
Safe and Secure Software
Ada 2005An Invitation to

Safe Startup
8

Courtesy of

The GNAT Pro Company
John Barnes

75

We can carefully write a program so that it behaves properly when running, but
it is all to no avail if it will not start properly.

The motor car that will not start is no good even if when going it behaves like
a Rolls-Royce.

In the case of a computer program, the key things are to ensure that data is
initialized properly and this often means to ensure that its various components
are initialized in the correct order.

Elaboration

A program typically consists of a number of library packages P, Q, R and so on,
plus a main subprogram M. The general idea is that when the program is started
the various packages are elaborated, after which the main subprogram is called.
The elaboration of a package consists of the creation of the various entities
declared at the top level in the package – but not entities declared within
subprograms in the package because these are created when the subprograms are
called.

Thus consider again the package Stack in the chapter on Safe Architecture. In
outline it was

package Stack is
 procedure Clear;
 procedure Push(X: Float);
 function Pop return Float;
end Stack;

package body Stack is

 Max: constant := 100;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

 ... -- procedures Clear and Push and function Pop

end Stack;

The elaboration of the specification of the package does nothing in this case
because there are no objects declared in it. The elaboration of the body of the
package notionally causes the space for the integer Top and the array A to be set
aside. In this particular case the size of the array is known before the program
executes because it is given by the constant Max which happens to have a static
value and so the storage can be effectively set aside even before the program is
loaded.

76

But Max need not have had a static value – it might have been given the result
of some function call thus

 Max: constant := Some_Function;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

and then the space required for A would be computed as part of the elaboration
of the package body. If we had been careless and declared Max as a variable and
forgotten to give it an initial value thus

 Max: Integer;
 Top: Integer range 0 .. Max := 0;
 A: array (1 .. Max) of Float;

then the size of the array would be given by the value that Max happened to
have. If Max were negative then the attempt to declare the array would raise
Constraint_Error and if Max were too large than it might raise Storage_Error.

It should also be noted that we gave an initial value of zero to the variable
Top so that the user did not have to call the procedure Clear before calling Push
or Pop.

Alternatively we can give the package body an explicit initialization part so
that it becomes

package body Stack is

 Max: constant := 100;
 Top: Integer range 0 .. Max;
 A: array (1 .. Max) of Float;

 ... -- procedures Clear and Push and function Pop

begin -- initialization part
 Top := 0;
end Stack;

The initialization part can contain any statements at all. It is executed as part of
the elaboration of the package body and so before any of the subprograms in the
package can be called by code outside the package.

Readers might feel that it is surely always best to give all variables an initial
value anyway just in case. In the example given here the value zero is indeed a
sensible initial value and corresponds to a call of Clear. In some situations there
is no obvious initial value and giving a value just in case is not always wise
because it can actually obscure real errors. We will come back to this briefly
when we discuss SPARK in the final chapter.

Safe and Secure Software: An invitation to Ada 2005

77

In the case of numeric variables, the consequences of using a value that has
not been set are not disastrous. But the consequence of using an access value or
some other implicit address which has not been set could be. In the case of
access types in Ada these either have a default value of null or must be
initialized as we have seen.

A related kind of potential error concerns "access before elaboration". This
means attempting to use something before it has been properly elaborated.
Consider

package P is
 function F return Integer;
 X: Integer := F; -- raises Program_Error
end;

where the body of F is of course in the body of the package P. We cannot
successfully call F to give an initial value to X before the body has been
elaborated. So in this case the exception Program_Error is raised. The same sort
of error in C could have unpredictable effects.

Elaboration pragmas

Within a single compilation unit the rule is that declarations are elaborated in
the order in which they appear in the text.

In the case of a program linked from several different units, a unit is always
elaborated after all those on which it depends. Thus a body is elaborated after
the corresponding specification, the specification of a child is elaborated after
the specification of its parent and any unit is elaborated after the specifications
of all those mentioned in a (nonlimited) with clause.

However, this only partially dictates the order and is sometimes not enough to
ensure the correct behavior of the program. We can extend the example above as
follows

package P is
 function F return Integer;
end P;

package body P is
 function F return Integer is ...
end P;

with P;
package Q is
 X: Integer := P.F;
end;

 Safe startup

78

It is important that the body of P has been elaborated before the specification of
Q is elaborated because this elaboration requires that the body of F itself (and
everything on which this body might in turn depend) be already elaborated. But
the above rules do not ensure this and Program_Error might be raised at
runtime.

We can force the required order of elaboration by inserting a pragma in the
context clause for Q thus

with P;
pragma Elaborate_All (P);
package Q is
 X: Integer := P.F;
end;

Note that the All in Elaborate_All indicates the transitive nature of the pragma.
Its effect is that at runtime the elaboration code for package P (and all the
packages on which it depends) will be executed before the elaboration code for
Q.

There is also a pragma Elaborate_Body which can be given with a
specification and indicates that its body must be elaborated immediately after
the specification.

Dynamic loading

A related topic concerns dynamic loading. Some languages are designed to
create a single coherent program that is fully assembled before being run. Ada,
C and Pascal are like that. The operating system may swap lumps of the
program in and out of memory using paging algorithms but that is an
implementation detail.

Other languages are designed to be much more dynamic and enable new code
to be compiled, loaded and executed while the program is running. Cobol and
Java are like that.

An approach used with programs written in languages such as C is to use
dynamic linked libraries (DLLs) whereby an indirect call is used to invoke the
new code. But this is not safe since there is no checking that the parameters of
the new code match those of the old calling sequence.

One approach that can be used with Ada is to use the dispatching mechanism
as the hook to dynamic linking. The point about dispatching is that it enables
existing compiled code containing a class (such as Geometry.Object'Class) to
call operations (such as Area) of further types (such as Pentagon, Hexagon and
so on) without the central code having to be recompiled. This was briefly

Safe and Secure Software: An invitation to Ada 2005

79

mentioned in the chapter on Safe Object-Oriented Programming. Moreover the
mechanism is completely type safe.

A good example of how dynamic linking can be added within this framework
is given in [2].

 Safe startup

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_8.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

