handle_Route_Request
(Data Configuration_Data;
Mailbox in out Mailbox_Type;
State in out State_Type;
Request Route_Request)
with
Pre = ...
—-— History invariants
and then No_Route_Request_Lost
(State.Pending_Routes)
and then ...,
Post = ...
—— The request has been added to the
-— history.
and then History’0Old < History
and then
Get (History, Last (History)) .Kind
= Receive_Route_Request
and then
Get (History, Last
Request .Request_ID
—-— History invariants
and then No_Route_Request_Lost
(State.Pending_Routes)
and then ...;

(History)) .Id =

Fig. 15 Extract of the OpenUxAS code base. The function
No_Route_Request_Lost uses the History sequence to express
a safety invariant of the service: Every Route_Request received
by the service is either pending or a response has been sent. The
procedure Handle_Route_Request performs the treatment when a
Route_Request is received. It stores the event in the history. Its con-
tract states that it maintains the No_Route_Request_Lost invariant.

which are not recognized specifically by the tool are handled
like user code: private types are black boxes and their func-
tions are uninterpreted. The only information available to
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the analysis tool comes from the Ada contracts of the library.
Hardcoding a library in the tool results in better provability
when there is a simple mapping between its functionalities
and a built-in concept in the underlying logic, so SPARK
users can benefit from it. However, it requires more develop-
ment work, as well as maintenance, when there is a change
either in the library or in the theory it is mapped to in the
solvers. Choosing to stick to the default handling based on
Ada contracts for SPARK proof for non-hardcoded libraries
also has advantages. The libraries are easier to extend and the
contracts, giving the precise semantics of each functionality,
are available in the source code as additional documentation
to the user.

The first version of the containers library used to benefit
from a specialized handling, but it was dropped in the more
recent versions as it was not effective. Mostly, this choice
comes from the fact that there is no good fit in the under-
lying logic used by the background solvers of SPARK for
these concepts. It is liable to change as these solvers evolve.
In particular, investigating the theories offered for sequences
and sets in the most recent versions of the underlying provers
would be of interest [3, 17]. Instead, the handling of the con-
tainers library relies on a hybrid solution. The library is not
hardcoded, so the container types and their primitives are
treated as abstract types with uninterpreted functions and the
only available information comes from the Ada contracts in
the functional container API. However, it makes use of sev-
eral advanced annotation features that have been introduced
in the tool along the years especially for this purpose. This
schema has the advantage of being light-weight, as it mostly
relies on the default handling, and of scaling well as new
containers are added. In addition, the annotation features in-
troduced for the containers can be reused in user code, even
if some care is sometimes needed, as they can introduce
additional assumptions which are not discharged by the ver-
ification tool. In the rest of this section, we go over some of
these features to explain and motivate them.

4.1 lteration and quantification

In Ada, for loops can be used to iterate over the valid cur-
sors or the elements of a standard container. Unfortunately,
this feature is not compatible with the SPARK tool as it re-
lies on aliasing between cursors and containers. A similar
functionality has been introduced for formal and functional
containers. As explained in Sect. 2, cursors for SPARK con-
tainers are implemented as indices in the array constituting
the underlying memory of the container to avoid aliasing. To
enable iteration over SPARK containers, iteration primitives
can be associated to a container type thanks to the Iterable
annotation. In its most basic form, it provides three functions
First, Next, and Has_Element, which allow iterating over
the container using a cursor type. A for loop over the valid
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type Container is private with

Iterable = (First = First,
Next = Next,
Has_FElement = Has_Element,
Element = Element) ;
type Cursor is ...;

function First (C Container) return Cursor;

function Next

(C : Container; P Cursor) return Cursor;
function Has_Element

(C : Container; P Cursor) return Boolean;
function Element

(C : Container; P Cursor) return Elem_ T;

-— A for loop over valid cursors in a
—-— container.
for P in C loop
Process (C, P);
end loop;

