
178   

Volume 28, Number 3,  September 2007 Ada User  Journal 

Towards Certification of Object-Oriented Code with 

the GNAT Compiler 

Javier Miranda 

Instituto Universitario de Microelectrónica Aplicada. Universidad de Las Palmas de Gran Canaria, Canary 
Islands, Spain; email: jmiranda@iuma.ulpgc.es 

Courant Institute: Computer Science Department. New York University. 251 Mercer Street, NY 10012. 

AdaCore. 104 Fifh Avenue, 15th floor. New York, NY 10011. 

 

Abstract 

Dynamic binding, the ability to link at runtime a 
method call with a subprogram that depends on the 
class of the object, is strongly discouraged by current 
standards for avionics airborne systems. This is partly 
due to dynamic dispatching, the technique commonly 
used by most OO compilers to implement dynamic 
binding. In this paper we present some enhancements 
to the GNAT technology that will help the avionic 
industry take advantage of the full benefits of the OO 
techniques with Ada without the inconveniences 
associated with dynamic dispatching. 

Keywords: Dynamic dispatching, Airborne Systems, 
High-Integrity, Ada 2005, Tagged Types, Abstract 
Interface Types, GNAT. 

1   Introduction 

Reliable software construction has evolved considerably in 
the last two decades. There is currently a trend towards the 
use of Object Oriented Techniques (OOT) in the 
construction of High-Integrity Software Systems, such as 
avionics airborne systems. In this domain, one of the 
objectives of the forthcoming revision of the DO-178B 
standard [9] is to address the use of OOT and their 
associated development processes in the avionics industry. 
A preliminary document of the future DO-178C [3] 
provides a comprehensive analysis on the safety concerns 
associated with OO techniques in the context of DO-178B. 

Since the emergence of the DO-178B standard, Ada [11] 
has been one of the few languages of choice for the 
construction of airborne systems, thanks to its clear 
semantic definition and strong typing model. It has been 
used successfully in many major aeronautics projects 
(Boeing 777, A340, and more recently Boeing 787, A380 
and A400M). In recent years Ada has evolved to fulfill the 
requirements of modern software industry incorporating 
object-oriented features into its original type model. The 
Ada 95 standard added to Ada tagged types, single 
inheritance, polymorphism, and dynamic dispatching. The 
latest revision of the language, known as Ada 2005, adds 
multiple inheritance of abstract interface types and 
numerous other object-oriented programming idioms. 

 

A crucial element of Object Oriented Programming (OOP) 
is dynamic binding, that is the ability to link at runtime a 
method call with a subprogram based on the class of the 
object on which the method is invoked. In their current 
form, DO-178B is wary of dynamic binding: its use is not 
formally banned, but it is strongly discouraged by DO-
248B [10, FAQ 34]. This is partly due to dynamic 

dispatching, the technique used to implement dynamic 
binding in most compiled OO languages.  Although 
solutions to these issues are emerging, they are not yet fully 
established. 

In this paper we present several ongoing research projects 
whose main purpose is to facilitate the certification of OO 
code written in Ada with the GNAT compiler. In Section 2 
we summarize inheritance and polymorphism concepts and 
their common implementation by means of dispatching 
tables. In Section 3 we describe the main problems of 
dynamic dispatching in the context of safety and security 
systems.  In Section 4 we present four enhancement 
projects of the GNAT technology that will help to certify 
OO Ada code for High-Integrity systems. We close with 
some conclusions and the bibliography. 

2 Inheritance and Polymorphism in Ada 

Inheritance was originally viewed as a mechanism for 
sharing code and data definitions. Multiple inheritance was 
viewed as a mechanism for constructing a subclass 
implementation from multiple superclass implementations. 
As understanding of OO modeling has matured, however, 
the focus has increasingly been on the specification of 
interfaces and the specification of interfaces as contracts 
between clients and implementers. Multiple inheritance is 
currently used primarily as a means of classifying entities 
that logically belong to more than a single category. As a 
result, languages such as Java [5] and Ada 2005 [11] only 
support multiple inheritance of interfaces and rely on 
delegation to achieve the effects of multiple 
implementation inheritance. 

