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Abstract
Since Ada targets safety-critical programs, many features of the language introduce safety nets in 
the form of language-mandated checks. Even if compile-time verification is preferred to runtime 
verification whenever possible, many of these checks are still done dynamically, an exception being 
raised in case of violation.

The addition of contracts in Ada 2012 follows a similar trend, as a violation causes an exception 
to be raised when the code is compiled with assertions enabled. The SPARK tool aims at statically 
verifying that language-mandated checks and the user-written contracts can never fail at runtime. 
In this article, we give insights on how the tool works in practice and what are the most important 
challenges as of today.
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1 Introduction
Since Ada targets safety-critical programs, many features of the language introduce safety nets 
in the form of language-mandated checks. For example, a check is made on every signed integer 
computation to make sure that it will not exceed the bounds of the underlying machine type. Even 
if compile-time verification is preferred to runtime verification whenever possible, many of these 
checks are still done dynamically. If they fail, an exception is raised at runtime. For example, calling 
the procedure Increment below on Integer’Last will result in an exception as the increment of X 
will overflow.

The addition of contracts in Ada 2012 follows a similar trend. If they are enabled at compilation, 
the boolean expressions supplied as pre and postconditions of subprograms or as type invariants 
are evaluated at runtime, and an exception is raised if this evaluation returns False. As an example, 
consider the following annotation for the procedure Increment:

If Increment is called on Integer’Last and the precondition is enabled at compilation, an 
exception will be raised as its boolean expression evaluates to False. Similarly, if a bug is introduced 
in the implementation of Increment so that its parameter X is no longer increased by the call, an 
exception will be raised when checking the postcondition.

SPARK is a static analysis tool for Ada. It allows users to verify that the language-mandated checks 
and the user-written contracts in their program will never fail at runtime without running the 
program. It is open-source1 and available through the Alire package manager. In this article, we 
give insights on how the tool works in practice and what are the most important challenges in its 
implementation as of today.

procedure Increment (X : in out Integer) is 
begin
 X := X + 1; 
end Increment;

procedure Increment (X : in out Integer) with
 Pre  ⇒ X ≠ Integer’Last, 
 Post ⇒ X > X’Old;

1https://github.com/AdaCore/spark2014
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2 Formal Proof of Programs
SPARK verifies programs at the source code level on all possible inputs at once using deductive 
verification[1, 2]. Figure 1 schematizes the different steps of the verification process. First of all, the user 
is responsible for annotating their pro-gram with contracts. These contracts can express properties 
the user wants to verify on their code, but we will see later that some contracts can be necessary 
even to verify language mandated checks. Then, the tool transforms the annotated program into 
a set of logical formulas called verification conditions. There can be one verification condition or 
more for each property that is verified on the Ada program, be it a check or a user-written contract. 
Finally, the verification conditions are given to automated solvers. If all the formulas are verified, the 
program is correct.

Deductive verification is modular on a per subprogram basis. It is necessary for the verification 
process to be scalable in practice. Contracts are used to summarize what the guarantees are for 
each subprogram, both from the caller’s and form the callee’s point of view. When analysing the 
subprogram itself, SPARK verifies that, for all inputs that fulfill the precondition, the subprogram 
executes safely (there are no runtime errors) and the postcondition holds on subprogram exit. 
As an example, let us consider the procedure Increment presented before. To be able to verify 
its body, it is necessary for the user to supply a precondition preventing it from being called with 
Integer’Last. With the contract proposed before, the SPARK tool is able to verify both that no 
overflows can occur during the increment, and that the postcondition necessarily holds at the end of 
the call.

