
Safe and Secure Software
Ada 2005An Invitation to

Safe Communication
9

Courtesy of

The GNAT Pro Company
John Barnes

81

A program that doesn't communicate with the outside world in some way is
useless although very safe. Such a program might almost be in solitary
confinement. A prisoner in solitary confinement is safe in the sense that he
cannot hurt other people but he is equally of no use to society either.

So for a program to be useful it must communicate. And if the program is
written in a safe way so that it does not have internal dangers, it is largely futile
if its communication with the world is unsafe. So safety in communication is
important since it is here that the program truly has a useful effect.

It is perhaps worth recalling from the introduction that we characterized the
difference between safety-critical and security-critical systems as that the former
is where the program must not harm the world whereas the latter is where the
world must not harm the program. So communication is the ultimate lynchpin of
both safety and security.

Representation of data

An important aspect of communication concerns the mapping between the
abstract software and the actual hardware. Most languages leave this sort of
thing to individual implementations. But Ada gives the user quite specific
control over many aspects of data representation.

For example we might decide that we want data in a record to be laid out in a
particular manner – perhaps to match that of an existing file structure. Suppose
the record is the type Key in the chapter on Safe Object Construction

type Key is limited
 record
 Issued: Date;
 Code: Integer;
 end record;

where the type Date is
type Date is
 record
 Day: Integer range 1 .. 31;
 Month: Integer range 1 .. 12;
 Year: Integer;
 end record;

We will assume that we are using a 32-bit machine with four bytes to a word.
The day and month easily fit into one byte each and the year needs at most 16
bits so the whole date can be neatly packed into a single word. We can express
this by

82

for Date use
 record
 Day at 0 range 0 .. 7;
 Month at 1 range 0 .. 7;
 Year at 2 range 0 .. 15;
 end record;

In the case of the type Key, the required structure is simply two words and
almost inevitably the implementation will use the representation we require. But
we can ensure this by writing

for Key use
 record
 Issued at 0 range 0 .. 31;
 Code at 1 range 0 .. 31;
 end record;

As another example consider the type Signal of the chapter on Safe Typing. It
was

type Signal is (Danger, Caution, Clear);

Unless we say otherwise, the compiler will encode this type using 0 for Danger,
1 for Caution and 2 for Clear. But in a real application the value of the signal
might enter the program encoded as 1 for Danger, 2 for Caution and 4 for Clear.
We can instruct the program to use this encoding by writing

for Signal use (Danger => 1, Caution => 2, Clear => 4);

Furthermore, if the value of The_Signal is autonomously loaded into the
program at a particular hardware location as a single byte then we can direct the
compiler to ensure that the type is indeed held as such and that the variable is
located appropriately by for example

for Signal'Size use 8;

for The_Signal'Address use 16#0ACE#;

The latter locates the variable at the hexadecimal address 0ACE.

Validity of data

An important part of all programming is to ensure that data received from the
outside world is valid. In most case we can simply program various checks
using normal programming techniques. But sometimes this is awkward.

The type Signal is a case in point. We have instructed the compiler to hold the
value as an enumeration type with a certain representation. If by some

Safe and Secure Software: An invitation to Ada 2005

83

misfortune a value turns up which does not have a recognized pattern (perhaps
two bits are set because of a transient in the external device) then we cannot
express a test of that in the normal way because that would take us outside the
domain of definition of the type Signal. Instead we can write

if not The_Signal'Valid then ...

Another approach is to use Unchecked_Conversion. We can read the value in,
perhaps as a byte, check it and then if it is acceptable, convert it to the type
Signal. First we need the type Byte and the conversion routine

type Byte is range 0 .. 255;
for Byte'Size use 8;

function Byte_To_Signal is new Unchecked_Conversion(Byte, Signal);

and then
Raw_Signal: Byte;
for Raw_Signal'Address use 16#0ACE#;
The_Signal: Signal;
...
case Raw_Signal is
 when 1 | 2 | 4 =>
 -- raw value OK, convert it
 The_Signal := Byte_To_Signal(Raw_Signal);
 ... -- process valid value
 when others =>
 ... -- raw value invalid
 ... -- take corrective action
end case;

The idea of course is that since the type Byte is simply an integer type we can do
normal arithmetic on the value in order to check it. The corrective action might
include logging the particular invalid value and so on.