In the context of High-Integrity Systems, the general OO 
avionics guidance [3, Section 3.4] makes a strong 
distinction between multiple inheritance of specifications 
and multiple inheritance of implementations as provided by 
C++, and recommends use of multiple implementation 
inheritance only for level D software. (The DO-178B 



J.  Miranda 179  

Ada User Journal  Volume 28, Number 3,  September  2007 

standard defines five levels of safety-criticality, ranging 
from Level A at the most critical, to Level E at the least 
critical; the top three safety levels are of particular interest 
to Ada developers.) 

Polymorphism permits instances of a subclass to be 
assigned to variables of a superclass, and it is used to 
specify generic algorithms that are common to a given 
hierarchy of classes. In this context, dynamic binding 
ensures that the method executed by a call to a polymorphic 
object is that associated with the object's run time type. 
Conceptually, at run-time there is a single dispatch routine 
containing a pair of nested case statements [3, Section 
3.3.2]: 

case <Object'Run-Time-Type> is 
     ... 

     when <Class-N> => 

        case <Method'Signature> is 

           ... 

           when <Method-N> => 

              call <Method-N> defined by <Class-N> 

         end case 

end case 

In practice, dynamic binding is typically implemented 
using Dispatch Tables, which introduce a small and fixed 
overhead (cf. Figure 1). Each object instance has a hidden 
component (the Vtable pointer in C++ and Java, or the Tag 
in Ada) that references a dispatch table with the run-time 
type's method signatures. (For efficiency reasons the 
method signature is generally the address of the target 
method.) At the point of a dispatching call the compiler 
generates code that uses this hidden component to (1) get 
the dispatch table associated with the object, (2) index it by 
a number associated with the method signature (a constant 
known at compile time), and (3) make an indirect 
invocation of the target method. 

Figure 1   Object Layout 

In Ada, subprograms declared together with a tagged type 
in the same package and having at least one parameter (or 
result) of the tagged type are called primitive operations of 
the type. A call to such an operation is not necessarily 
dispatching however. The call will only dispatch when 
invoked with an actual parameter whose type is the class-
wide type of the associated type class (T'Class denotes the 
entire set of types in the class of T). This flexibility can be 
used to limit the number of dispatching calls, thereby 
limiting their associated certification cost. Prevention of 
dispatching can be also enforced by the use of pragma 

Restrictions (No_Dispatch). 

This flexibility is not available in Java where all operation 
invocations are dispatching (unless a routine is declared as 

final, which allows the compiler to perform various 
optimizations knowing the primitive cannot be overridden). 
It is available in C++, but at the cost of forcing the 
programmer to indicate whether an operation itself (not a 
specific call) is virtual. A virtual operation will potentially 
always dispatch while a non-virtual one will never 
dispatch. C++ compilers are allowed to optimize 
dispatching calls into regular calls when the context 
permits, but this is not under the control of the developer. 

3 Problems with Dynamic Dispatching in 
High-Integrity Systems 

Dynamic dispatching has several safety and security 
problems, namely: 

• Initialization: how can we prove that dispatch 
tables and Tag fields are initialized correctly? 

• Modification: how can we prove that dispatch 
table and Tag values are not updated maliciously 
or unintentionally during the execution of a 
program? 

• Tools: being dynamic dispatching invisible at the 
source level, how can we use source-based tools in 
the presence of dynamic dispatching for code 
coverage? 

Demonstrating correct dispatch-table initialization at 
object-level is akin to the problem of showing that the 
linker produces a correct executable from the object files it 
links.  This problem is part of the control coupling 
objective in DO-178B parlance and is addressed by either 
verifying the correctness of the final result by hand of by 
employing a qualified tool that performs such verification 
[12]. 

If one can ROM dispatch tables or place them in OS-
guarded read-only memory the need to verify that dispatch 
tables are unchanged during a program's execution 
disappears. Unfortunately, an object's Tag field cannot 
typically be placed into read-only memory and the costs of 
demonstrating at object-code level that these fields are 
unchanged during a program's execution remain. Such 
modifications could occur because of a rogue pointer or 
buffer overflow in assembly or C/C++ code that may be 
part of the application or by other accidental or malicious 
means. 

In the following section we present several enhancement 
projects that will help to workaround these problems with 
the GNAT technology. 

