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The memory of the computer provides a vital part of the framework in which 
the program resides. The integrity of the memory contents is necessary for the 
health of the program. There is perhaps an analogy with human memory. If the 
memory is unreliable then the proper functioning of the person is seriously 
impaired. 

There are two main problems with managing computer memory. One is that 
information can be lost by being improperly overwritten by other information. 
The other is that  the memory itself can become filled and irrecoverable, so that 
no new information can be stored. This is the problem of memory leaks.

Memory leak is an insidious fault since it  often does not show up for a long 
time. There was an example of a chemical control program that seemed to run 
flawlessly for several years. It was restarted every three months because of some 
external constraints (a crane had to be moved which necessitated stopping the 
plant). But the schedule for the crane changed and the program was then 
allowed to run for longer – it crashed after four months. There was a memory 
leak which slowly gnawed away at the free storage.

Buffer overflow

Buffer overflow is almost  a generic term used to denote the violation of the 
security of information. Buffer overflow enables information to be overwritten 
or read mistakenly or maliciously. 

This is a common fault  with C and C++ programs and is typically caused by 
the absence of checks in those languages regarding writing or reading outside 
the bounds of an array. We illustrated this problem in the chapter on Safe Typing 
when discussing the example of throwing a pair of dice.

This problem cannot  normally arise in Ada because there are checks that an 
array index does not lie outside the range of allowed values. These checks can 
be suppressed if we are absolutely sure that the program is perfect, but this is 
perhaps an unwise thing to do unless the program has been proved to be correct 
by analysis tools such as the SPARK Examiner mentioned in Chapter 11.

Although the absence of range checks is the ultimate cause of buffer overflow 
problems in C, it is exacerbated by other language features such as the choice of 
indicating the end of a string with a zero byte. This means that programmers 
have to test  for this value (directly or indirectly) in many string manipulation 
routines. It is easy to make mistakes in performing such tests and in any event 
the zero value might be accidentally overwritten itself. These secondary 
problems are often the key to loopholes which enable viruses to enter a system.

Another common way in which data can be accidentally destroyed is through 
the use of incorrect  pointers. Pointers in C are treated as addresses and 
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arithmetic can be performed on them. It is therefore easy for a pointer to have a 
miscomputed value and so to point to the wrong thing. Writing through the 
pointer then destroys some other data. 

In the chapter on Safe Pointers we saw that Ada guards against  this by 
applying strong typing to all pointers, and through the accessibility rules which 
ensure that objects do not vanish while being referenced by other objects.

Therefore, basic features of Ada guard against the accidental loss of data 
through overwriting memory. The remainder of this chapter addresses the issue 
of losing memory itself.

Heap control

Programming languages are typically implemented using three sorts of data 
storage
▪ global data that  exists throughout  the life of the program and can thus be 

allocated permanently (and often statically),
▪ data stored on a stack which grows and contracts as the flow of control 

passes through various subprograms,
▪ data allocated in a heap and used and discarded in a manner not  directly 

tied to the flow of control.
Fortran global common is the primeval example of global static storage (this 
relates to Fortran as it was in the early days of programming). But  global static 
storage exists in all languages. In Ada if we declared

package Calendar_Data is
   type Month is (Jan, Feb, Mar, ... , Nov, Dec);
   Days_In_Month: array (Month) of Integer := 
      (Jan => 31, Feb => 28, Mar => 31, Apr => 30, 
      May => 31, Jun => 30, Jul => 31, Aug => 31,
      Sep => 30, Oct => 31, Nov => 30, Dec => 31);
end;

then storage for the array Days_In_Month would naturally be declared in fixed 
global storage.

The stack is an important storage structure in all modern programming 
languages. Note that we are here talking about the underlying stack used by the 
implementation and not an object of the type Stack used for illustration in an 
earlier chapter. The stack is used for parameter passing in subprogram calls 
(actual parameters, the return address, saved registers, and so on) as well as for 
local variables within a subprogram. In a multitasking program where several 
threads of activity occur in parallel, each task has its own stack.
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Now consider the function Nfv_2000  used in the program for interest  rates in 
the chapter on Safe Pointers

function Nfv_2000 (X: Float) return Float is
   Factor: constant Float := 1.0 + X/100.0;
begin 
   return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv;

The object  Factor will typically be stored in the stack. It will come into 
existence when the function is called and will cease to exist  when the function 
returns. This is all managed safely and automatically by the call/return 
mechanism. Note that although Factor is marked as a constant  nevertheless it  is 
not static since each call of the function will provide a different  value for it. 
Moreover, the function might be called by two different  tasks at  the same time 
in a multitasking program and so Factor certainly cannot be stored globally.

