
NVIDIA: Adoption of SPARK Ushers in a New Era
in Security-Critical Software Development

CASE STUDY

adacore.com

https://www.adacore.com
https://www.nvidia.com/en-gb/
http://adacore.com

2

Summary
NVIDIA Corporation, the world’s best-known maker of
graphics processing units (GPU), is also among the most
trusted names in embedded systems, high-performance
computing, and artificial intelligence. As a supplier of
critical hardware, software, and firmware components
across numerous sectors, they are recognized for tackling
some of the tech industry’s toughest problems.

Security is essential to NVIDIA’s brand. However, with
cybersecurity risks rising across the board, including
in the verticals they serve, the company was facing the
challenge of delivering more secure products without
incurring a large increase in development time and cost.

An increasingly hostile cybersecurity
environment
Several converging macro trends are currently putting pressure on
the makers of embedded systems. Customers are demanding they
demonstrate air-tight security in their products.

First, cyberattacks against firmware and hardware are on the rise.
Hackers are targeting the lower levels of the technology stack
hoping to exploit vulnerabilities that are difficult and expensive to
correct. Due to the ubiquity of embedded systems, it is often very
costly to update firmware and hardware in the field.

Second, the development and verification ecosystem hasn’t
kept pace with the scale of these attacks. Many languages
and toolsets are insufficiently robust for critical embedded
applications; they provide no guarantees during development that
security vulnerabilities have been eliminated. For example, the C
programming language is often preferred for embedded systems
because it’s great for writing fast and efficient code. But code
developed in C is hard to get perfect and C lacks many verification
capabilities.

Third, an industry-wide lack of secure code designers and software
security practitioners is making project timescales problematic.
These valuable resources have become extremely difficult to
find. The cybersecurity professional organization (ISC)2 recently
calculated the global cybersecurity workforce shortage totalled
some 2.7 million unfilled positions at the end of 2021. 1

The convergence of these trends is causing extreme concern in
safety-critical sectors such as medical devices, robotics, and
automotive. OEMs are demanding a high degree of security
assurance from their suppliers. And they have become very
interested in the methods and techniques being used in secure
environments.

adacore.com

Customer:
NVIDIA Corporation is among
the world’s most trusted
names in graphics processing
units, embedded systems,
high-performance computing,
and artificial intelligence.

Challenge:
To find a more measurable
solution for verifying
embedded system security and
safety in an increasingly hostile
threat environment.

Solution:
SPARK - a programming
language designed to facilitate
the use of formal methods to
guarantee the correctness of
software with mathematics-
based assurance.

Result:
NVIDIA is now using SPARK to
achieve and demonstrate the
absence of runtime errors in
its most critical components
and to prove conformance to
specifications for its root-of-
trust applications.

NVIDIA has over

25,000+
employees

Operates in

50+
locations

Reported
$26.9 billion

revenue in FY221 (ISC)2 Cybersecurity Workforce Study, 2021, (ISC)2, March 2022.

Company Snapshot

Find out how SPARK and AdaCore can help you with your projects

https://www.adacore.com
https://www.adacore.com
https://www.isc2.org/Research/Workforce-Study
https://www.adacore.com/company/contact/inquiries
https://www.nvidia.com/en-gb/

3

A preference for measurable
outcomes
In response to these concerns, NVIDIA examined all
aspects of their software development methodology,
asking themselves which parts of it needed to evolve.
They began questioning the cost of
using the traditional languages and
toolsets they had in place for their
critical embedded applications.

For years, they had typically used
C and C++ for these applications.
And they were still suffering
from the decades-old challenges
endemic to those languages,
including ambiguities in the C and
C++ specifications that limit the
effectiveness of C and C++ analysis
tools. When there is no certainty of
verification, you never know when
you’re done testing a particular
code module. Security assurance
not only isn’t certain, progress
towards it isn’t measurable under
those circumstances.

“We like measurable outcomes,”
said Daniel Rohrer, VP of Software
Security at NVIDIA. “We’d like to
be able to ship products into the
field and know what the customer
experience is going to be before they see it. One of the
key challenges we placed in front of the team is how
to turn this from a non-measurable, where we can’t
even answer ‘Are we done yet,’ to a more measurable
answer.”