The reader should note a flaw in the above if the value truly is loaded
autonomously. Between checking and the conversion, a new value might arrive.
So it should be copied into a local variable before being tested and processed.

Communication with other languages

Many modern large systems are written in a mixture of languages each
appropriate to the part of the system concerned. The safety-critical control
routines and security-critical input routines might be written in Ada (perhaps in
SPARK), the GUI interface might be written in C++, some complex

 Safe communication

84

mathematical analysis might be written in Fortran, some device drivers might be
in C and so on.

Many languages have some facilities for interworking with other languages
(C++ with C for example) but these are often loosely defined. Ada is perhaps
unique in providing well-defined mechanisms within the language standard for
interfacing to programs in other languages in general. Ada provides specific
facilities for communication with programs and data in C, C++, Fortran and
COBOL. In particular, Ada recognizes the representation of types in these other
languages such as the arrangement of matrices in Fortran and strings in C so that
communication retains type safety.

In a mixed language situation it is thus a good idea to use Ada as the central
language so that communication with other languages has the benefit of the type
checking provided by the Ada conversion routines.

The general means of communication uses pragmas. Thus suppose we have a
C routine called next_byte and we wish to call it from our Ada program as the
function Next_Byte. We simply write

function Next_Byte return Byte;
pragma Import(C, Next_Byte);

The pragma indicates that the calling convention is C and also tells the compiler
that there is no Ada body for this function. The pragma can supply a different
external name and link name if necessary.

Similarly, if we wish the external C program to call the Ada procedure Action
then we can make the name of the Ada procedure available externally by writing

procedure Action(D: in Data);
pragma Export(C, Action);

Access-to-subprogram types are important for communication with other
languages especially when programming interactive systems. For example,
suppose we want the procedure Action to be called by the GUI when the mouse
is clicked. Suppose that there is a C routine mouse_click that takes the address
of the code to be called when the mouse is clicked. We can do this by writing

type Response is access procedure (D: in Data);
pragma Convention(C, Response);

procedure Set_Click(P: in Response);
pragma Import(C, Set_Click);

procedure Action(D: in Data);
pragma Convention(C, Action);
...
Set_Click(Action'Access);

Safe and Secure Software: An invitation to Ada 2005

85

In this case we have not made the name of the procedure Action visible to the C
program because it is called indirectly but we do have to ensure that it uses the
C calling convention.

Streams

A potential difficulty occurs when we transmit values of different types to and
from the external world. Output is straightforward because we know the type of
the value being transmitted and can use the appropriate format. But input is a
problem because typically we do not know what is coming. If a file is uniform
and all values are of the same type then we simply have to ensure that we have
connected to the correct file. The real difficulty arises when values of different
types are involved in the same file. Ada has a number of different filing
mechanisms, some are for homogeneous files such as files of all integers or text
files; for heterogeneous files we use a stream file.

As a very simple example suppose a file is to have a mixture of values of
types Integer, Float and Signal. All types have special attributes 'Read and 'Write
for use with streams. On output we simply write

S: Stream_Access := Stream(The_File);
...
Integer'Write(S, An_Integer);
Float'Write(S, A_Float);
Signal'Write(S, A_Signal);

and this results in a mixture of values of different types on The_File. In the
space available we cannot give the full details but S identifies the stream
associated with the file.

On input we simply do the reverse
Integer'Read(S, An_Integer);
Float'Read(S, A_Float);
Signal'Read(S, A_Signal);

If we do the calls in the wrong order then the exception Data_Error will be
raised because Ada checks that the item being read is of the correct format.

If we do not know the order in which things are to be read then we need to
create a class to cover all the different types involved. In this simple case we
might declare a root type

type Root is abstract tagged null record;

to act as a sort of wrapper and then a series of individual types to encapsulate
the real data thus

 Safe communication

86

type S_Integer is new Root with
 record
 Value: Integer;
 end record;

type S_Float is new Root with
 record
 Value: Float;
 end record;
...

and so on. On output we write
Root'Class'Output(S, (Root with An_Integer));
Root'Class'Output(S, (Root with A_Float));
Root'Class'Output(S, (Root with A_Signal));

Note that the same procedure is used for all the calls. It first outputs the value of
the tag of the specific type and then calls (by dispatching) the appropriate Write
attribute.

