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In real life many activities happen in parallel. Human beings do thing in parallel 
with considerable ease. Females seem to do this better than males – perhaps 
because they have to rock the baby while cooking the food and keeping the tiger 
out of the cave. The male typically just  concentrates on one thing at a time such 
as catching that rabbit  for dinner – or trying to find a bigger cave or perhaps 
even inventing a wheel.

Computers traditionally only do one thing at  a time, and the operating system 
makes it  look as if several things are going on in parallel. This is not  quite so 
true these days, since many computers do truly have multiple processors but it 
still does apply to the vast majority of small computers including those used in 
process control.

Operating systems and tasks

Operating systems vary enormously in the amount  of parallel activity that  they 
permit. Operating systems supporting POSIX provide the programmer with 
multiple threads of control. These various threads of control can flow through 
the program quite independently and so support parallel activities.

On some hardware there will only be one processor, which will be allocated 
to the different threads according to some scheduling algorithm. One approach 
is simply to give the processor to each thread in turn for a small amount  of time; 
more sophisticated approaches are to use priorities or deadlines to ensure that 
the processor is used effectively.

Some hardware might  have multiple processors in which case several threads 
can truly be active in parallel. Again a scheduler will allocate the processors in a 
hopefully effective way to the active threads of control.

In a programming language the parallel activities are generally called threads 
or tasks. Here we will use the latter which is the Ada term. Languages take very 
different  approaches to tasking. Some languages have intrinsic facilities for 
tasking built  into the language itself. Others provide simple access to the 
underlying primitives of the operating system. Yet others ignore the subject 
completely.

Ada and Java are languages with intrinsic tasking facilities. C and C++ have 
no built-in support for tasking, so programmers using these languages need to 
rely on third-party libraries and make direct calls to operating system services.

There are at  least  three advantages of having tasking within the language 
itself
▪ Built-in syntactic constructions make it much easier to write correct 

programs because the language can prevent a number of errors from 
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being made. It is essentially the old story about  abstraction. By hiding 
low-level details certain errors are prevented. 

▪ Portability is difficult if operating system facilities are used directly 
because they vary widely from system to system.

▪ General operating systems do not provide the range of timing and 
related facilities needed by many real-time applications.

The operations typically required in a tasking program are
▪ Tasks must be prevented from violating the integrity of data if several 

tasks need access to the data concurrently.
▪ Tasks need to communicate with each other in order to transfer data 

between them.
▪ Tasks need to be controlled in order to meet specific timing 

requirements.
▪ Tasks need to be scheduled in order to use resources efficiently and to 

meet their overall deadlines. 
This chapter will briefly look at  these topics and illustrate how Ada addresses 

them in a reliable manner. This is a design challenge, since programs with 
tasking are much harder to write correctly than ordinary sequential programs. 
But  first we introduce the simple idea of an Ada task and the overall program 
structure.

An Ada program can have many tasks running in parallel. A task is written in 
two parts rather like a package. It has a specification which describes the 
interface it  presents to other tasks and a body which contains the code saying 
what it actually does. In simple cases the specification simply names the task so 
we might have

task A;    -- task specification

task body A is   -- task body
begin
   ...   -- statements saying what the task does
end A;

Sometimes it  is convenient  to have several similar tasks in which case we can 
introduce a task type

task type Worker;

task body Worker is ...

We can then declare several tasks by declaring objects in the usual way
Tom, Dick, Harry: Worker;
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This creates three tasks called Tom, Dick and Harry. We can also declare arrays 
of tasks and have task components inside records and so on. Tasks can be 
declared wherever other objects can be declared such as in a package or in a 
subprogram or even within another task. Not surprisingly, task types are limited 
types, since assigning one task to another is not a meaningful operation.

The main subprogram of a complete program is invoked by the so-called 
environment  task and it is this environment task that  elaborates library 
packages, as described in the chapter on Safe Startup. An overall program with 
library packages A, B and C and main subprogram Main can therefore be 
thought of as 

task Environment_Task;

task body Environment_Task is
   ...  -- declarations of library packages A, B, C 
   ...  -- and main subprogram Main
begin
   ...  -- call of main subprogram Main
end;

A task becomes active simply by being declared. It finishes by reaching the end 
of the task body. An important  rule is that  a local task declared within a 
subprogram or another task must  finish before the enclosing unit  can itself be 
left  and the enclosing unit  will be suspended until the local task terminates. This 
rule prevents dangling references to data that no longer exists.