The values of any actual parameters such as X are also stored on the stack.
Now consider a more elaborate subprogram which declares a local array 

whose size is not  known until the program executes – consider for example a 
function to return an arbitrary array in reverse order. In Ada we might write

function Rev(A: Vector) return Vector is
   Result: Vector(A'Range);
begin
   for K in A'Range loop
      Result(K) := A(A'First+A'Last–K);
   end loop;
   return Result;
end Rev;

where the type Vector is declared as
type Vector is array (Natural range <>) of Float;

This notation indicates that  Vector is an array type but the bounds are not  given 
except  that they must  be within the subtype Natural  (and so in the range 0 to 
Integer'Last). When we declare an actual object  of the type Vector we must 
supply bounds. So we might have

L: Integer := ... ;
My_Vector, Your_Vector: Vector(1 .. L);  -- L need not be static
...
Your_Vector := Rev(My_Vector);

In most  programming languages we would be forced to place an object such as 
the local variable Result on the heap rather than the stack because its size is not 
known until the program executes. This is certainly not  necessary because a 
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stack is flexible and storage for local variables can always be managed on a last-
in–last-out basis. 

But  the heap is often used because it requires a bit of thought to design and 
manage dynamically sized data efficiently and without care the subroutine 
calling mechanism can suffer a loss of performance. Implementations of Ada 
always use the stack for local data – an efficient technique is to use both ends of 
the stack, one end for return links and fixed local data and the other end for 
dynamically sized local data. This enables the location of return addresses to be 
computed more efficiently and yet keeps full flexibility. Furthermore, Ada 
systems usually guard against the stack running out of storage and raise the 
exception Storage_Error if it does (or rather if it is about to).

The above example illustrates a number of nice points about Ada. By contrast 
it  is quite tricky to write in C. This is because C has no proper abstraction for 
arrays and so we cannot pass an array as a parameter but only a pointer to an 
array. Moreover C cannot return a result which is anything other than a scalar 
value and so cannot  pass back the reversed array either. We could of course 
simply declare a function that  reverses the argument in situ  and leave it  to the 
user to make a copy first. But  doing the reverse in situ  is tricky since we have to 
take care not to destroy the values as we swap them. So perhaps it is best to pass 
pointers to both the original array and the result as distinct  parameters. The 
other difficulty is that C does not  know how long its arrays are and so we have 
to pass the length of the array as well (or maybe the upper bound). This is yet 
another hazard since it is all too easy to pass a length that  does not correspond to 
that of the array. So we might have

void rev(float *a, float *result, int length);
{
   for (k=0; k<length; k++)
      result[k] = a[length–k–1];
}
...
float my_vector[100], your_vector[100];
...
rev(my_vector, your_vector, 100);

Although this chapter is meant to be about  storage management  it  is perhaps 
worth pausing to list some of the risks and difficulties in the above C code.
▪ Arrays in C always have lower bound 0 and so if the application has a 

different  natural lower bound such as 1 then confusion can arise. Ada 
allows any lower bound.

▪ The length of the array has to be passed separately, there is a risk of 
getting the length wrong and confusing the length with the upper bound. 
In Ada the attributes of the array are passed as part of the array itself.
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▪ The address of the result  array has to be passed separately. There is the 
danger of confusing the two arrays which cannot happen in Ada because 
the assignment clarifies which is which.

▪ The loop has to be written out  explicitly whereas the Ada notation ties it 
to the range of the array automatically.

However, we have strayed from the topic. The key point  is that if we did declare 
a local array in C++ whose size was not static as in

void f(int n, ... );
{   float a[] = new float [n];
...
}

then the array a will be placed in the heap and not  on the stack. In C we would 
have to use malloc which does explicitly reveal the use of the heap.

The general danger of using the heap is that storage might  be deallocated 
when it  is still in use or left allocated when it is not  needed. Because Ada allows 
dynamically sized objects on the stack, the heap is basically only used when 
allocators are invoked as mentioned in the chapter on Safe Pointers. This results 
in better performance and less chance of memory leaks.

Storage pools

We now turn to the use of the heap in Ada. The proper term is storage pool. If 
we do an allocation such as in the procedure Push  discussed in the chapter on 
Safe Object Construction thus

   procedure Push(S: in out Stack; X: in Float) is
   begin
      S := new Cell'(S, X);
   end Push;

then the space for the new Cell will be taken from a storage pool. There is 
always a standard storage pool but we can declare and manage our own storage 
pools as well.

LISP  was the first language to take storage management  out of the hands of 
the programmer, and to incorporate a garbage collector in order to reclaim 
storage. This approach is used in a number of other languages including Python 
and Java. The presence of a garbage collector simplifies programming 
substantially, but  has its own problems. For example, the garbage collector may 
interrupt  the execution of the program at  unpredictable times, and is therefore 
unusable in a real-time environment. A programmer of a real-time system must 
retain fine control over memory and deallocation and must  be able to reclaim 
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memory at  some precise time rather than waiting for the garbage collector to do 
it. As a consequence a garbage collector is not appropriate for a general purpose 
language and especially to one used for low-level, real-time and safety-critical 
applications.