NVIDIA’s software security team examined various
methods and strategies that offered measurability.
They soon recognized that the bases of many of these
methods were mathematical formal methods and the
use of formal provers. They also discovered that these
tools had undergone a major evolution over the past
decade or so.

“We wanted to emphasize provability over testing as
a preferred verification method,” said Rohrer. “Testing
security is pretty much impossible. It’s hard to know
if you’re ever done.” Formal proof, on the other hand,
offered guarantees that were very attractive to NVIDIA.
These include the absence of runtime errors and
common security vulnerabilities, and also proof that a
program’s functionality conforms to its specification.

A “heretical” proposition
NVIDIA began to ask themselves, “Can we change our
fundamental approach? And if so, which of these tools

can we actually use?” They put these questions to their
software security team.

In reply, the security team came back with what
Daniel Rohrer characterized as “a fairly heretical”
proposition: “What if we just stopped using C?”

This led to other questions, like,
“What alternative languages and
tools are available to support the
use of formal methods?”

In trying to answer those
questions, NVIDIA discovered
SPARK.

SPARK and its benefits
SPARK is a high-level computer
programming language consisting
of a well-defined subset of Ada.
Like Ada before it, SPARK was
designed for the development
of high-integrity software used
in systems where predictable
and highly reliable operation is
essential. SPARK uses a language
feature known as “contracts” to
specify components in a form that
is suitable for static verification
using formal methods.

“From the perspective of programming language
capabilities, the paradigms are very similar to C and
C++,” said Dhawal Kumar, a principal software engineer
at NVIDIA and one of their first SPARK users. “SPARK
is an imperative programming language. You can write
procedure-oriented or object-oriented code, and there
are other facilities for programming in the large.”

Thanks to its design, there can be no undefined
behaviors in code developed with SPARK. The language
comes with a set of built-in checks that make sure all
its rules are obeyed, so run-time errors (such as buffer
overrun) cannot occur.

Another key feature of SPARK is that it supports formal
verification. In other words, through the use of SPARK
and formal methods solvers, it is possible to prove
mathematically that your SPARK code behaves in
precise accordance with its specification. This process
is known as formal verification.

“SPARK has a capability that is not found in most other
programming languages,” said Dhawal Kumar. “That is
the ability to specify program requirements within the
code itself and use the associated set of tools to ensure
that the implementation matches its requirements.
Essentially you are proving your programs are correct.
That’s a very powerful capability.”

SPARK has a capability
that is not found in most
other programming
languages. That is the
ability to specify program
requirements within
the code itself and use
the associated set of
tools to ensure that the
implementation matches
its requirements.
Essentially you are
proving your programs
are correct. That’s a very
powerful capability.

- Dhawal Kumar,
 Principal Software Engineer, NVIDIA

adacore.comFind out how SPARK and AdaCore can help you with your projects

https://www.adacore.com/company/contact/inquiries

4

Advantages of SPARK
Daniel Rohrer listed several SPARK advantages that
were important to NVIDIA.

First, SPARK is deterministic. This enables formal
proofs to guarantee the absence of runtime errors and
specification compliance.

Next, SPARK code is linkable with C. This meant
NVIDIA would not have to recode everything at once or
recode non-critical components. SPARK components
are easily integrated within C/C++ environments.
This allowed NVIDIA to wisely choose targets that
warranted the investment in formal verification.

Finally, SPARK has a credible ecosystem. Ada,
SPARK’s basis, is a very mature language. It has been
upgraded several times since the 1980s. World-class
tool support is readily available through AdaCore—the
world’s foremost authority in Ada and SPARK—and
other organizations as well. Plus, Ada and SPARK have
an upstream Open Source Software (OSS) presence.
So, while NVIDIA was glad to have AdaCore as a willing
and responsive partner, they knew that even without
AdaCore they could carry their SPARK initiative into
the future.

Successful proof of concept
In the final quarter of 2018, NVIDIA conducted a
proof-of-concept (POC) exercise to delve deeper
into the SPARK language, the associated tools, and
the available technical support; the purpose was to
confirm their general fitness for NVIDIA’s purposes.