4 Towards certification of dispatching calls 
with the GNAT compiler 

In order to certify dispatching calls in High-Integrity 
Software the following concerns of the general OO 
avionics guidance must be answered by the compiler [3]: 

• Stack Analysis: ``Stack overflow errors are listed 
in section 6.4.3f of DO-178B as errors that are 
typically found in requirements-based hardware-
software integration testing. Timing and stack 



180  Towards Cert i f icat ion of  Object-Or iented Code with the GNAT Compi ler  

Volume 28, Number 3,  September 2007 Ada User  Journal 

analysis are complicated by certain implementa-
tions of dynamic dispatch. If polymorphism and 
dynamic binding are implemented, stack size can 
grow, making analysis of the optimal stack size 
difficult'' [3, Section 2.3.3.1.3]. 

• Object Code Traceability: ``Everywhere 
concerns about source code to object code 
traceability and timing analysis dictate, the 
compiler vendor may be asked to provide 
evidence of deterministic, bounded mapping of the 
dispatched call. If the evidence is not available 
from the compiler vendor, it may be necessary to 
examine the structure of the compiler-generated 
code and data structures (e.g., method tables) at 
the point of call''  [3, Section 3.3.4.3]. 

• Structural Coverage: ``Many current Structural 
Coverage Analysis tools do not ``understand'' 
dynamic dispatch, i.e.  do not treat it as equivalent 
to a call to a dispatch routine containing a case 
statement that selects between alternative methods 
based on the run-time type of the object. (IL 55)'' 
[3, Section 2.3.3.1.2]. 

In this section we present several ongoing enhancements to 
the GNAT technology that will help to solve these 
problems. The concern of stack-analysis has been already 
addressed by GNAT with the gnatstack tool (work 
described in a separate paper [1]). In the following sections 
we present three additional enhancement projects: in 
Section 4.1 we present the visualization of the dispatch 
tables at the source level; in Section 4.2 we present the 
static allocation of dispatch tables. These projects are 
currently at their final stage. Finally in Section 4.3 we 
present a new project that expands dispatching calls into 
case statements. 

4.1 Dispatch Table Visualization 

The first enhancement of the GNAT technology addresses 
the correct initialization of the dispatch table. The compiler 
has being improved to leave the initialization of the 
dispatch tables visible at source level and hence to support 
the DO-178B traceability requirement. Using a switch the 
compiler currently generates Ada-like code that allows to 
see the expansion performed by the frontend. As part of 
this project, the output associated with the construction of 
dispatch tables has been improved to facilitate the use of 
source-based tools based on static control flow to verify 
their correct initialization. Such Ada-like code can be also 
visualized during debugging using another compiler switch. 
Let us consider the following Ada 2005 example to present 
this new output: 

package Iface is 

    type Writable is interface; 

    procedure Read 

   (Obj : Writable; Data : out Integer) is abstract; 

    procedure Write  

(Obj : Writable; Data : in Integer)  is abstract; 

end Iface; 

Package Iface contains the declaration of the abstract 
interface type Writable that has two abstract primitives: 
Read and Write. 

with Iface; use Iface; 

package Pkg is 

    type Root is tagged ... ; 

    function Is_Empty (Obj : Root) return Boolean; 

 

    type Derived is new Root and Writable with ...; 

    procedure Read  (Obj : Derived; Data : out Integer); 

    procedure Write (Obj : Derived; Data  : in  Integer); 

end Pkg; 

Package Pkg defines the root of derivation of a tagged type 
in which all descendants have the primitive operation 
Is_Empty. The package also has a derivation of Root that 
acquires the obligation of implementing all the primitives 
of interface Writable. Figure 2 presents the layout of an 
object of type Derived and its GNAT run-time structure. 

Figure 2   GNAT Object Layout 

Each tagged type has one primary dispatch table, associated 
with its main root of derivation, plus one secondary 
dispatch table associated with each progenitor (a progenitor 
is one of the types given in the definition of a derived type 
other than the parent type ---AARM Annex N). In our 
example, each object of type Derived has one primary 
dispatch table plus one secondary dispatch table associated 
with the interface type Writable. Each dispatch table has a 
header containing the offset to the top and the pointer to the 
Run-Time Type Specific Data record (TSD). For a primary 
dispatch table, the Offset_To_Top component is always 
set to 0; for secondary dispatch tables the Offset_To_Top 
component holds the displacement to the top of the object 
from the object component containing the interface tag (in 
the figure the value of this offset is m). After the TSD 
component the dispatch tables have the table of pointers to 
primitive operations. In secondary dispatch tables, rather 
than containing direct pointers to the primitives associated 
with the interfaces, the dispatch table contain pointers to 
small fragments of code called thunks. These thunks are 
used to adjust the pointer to the base of the object during 
interface type conversions. For further information on the 
object layout and the GNAT run-time structures associated 
with interface types read [6, 7, 8]). 