-— A for loop over elements of a container
for E of C loop

Process_E (E);
end loop;

—-— The expansion of the previous loop
declare
P : Cursor := First (C);
begin
while Has_Element (C, P) loop
declare
E : constant Elem_T := Element (C, P);
begin
Process_E (E);
end;
P := Next
end loop;
end;

(C, P);

Fig. 16 The Iterable annotation supplies iteration primitives for a
container type. They are used to expand for loops over valid cursors
or elements of a container into while loops.

cursors in a container is then syntactic sugar for a while loop
using these primitives. If an additional Element function is
supplied, it is also possible to iterate directly over the ele-
ments of the container. Different keywords are used to tell
the difference between the two forms, in for the cursors, like
for the values of an integer range, and of for the elements.
Figure 16 demonstrates this annotation.

It is also possible to quantify over valid cursors and ele-
ments of a container whose type is annotated with Iterable.
Just like for loops, quantified expressions can be expanded
into while loops to be evaluated at runtime. For formal analy-
sis, however, an expansion into a loop is inadequate, as loops
are difficult to handle in deductive verification. As first-order
logic is supported by the background solvers, it is better to
keep the quantifiers. To be compliant with the executional
semantics, we would need to quantify over cursors which are
reachable from First through Next in the container. How-
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type Interval is record
First, Last Big_Int;
end record
with Iterable =
(First = First,
Next = Next,
Has_Element = In_Rng);

function First (I
is (I.First);

Interval) return Big_Int

function Next (I Interval; X Big_Int)
return Big_Int is (X + 1);
function In_Rng (I Interval; X Big_Int)

return Boolean
is (I.First < X and X < I.Last);

function In_Rng_2 (I
return Boolean
is (X < I.Last);

Interval; X Big_Int)

Fig. 17 Use of the Iterable annotation to supply iteration for a
range of mathematical integers. Using In_Rng_2 instead of In_Rng
would give the same executable semantics, but would invalidate the
approximation made by SPARK to handle quantification over intervals.

ever, as automated solvers are not very good with reacha-
bility, the SPARK tool approximates this property using the
Has_Element function: a quantified expression over the valid
cursors in a container C is expanded into a quantification over
all cursors P for which Has_Element (C, P) returns True.
More precisely, the universally quantified expression (for
all P in C => Prop (C, P)) is transformed into the first
order formula (for all P : Cursor => (if Has_Element
(C, P) then Prop (C, P))). Note that the second expres-
sion is not valid Ada, as quantification is only allowed over
integer ranges or content of arrays. The containers library has
been designed so that this approximation is valid. Namely,
every cursor P for which Has_Element (C, P) returns True
is reachable in the container C using First and Next. As
the SPARK tool does not attempt to verify this property in
general, users should make sure that the approximation is
correct if they reuse the Iterable annotation on their own
data-structures. As an example, consider a range of math-
ematical integers encoded as a pair. Iteration over values
of this range can be provided using the Iterable aspect as
shown in Fig. 17. The approximation performed by proof is
correct here, as In_Rng returns True if and only if the integer
is in the range. However, using the simpler In_Rng_2 func-
tion would be incorrect, as In_Rng_2 returns true on integers
that cannot be accessed using First and Next.

As quantifiers tend to be complex to handle in automated
verification, it is important to keep them as simple as pos-
sible. As an example, when quantifying over the elements
of a functional set, refering to cursors valid in the set for
whichever definition of cursors is suitable for iterating over
the underlying data-structure is not appropriate. It is more
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efficient to consider all elements on which the Contains
function returns True. The Iterable_For_Proof annotation
can be used to tune further the expansion of quantification
over elements of a container. It comes in two variants. The
first one allows specifying a function which can be used to
decide directly whether the element is in the container. It
is used in particular with the Contains function of func-
tional sets and the Has_Key function of functional maps. For
example, a quantified expression over the elements of a func-
tional set (for all E of S => Prop (E)) is transformed
into the first-order formula (for all E : Elem T => (if
Contains (C, E) then Prop (E))). The other provides a
model function which computes another (simpler) container
with the same type of elements. The quantification is done
over the elements of the model instead. This is used in partic-
ular for formal containers, so that the quantification is done
on the functional container working as its model. Here again,
the expansion might not be correct if the refined quantifica-
tion does not traverse the same elements as the basic one.