For this initial POC, the NVIDIA software security
team applied SPARK to two applications. The first
was a bare metal application that acts as a root
of trust for code running on several other security
processors. The second was a Real-Time Operating
System (RTOS) application that handles the resizing
of protection regions.

In only three months, the small POC team was able
to convert nearly all the code in both codebases
from C to SPARK. In doing so, they realized major

improvements in the security robustness of both
applications. Thanks to the soundness of SPARK
and the ability to express program properties as
contracts, NVIDIA found that reliance on scarce
security practitioners could be significantly reduced.
They also found that the developer teams adapted
readily to the new language and tools.

Reviewing the results with their safety assessor,
NVIDIA also found that SPARK can be safely mixed
with C in a safety context. What’s more, the safety
assessor deemed SPARK not only acceptable but
preferable over C/C++ for safety-critical applications,
provided developers have sufficient training.

Evaluating return on Investment (ROI) based on their
results, the POC team concluded that the engineering
costs associated with SPARK ramp-up (training,
experimentation, discovery of new tools, etc.) were
offset by gains in application security and verification
efficiency and thus offered an attractive trade-off.

Finally, NVIDIA concluded that SPARK’s support
infrastructure was excellent.

Dhawal Kumar, who led the POC, called AdaCore’s
support system world-class. “AdaCore appears very
focused on solving customer’s problems first,” he
said. “We know we can count on AdaCore to answer
our questions with very low latency.”

Daniel Rohrer acknowledged their POC put AdaCore
in a tough corner, but AdaCore’s tools and support
team responded admirably. “We were doing low-level
firmware in a custom ASIC with registers and side
effects that had to be modeled. Our problems were
not uniform and generally not in AdaCore’s sweet
spot,” said Rohrer. “Throughout the course of the
POC, however, both the tooling and the support really
lived up to the challenge. Surprisingly so.”

Coming out of the POC, NVIDIA felt quite confident
that the savings and benefits from using SPARK
would continue, while the added ramp-up costs would
gradually disappear as SPARK expertise grew within
the company.

adacore.com

AdaCore appears very
focused on solving customer’s
problems first. We know we
can count on AdaCore to
answer our questions with
very low latency.

- Dhawal Kumar,
 Principal Software Engineer, NVIDIA

Find out how SPARK and AdaCore can help you with your projects

https://www.adacore.com/company/contact/inquiries

5

Adopting SPARK for NVIDIA’s most
security-critical development projects
NVIDIA began implementing SPARK in its security
strategy in 2019 on select pieces of firmware. They
began training additional personnel in SPARK and
eventually developed an in-house training program.

Several NVIDIA teams are now using SPARK for
a wide range of applications that include image
authentication and integrity checks for the overall
GPU firmware image, BootROM and secure monitor
firmware, and formally verified components of an
isolation kernel for an embedded operating system,
to name just a few.

In general, their targets tend to be smaller code bases
that would benefit the most from SPARK’s strong
typing, absence of runtime errors, and in some cases,
rigorous formal verification of functional properties

Proof of absence of runtime errors
When asked to quantify the benefits they’ve gained
from adopting SPARK, NVIDIA engineering managers
spoke of the guarantees SPARK provides and of
increased confidence in the quality of their products.

James Xu is the Senior Manager for GPU Software
Security at NVIDIA. His group is charged with making
sure software and firmware in NVIDIA’s GPUs are
shipping with industry-leading security postures.
They also drive innovative security and privacy
technologies that help make NVIDIA’s products
unique.

“The main reason why we use SPARK is for the
guarantees it provides,” said Xu. “One of the key
values we wanted to get out of this language was
the absence of runtime errors. It’s very attractive to
know your code avoids most of the common pitfalls.
You tend to have more confidence when coding in

SPARK because the language itself guards against
the common, easily made mistakes people make
when writing in C”.

“It’s very nice to know that once you’re done writing
an app in SPARK—even without doing a lot of testing
or line-by-line review—things like memory errors,
off-by-one errors, type mismatches, overflows,
underflows and stuff like that simply aren’t there,” Xu
said. “It’s also very nice to see that when we list our
tables of common errors, like those in MITRE’s CWE
list, large swaths of them are just crossed out. They’re
not possible to make using this language.”