For input we might write
Next_Item: Root'Class := Root'Class'Input(S);
...
Process(Next_Item);

The procedure Root'Class'Input reads the tag from the stream and then
dispatches to the Read attribute to read the item and finally assigns it as the
initial value of the object Next_Item. We can then call some other procedure
such as Process by dispatching to do whatever we want. We might assign the
value to a particular variable according to its type.

To do this we first declare the abstract procedure for the root type thus
procedure Process(X: in Root) is abstract;

and then specific procedures such as
overriding
procedure Process(X: S_Integer) is
begin
 An_Integer := X.Value; -- extract value from wrapper
end Process;

The procedure Process could of course do anything we like with the value
concerned.

Safe and Secure Software: An invitation to Ada 2005

87

This has been a somewhat artificial example. The purpose of it has been to
illustrate that Ada can process items of various types in a way that preserves the
security of the type model.

Object factories

We have just seen how the predefined stream mechanism enables us to
manipulate values whose types are not known until they are input in some way.
The underlying mechanism of reading a tag and then creating an object of the
appropriate type is also available to the user in Ada 2005.

Suppose we are manipulating the geometrical objects discussed in the chapter
on Safe Object-Oriented Programming. These are of various types such as
Circle, Square, Triangle and so on and are all derived from the root type
Geometry.Object. We might wish to read values of these objects from a
keyboard. For a circle we would expect the values of its two coordinates
followed by the radius. For a triangle we would expect the two coordinates plus
the values of the three sides and so on. We could declare functions Get_Object
to read these values such as

function Get_Object return Circle is
begin
 return C: Circle do
 Get(C.X_Coord); Get(C.Y_Coord); Get(C.Radius);
 end return;
end Get_Object;

The internal calls of Get are calls of predefined procedures to read simple values
from the keyboard. The user will have to type some code to indicate which type
of object is being supplied. Perhaps the values for a circle could be preceded
with the string "Circle"; we will also suppose that we have written a simple
function Get_String to read and return such a string.

So now all we have to do is to read the code string, and then call the
appropriate procedure Get_Object to create an object of the correct type. The
key to this is to use a predefined generic function which, given a tag, returns an
object of the corresponding type. In essence it is

generic
 type T(<>) is abstract tagged limited private;
 with function Constructor return T is abstract;
function Generic_Dispatching_Constructor(The_Tag: Tag) return T'Class;

This generic function has two generic parameters, the first identifies the class of
types concerned (such as Geometry.Object from which the types Circle, Square

 Safe communication

88

and Triangle are derived) and a dispatching operation to make objects of the
specific types (such as functions Get_Object).

We can now instantiate this generic function to give a constructor function for
geometrical objects

function Make_Object is
 new Generic_Dispatching_Constructor(Object, Get_Object);

A call of Make_Object takes the tag of the specific type concerned, then
dispatches to the appropriate function Get_Object and finally returns the value
created.

We might decide to declare an access variable to refer to the newly created
object thus

Object_Ptr: access Object'Class;

If the tag value is in a variable Object_Tag (of the type Tag which is defined in
the predefined language package Ada.Tags – the generic constructor function is
also in this package), then we call Make_Object thus

Object_Ptr := new Object'(Make_Object(Object_Tag));

and now we have made the new object (perhaps a circle) with the values of its
coordinates and radius which were read from the keyboard.

We are not quite finished since we have to convert the string "Circle" which
identifies the type concerned into the tag value used for dispatching. A simple
way to do this is to write

for Circle'External_Tag use "Circle";
for Triangle'External_Tag use "Triangle";

and then we can read and convert the external string into the internal tag value
by

Object_Tag: Tag := Internal_Tag(Get_String);

There is of course no need to declare the variable Object_Tag since we can
combine the operations into one single statement thus.

Object_Ptr := new Object'(Make_Object(Internal_Tag(Get_String));

Finally, it should be noted that the above discussion has been slightly simplified.
The actual constructor has an auxiliary parameter which we have ignored.

Safe and Secure Software: An invitation to Ada 2005

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_9.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