As explained in Sect. 2, the functional sets and maps are
parametrized by a user-provided equivalence relation on el-
ements or keys. This relation is used when defining which
elements or keys are in the container. This makes design-
ing an appropriate way to evaluate quantified expressions
over functional sets and maps at runtime complex and ill-
advised. The iteration would have to traverse all elements of
the equivalence classes, which might theoretically not even
be finite, for example if we store big integers inside a set.
For this reason, the iteration primitives over functional sets
and maps have been restricted so that trying to execute them
would result into a build failure. They can only be used inside
disabled ghost code.*

To allow iterating over the elements of these contain-
ers, an alternative definition of the Iterable annotation is
provided. It relies on a function Choose that returns an un-
specified witness of one of the equivalence classes contained
in the container. Note that Choose is underspecified but not
nondeterministic. It will always return the same witness, it is
just unspecified for formal verification which one it will be.
A loop using this alternative iteration schema to traverse a
functional set is given in Fig. 18. The cursor here is a subset
containing all the elements which have not been traversed
yet. At each iteration, the element to process is the one re-
turned by Choose. Its equivalence class is then removed from
the set used as a cursor before the next iteration.

Because functional sets and maps are implemented as se-
quences with no repetitions,’ this iteration schema is in fact

4 Ghost code can be either executed, for runtime monitoring for ex-
ample, or erased by the compiler. Contracts are a special case of ghost
code.

3 This is because neither a hash function nor a comparison operator
is required to instantiate functional sets as explained in Sect. 2.
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-— A loop iterating over a functional set
for E of Iterate (S) loop

Process (E);
end loop;

—— The expansion for the previous loop
declare
P : Set
begin
while not Is_Empty (P) loop
declare
E : constant Elem_T := Choose (P);
begin
Process (E);
end;
P := Remove (P, Choose (P));
end loop;
end;

:= Get_Set (Iterate (9));

Fig. 18 A forloop over the elements of a functional set. The Iterate
function returns an object of the Iterable_Set type which is basi-
cally a wrapper over sets used to redefine the iteration primitives. In
the expanded loop, cursors are sets. At each iteration, the element to
process is returned by the Choose function. Its equivalence class is
then removed from the set. The loop stops when the set is empty.

efficient. Indeed, the Choose function returns the last ele-
ment of the sequence so that removing this element from the
sequence will not cause any copy. Instead, the underlying
sequence will be shared and the index designating the last
element of the particular sequence will be decreased. Using
subsets or submaps as cursors is also convenient for users
when verifying the loop, as it makes it easy to express which
elements have already been traversed. Figure 19 gives an
example of a loop creating a new map from an existing one
by applying a function F to each of its elements. It has been
annotated with a loop invariant which sumarizes what was
done in the loop so it can be verified by SPARK. Using a
submap as a cursor makes it easy to express which associ-
ations have been added for the keys that have already been
traversed, even though the iteration order over functional
maps is unspecified.

4.2 Logical equality

Another advanced annotation feature used inside the contain-
ers library has to do with equality. In contracts, it is rather
common to use the equality symbol to express that some
parts of an object are preserved by a function. It is the case
in particular in the container library, as most functionalities
on containers preserve the vast majority of their elements. It
is the case, for example, of the Add function on functional
sequences, which is shown in Fig. 20. In its postcondition,
the equality symbol is used both to say that the last element
is the one that was inserted and to express that other elements
come from the input sequence.