Varun Kumar manages the GPU Firmware Security
team at NVIDIA. His group is responsible for
components that initialize and boot up the GPUs,
functions like secure boot, firmware update, and
device recovery attestation. He now has 20 engineers
building components in SPARK to NIST SP800-193
platform firmware resiliency guidelines. He says the
qualities Xu mentioned are also attractive to their
customers’ security personnel.

“The fact that we can confidently say that we don’t
have any off-by-one errors, overflows, underflows,
etc., and are backed by a formally verifiable method
(tool), provides good guarantees about the security
and robustness of the program.” said Varun Kumar.

Formal verification—without code
bloat or performance degradation
Cameron Buschardt, a Principal Software Engineer
at NVIDIA, is responsible for the architecture of an
embedded operating system. For his application, he
needs a deeper level of proof. Beyond the absence
of runtime errors, he needs formal verification:
demonstrable mathematical proof that the critical
portions of his code are functionally identical to the
corresponding portions of his model.

adacore.com

The main reason why we use SPARK is for the
guarantees it provides. One of the key values
we wanted to get out of this language was the
absence of runtime errors. It’s very attractive
to know your code avoids most of the common
pitfalls. You tend to have more confidence
when coding in SPARK because the language
itself guards against the common, easily made
mistakes people make when writing in C.

- James Xu,
 Senior Manager for GPU Software Security, NVIDIA

Find out how SPARK and AdaCore can help you with your projects

https://www.adacore.com/company/contact/inquiries

6

“We have customers who review our security
parameters very closely. Just being able to say, we
formally verified our code—we didn’t just run some
bug checking hunting tool, we formally verified
it—that’s huge. The high level of trust this evokes
drastically reduces review burden and maintenance
efforts. It’s huge for me and also for our customers.”

Unlike James Xu and Varun Kumar, whose groups
are using SPARK on new components, Cameron
Buschardt was able to compare his newly-written
SPARK modules with equivalent modules in C. He
found no code bloat, nor
did he see any degradation
of performance. “Looking
at the assembly generated
from SPARK, it was almost
identical to that from the C
code,” he said. “I did not see
any performance difference
at all. We proved all of our
properties, so we didn’t need
to enable runtime checks.”

Mitigated concerns
and rising confidence
As one might expect when
an organization tries a new
(and possibly a bit heretical)
way of doing things, many
of NVIDIA’s developers and
engineering managers were
initially skeptical of SPARK.

“The skepticism was due to a variety of concerns
depending upon whom you talked to, whether they
were in engineering or management,” said James Xu.
“Ada and SPARK are less well-known languages in
some industries, which led to many questions: What
is our ability to scale up engineering resources? How
will it impact our development schedules? How do
we find help? The absence of runtime errors sounds
nice, but do we really get that in practice? When it
comes to logic bugs, how does SPARK help us then?
Plus, given the unfamiliarity and the restrictions of
the language, there was a perception of a significantly
longer development time compared to writing in C.”

The answers NVIDIA has gotten to those questions
have overcome much of that skepticism.

For training, NVIDIA initially took advantage of
AdaCore’s courses, but it didn’t take them long to
develop their own in-house training program. They
found their developers ramp up quickly.

Schedule impact turned out to be far less significant
than imagined. For example, James Xu had guessed
development in SPARK would take twice as long as
in C. That turned out not to be the case when care
is taken to apply SPARK to well isolated and smaller
(but more valuable) areas. He characterized the
actual impact as “a minor annoyance.”

“Some of us were concerned, initially, about how
much schedule overrun there might be, or how we
were going to fund these projects,” said Xu. “But that
turned out not to be a problem.”

Varun Kumar also said that
finding help has not been a
concern, thanks to AdaCore’s
support system.

Finally, SPARK has delivered
on its “absence of run-time
errors” promise.

“It’s nice to have confidence
that your code base won’t be
plagued with common errors,”
said Xu. “About 70% of the
common CVEs simply can’t
occur in SPARK. So, when
you talk to an external auditor
who looks at your code, for
example, you can deflect
some basic concerns they
often have. When they ask
if they have to read the code
line by line to see if you’ve got
misused pointers, overflows

in your indexes, and stuff like that, you can just
categorically say, ‘Don’t bother. Those things can’t
exist. You don’t need to look at the codebase.’”

