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Abstract 
Both SPARK and MISRA C are programming languages intended for high-assurance 
applications, i.e., systems where reliability is critical and safety and/or security requirements 
must be met. This document summarizes the two languages, compares them with respect to 
how they help satisfy high-assurance requirements, and compares the SPARK technology to 
several static analysis tools available for MISRA C with a focus on Frama-C.  

1 Introduction 

1.1 SPARK Overview 
Ada [1] is a general-purpose programming language that has been specifically designed for 
safe and secure programming. Information on how Ada satisfies the requirements for 
high-assurance software, including the avoidance of vulnerabilities that are found in other 
languages, may be found in [2, 3, 4]. 

SPARK [5, 6] is an Ada subset that is amenable to formal analysis and thus can bring 
increased confidence to software requiring the highest levels of assurance. SPARK excludes 
features that are difficult to analyze (such as pointers and exception handling). Its restrictions 
guarantee the absence of unspecified behavior such as reading the value of an uninitialized 
variable, or depending on the evaluation order of expressions with side effects. But SPARK 
does include major Ada features such as generic templates and object-oriented 
programming, as well as a simple but expressive set of concurrency (tasking) features 
known as the Ravenscar profile. SPARK has been used in a variety of high-assurance 
applications, including hypervisor kernels, air traffic management, and aircraft avionics. 

In fact, SPARK is more than just a subset of Ada. It also offers new features for expressing 
various desired program properties, or “contracts”. Some contracts reflect data or information 
flow/dependencies, while others express functional requirements. When the program is 
compiled with a standard Ada compiler, these contracts are either ignored or produce 
run-time checks, but they can be checked statically by the SPARK analysis tools. Some 
forms of contracts are explained in this document. 
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The SPARK tools enforce the SPARK restrictions and attempt to verify (in fact, prove) the 
contracts. The analysis will statically detect and prevent various classes of errors, such as 
buffer overflow.  

A SPARK program is amenable to formal analysis using modern proof technology, bringing 
mathematical assurance to the software verification process. But SPARK also allows 
traditional testing-based verification. SPARK is the only industrially-supported formal 
methods technology that can combine proof and testing. 

There have been various iterations of the Ada language, and SPARK also has changed over 
the years. Until the SPARK 2005 revision, SPARK contracts (also known as annotations) 
were written as specially formatted Ada comments. As of SPARK 2014, these annotations 
are expressed not as comments but through standard Ada 2012 constructs with semantic 
significance. 

1.2 MISRA C Overview 
The C programming language [7] has been the most widely used programming language in 
embedded systems. However, C is well known for having a number of features with syntactic 
or semantic “traps and pitfalls” that make it easy to write incorrect code. The MISRA C 
standard [8] attempts to address this issue and promote “best practices” for using C in 
safety-related applications. MISRA C specifies well over 100 rules including: 

● Assignment ("=") should not be used in expressions. This avoids the common error of 
using an assignment, instead of the comparison operator ("=="), in a condition. 

● Braces {} should always be used in connection with if-statements and loops. This 
avoids the common error where a statement appears to be part of a branch or loop, 
but in fact it is not. 

● The use of dynamic memory allocation is forbidden. 
● A type system, called "essential types", rules out the most surprising consequences 

of C’s implicit conversions. 

A variety of commercially available tools check compliance with some of the MISRA C rules. 
However, a number of MISRA C rules cannot be fully checked by any tool. 

2 SPARK compared to MISRA C 
Our comparison will focus on four criteria that are important for high-assurance software: 

● Syntax - is the textual representation of the program easy to read and does it prevent 
surprises where a construct seems to mean one thing but has a different effect? 

● Typing - can the programmer specify precise information about the data it 
manipulates and can misuses be detected automatically (either at compile time or run 
time)? 

● Subsetting - Can the subset restrictions be enforced, what benefits do they bring, and 
how general is the subset? 

● Run-time verification - Does the language provide means to verify program properties 
at run time? 
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A note on terminology: 

Different languages often use different terms for the same basic concept, or use the same 
term to mean different things.  The following conventions are used in this document: 

● The term “code module” is used when referring generically to a parameterized routine 
that can be invoked from multiple parts of the program. Code modules correspond to 
functions in C (and thus MISRA C) and subprograms in Ada (and thus SPARK). A 
subprogram can either be a ​function​ (if a value is to be returned) or a ​procedure ​(if it 
is to be executed for its side effect and does not return a value). Thus a SPARK 
procedure is like a MISRA C function that returns void 

● The description of a specific language will use that language terminology. 