Protected objects

Suppose that the three tasks Tom, Dick and Harry are using a stack as some sort 
of temporary storage device. From time to time one of them pushes an item onto 
the stack and from time to time one of them (perhaps the same one, perhaps a 
different one) pops an item off the stack. 

The three tasks run in parallel and the runtime system gives the processor to 
each in turn according to some algorithm. Perhaps they each get 10 ms in turn.

Suppose the stack they are using is as declared in the chapter on Safe 
Architecture. Suppose that Harry is calling Push when his time slot expires and 
control then passes to Tom  who calls Pop. To be precise, suppose Harry loses the 
processor just after he has executed the statement to increment Top in

procedure Push(X: Float) is
begin
   Top := Top + 1;  -- Harry loses processor just after this
   A(Top) := X;
end Push;

  Safe concurrency
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At this point Top has been incremented but the new value X has not been 
assigned to the component of the array. When Tom calls Pop, he gets the old and 
possibly meaningless value in the array component that was about  to be 
overwritten by the new value. When Harry gets the processor back (and 
assuming no other stack activity occurs meanwhile) he will write the value X 
into a component of the array that is a part  of the stack that  is not in use. In other 
words the value X is lost.

A worse situation can occur if the processor is switched part  way through a 
statement. Thus Harry might  lose the processor just  after he has picked up Top 
into a register but before he replaces Top with the new value. Suppose Dick now 
comes along and also does a Push thereby adding 1 to the old value of Top. 
When Harry resumes he will replace the value that  Dick computed by the same 
value. In other words the two calls of Push add just 1 to Top rather than 2 as 
expected. 

This unwanted behavior is overcome in Ada by using a protected object  for 
the stack. We write

protected Stack is
   procedure Clear;
   procedure Push(X: in Float);
   procedure Pop(X: out Float);
private
   Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float; 
end Stack;

protected body Stack is

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   procedure Push(X: in Float) is
   begin
      Top := Top + 1;
      A(Top) := X;
   end Push;

   procedure Pop(X: out Float) is
   begin
      X := A(Top);
      Top := Top – 1;
   end Pop;

end Stack;
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Note that  package has been changed to protected, the data which was in the 
body now appears in the private part of this new construct, and for reasons 
explained below the function Pop has been changed into a procedure Pop. 

The three procedures Clear, Push and Pop are called protected operations 
and are invoked in the same way as procedures. Their behavior is that only one 
task can access the operations of the object at  a time. If a task such as Tom 
attempts to call the procedure Pop while Harry is executing Push then Tom  is 
forced to wait  until Harry returns from Push. This is all done automatically with 
no effort  on the part  of the programmer. So any inconsistency problems are 
avoided. 

Behind the scenes the protected object has a lock, and a task attempting to 
access an operation of the object  has to acquire the lock first. If another task 
already has the lock then the first  one has to wait until that other task has 
finished with the protected operation of the object  that it was using and so 
relinquishes the lock. 

We can modify this example to show how we might cope with an attempt to 
push an item on the stack when it is full. In the package formulation this would 
raise Constraint_Error on the attempt to assign the value Max+1 to Top. As it  is 
written the same thing would happen and the lock would be automatically 
relinquished, because the exception terminates the call of the protected 
procedure. 

But  we can do much better. We can modify the protected object to use 
barriers as follows

protected Stack is
   procedure Clear;
   entry Push(X: in Float);
   entry Pop(X: out Float);
private
  Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;
end Stack;

protected body Stack is

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   entry Push(X: in Float) when Top < Max is
   begin
      Top := Top + 1;

  Safe concurrency
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      A(Top) := X;
   end Push;

   entry Pop(X: out Float) when Top > 0 is
   begin
      X := A(Top);
      Top := Top – 1;
   end Pop;

end Stack;

The operations Push and Pop are now entries rather than procedures, and they 
have Boolean barrier expressions such as Top < Max. The effect  of a barrier is to 
prevent the body of the entry from being executed if the barrier is False. Note 
that his does not prevent the entry from being called. All that happens is that  the 
calling task is suspended until the barrier becomes True. So if Harry tries to call 
Push when the stack is full then he has to wait until some other task (Tom or 
Dick) calls Pop and removes the top item. Harry will then automatically proceed. 
The user does not have to program anything special.