As the verification is modular, the SPARK tool does not look at the body of called subprograms, it only 
considers the contract: the precondition is checked and the postcondition is used to get information 
about the values of the objects modified by the subprogram after the call. As an example, let us 
consider the procedure Foo defined below. It calls Increment twice in a row on a variable initially 
initialized to 0:

For each call to Increment, the analysis tool needs to verify that the precondition holds. For 
the first one, the verification succeeds. Indeed, X is known to be 0 before the call, which is not 
Integer’Last. The verification fails however for the second call. Looking at the body of Increment, 
we know that X should be 1 at this point, so the precondition would evaluate to True if we were 
to execute Foo. The SPARK tool however, will fail to verify it. As it works modularly on a per-
subprogram basis, it cannot look at the body of Increment when analysing Foo. Instead it looks at 
its postcondition, which is not precise enough to rule out the possibility of X being Integer’Last 
after the first call.

procedure Foo is 
 X : Integer := 0; 
begin
 Increment (X);
 Increment (X); 
end Foo;
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Figure 1: Deductive verification in SPARK
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In general, to verify a program using SPARK, it is necessary to annotate all subprograms 
with contracts precise enough to entail together the correction of the complete program. 
The preconditions should be strong enough to verify the sub-programs themselves, and the 
postconditions to verify their callers. In our example, if we change the postcondition of Increment 
as below, then both procedures can be automatically verified:

Unfortunately, the underlying logic used for deductive pro-gram verification is undecidable. As a 
result, it is not possible for such a tool to be able to decide on every program whether it is correct 
or not. Some tools, commonly called bug finders, focus on reducing the number of false alarms - 
they try to only report a bug when they are sure that there is one. SPARK on the other hand is a 
sound verification tool. If it can verify a program, then the program is correct2. However, it is not 
complete - if the verification fails, that does not necessarily means that the program is incorrect. It 
is also possible that some contracts are missing, or that they are not sufficiently precise to verify 
the program. As we have seen before, it is the case of the postcondition of Increment presented 
in Section 1 which is not strong enough to verify the procedure Foo. Finally, the background solvers 
might also be unable to verify a valid formula in the allocated time. This sometimes makes it difficult 
for users to understand why the verification of a program is failing. The SPARK tool tries to help the 
investigation by providing counterexamples whenever possible. Unfortunately, the incompleteness 
of of the background solvers means that this is not always possible, in particular when the program 
becomes more complex. Efficient and reliable counterexample generation for deductive verification 
is still being researched[3, 4].

3 Why3 as an Intermediate Language
The SPARK tool works by using in the background bleeding edge technology developed by academic 
researchers in the formal verification domain. The Why3 platform[5], developed at Inria in France, 
performs deductive verification on a ML like semi-executable language called WhyML. It generates 
the verification conditions and translates them into the input language of various automated or 
manual solvers. As schematized in Figure 2, Why3 is used as a backend by several tools targeted at 
mainstream programming languages such as C[ 6] or Java and more recently Rust[7]. SPARK is such a 
frontend for Ada.

Compared to other frontends of Why3, SPARK can take ad-vantage of the constraints imposed by 
the Ada language to reduce the need for user-written annotations and to make the verification 
process more efficient. In particular, the constraints imposed by the expressive type system of Ada 
are reflected on the Why3 side through assumptions. As an example, let us consider the record type 
My_Rec defined below. It has a discriminant Length which is used to bound the length of its array 
component F. The elements of the array are natural numbers bounded by a constant Max.

subtype My_Nat is Natural range 0 .. Max; 
type Nat_Array is array (Positive range <>)
 of My_Nat;
type My_Rec (Length : Natural) is record
 F : Nat_Array (1 .. Length);
end record;

2The soundness of the tool relies on assumptions. For example, since the verification is 
done on the source code, it assumes that the program is compiled correctly.

procedure Increment (X : in out Integer) with
 Pre  ⇒ X ≠ Integer’Last, 
 Post ⇒ X = X’Old + 1;
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In the generated WhyML code, values of type My_Rec are assumed to fulfil its dynamic invariant: a 
predicate which gives both the bounds of the array component F and the range of its elements. It is 
defined as follows:

In general, the translation from Ada to WhyML does not at-tempt to preserve the executable 
semantics of the program, but rather to produce the simplest verification conditions possible while 
retaining soundness. In fact, the generated WhyML pro-gram is not even executable. For example, 
all subprograms are translated twice: once to generate the verification conditions for their body, and 
once to verify their callers. This has several advantages. In particular, it makes it possible to translate 
subprograms without worrying about the order of declarations and possible mutual recursivity. 
Indeed, fol-lowing the order in which the Ada subprograms are declared would not be enough to 
avoid forward references in WhyML, as Ada allows calling functions which have not been defined 
yet inside contracts. It also allows the SPARK tool to use different contracts for the subprogram 
depending on the calling context. This is important to handle dispatching calls on tagged primitives in 
particular.