2.1 Syntax 
The original Ada design exploited the major software engineering breakthroughs from the 
early to mid 1970s (most notably encapsulation and information hiding). It focused on source 
code readability and maintainability and SPARK has inherited these advantages. In contrast, 
C has many well-known pitfalls such as (missing) break statements in the branches of a 
switch statement, the confusion between assignment and equality (especially in boolean 
conditions), and the optional braces associated with if statements. Although MISRA C has 
removed many of these issues, SPARK still has the advantage when it comes to avoiding 
traps and pitfalls. 

● Preprocessor 
Ada (and thus SPARK) has no need for a preprocessor. In C, it is sometimes difficult 
to see what is a macro and what is C code and the interactions between C code and 
macros can be confusing.  

● Compound statements 
The syntax for Ada (and thus SPARK) control flow statements such as if-statements, 
loops, and case statements (similar to switch statements in C), has a consistent 
format and prevents “dangling else” problems. Each compound statement needs to 
be terminated by a matching “end” (for example  “end if”, “end case”, or “end loop”) 
so it’s easy to see where each construct begins and ends. The compiler checks for 
redundant or missing branches in a case statement and loop indices cannot be 
assigned to.  

● Parameter passing notation 
In Ada (and thus SPARK), actual parameters to subprograms can be passed by 
naming the formal parameter they correspond to, which makes it easier to 
understand a subprogram call and the purpose of each parameter. 

● Case sensitivity in identifiers 
A potential problem in any programming language is the confusion between similarly 
named variables. Identifiers in C are case-sensitive, so the variables with names 
"velocity", "Velocity" and "VELOCITY" are all different and may appear in the same 
scope. This can hinder readability, since the use of case conventions to convey 
semantic intent is rather subtle. In Ada (and thus SPARK), all identifiers are 
case-insensitive and all variations of case designate the same identifier. This may 
also be confusing (why did the programmer use different case conventions for the 
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same identifier in different places?), so Ada compilers usually warn when different 
casings of the same identifier are used in the program. 

● Namespace management 
C doesn't offer any advanced namespace management; all function names live in the 
same namespace and are not allowed to clash. Languages like C++, Java, and Ada 
offer some way to structure the namespace, like packages and child units in Ada, and 
namespaces and classes in C++ and Java. 

2.2 Type System 
The type system of a language has several main purposes:  

● It allows the programmer to model the logical structure of the objects from the 
application domain, including any constraints on the values. 

● It supplies the operations for manipulating the objects and, in particular (if the 
language is “strongly typed”), prevents an object of one type from being treated as 
though it were of another type. 

● It tells the compiler the memory layout of the program’s data.  

The type systems in SPARK and MISRA C differ with respect to their generality and their 
reliability in meeting these objectives.  

2.2.1 Integer Subranges 

Even though MISRA-C addresses the most obvious deficiencies of the C type system, Ada 
(and thus SPARK) provide the more general and reliable capabilities. For example, in Ada 
the user can define integer types with arbitrary ranges, like this: 

  ​type​​ Rating ​is​​ ​range​​ 0 .. 10; 

A variable of type Rating can only be assigned values in the specified range; an attempt to 
assign a value outside this range will produce a run-time error (raising an exception). With 
SPARK tools, such attempts can be detected statically; if none is detected then the 
programmer is assured that no such errors will occur. 

In C, only the standard integer types can be used; there is no built-in support for subranges. 

2.2.2 Arrays 

In C, arrays are basically pointers and no information about their bounds is automatically 
available. Passing an array as an argument to a function or returning an array from a 
function require special care and usually involve passing the length and offset of the array as 
extra arguments. In contrast, with Ada and SPARK, arrays are a separate type category, 
independent of pointers, and the bounds of an array are always known at the point of use of 
the array. 

A common programming error is an attempt to access an array outside of its bounds. An 
example is the well-known "buffer overflow" that can compromise safety and security. 
MISRA C has several rules which disallow such accesses, but the rules are marked 
"undecidable", meaning that most MISRA C checkers cannot find all instances of such 
problems. SPARK provides two ways to completely eliminate such errors:  
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● In standard Ada semantics, there will be run-time checks for array accesses: 
whenever an array element is accessed, a check is made that the index is within the 
bounds of the array. If not, a run-time exception is raised.  

● The SPARK proof tools can be used to prove that all array accesses are within the 
array’s bounds, so no such error can occur. 