As contracts use the normal semantics of Ada, occur-
rences of the equality symbol in the specification are inter-
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for P in Iterate (M) loop
—-— Keys of P have not been traversed yet
pragma Loop_Invariant
(for all K of P = not Has_Key (R, K));
-— For each traversed key of M, a mapping
—— has been added to R.
pragma Loop_Invariant
(for all K of M = Has_Key (P, K) or
(Has_Key (R, K)
and Get (R, K) = F (Get (M, K))));
-— Add a mapping for Choose (P) in R
declare

K : constant Key_T := Choose (P);
begin
R := Add (R, K, F (Get (P, K)));
end;
end loop;

Fig. 19 A loop creating a new map from an existing one by applying
a function F to each of its elements. It has been annotated with loop
invariants which summarize what has been done since the beginning
of the loop. Using a submap as a cursor makes it easy to express even
though the iteration order over functional maps is unspecified. Note
that, if it was not for the loop invariant, a loop over the elements of the
map M could have been used instead of a loop of its valid cursors.

function Add
(S : Sequence; E
with
Post = Last (Add’Result) = Last (S) + 1
and Get (Add’Result, Last (S) + 1) = E
and (for all I in 1 Last (S) =
Get (Add’Result, I) = Get (S,

Elem_T) return Sequence

I));

Fig. 20 Contract of the Add function, which adds an element at the
end of an existing sequence. The last element of the sequence is the
new element and all the other elements are preserved.

preted as standard Ada equality. The language defines equal-
ity operators for most types. Their semantics is arguably
what a programmer would expect in most contexts. How-
ever, when two objects are Ada-equal, it does not mean that
they are indistinguishable in general. For example, floating-
point equality returns True on +0 and -0, and array equality
only compares elements, even though arrays in Ada can start
at different indices. In fact, Ada equality is not even necessar-
ily an equivalence relation, as users can redefine the equality
symbol on types as they see fit. This redefined equality can
even be used implicitly in the predefined equality of com-
posite types.

This interpretation of the equality symbol is less than ideal
to express the preservation of elements in the containers li-
brary for the following reasons. First, it might not be strong
enough to verify user programs calling the container primi-
tives. Indeed, it does not permit to deduce that all functions
applied to preserved objects return the same result before and
after the call, as this is not entailed by Ada equality in general.
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function Logic_Eqg
(X, Y Elem_T) return Boolean
with Annotate = (GNATprove, Logical_Equal);

function Copy (E Elem_T) return Elem_T is
(E);
function Add
(S : Sequence; E Elem_T) return Sequence
with
Post = Last (Add’Result) = Last (S) + 1

and Logic_Eqg

(Get (Add’Result, Last (S) + 1),
Copy (E))
and (for all T in 1 Last (S) =
Logic_Egq (Get (Add’Result, I),
Get (S, I)));

Fig. 21 Contract of the Add function using logical equality to state
that elements are preserved or copied. Note the use of a Copy function,
which simply returns its parameter. It is necessary to express that the
element added is a copy of the parameter, which might be of a different
dynamic type after the copy, in the case of tagged types (equivalent of
“classes” in Ada).

The second reason concerns the efficiency of the verification
process. Ada equality is not, and cannot be in general, sup-
ported in a built-in way by the underlying solvers. Therefore,
when the Ada contract contains a simple equality, what the
provers see is a big predicate with quantifiers, arithmetic
symbols, and possibly user-defined function calls. So even
if Ada equality happens to be enough to deduce that some
properties are preserved by a container primitive, the tool
might not effectively be able to deduce it given the level of
complexity of the generated formula.

There is a built-in equality symbol which is supported in
the underlying logic of SPARK. It is called logical equality.
Two values are logically equal if they are exactly the same,
namely, there is no way to tell the difference between them.
Based on this definition, the solvers can efficiently deduce
that all function calls on logically equal parameters return
the same result. Using this equality instead of the Ada one
for preserved values in the contracts of the container library
is therefore highly desirable.