As an example, here is the declaration of Increment used for the verification of Foo. It is an abstract 
function without a body. Its writes contract states that it modifies its input x. The requires and 
ensures annotations are direct transla-tions of the Ada contract. The fact that the parameter x fulfils 
the constraints of its Ada type after the call is made explicit in the postcondition.

val increment (x: ref int) : unit 
 writes {x}
 requires {!x ≠ 2147483647} 
 ensures
  { !x > old !x ^ dynamic_invariant !x }

Figure 2: The Why3 platform for deductive verification
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predicate dynamic_invariant (x : my_rec) = 
  first x.rec__f = 1
 ∧ last x.rec__f = x.rec__length 
 ∧ ∀ i : int. 
   first x.rec__f ≤ i ≤ last x.rec__f →
    0 ≤ get x.rec__f i ≤ max
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When verifying increment itself, the translation is quite different. First of all, the parameters are 
declared as global variables instead of actual parameters of the subprogram. It makes it easier 
to verify entities nested inside the subprogram (a nested package or a nested subprogram for 
example). Then, while the Why3 translation of Increment has a postcondition, it does not have a 
precondition. This allows the SPARK tool to verify that the Ada precondition is self-guarded, that is, 
it can be evaluated in any context without raising an exception. Afterward, the Ada precondition is 
assumed before verifying the rest of the subprogram:

4 Different Solvers in the Background
To discharge the verification conditions, SPARK relies mostly on Satisfiability Modulo Theory (SMT) 
solvers. These auto-mated solvers are well-suited for program verification because they support 
natively theory symbols, that is, symbols which have a generally understood meaning outside of the 
context of the verification condition. These symbols include in particular integer or floating point 
literals and arithmetic operators, which occur often in programs. In general, a verification condition 
coming from an Ada program references symbols from several theories. As an example, the dynamic 
invariant of type My_Rec defined in Section 3 uses symbols from:

• the theory of linear arithmetic on mathematical integer types for the integer literals and the 
comparison operators,

• the theory of abstract data-types for record components, and
•	 the	theory	of	infinite	immutable	arrays	for	the	access	to	the	array	component.

It also uses the universal logical equality symbol, first-order quantification, and uninterpreted 
function symbols like max.

As stated before, the resulting logic is undecidable. It means that it is not possible to design an 
algorithm which would be able to determine on all such logical formulas whether they are valid or 
not without errors. The solvers used in the backend of SPARK are all sound - they never verify an 
invalid formula. However they are incomplete, so they might not be able to verify valid formulas. In 
particular, certain constructs are not efficiently supported by any solvers and are the subject of active 
research. Here are some of these topics:

•	 first-order	quantification,	in	particular	with	alternating	quantifiers,
•	 non-linear	integer	arithmetic,	which	is	undecidable	even	on	quantifier	free	formulas,	and
•	 conditions	involving	symbols	from	different	theories	-floating	point	numbers	and	integers	for	

example.

To alleviate these concerns, SPARK takes advantage of the capability of the Why3 platform to target 
different provers. By default, it uses three SMT solvers as a backend, Alt-Ergo[8], cvc5[9], and Z3[10]. 

(* The parameters of Increment are global variables *)
val x : ref int;
let increment__def (_ : unit)
 ensures { !x.int__content > old !x }
=
 (* Assume that x follows the Ada typing
  rules *)
 assume { dynamic_invariant ! x };
 (* Check that no runtime error can occur
  while evaluating the precondition *)
 (begin
  ensures { true }
  let _ = !x ≠ 2147483647 in ()
 end);
 (* Assume the precondition of Increment *)
 assume { !x ≠ 2147483647 };
 ...