J.  Miranda 181  

Ada User Journal  Volume 28, Number 3,  September  2007 

In order to present the new output associated with the 
construction of the dispatch table of type Derived let us 
compile the above Ada example using switch –gnatD: 

   Derived__ID :        -1- 

      aliased constant string := "PKG.DERIVED";  

 

    Derived__Ifaces :     -2- 

       aliased constant Interface_Data (1) :=  

          (Num_Ifaces    => 1, 

           Ifaces_Tables => (Derived__Writable_Tag)); 

 

     Derived__TSD :       -3- 

       aliased constant Type_Specific_Data (Idepth => 1) := 

          (Idepth             => 1, 

          Access_Level       => 0, 

          Expanded_Name  => Derived__ID'Address, 

          External_Tag  => Derived__ID'Address, 

          HT_Link                  => null, 

          Transportable  => False, 

          RC_Offset   => 0, 

          Interfaces_Table  => Derived_Ifaces'Address, 

          SSD    => null, 

          Tags_Table              => (Derived_Tag, Root_Tag)); 

 

  Derived__Predef_Prims :                   -4- 

    aliased constant Address_Array (1 .. 10) := 

        (1  => Derived__Size'Address, 

          ... 

         10 => Root__DF'Address); 

 

   Derived__DT :                     -5- 

   aliased constant Dispatch_Table (Num_Prims => 3) := 

      (Num_prims => 3, 

       Signature => Primary_DT, 

       Tag_kind          => TK_tagged, 

       Predef_prims => Derived__Predef_Prims'Address, 

       Offset_to_top   => 0, 

       TSD            => Derived__TSD'Address, 

       Prims_Ptr => ( 

          1 => Is_Empty'Address, 

          2 => Read'Address, 

          3 => Write'Address)); 

 

Derived__Tag :       -6- 

   constant Tag := Derived__DT.Prims_Ptr'Address; 

 

Register_Tag (Derived__Tag);      -7- 

 
At -1- we see the declaration of an object containing the 
external tag of Derived; at -2- we find the declaration and 
initialization of a table containing the tags of all the 
interfaces covered by Derived (in this example, just one); at 
-3- we have the Run-Time Type Specific Data record of 
Derived; at -4- we see the dispatch table of its predefined 
primitives; at -5- we see the primary dispatch table 
associated with Derived; at -6- we find the declaration of 
the Tag associated with this primary dispatch table (a copy 
of this tag will be saved in the _Tag component of objects 
of type Derived during their initialization); finally at -7- we 

find the code that registers the tags in the run-time 
(required to support the Internal_Tag service of standard 
Ada package Ada.Tags). For further information on the 
contents of each component see the documentation 
available in the source of a-tags.ads. 

The expansion of dispatching calls makes use of the tag of 
the object and the compile-time known position of the 
target primitive to index the Prims_Ptr element containing 
the pointer to the target primitive. That is, considering the 
following example, in the commented line we see the 
expansion of the dispatching call to Is_Empty. 

      function Dispatch_Test (Obj : Root'Class) 

         return Boolean is 

      begin 

           return Obj.Is_Empty; 

           --  Expanded into: return obj._Tag (1).all (obj); 

      end Dispatch_Test; 

Source-based tools can use this new output to verify the 
correct construction of the dispatch table; they should 
check the subprograms referenced in the aggregates that 
initialize the dispatch table associated with predefined 
primitives (Predef_Prims) and the dispatch table containing 
the user-defined primitives (Prims_Ptr). For this purpose 
the compiler generates unique names for all subprograms 
found in the sources (including overloaded subprograms). 

4.2 Static Allocation of Dispatch Tables 

Another enhancement of the GNAT compiler is the 
improvement of its code generation to statically allocate 
dispatch tables associated with tagged types defined at the 
library level. In order to present it let us see the assembly 
code generated by GNAT when compiling the previous 
example for i86 architectures. For this purpose we compile 
our example using two additional switches (-fverbose-asm 
and -save-temps). The following fragment of assembly 
code corresponds to the declaration and initialization of the 
dispatch table containing the predefined primitives (object 
declaration found at -4- of previous Section): 

    pkg__derived_dt: 