The Logical_Equal annotation can be supplied on a func-
tion with an equality profile to tell the SPARK tool that it
should be recognized as the logical equality symbol in the
underlying logic. It is effectively as if such functions had
an implicit postcondition stating that they return True if and
only if their parameters are logically equal. Figure 21 shows
how such a function can be defined and used in the post-
condition of the Add function on sequences. Note that such
a function cannot always be implemented in an executable
way. In particular, it can occur that the model of an Ada
concept in the underlying logic introduces elements which
have no counterparts in Ada. As for quantification over func-
tional sets, uses of the logical equality functions introduced
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—-— Contains returns the same result on all
-— equivalent elements.
procedure Lemma_Contains_Equivalent

(S : Set; E Elem_T)
with
Ghost,
Pre = not Contains (S, E),
Post =

(for all F of S = not Equivalent (E, F));

Fig.22 Lemmaused to state that the Contains function on functional
sets works modulo equivalence

in the functional containers library are restricted to disabled
ghost code, and an incorrect usage results in a build failure.
Because of this dependency on the internal encoding of the
SPARK tool, the Logical_Equal annotation can hardly be
used for anything but preserved and copied values, even in
user code. However, unlike iteration, this feature does not
introduce any additional assumptions, as the compatibility
of the supplied body, if any, is checked by the tool.

4.3 Automatically instantiated lemmas

The last annotation feature discussed in this section is the
ability to turn ghost procedures into lemmas in the underly-
ing logic. In deductive verification, using a ghost function
with no effects as a lemma is common practice [14, 18].
Such functions are called lemma functions or, in the case
of SPARK, lemma procedures. The idea is to use modular
analysis as a way to extract a part of the reasoning and there-
fore simplify the verification. To do so, the lemma procedure
is annotated with a precondition, containing the premises of
the lemma and a postcondition expressing its result. As an
example, Fig. 22 shows the lemma which is used to state that
the Contains function on functional sets returns the same
value on all elements of an equivalence class. It reads: if a
given element is not contained in a functional set, then the
set does not contain any equivalent element. Since deductive
analysis is modular on a per subprogram basis, when veri-
fying the procedure itself, the tool tries to ascertain that its
postcondition, the result of the lemma, follows from the pre-
condition, its premises, in every context. Said otherwise, it
verifies the lemma. Then, each time the lemma procedure is
called, it verifies its precondition, the premises, and assumes
the result without trying to reprove it.

In this design, lemma procedures suffer from a big draw-
back, they need to be called explicitly each time the prop-
erty is needed. This can be cumbersome, as it requires a
fine grained understanding of how the proof works for the
user to know when to actually call the lemma. To work-
around this issue, lemma procedures can be annotated with
the Automatic_Instantiation annotation. It instructs the
tool to turn a particular lemma procedure into an axiom
so that the property is readily available to the background
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—— Test shall return the same value on
-— equivalent elements.
function Egq_Compatible
(S : Set;
Test not null access
function (E Elem_T)
return Boolean
is
(for all E1 of S =
(for all E2 of S =
(if Equivalent_Elements (El1, E2)
then Test (E1) = Test
with Ghost;

return Boolean)

—-— Count returns the same value on sets
—-— containing the same equivalence classes.
procedure Lemma_Count_Eqg
(S1, S2 Set;
Test not null access
function (E Elem_T) return Boolean)
with Ghost,
Annotate =
(GNATprove, Automatic_Instantiation),
Pre = Eqg_Compatible (S1, Test)
and S1 = 52,

Post = Count (S1, Test) = Count (S2, Test);

Fig. 23 Lemma stating that the Count function returns the same result
on equivalent sets. It uses the Ada equality on functional sets, which is
defined to return True iff both sets contain the same equivalence classes.