Ada User Journal Volume 35, Number 1, September 2022

All are independent open-source tools developed, at least initially, as part of a research endeavor. 
The three solvers are run on every verification condition, one after the other, until the condition is 
proved. This allows users to take advantage of the different strengths of these solvers.

In addition, as Why3 makes it possible to tune the translation specifically for each solver, the SPARK 
tool increases the diversity between the solvers by purposefully encoding the problem differently for 
each of them. Indeed, the best way to encode a feature of the language might depend on the use-
case, and having several increases the chance of finding a proof. As an example, consider modular 
integer types. They can be encoded either a a mathematical integer, or as a bitvector of fixed size. 
The first encoding is often preferable when doing standard integer manipulation as well as when 
converting toward other numeric types such as signed integers and floating-point numbers. The 
second makes the support of bitwise manipulation more effective. To get the advantages of both 
world, the SPARK tool uses bitvectors for cvc5 and Z3, and mathematical integers for Alt-Ergo.

Even if SMT solvers are better suited for program verification, the use of other kinds of solvers, which 
might not suffer from the same caveats, is also investigated. In particular, constraint solvers could 
improve the provability on quantifier-free verification conditions involving conversions between 
values of different theories. The solver COLIBRI[11] is already available from the SPARK verification 
tool, though it is not used by default yet.

In general, choosing which provers to run and with which options and encoding is a question of 
trade-off. Running one more prover is time consuming, as it will be launched on all the verification 
conditions, and possibly run up-to the provided time-limit. This is why it is important to limit the 
number of solvers used by the tool, and to assess the efficiency and interest of each new addition 
thoroughly.

5 Expressivity versus Efficiency
Taking a step back, we have seen that verifying Ada programs using deductive verification is complex, 
and requires user input, in particular in the form of contracts. To make the tool usable in practice, it 
is important to find a balance in the accepted language between expressivity and ease of annotation 
and verification. For that, the SPARK tool introduces simplifying assumptions. At the simplest, these 
assumptions are features of Ada which are not supported by the tool, like side-effects in functions, 
or handling of exceptions. Others are more complex, for example all values are assumed to be valid, 
and no two objects can be aliases of each others -modifying an object cannot affect another object in 
a visible way.

For the SPARK tool to remain sound, it is important that it verifies that these assumptions are valid 
on the program. This is generally ensured by a separate analysis done by the SPARK tool, prior to 
running deductive verification. As part of this effort, a program flow analysis is run on the code to 
determine the effect of all subprograms and the global data that they access. Based on the results of 
this analysis, it is possible for the SPARK tool to ensure that functions do not have side-effects, and 
that no uninitialized variables can be read, which helps to rule out invalid values. Absence of aliases 
in programs using pointers is enforced through an ownership policy with its own specialized analysis.

Simplifying assumptions need to be chosen carefully so they are both effective - they reduce 
significantly the complexity of either the verification itself or the manual annotation process - and 
not overly restrictive. The right balance is generally hard to find, and can be refined in subsequent 
releases of the tool. For example, by default, SPARK enforces correct initialization of variables by a 
strict initialization policy: all inputs of a subprogram shall be entirely initialized at the point of call and 
all its outputs shall be entirely initialized when the subprogram returns. This restriction is useful, as 
it saves the user from having to annotate all their subprograms with contracts about initialization of 
values. However, it makes it impossible to annotate and verify a program which initializes a record 
component by component in separate procedures as the program over the page:
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Since the parameter X of Init_F has mode in out, it is an input of the subprogram and SPARK will 
try to verify that it is entirely initialized before the call to Init_F in Main. Obviously, it is not the case. 
Unfortunately, changing the mode of the parameter X of Init_F to out will not solve the issue as 
the tool will then try to verify that X is entirely initialized by Init_F, which is not the case either. To 
alleviate this issue, more recent versions of SPARK allow users to annotate their objects to exempt 
them from the initialization policy. However, it then becomes necessary for the user to manually add 
information about initialization in subprogram contracts:

type Two_Fields is record
 F, G : Integer;
end record;