   .long pkg___size__2 

   .long pkg___alignment__2 

   .long pkg__derivedSR 

   .long pkg__derivedSW 

   .long pkg__derivedSI 

   .long pkg__derivedSO 

   .long pkg__Oeq__2 

   .long pkg___assign__2 

   .long pkg__rootDA 

   .long pkg__rootDF 

As the reader can see, the compiler generates external 
symbols for the table entries, rather than relying on the 
generation of run-time code to initialize table entries with 
addresses of code. For certification purposes, this is a major 
improvement in the code generation; previous versions of 
the compiler declare dispatch tables as un-initialized 
objects that are initialized during the elaboration of the 
package by means of additional assignments generated by 



182  Towards Cert i f icat ion of  Object-Or iented Code with the GNAT Compi ler  

Volume 28, Number 3,  September 2007 Ada User  Journal 

the compiler. Combined with GNAT specific pragmas this 
new feature allows placement of dispatch tables in ROM or 
in OS-guarded read-only memory. 

4.3 Transformation of dynamic dispatching call 
into case-statement 

Another concern for certifying OO code in HI software is 
the compiler support for Structural Coverage Analysis 
tools. The DO-178B stablishes three kinds of coverage 
requirements: Level C specifies Statement Coverage, which 
requires every statement in the program to have been 
invoked at least once. Level B specifies Decision 

Coverage, which requires every point of entry and exit in 
the program has been invoked at least once and every 
decision in the program has taken on all possible outcomes 
at least once. Finally, level A requires Modified 

Condition/Decision Condition (MCDC) testing, which 
involves testing all the permutations of conditions 
involving several logic operators. Dynamic dispatch 
complicates flow analysis of coverage requirements 
because reading the sources is it unclear which method in 
the inheritance hierarchy will be called [3, Section 
2.2.3.1.1]. 
 
In order to help certifying Level A software with Ada, we 
are enhancing GNAT to expand dispatching calls into the 
equivalent case statements [2, 4].  The key point of this 
project is the following observation: although during the 
writing of any particular component of the program the 
final set of possible destinations of a dispatching call is 
unknown, this set is well known at link-time (we assume 
that a static linking step produces the executable for a given 
program). Therefore, instead of generating the usual 
transformation for a dispatching call, at the point of the call 
the GNAT compiler will generate the following code: 
 
      R := Obj.Is_Empty; 

      --  Expanded into: Find_Method (Obj, Object.Tag); 

 
The post-processing part of the code transformation is 
performed at bind-time. This involves generating the body 
for routine Find_Method which implements dynamic 
binding with an explicit case statement as shown bellow: 

   procedure Find_Method 

      (Obj : Root'Class; The_Tag : Positive) is 

   begin 

       case The_Tag is 

           when Root'Tag => 

                Root (Object).Is_Empty; 

           when Derived'Tag => 

                Derived (Object).Is_Empty; 

           ... 

        end case; 

   end Find_Method; 

Here the calls are not dispatching since the Object is 
converted to its actual subtype. The set of possible cases is 
complete since such transformation is done over the entire 
program. 

The following implementation model is underway: a 
compiler option prevents the dispatching expansion 
described earlier, and a separate switch forces the binder to 
generate the source code for the case statements. This is 
legal Ada source code, which is therefore fully processable 
by standard tools, including the debugger and certification 
tools. 

5 Conclusions 

Ada is clearly a safe and efficient vehicle to create 
certifiable systems.  It has been used successfully in many 
major aeronautics projects (Boeing 777, A340, and more 
recently Boeing 787, A380 and A400M). In the recent 
years Ada has evolved to fulfill the requirements of modern 
software industry incorporating object-oriented features 
into its original type model. The Ada 95 standard added to 
Ada tagged types, single inheritance, polymorphism, and 
dynamic dispatching. The latest revision of the language, 
informally known as Ada 2005 [11], adds multiple 
inheritance of abstract interface types and numerous other 
object-oriented programming idioms. 

A preliminary version of the incoming DO-178C standard 
for avionics provides a comprehensive analysis on safety 
concerns associated with OO techniques in the context of 
DO-178B. Such document states that dispatching calls (the 
technique commonly used by most compilers for OO 
languages) is clearly unacceptable in this context. In this 
paper we have presented some enhancement projects of the 
GNAT technology that will help the industry to take 
advangage of the full benefits of the OO techniques with 
Ada without the inconveniences associated with dynamic 
dispatching, namely: 

• Dispatch table visualization. Enhancement that 
modifies the compiler to make the initialization of 
the dispatch tables visible at the source level. In 
addition, the code generated by the compiler will 
be also visualized during debugging using another 
compiler switch. This project gives support to DO-
178B traceability requirements. 