Note that  entries, like protected procedures, are also called in the same way 
as normal procedures, thus

Stack.Push(Z);

In summary, the protected object  mechanism provided by Ada gives a structured 
mechanism for arranging mutually-exclusive access to a shared data object. A 
protected object  declares its protected operations (procedures, functions, or 
entries) in the visible part  of its specification, and the protected components in 
its private part. The body of the protected object  contains the implementation of 
the protected operations. A protected procedure and a protected entry have 
"read/write" access to the protected components – that  is, they can reference 
and/or assign to them – whereas a protected function only has read access. This 
restriction enables an optimization whereby multiple tasks may simultaneously 
read a protected object  (through protected function calls) but only one task at  a 
time is allowed to write to it. (This is sometimes called "Concurrent  Read, 
Exclusive Write".) The prohibition against protected functions assigning to 
protected components is why we had to express Pop as a procedure rather than a 
function in the first protected object version of Stack above.

Note also that, just as we can declare a task type as a template for task 
objects, we can likewise declare a protected type as a template for protected 
objects. And like task types, protected types are limited.

It  is instructive to consider how we might program this example using lower 
level primitives. The historic basic primitives are the operations P (acquire) and 
V (release) acting on objects called semaphores. The effect  of P(sem) is to 
acquire the lock associated with sem, if the lock is available, and otherwise to 
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suspend the calling task on a queue associated with sem. The effect of V(sem) is 
to release the lock associated with sem and to awaken one of the tasks (if any) 
suspended on the queue of sem.
The idea is that we put pairs of calls of P and V around the operations for which 
we wish to ensure mutually exclusive access. Thus, using the same Ada syntax, 
Push would become

   procedure Push(X: in Float) is
   begin
      P(Stack_Lock);  -- secure the lock
      Top := Top + 1;
      A(Top) := X;
      V(Stack_Lock);  -- release the lock
   end Push;

with similar pairs of calls around the body of Clear and Pop. This is essentially 
a Do-It-Yourself operation or assembly type coding for tasking. The 
opportunities for errors are many
▪ We might omit one of a P and V pair thus creating an imbalance.
▪ We might forget  them altogether around one group of statements that 

should be protected. 
▪ We might use the wrong semaphore name.
▪ We might inadvertently bypass a closing V. 

The last problem would arise if, in the model without  barriers, Push was 
called when the stack was full. This causes Constraint_Error to be raised. If we 
omit to provide a local exception handler to call V then the system will be 
permanently locked. 

None of these difficulties can arise when using Ada protected objects because 
all this low-level mechanism is done automatically. Although, with care, 
semaphores can be used successfully in simple situations, it  is very difficult to 
use them correctly in more complicated situations such as the example with 
barriers. Not  only is it difficult to program correctly with semaphores but it  is 
extremely difficult to prove that a program is correct.

Those familiar with Java will appreciate that the mechanisms of synchronized 
operations and wait/notify are rather low-level and error-prone. The programmer 
must be aware of the details of thread notification, which are handled 
automatically by Ada protected objects.

  Safe concurrency
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The rendezvous

The other important  communication requirement between tasks is for one task to 
convey information (data) to another. This is done in Ada with a mechanism 
known as a rendezvous. The two tasks that communicate have a client–server 
relationship. The client that requests some service needs to know the identity of 
the server task, but  the server task who provides it  will accept a request  from 
any client. 

The general pattern of the server is
task Server is
   entry Some_Service(Formal: in out Data);
end;

task body Server is
begin
   ...
   accept Some_Service(Formal: in out Data) is
      ...  -- statements providing the service
   end Some_Service;
   ...
end Server;

The specification of the server indicates that it has an entry Some_Service. This 
is called by a client task in the same way as calling an entry of a protected 
object. The difference is that  the code to be obeyed is given by an accept 
statement and that is only executed when the server task reaches the accept 
statement. Until that happens the calling task is suspended. When the server 
reaches the accept statement, it executes it using any parameters supplied by the 
client. The client remains suspended until the accept  statement  is finished and 
after any out or in out parameters have been updated.