procedure Init_F (X : in out Two_Fields) with 
 Relaxed_Initialization ⇒ X,
 -- X is no longer subjected to the
 -- initialization policy of SPARK.
 Post ⇒ X.F’Initialized
 -- X.F is initialized by Init_F
 and (X.G’Initialized = X.G’Initialized’Old) 
 -- X.G is left as it was 
is
begin 
 X.F := 0; 
end Init_F;
 
procedure Init_G (X : in out Two_Fields) with 
 Relaxed_Initialization ⇒ X,
 Post ⇒ X.G’Initialized
 and (X.F’Initialized = X.F’Initialized’Old) 
is
begin 
 X.G := 0; 
end Init_G;

type Two_Fields is record
 F, G : Integer;
end record;

procedure Init_F (X : in out Two_Fields) is 
begin 
 X.F := 0; 
end Init_F;

procedure Init_G (X : in out Two_Fields) is 
begin 
 X.G := 0;
end Init_G;

procedure Process (X : in out Two_Fields) is
 ...

procedure Main is
 X : Two_Fields; 
begin
 Init_F (X); 
 Init_G (X); 
 Process (X)
end Main;
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The parameter X of Init_F is exempted from the initialization policy, so SPARK no longer tries to 
verify that it is initialized before the call in Main. Without additional an-notations, it does not assume 
that it is initialized afterward either. It makes it necessary for the user to add a postcondition to 
Init_F to say that it initializes the component F of its parameter. The postcondition also says that 
the component G is not uninitialized by the call. It is not necessary to verify Main, as Init_F is called 
before Init_G, but it preserves the symmetry between Init_F and Init_G. The parameter X of 
Process does not need to be exempted from the initialization policy, as Process is necessarily called 
on entirely initialized data. As a result, we do not need to supply a contract about initialization for it. 
With these annotations, the code is entirely verified by the SPARK tool.

All these restrictions imposed by SPARK on top of Ada define a language subset. The language 
supported as input of the SPARK tool is called the SPARK language. It is not a strict subset of Ada, as 
can be seen on Figure 3, as it also introduces additional annotation features. As an example, contract 
cases are used to specify a contract as several smaller contracts with their own precondition and 
postcondition, and code which is only used for the specification process can marked as ghost so that 
it is removed by the compiler when the assertions are not enabled at runtime. This language evolves 
continuously as more features are added to the tool. Major additions to the SPARK language are 
discussed online3 and community input is always valuable.

6 Conclusion
SPARK is a static analysis tool for Ada. It verifies that no language mandated checks can fail at 
runtime, and that user written contracts always hold. The analysis is modular on a per subprogram 
basis: when analyzing a subprogram, the tool only uses the contract of called subprograms and 
not their bodies. As a consequence, the tool requires users to annotate all their subprograms with 
contracts precise enough to ensure together the correction of the whole program.

The SPARK tool is based on the Why3 plateform for program verification. The program and the 
contracts are transformed into a set of logical formulas which are then verified by auto-matic solvers. 
The solvers used as the backend of SPARK are mostly SMT solvers. They work on first-order formulas 
with interpreted symbols coming from various theories - integer and floating-point arithmetic, 

3https://github.com/AdaCore/ada-spark-rfcs

Figure 3: The SPARK language
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procedure Process (X : in out Two_Fields) is
 ...
-- The parameter X is not exempted from
-- initialization checks.

procedure Main is
 X : Two_Fields with Relaxed_Initialization; 
begin 
 Init_F (X);
 Init_G (X);
 -- Complete initialization of X is 
 -- checked at this point.
 Process (X); 
end Main;
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bitvectors... This logic is undecidable. To work around prover’s limitations, SPARK uses several 
automatic solvers for the verification.

To make both the verification and the manual annotation process tractable, SPARK introduces 
simplifying assumptions. These assumptions are associated to language restrictions which are 
verified by the tool. Both the SPARK proof tool and the related language restrictions are evolving 
continuously. For example, support for access types and its ownership policy have been added and 
extended in the last couple of years. Precise support for handling of exceptions is being discussed 
currently.
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