2.2.3 Parameter Passing 

In C, there is no way to specify that a parameter of a function should only be read or that it’s 
allowed to be read and written; pointers must be used for this purpose. However, pointers 
are a very powerful and dangerous language feature. In Ada and SPARK, the "mode" of 
each parameter can be specified, indicating the direction of data flow; for example:: 

  ​procedure​​ P (A : ​in ​​Integer; B : ​in out​​ Integer; C : ​out 
Integer); 

This specifies that procedure P only reads A, is allowed to read and write B, and writes C 
and the compiler verifies this. The difference between “in out” and “out” is that an “in out” 
parameter is expected to be read before being written, while an “out” parameter is expected 
to be written before it is read. In SPARK, analogous modes can also be specified (and 
checked by the SPARK tools) for accesses to global variables. No use of pointers is 
necessary to modify parameters. The compiler takes care of passing values by reference for 
efficiency when needed and ensures that this does not introduce unsafe aliasing. 

2.2.4 Unions / Variant Records 

MISRA C disallows the use of C unions, because they are inherently unsafe to use. Ada 
provides a language feature called "discriminated records", which is somewhat similar to C 
unions; it can be used to describe “variant” records where certain fields are present only in 
some cases, depending on the value of a "discriminant" field. Discriminated records in 
SPARK are entirely type safe and do not defeat the language’s type checking even though 
fields with different types may be overlaid. 

2.2.5 Pointers 

As previously noted, SPARK does not allow pointers (or “access types” as they are known in 
Ada). This may seem to limit the programmer’s ability to define data structures such as lists 
and trees, but in practice the restriction has not proved to be a problem. First, many such 
data structures can be defined using arrays with integer indices. Second, it’s possible to mix 
SPARK code with full Ada. The Ada data structures can use pointers (though its functional 
correctness would need to be verified separately, through testing and perhaps other analysis 
techniques).  

2.2.6 Data Representation 

As in MISRA C, one can indicate the bit-precise memory layout of records in Ada and 
SPARK. However, this can also be done in a way which is completely portable even across 
big-endian and little-endian systems. 
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2.3 SPARK and MISRA C as Subsets 
Both SPARK and MISRA C are subsets of the larger languages: Ada and C. This raises 
several questions: 

● Is it easy (or even possible) to determine whether a program meets the subset 
restrictions? 

● How well does the subset manage to eliminate dangerous features of the larger 
language? 

● How restrictive is the subset? 

The SPARK tools check if an Ada program is written in the SPARK subset. This analysis is 
sound, so if the SPARK tools say that the program is SPARK, then there are no violations of 
the SPARK rules. 

For MISRA C, the situation is quite different. Many MISRA checkers only check a subset of 
the MISRA C rules. In fact, twenty-seven rules of the MISRA standard are marked 
"undecidable", which means that an automatic tool cannot completely verify whether such 
rules are obeyed. It will either miss violations or report situations which are, upon closer 
inspection, not violations of the rule (false alarms). So in fact it is difficult to know if a C 
program really is a MISRA-C program [9]. 

The MISRA C standard does indeed eliminate many of C’s dangerous features. However, 
MISRA C still includes pointers, which are a well known source of errors and which 
complicate analysis because of the aliasing that they introduce. Pointers are needed in 
MISRA C since they are intrinsic to C semantics (for example with parameter passing). The 
use of goto is only discouraged but not fully excluded. Side effects in expressions are 
excluded, but the rule is marked "undecidable". 

Because of Ada’s array type mechanism and parameter modes, many uses of pointers in C 
do not require pointers in SPARK; thus pointers are absent from SPARK. Likewise goto 
statements are excluded, since they complicate data flow analysis. Side effects in 
expressions are excluded, so order of evaluation is irrelevant. Thus an implementation 
dependence in full Ada (order of evaluation) doesn’t matter; any order chosen will have the 
same result. 

SPARK includes a number of language features that are useful in safety-critical systems: 
object-oriented programming, generics (similar to C++ templates), and concurrency. These 
are absent from MISRA C. 

Finally, with its various forms of contracts (such as subprogram pre- and postconditions) 
SPARK offers extensive support for program verification. MISRA C lacks such support, 
although several tools provide some verification features. This is discussed below. 

Note that an application can contain some parts that are in SPARK and others that are 
outside the SPARK subset (full Ada, or modules from other languages, such as C).  
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2.4 Run-time Verification 
The SPARK support tools can statically analyze a program and prove properties ranging 
from absence of run-time errors to compliance with formally specified requirements, but 
numerous properties of a SPARK program can also be checked during testing. For example, 
standard Ada semantics means that array indexing, division by zero, integer overflow, and 
assignments outside of the declared range of a type are all checked during program 
execution. 

One mode of operation for SPARK is to enable checks during testing to detect such error 
situations as early as possible and to suppress them for the production executable for more 
efficiency. An alternative is to selectively keep checks in the production code, for example to 
protect against buffer violations. In a security context, it may be safer to stop the program 
than to allow a security breach.  