• Static allocation of dispatch tables. 
Enhancement that improves the code generation of 
the compiler to allow the static allocation of 
dispatch tables associated with tagged types 
defined at the library level.  This project will allow 
the placement of the dispatch tables in ROM or in 
OS-guarded read-only memory. 

• Translation of dispatching call into case-

statement. Enhancement that modifies the 
compiler to expand dispatching calls into the 
equivalent case statements. This project gives 
support to the structural coverage analysis and 
verification for level A systems as dictated by DO-
178B. 

• Stack analysis tool. This enhancement is already 
finished, and the gnatstack tool is currently part 
of the GNAT Pro toolset [1]. 



J.  Miranda 183  

Ada User Journal  Volume 28, Number 3,  September  2007 

Since the emergence of the DO-178B standard, Ada has 
been one of the few languages of choice for the 
construction of HI systems. We expect that these 
enhancement projects to the GNAT technology will help 
Ada to keep this leadership. 

Acknowledgements 

Most of this work was done during a six-month visit to the 
NYU Courant Institute funded by the Spanish Minister of 
Education and Science under project PR2006-0356.  

I give special thanks to professor Edmond Schonberg for 
his continuous help and support, and Professor Robert 
Dewar not only for the technical discussions but also for his 
hospitality. I also acknowledge the contributions of Cyrille 
Comar, Franco Gasperoni, Richard Kenner, and Eric 
Botcazou that helped me to go ahead with this work. 

References 

[1] E. Botcazou, C. Comar, and O. Hainque (2005), 
Compile-time stack requirements analysis with GCC, 
June, 2005. Available at:  
http://www.adacore.com/2005/06/01/compile-time-stack-
requirements-analysis-with-gcc/ 

[2] C. Comar, R. Dewar, and G. Dismukes (2006), 
Certification & Ob ject Orientation: The  New Ada 

Answer, March, 2006. Available at:  
http://www.adacore.com/2006/03/08/certification-object-

orientation-the-new-ada-answer/ 

[3] FAA (2004), Handbook for Object-Oriented 

Technology in Aviation (OOTiA), October 26, 2004. 
Available at:  
http://www.faa.gov/aircraft/air_cert/design_approvals/air_sof

tware/oot/ 

[4] F. Gasperoni (2006), Safety, Security, and Object-
Oriented Programming, March, 2006. Available at:  

http://www.adacore.com/2006/03/30/safety-security-and-

object-oriented-programming/ 

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha (2000), The 

Java Language Specification, 2nd edition, Addison-

Wesley. 

[6] J. Miranda, E. Schonberg, and G. Dismukes (2005), 
The Implementation of Ada 2005 Interface Types in the 

GNAT Compiler, 10th International Conference on 
Reliable Software Technologies, Ada-Europe 2005, LNCS 

3555, pp. 208–219, Springer-Verlag. 

[7] J. Miranda, Schonberg E., and G. Dismukes (2006), 
Abstract Interface Types in GNAT: Conversions, 

Discriminants, and C++, 11th International 
Conference on Reliable Software Technologies, Ada-

Europe 2006, LNCS 4006, pp. 179–190, Springer-Verlag. 

[8] J. Miranda, Schonberg E., and H. Kirtchev (2005), The 

Implementation of Ada 2005 Synchronized Interfaces 

in the GNAT Compiler, Proceedings of the 2005 
annual ACM SIGAda International Conference on Ada, pp. 

41–48. 

[9] RTCA (1992), Software Consideration in Airborne 

Systems and Equipment Certification, RTCA/DO-178B, 

December, 1992. 

[10] RTCA (2001), Final report for clarification of DO-

178B: Software Consideration in Airborne Systems and 

Equipment Certification, RTCA/DO-248B, October, 2001.  

[11] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Plödereder, P. 
Leroy (eds) (2007), Ada 2005 Reference Manual: 

Language and Standard Libraries International 

Standard ISO/IEC 8652:1995(E) with Technical 

Corrigendum 1 and Ammendment 1, LNCS 4348, 
Springer-Verlag. ISBN: 3-540-69335-1. 

[12] VEROCEL (2006), VerOLink: Verify Object Linking, 
http://www.verocel.com/verolink.htm. 