Improving customer relationships
Cameron Buschardt says the guarantees SPARK
provides make discussions with customers over
security far easier.

“It’s far easier to focus discussions in a massive
component if you’re simply able to say, ‘Hey, look,
we’ve got this tool. We were able to prove these
properties, let’s focus on other areas of security.’
That, for me, is a big motivating factor, because
that’s not going away: customers look at our security
story. With SPARK, it’s much easier to sell.”

We have customers who
review our security parameters
very closely. Just being able
to say, we formally verified
our code—we didn’t just run
some bug checking hunting
tool, we formally verified it—
that’s huge. The high level of
trust this evokes drastically
reduces review burden and
maintenance efforts. It’s
huge for me and also for our
customers.

- Cameron Buschardt
 Principal Software Engineer, NVIDIA

adacore.comFind out how SPARK and AdaCore can help you with your projects

https://www.adacore.com/company/contact/inquiries

7

Former skeptics have
become advocates
Seeing firsthand the positive effects SPARK and
formal methods have had on their work and their
customer rapport, many NVIDIA engineers who
were initially skeptical have become enthusiastic
proponents.

“I’ll be honest; at the beginning,
I was very, very skeptical,” said
Cameron Buschardt. “My first
attempts to prove non-trivial
algorithms in SPARK were
disastrous. But after we got past
the initial learning curve, I was
shocked at what we could prove.

“SPARK promises to let us
implement a component, prove it,
and be done with it,” he continued.
“This is transformative and it
evokes a level of trust no other
language provides.”

Daniel Rohrer indicated that
Buschardt is just one of many who
have shed their skepticism and
embraced SPARK.

“There have been others who,
as we’ve engaged through this
process, were initially detractors
but have subsequently become
champions,” Rohrer said. “For those
who’ve looked at the challenges
that are facing us and were willing
to face them head-on, once they
got past the initial inertia of ‘Hey,
this is the way we’ve been doing it the last 20 years,’ it’s
been transformative.”

Rapid growth
The use of SPARK and the formal methods tools built
for the language has grown and spread rapidly within
NVIDIA since their initial deployment.

At the conclusion of their initial POC at the end of
2018, NVIDIA had five developers trained in SPARK.
By the second quarter of 2022, that number had
grown to over fifty. During that same period, NVIDIA
implemented numerous components in SPARK. These
include many components of their GPU firmware
image, portions of their hardware boot ROMs, and
several libraries to simplify the discharge of proofs

for the kernel of an embedded
operating system.

Many NVIDIA products are
now shipping with SPARK
components, and awareness and
interest in SPARK continue to
grow within the company.

“We initially created a small
proof-of-concept to convince
ourselves and subsequently
implemented a larger piece of the
boot firmware in SPARK. That
proved to other teams within
NVIDIA that SPARK is a viable
option for firmware or similar
use-cases.”

“It’s coming up more often in
architectural discussions,” says
Buschardt. “We’re seeing security
meetings where we’ll talk about
a critical security property that
a customer is interested in, and
we’ll come back to that theme:
we can show our customers proof
that this does exactly what the
spec says it does.”

Overall, NVIDIA has demonstrated
groundbreaking leadership and innovation in the
software security domain. They had a very challenging
goal and took an ambitious path to accomplish
something that had never been done before in the
semiconductor industry. For four years, they have
successfully demonstrated time and time again that
their choice to adopt SPARK was the right one - and
have paved the way for anyone interested in following
NVIDIA’s lead.

I’ll be honest; at the
beginning, I was very,
very skeptical. My first
attempts to prove non-
trivial algorithms in
SPARK were disastrous.
But after we got past the
initial learning curve, I
was shocked at what we
could prove.

SPARK promises to let us
implement a component,
prove it, and be done with
it. This is transformative
and it evokes a level of
trust no other language
provides.

- Cameron Buschardt
 Principal Software Engineer, NVIDIA

adacore.comFind out how SPARK and AdaCore can help you with your projects

https://www.adacore.com/company/contact/inquiries

8

adacore.com

https://www.adacore.com
https://www.adacore.com
https://www.linkedin.com/company/adacore/
https://github.com/AdaCore
https://twitter.com/AdaCoreCompany