In Ada, and thus SPARK, contracts may be supplied for subprograms. Such contracts take 
the form of preconditions and postconditions, which are basically assertions that are 
checked at subprogram call and return. However, they are part of the subprogram 
specification and also are more flexible than normal assertions (e.g. a postcondition can 
refer to the value of an “in out” parameter at the point of call as well as the point of return). 
Contracts document the intended behavior of the program and, in effect, embed low-level 
requirements in the source code. They can be executed during testing, left in the production 
binary if desired, and are subjected to correctness proof by the SPARK tools. 

MISRA C as a language has no such features, aside from assertions. 

3 SPARK and Static Analysis Tools for C 
In this section, the term “SPARK” will be used in a broad sense to denote the complete 
SPARK technology: the SPARK programming language and its supporting toolset that 
applies formal methods to SPARK programs. 

3.1 General Classes of Static Analysis 
A distinguishing characteristic of a static analysis tool is whether or not it is ​sound [16]​. A tool 
is sound with respect to a given source code property if it will find all instances of that 
property (for example, an attempt to reference an uninitialized variable), and unsound if it 
does not. For a sound tool, another characteristic is its generality, i.e. the set of properties 
that it can detect or demonstrate; two examples are absence of runtime errors and full 
functional correctness. 

Unsound tools can be useful for finding defects in code. Examples of such tools, also called 
“bug finders”, are Coverity and CodeSonar. These tools usually employ static analysis 
techniques to find bugs or suspicious code, with a relatively low percentage of false alarms 
(also known as false positives), but they do not guarantee finding all bugs. Such tools cannot 
be used to obtain any guarantees concerning the analyzed code, because nothing can be 
said if the tool returns without reporting an error. 

The second category, sound tools that can prove absence of run-time errors, includes 
Polyspace and CodePeer (and also SPARK, but that is discussed below). Sound analysis 
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tools find all potential problems of a certain kind. However, they also report false alarms, so 
the user needs to review the reported problems and find (and fix) the ones that represent 
real issues. 

The third category, sound tools that prove functional properties, includes Frama-C and again 
SPARK. The user has to identify, via annotations or contracts, what the program is 
supposed to do (its specification). Besides demonstrating an absence of run-time errors, 
these tools can also check the annotations/contracts to verify whether the code corresponds 
to its specification. 

3.2 The Frama-C framework 
Frama-C is not a monolithic tool, but rather a platform for static analysis, that contains 
various plug-ins to achieve different functionality. In this document, we will mention the Eva 
plug-in, which corresponds to the second category of sound tools, and the WP plug-in, which 
can be used to prove functional properties. 

3.3 Static Analysis in SPARK 
SPARK performs sound static analysis, so it can detect and report certain classes of errors 
completely, allowing the programmer to repair the problem and eliminate the possibility of 
such errors at run time. These include: 

● Logical errors such as dead stores and unused variables 
● Access to uninitialized data 
● Division by zero 
● Arithmetic overflow 
● Assigning an out-of-range value to an integer or floating-point variable 
● "Buffer overflow", such as accessing an array outside of its bounds 
● Misuse of "variant records" (a language feature somewhat similar to C union records) 

Note that errors such as null pointer dereference cannot occur (because there are no 
pointers). Other errors, such as assigning an out-of-range value, are related to the ability to 
declare types with constrained ranges. In C, such errors would need to be detected by 
user-written code. 

In addition, SPARK allows verification of user-provided contracts. Some examples: 

● Global annotations allow specifying the effect of a subprogram on global variables. 
● Assertions can be inserted to specify a condition which should be true at some 

execution point. 
● Preconditions and postconditions allow specifying conditions that should be true at 

subprogram entry and exit, respectively. In effect, preconditions and postconditions 
can express the specification of a function: what it is supposed to do. Ada’s 
quantification expressions are useful in these contexts, providing a general notation 
for capturing such conditions. 

SPARK can statically check all these conditions. For example, it will detect and report the 
following situations: 
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● A subprogram writes to a global variable which is not mentioned in its Global 
annotation. 

● At the point of call for a subprogram, its precondition may evaluate to False. 
● At the point of return from a subprogram, its postcondition may evaluate to False. 

As a sound tool, SPARK allows establishing additional code properties: 

● Global variables are manipulated in a manner consistent with their Global contracts. 
● All subprograms implement their specification (if a subprogram is called and its 

precondition is True, then its postcondition will be True when it returns). 
● Subprograms are only called when their specification allows it (i.e., at each point of 

call, the subprogram’s precondition is True). 