The body of a client might look like
task body Client is
   Actual: Data;
begin
   ...
   Server.Some_Service(Actual);
   ...
end Client;

Each entry has an associated queue. If a task calls an entry of a server and the 
server is not  waiting at an accept statement for that  entry, then the caller is 
queued. On the other hand, if the server reaches an accept statement and there 
are no tasks waiting on the associated entry queue, then the server is suspended. 
An accept statement  can appear anywhere, for example within a branch of a 
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conditional (if) statement, or within a loop, and so the mechanism is very 
flexible.

The rendezvous is a high level abstract  mechanism (like the protected object) 
and as such is relatively easy to use correctly. The corresponding queuing 
mechanisms programmed at a low level are hard to write correctly.

Here is an example of how the rendezvous can be used to enable a service to 
be provided without the client  waiting. The idea is that  the client  gives the 
server an entry to be called when a job is done. First we declare a mailbox type

task type Mailbox is
   entry Deposit(X: in Item);
   entry Collect(X: out Item);
end;

task body Mailbox is
   Local: Item;
begin
   accept Deposit(X: in Item) do
      Local := X;
   end;
   accept Collect(X: out Item) do
      X := Local;
   end;
end Mailbox;

A task of this type acts as a simple mailbox. An item can be deposited and 
collected later. The client  passes the identity of a mailbox to the server so that 
the server can deposit  the item in the mailbox from which the user can collect it 
later. We need an access type

type Mailbox_Ref is access Mailbox;

The tasks Server and Client now take the following form
task Server is
   entry Request(Ref: Mailbox_Ref; X: Item);
end;

task body Server is
   Reply: Mailbox_Ref;
   Job: Item;
begin
   loop
      accept Request(Ref: Mailbox_Ref; X: Item) do
         Reply := Ref;
         Job := X;
      end;

  Safe concurrency
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      ...   -- work on job
      Reply.Deposit(Job);
   end loop;
end Server;

task Client;

task body Client is
   My_Box: Mailbox_Ref := new Mailbox;      -- create mailbox task
   My_Item: Item;
begin
   Server.Request(My_Box, My_Item);
   ...   -- do something whilst waiting
   My_Box.Collect(My_Item);
end Client;

In practice the client might poll the mailbox from time to time to see if the item 
is ready. This is easily done using a conditional entry call which takes the form

select
   My_Box.Collect(My_Item);
   -- item collected successfully
else
   -- not ready yet
end select;

It  is important  to realize that  the mailbox agent  task serves several purposes. It 
decouples the deposit  and collect operations so that the server can get on with 
the next job. Moreover, it means that  the server need know nothing about  the 
client; calling the client  directly would require the client to be of a particular 
task type and this would be most impractical. The mailbox agent task enables us 
to factor out the only property required of the client, namely the existence of the 
entry Deposit.

Restrictions

The pragma Restrictions which can be used to ensure that we do not use certain 
features of the language in a particular program was mentioned in the chapters 
on Safe Object-Oriented Programming and Safe Memory Management.

Many of the restrictions in Ada 2005 relate to tasking. The tasking features in 
Ada are very comprehensive and provide a whole range of facilities necessary to 
meet the programming needs of a variety of real-time applications. But  some 
applications are quite simple and do not need many of these facilities. Here are 
some samples of the sort of restrictions that can be applied.
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No_Task_Hierarchy
No_Task_Termination
Max_Entry_Queue_Length => n

The restriction No_Task_Hierarchy prevents tasks from being declared inside 
other tasks or inside subprograms – all tasks are therefore inside library-level 
packages. No_Task_Termination means that all tasks run for ever – this is 
common in many control applications where each task essentially has an endless 
loop doing some repetitive action. And the restriction on entry queues places a 
limit on the number of tasks that can be queued on a single entry at any time.

The advantage of giving appropriate restrictions are twofold
▪ It  might  enable a somewhat  simpler runtime system to be used. This 

could be smaller and faster and thus more appropriate for some time- 
and space-critical embedded applications.

▪ It  might enable various properties of the application to be proved 
correct, concerning matters such as determinism, absence of deadlock, 
and ability to meet deadlines. This might be vital for certain safety-
critical applications.

There are many other tasking restrictions and most  of these concern tasking 
facilities that we have not described.