solvers. As provers can be overwhelmed by too many ax-
ioms, it is important to avoid including unnecessary axioms
in verification conditions. To this aim, each lemma proce-
dure annotated with Automatic_Instantiation should be
declared directly after a function with which it is associated.
The generated axiom is only made available in formulas in
which the associated function is called. As an example, the
lemma procedure in Fig. 22 is associated to the function
Contains. Therefore, it is only available in verification con-
ditions in which Contains is called. This is similar to how
postconditions of functions are handled. The advantage of
using a lemma procedure instead of a direct definition in
the postcondition is that it is implicitly quantified over all
possible values of the procedure’s parameters. It is interest-
ing when the lemma procedure takes more parameters than
its associated function. As an example, Fig. 23 shows the
lemma procedure used to state that the Count higher-order
function, which counts elements with a given property in a
functional set, returns the same result on equivalent sets. As
it mentions two different sets, it could not easily be turned
into a postcondition on the result of the function Count.

As lemma procedures are verified using the SPARK tool,
the Automatic_Instantiation annotation cannot compro-
mise the soundness of the verification. However, adding too
many such axioms can lead to a loss of efficiency as they
increase the size of the verification conditions. Therefore,
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using this annotation is a trade-off and should be reserved to
lemmas used often enough to warrant the additional burden.

5 Related work

Collections are generally considered to be useful when writ-
ing program specifications. As a result, most verification
tools support some kind of specification-oriented collections
in their input language. For example, the standard library of
the Why3 language used as a backend of SPARK provides
polymorphic lists implemented as abstract data types, as well
as polymorphic sets and multisets, specified through an ax-
iomatization. Dafny, a verification language developed at
Microsoft Research and currently used to verify protocols
at Amazon Web Services, also provides collections such as
sequences and sets with comprehensions [13].

Satisfiability Modulo Theory (SMT) solvers are generally
used as a backend of program verifiers. As a consequence,
significant research effort has been invested in coming up
with efficient decision procedures for collections in these
solvers. For example, a decision procedure for a theory of
finite sets has been supported by the CVC4 solver [3] since
2016, and the last version of the prover, cvcS, also supports
sequences that can be used to model arrays and vectors [17].

Using simple collections as ghost models of complex
data-structures is a widely used technique in proof of pro-
grams. As an example, the specification of the Eiffel-Base2
general-purpose containers library verified by Polikarpova et
al. uses collections coming from the Mathematical Model Li-
brary (MML) : sequences as models of linked lists, maps for
hash tables, etc. These collections benefit from custom sup-
port in the underlying solver AutoProof [16]. This technique
was used successfully to verify numerous data-structures in
Why3, such as hashed tables or AVL trees [6]. Blanchard et
al. also resorted to using ghost arrays as a model of their lists
for their verification of the linked list module of the Contiki
OS with the WP plugin of Frama-C [5].

6 Conclusion

Functional containers are used to represent collections in
the specification of SPARK programs. They offer a simple,
high-level representation of a container, that is both easy to
understand for a reader and easy to reason with for the solvers.
They are executable, so it is possible to test the specification,
or even to use them in actual code.

Through the years, they have been used to annotate or
verify various kinds of containers, from the formal container
library of SPARK (which are specified with functional con-
tainers but not proved) to ownership based recursive data-
structures. Proof by refinement, though not natively sup-
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ported in SPARK, can be achieved using these containers by
creating several layers of models.

Going further, functional containers provide a way to de-
scribe state which only exists in the specification. It makes
it possible to model properties which are not generally in
the domain of SPARK, like some restricted form of tempo-
ral logic, through a history, or aliasing and simple memory
separation.

The containers library does not currently benefit from a
built-in handling in the SPARK tool. However, several anno-
tation features have been introduced so they can be treated
as efficiently as possible. This hybrid handling has the ad-
vantage of making the container library easier to maintain
and to extend. The annotation features can also be reused on
user-defined data-structures.
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