3.4 Comparison Summary 
The following table summarizes the characteristics of the tools in the three categories 
described above. Tools in all three categories can find bugs, but only sound tools can prove 
that there are no other bugs of certain classes. Only tools which allow extra 
annotations/contracts can prove that a code module  implements its specification. 

 

  Bug Finders Sound 
Static Analysis 

Extra 
Annotations 

Tools Coverity, 
CodeSonar 

Polyspace, 
CodePeer, 
Frama-C (Eva) 

SPARK,  
Frama-C (WP) 

Find bugs? Yes Yes Yes 

Ensure absence of 
run-time errors? 

No Yes Yes 

Prove compliance with 
specification? 

No No Yes 

  

4 SPARK Compared with Frama-C 

4.1 Similarities between SPARK and Frama-C 

SPARK and Frama-C are quite similar in their core functionality. The basic idea is that the 
tools can prove that the analyzed code complies with its specification. This specification 
must be written by the user as part of the source code and is used by the static analysis tool. 
It takes the form of a stylized comment in Frama-C (and is thus ignored by the compiler) but 
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in SPARK it is part of the standard Ada syntax (see also the section “The Annotation 
Language” below).  

4.1.1 ​Assertions 

One form of annotation available both in SPARK and Frama-C is the assertion. In Frama-C, 
it looks like this: 

  x++; 

  /*@ assert x > 0 ; */  

In SPARK like this: 

   X := X + 1; 

   ​pragma​​ Assert (X > 0); 

The idea is that at this point in the program the expression in the assertion should be true. 

4.1.2 Contracts 

In both Frama-C and SPARK, one can specify the expected behavior of a code module 
using ​preconditions​ and ​postconditions​. A precondition is a property that should be true 
when the code module is called. Similarly, a postcondition is a property that should be true 
when the code module returns. Together, the precondition and postcondition form a ​contract 
between the caller and the callee, where the caller guarantees the precondition, and in 
exchange the callee guarantees the postcondition.  

As a first approximation, pre- and postconditions are simply assertions at the beginning and 
the end of a code module. However, both Frama-C and SPARK allow extra syntax in 
postconditions to refer to function results and also to values of variables ​at the beginning of 
the call. ​A simple example in Frama-C is the contract for a function incrementing an integer: 

  /*@ 

  requires \valid(x); 

  requires *x < 2147483647; 

  assigns *x; 

  ensures *x == \old(*x) + 1; 

  */ 

  void increment_guarded (int *x) { 

    (*x)++; 

  } 

And the analogous SPARK code would look like this: 

  ​procedure​​ Increment_Guarded (X : ​in out​​ Integer) ​with 
    Pre => X < Integer'Last, 

    Post => X = X'Old + 1  

  is begin 

     X := X + 1; 

  ​end​​ Increment_Guarded; 
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Note the use of the special syntax ​\old(*x)​ in Frama-C and ​X'Old​ in SPARK to refer to the 
“old” value of x, that is on entry to the code module. 

4.1.3 Side effects 

In both  SPARK and in Frama-C, the user specifies the side effects of a code module. The 
side effects declare: 

● which global variables and parameters are read by the code module; 
● which global variables and parameters are written by the code module. 

This information is essential for the correct analysis of both the code module and all of its 
invocations. In Frama-C, this is known as an ​assigns clause.​ In SPARK, each parameter’s 
mode indicates whether the parameter is read, written, or both, and for global variables a 
Global data dependency ​contract is used. 

4.1.4 Formal Verification 

Formal verification is the process that determines whether the source code is consistent with 
all its annotations/contracts. Both SPARK and Frama-C will check that: 

● a code module only reads and writes the variables that it is allowed to read and write, 
based on its parameter declarations and its assigns clause or Global contract; 

● if the code module is called in a context where its precondition is true, then it will not 
raise any run-time errors or incur unspecified behavior during execution, for example 
arithmetic overflow, buffer overflow, or division by zero. 

● if the code module is called in a context where its precondition is true, then its 
postcondition will be true on any path that leads to a return. One can also say that 
the code module “implements its contract”. 

SPARK and Frama-C achieve these results only by examining the source code (thus “static 
analysis”), and if they report no error, none of the above-mentioned errors can ever occur in 
the analyzed software. 

Note that neither SPARK nor Frama-C guarantee the absence of so-called non-functional 
errors, such as stack overflow and violation of timing properties. 

In this sense, SPARK and Frama-C are very similar, because they have the same objectives 
and achieve them with similar means: formal methods implemented though modern proof 
technology. 