Ravenscar

A particularly important  group of restrictions is imposed by the Ravenscar 
profile. In order to ensure that a program conforms to this profile we write

pragma Profile(Ravenscar);

in the program. Use of any of the excluded features (summarized below) would 
then cause a compile-time error.

The key purpose of the Ravenscar profile is to restrict the use of tasking 
facilities so that the effect  of the program is predictable. (The profile was 
defined by the International Real-Time Ada Workshops which met twice at the 
remote village of Ravenscar on the coast of Yorkshire in North-East England.)

The profile is simply defined to be equivalent to a number of restrictions plus 
a few other related pragmas concerning matters such as scheduling. The 
restrictions include those mentioned earlier so there are no task hierarchies, all 
tasks run for ever, and entry queues have a limit size of one (that is, there can be 
only one task blocked at a time on a given entry).

  Safe concurrency

 



100

The combined effect  of the restrictions is that  it  is possible to make 
statements about the ability of a particular program to meet  stringent 
requirements for the purposes of certification.

No other programming language offers the reliability of Ada as constrained 
by the Ravenscar profile. A description of the principles and use of the profile in 
high integrity systems will be found in an ISO/IEC Technical Report [3].

Timing and scheduling

No survey of Ada tasking, however brief, would be complete without a few 
words about timing and scheduling.

There are statements to enable a program to be synchronized with a clock. 
We can delay a program for a specific amount of time (this is referred to as a 
relative delay) or until a specific time thus

delay 2*Minutes;
delay until Next_Time;

assuming suitable declarations for Minutes and for Next_Time. Small relative 
delays might be useful for interactive use, whereas a delay until a particular time 
can be used to program periodic events. Time itself can be measured either by a 
real-time clock (which is guaranteed to have a certain accuracy) or by the local 
wall clock which might  be subjected to changes such as occur because of 
Daylight Savings. In Ada, it  is even possible to take account  of time zones and 
leap seconds.

Ada also provides a number of standard timers whose expiry can be used to 
trigger actions defined by a protected procedure (a handler). There are three 
kinds of timers, one enables the monitoring of the CPU time used by an 
individual task, one concerns the CPU budget for a group of tasks, and the third 
concerns time as measured by the real-time clock. The handler is attached to a 
timing event by a call of a procedure such as Set_Handler.

This is illustrated by the following amusing example concerning the boiling 
of an egg. We declare a protected object Egg thus

protected Egg is
   procedure Boil(For_Time: in Time_Span);
private
   procedure Is_Done(Event: in out Timing_Event);
   Egg_Done: Timing_Event;
end Egg;

protected body Egg is
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   procedure Boil(For_Time: in Time_Span) is
   begin
      Put_Egg_In_Water;
      Set_Handler(Egg_Done, For_Time, Is_Done'Access);
   end Boil;

   procedure Is_Done(Event: in out Timing_Event) is
   begin
      Ring_The_Pinger;
   end Is_Done;

end Egg;

The consumer can then write
Egg.Boil(Minutes(4));
-- now read newspaper whilst waiting for egg

and the pinger will ring when the egg is ready.
A number of different  scheduling policies are provided in Ada 2005. These 

can be applied to all tasks in a program or just to those in certain priority ranges 
by the use of pragmas. The policies are
FIFO_Within_Priorities – Within each priority level to which it applies tasks are 

dealt with on a first-in–first-out  basis. Moreover, a task may preempt  a 
task of a lower priority.

Non_Preemptive_FIFO_Within_Priorities  – Within each priority level to which it 
applies tasks run to completion or until they are blocked or execute a 
delay statement. A task cannot be preempted by one of higher priority. 
This sort of policy is widely used in high integrity applications.

Round_Robin_Within_Priorities  – Within each priority level to which it applies 
tasks are timesliced with an interval that  can be specified. This is a very 
traditional policy widely used since the earliest days of concurrent 
programming.

EDF_Across_Priorities – This provides Earliest  Deadline First  dispatching. The 
general idea is that within a range of priority levels, each task has a 
deadline and that with the earliest  deadline is processed. This is a new 
policy and has mathematically provable advantages with respect  to 
processor utilization.

Ada also has comprehensive facilities concerning the setting and changing of 
task priorities and the so-called ceiling priorities of protected objects. These 
avoid problems of priority inversion as described in [4].
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