4.1.5 Ghost code 

Ghost code is extra code that does not contribute to the functionality of the program, but 
helps its formal verification. Ghost code is either invisible to the compiler (Frama-C) or can 
be enabled or disabled using a compiler switch, similar to assertions (SPARK).  A separate 
paper [15] discusses differences in the handling of ghost code between Frama-C and 
SPARK. For the purposes of this high-level comparison, it is enough to say that both 
Frama-C and SPARK support ghost code. 
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4.2 Differences between SPARK and Frama-C 

4.2.1 Precise subtypes for integers and floating-point types 

In SPARK, in addition to the predefined types which correspond to 8-bit, 16-bit, 32-bit and 
64-bit signed and unsigned integers, subtypes of any range can be defined: 

  ​subtype ​​Test_Score ​is​​ Integer ​range​​ 0 .. 100; 

SPARK’s static analysis will not only verify that variables of this subtype never take values 
outside of the specified range, but it can also ​use​ that information, for example to prove that 
no overflow can occur in computations with values of that type. The same is true for 
floating-point types. 

In C, basically only the predefined integer and floating point types can be used, and no more 
precise bounds can be specified directly when variables are defined. If a program requires 
data to have more precise bounds, these bounds have to be specified in the contracts of all 
functions which manipulate this data. 

In an internship project at AdaCore [10], where the C firmware of a small drone was replaced 
by SPARK code and proved to be free of run-time errors, constrained subtypes were used to 
deal with overflow of floating-point computations. In Frama-C, these precise bounds would 
have to be added to all functions manipulating the corresponding variables.  

Researchers from the University of Bristol [11] have had a similar experience, stating that 
"[they] captured most of the required information using types that constrain the ranges of 
numeric variables". 

The Frama-C annotation language has the ability to add properties such as ranges to 
variables and types as “data invariants” and “type invariants”. But this syntax is apparently 
not supported by the Frama-C tool at the time of this writing (Chlorine release of Frama-C 
[12]). 

4.2.2 Pointers and the Memory Model 

Pointers makes formal verification difficult, and thus are prohibited in SPARK. In C, pointers 
have many uses, for example to pass parameters by reference and to access arrays (in 
SPARK no pointers are necessary for these), so completely forbidding pointers is unrealistic. 

The developers of Frama-C had no choice but to support formal verification for programs 
containing pointers. This makes Frama-C a very powerful tool for reasoning about data 
structures such as linked lists implemented with pointers, or the common array-manipulating 
programs that are usually pointer-based. However, this power comes at a high price in 
complexity. 

Variables such as integers, records (structs) and arrays, as they are used by a programmer 
in C or SPARK, ultimately are only abstractions of the memory of the machine. In most 
cases the programmer need not be concerned with the details. But when different program 
variables correspond to the same memory locations, then this abstract view breaks down 
and surprising things can happen. For example, in C, modifying the data pointed to by a 
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pointer variable can in theory modify almost any other variable, unless it is known where the 
pointer points to. 

When distinct program variables correspond to the same or overlapping memory regions, 
this is called ​aliasing​. In C, because of the presence of pointers, aliasing is unavoidable and 
has to be taken into account by the programmer and by tools such as Frama-C. For 
example, a function to copy one array into another can be annotated like this in Frama-C 
(taken from the “ACSL by example” document [13]): 

/*@  

  requires valid_a: \valid_read(a + (0..n-1)); 

  requires valid_b: \valid(b + (0..n-1));  

  requires sep: \separated(a + (0..n-1), b + (0..n-1));  

  assigns b[0..n-1];  

  ensures equal: EqualRanges{Here,Here}(a, n, b);  

*/ 

void copy(const value_type* a, const size_type n, value_type* b); 

Because of the typical C use of pointers to represent arrays, the programmer has to specify 
the length of each array and has to specify that the memory regions of source and 
destination do not overlap (using the ​\separated​ notation). The result is a very heavy 
specification of this simple function. 

In SPARK, pointers are excluded, and any other source of aliasing is also excluded. So the 
abstraction of the memory in the form of program variables is meaningful, as different 
variables always denote different objects. This allows the array copy procedure to have a 
much simpler specification than in Frama-C: 

  ​procedure​​ Copy (A : ​in​​ Array_Type; B : ​out​​ Array_Type) 
   ​with​​ Pre  => A’Length = B’Length, 
        Post => A = B; 

In actuality, the language features of SPARK make copying arrays so simple that one would 
not write a function for it. But this example illustrates clearly the main differences in the 
memory models of Frama-C and SPARK. On the one hand, Frama-C allows the analysis of 
programs which manipulate pointers, which SPARK does not allow. On the other hand, the 
associated complexity makes reasoning about simple code such as basic array 
manipulations much more difficult than it needs to be. 

4.2.3 ​​The Annotation Language 

Although the annotation languages of Frama-C and SPARK have many similarities, there 
are also many differences. 

4.2.3.1 Syntax 

Syntactically, Frama-C annotations are specially marked comments, namely comments that 
start with “​/*@”​. SPARK contracts take the form of Ada 2012 ​aspects​, a language feature for 
attaching extra information to declared entities. The important aspects ​Pre​ and ​Post​ are 
defined by the Ada 2012 language standard. 
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The advantage of using comments is that the compiler completely ignores them, so any 
compiler can be used. Using Ada 2012 aspects instead of comments for annotations 
requires that an Ada 2012 compiler be used for compiling SPARK programs. 

Writing annotations is an additional effort programmers have to provide, and they will be 
more motivated to do so if many if not all tools of the development process support 
annotations. From a purely technical point of view, there is no reason why annotations in 
comments should be less supported than annotations that are part of the language. 
However, tool developers see it as their obligation to support all language-defined features, 
while they see other things (e.g. parsing comments) as an extra effort. As a result, many 
tools such as code-browsing and refactoring tools read and modify the SPARK contracts. 
The Ada compiler itself can insert assertions for the pre- and postconditions, unit testing 
tools also use the pre- and postconditions as oracles and to better interpret test failures. On 
the other hand, to our knowledge, no other tool reads Frama-C annotations. 

4.2.3.2 Semantics 

The actual assertions, pre- and postconditions in Frama-C, are written in a language that is 
called ACSL (ANSI/ISO C Specification Language) [12, 13]. ACSL expressions are similar to 
C expressions, and all the common operators such as arithmetic and pointer operations are 
present. But there are many subtle differences: 

● Integers in ACSL are mathematical integers and floating point values are real 
variables of infinite precision; 

● Regular C functions can not be called inside ACSL expressions; instead extra 
so-called logic functions must be defined. 

Overall, programmers are faced with two different languages, the programming language C 
and the annotation language ACSL. 

In contrast, in SPARK, pre- and postconditions are just boolean expressions: any boolean 
expression which is allowed in a SPARK program is also allowed in a SPARK contract and 
has the same meaning. This has been a very important choice early on in the design of the 
SPARK language and makes the SPARK language easier to learn than other formal 
methods. 

4.2.3.3 Executable Contracts 

A very important benefit of SPARK contracts is that they are executable. If the programmer 
desires (for example for testing), SPARK pre- and postconditions can be checked during the 
execution of the program; a runtime error is raised when a pre- or postcondition is False. In 
such a situation, it is immediately clear there is a problem either in the code or in the 
specification (contract) of the function. Thus contracts are not only useful for formal 
verification of the SPARK program, but they also increase the usefulness of testing. 

Executable contracts also are a possible solution for another problem, namely proved code 
with code that has not been proved. For example, one can annotate a code module with a 
precondition and prove that, if it is called when the precondition is true, then no run-time 
error occurs within the subprogram. But what happens if the code module is called, but the 
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precondition is False? Of course this cannot happen in code that has itself been proved, but 
it can happen otherwise. 

One classical solution, which is also used when no formal verification is applied, is called 
defensive code​. Instead of (or in addition to) writing the precondition, code can be added at 
the beginning of the code module which checks the values of parameters and global 
variables, for example like this: 

/*@ 

requires b != 0; 

*/ 

int divide (int a, int b) { 

   if (b == 0) { 

     // do some action here to abort the program or report an error 

   } 

   return a / b; 

} 

Such code is useful even if the function is proved, because other, unproved functions may 
call it incorrectly with the parameter ​b​ set to ​0​. So there are situations where such defensive 
code would echo the Frama-C precondition. 

In SPARK, the precondition is executable and can act as the defensive code directly: 

function​​ Divide (A, B : Integer) ​return​​ Integer 
  with Pre => B /= 0 

is begin 

  ​return​​ A / B; 
end ​​Divide; 

If compiled with the appropriate compiler switch, the precondition is compiled into an 
assertion, and the resulting program has the same effect as the defensive code in the C 
program. 

More recently [14], (part of) the ACSL specification language has been made executable, 
this is called E-ACSL (for executable ACSL). It requires generating new C-files, which 
contain extra code for the executable contracts. While E-ACSL provides many of the benefits 
of executable contracts, some often used parts of ACSL are not part of E-ACSL, making this 
feature less used in Frama-C than it is in SPARK. 

4.2.3.4 Mathematical specifications 

SPARK’s focus on executable contracts makes it less suitable for tasks when mathematical, 
inherently non-executable data or concepts are required. This includes mathematical 
(unbounded) integers, real (infinite precision) numbers, and some concepts that users could 
axiomatize (in SPARK one is generally required to provide an implementation for any helper 
function). 

Therefore, SPARK does not provide mathematical integers or reals, but Frama-C does. 
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4.2.3.5 Advanced annotations 

SPARK provides some features in the annotation language that are not present in Frama-C: 

● Subtype predicates allow to specify extra constraints on objects of a type. The 
SPARK tools will check that these constraints are verified at all time. This is useful for 
validity constraints on data. 

● Type invariants allow a package to maintain some data invariant, while allowing the 
package to break the invariant temporarily. This is useful for internal properties that 
some package must maintain, that are usually not important to the outside of the 
package. 

4.2.3 Library support 

In both Frama-C and SPARK, a wide range of libraries can be used via the underlying 
programming languages Ada and C. However, if the libraries are not annotated, one cannot 
generally prove code that uses these libraries. Both in SPARK and Frama-C, few annotated 
libraries exist. 

In Frama-C, part of the C standard library is available in annotated form to be used in 
Frama-C programs. 

In SPARK, an extra lemma library is provided which helps with common properties that are 
difficult to prove without such a library. 

4.2.4 The SPARK and Frama-C tools 

The previous discussion focussed on the comparison of the ACSL language with the SPARK 
language. Another axis of comparison is the tool support for these languages, the features 
and ease of use of the tools. 

Both tools are open source, and both tools are commercially available. Both tools have 
roughly the same structure and way of working when it comes to proof of program 
properties. There are some differences though: 

● SPARK can unroll loops with a small number of loop iterations, and inline calls to 
local subprograms to simplify annotation of programs; 

● SPARK can generate some parts of loop invariants (the most difficult to master form 
of annotations, which exists in both Frama-C and SPARK); this greatly helps handling 
of data in loops; 

● SPARK can show counterexamples for every failed proof, which helps understand 
why a property is not correct, or why the tool failed to prove it; 

● SPARK is very well-integrated into the AdaCore development environment GPS. 
● Frama-C is provided in source form. The user has to compile Frama-C, and install 

supporting tools such as the automated provers Z3 and CVC4, and the Why3 library. 
This differs from the SPARK tools, that are provided as a complete binary package, 
ready to be installed on Linux, Windows and MacOS, containing all the tools that are 
needed. 
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4.3 Comparison Summary 

SPARK and Frama-C are similar tools for their respective languages. However, the SPARK 
language brings a number of benefits: 

● SPARK contracts are part of the standard Ada 2012 language. There is no need for 
programmers to learn a separate notation and syntactic errors will be detected by the 
compiler. Frama-C annotations are a different language that must be learned. Since 
they are simply comments, errors are only detected by the Frama-C analyzer. 

● SPARK contracts for functional correctness are just assertions and can be executed 
and tested. Thus they can be used by testing tools, not only during static analysis. 

● SPARK does not have pointers and it imposes other restrictions which make writing 
contracts much simpler. In particular, two variables can always be considered to 
denote distinct objects. In Frama-C, one has to explicitly state that two pointers do 
not point to overlapping memory regions. This makes its annotations rather heavy. 

The following table summarizes the comparison between the two technologies: 

 

 Frama-C SPARK 

Pre/Postconditions? Yes Yes 

Global annotations? Yes Yes 

Pointers? Yes No 

Aliasing excluded? No Yes 

Precise subtypes? No Yes 

Executable annotations? Via E-ACSL Yes 

Unbounded integers, reals Yes No 

Specification language 
same as programming 
language? 

 

No 

 

Yes 

Ghost code? Yes Yes 
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5 Conclusions 
This paper compared the SPARK and MISRA C languages with respect to support for 
high-assurance software development and also compared the SPARK verification 
technology with Frama-C. In summary, SPARK provides a variety of benefits over MISRA-C, 
in part because Ada was designed from the start to support good software engineering 
principles whereas “safe” C subsets such as MISRA C are an ​a posteriori​ attempt to work 
around deficiencies that are intrinsic to C. Further, the concept of compliance with MISRA C 
is not well defined, since some of the rules are unenforceable, while the SPARK restrictions 
in terms of Ada features are well-defined and easily checked. 

Notwithstanding the methodological issues with C and MISRA C, the use of C in critical 
embedded systems has motivated the development of technologies for formal analysis and 
proofs of correctness of C programs, most notably Frama-C. Again, we feel that the SPARK 
technology is the more appropriate choice in practice: it does not require a special 
annotation language, it supports contracts that can be checked either statically or at 
run-time, and the SPARK restrictions (in particular the absence of pointers) eliminate the 
possibility of aliasing and make the verification process much simpler than with Frama-C. 
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