Ada provides the user with a choice of mechanisms. Storage control can be 
done 
▪ by hand. That  is by programming the release of storage on an individual 

basis.
▪ by using storage pools. Individual items can be deleted from a specific 

pool and the whole pool can be discarded when no longer required.
▪ by a garbage collector. This might  not be available in all 

implementations.
In order to return a lump of storage that  is no longer used we call an 

instantiation of a predefined generic function called Unchecked_Deallocation. In 
order to do this we have to use a named access type so we will suppose that  the 
type Cell is declared by 

type Cell;
type Cell_Ptr is access all Cell;

type Cell is
   record
      Next: Cell_Ptr;
      Value: Float;
   end record;

Note that  we have an intrinsic circularity here which is broken by first  giving an 
incomplete declaration of the type Cell. We now write

procedure Free is new Unchecked_Deallocation(Cell, Cell_Ptr);

In order to deallocate storage we simply call the procedure Free with an access 
value referring to the storage concerned. Thus the procedure Pop should now be 
written as

procedure Pop(S: in out Stack; X: out Float) is
   Old_S: Stack := S;
begin
   X := S.Value;
   S := S.Next;
   Free(Old_S);
end Pop;

Note that we are here using the version of the type Stack that is limited private 
and not the version that is controlled. 
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It  might seem that  the use of Free is risky. In general it  might be that there 
was another reference to the deallocated storage. But in this example the user's 
view of the type is limited and so the user cannot have made a copy of the 
structure. Moreover, the user cannot see the details of the type Stack and in 
particular cannot  see the types Cell and Cell_Ptr at all and therefore cannot call 
Free. Thus once we have assured ourselves that  Pop is correct then no trouble is 
possible. Finally, the instantiation of Unchecked_Deallocation provides a cross-
check by requiring the use of named access types and thus checks that  the 
parameters match.

We must also change Clear as well. The easy way is to write
procedure Clear(S: in out Stack) is
   Junk: Float;
begin
   while S /= null loop
      Pop(S, Junk);
   end loop;
end Clear;

Although this technique ensures that  storage is deallocated properly whenever 
Pop and Clear are called, there is still the risk that the user might declare a stack 
and leave its scope when it is not empty. Thus

procedure Do_Something ...
   A_Stack: Stack;
begin
   ...   -- play with A_Stack
   ...   -- is it empty as we leave?
end Do_Something;

If A_Stack were not null when Do_Something is left then the storage would be 
lost. We cannot leave the onus on the user to take care not to lose storage so we 
should make the stack a controlled type as illustrated at the end of the chapter on 
Safe Object Construction. We can then declare our own procedure Finalize 
perhaps simply as

overriding
procedure Finalize(S: in out Stack) is
begin
   Clear(S);
end Finalize;

Note the use of the overriding indicator just to ensure that  we have not 
misspelled Finalize or mistyped its formal parameters.

Ada also permits users to declare their own storage pools. This is 
straightforward but  would take too much space to explain in detail here. But  the 

  Safe memory management

 



72

general idea is that  there is a predefined type Root_Storage_Pool  (which itself is 
a limited controlled type) and we can declare our own storage pool type by 
deriving from it thus 

type My_Pool_Type(Size: Storage_Count) is 
  new Root_Storage_Pool with private;
overriding
procedure Allocate( ... );
overriding
procedure Deallocate( ... );
-- also overriding Initialize( ... ) and Finalize( ... );

The procedure Allocate is automatically called when a new object  is allocated by 
an allocator and Deallocate is automatically called when an object  is discarded 
by calling Free. The user then writes appropriate code to manage the pool as 
desired. Since a pool type is also controlled the procedures Initialize  and Finalize 
are automatically called when the whole pool is declared and finally goes out of 
scope.

In order to create a pool we then declare a pool object  in the usual way. And 
finally we can link a particular access type to use the pool.

Cell_Ptr_Pool: My_Pool_Type(1000);  -- pool size is 1000
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

An important advantage of declaring our own pools is that the risk of 
fragmentation can be minimized by keeping different  types in different  pools. 
Moreover, we can write our own storage allocation mechanisms and even do 
some storage compaction if we so wish. A further point  is that  if the access type 
concerned is declared locally then the pool can be local as well and will 
automatically be discarded so that there can be no possibility of storage being 
lost.

Finally, there is a safeguard against misuse of Unchecked_Deallocation and 
that is that since it  is a predefined library unit, any unit we write that calls it will 
have 

with Unchecked_Deallocation;

written boldly at  the start of the text. This will then be clearly visible to anyone 
reviewing the program and especially to our Manager.

Restrictions

There is a general mechanism for ensuring that we do not  use certain features of 
the language and that is the pragma Restrictions. Thus if we write
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pragma Restrictions(No_Dependence => Unchecked_Deallocation);

then we are asserting that the program does not use Unchecked_Deallocation at 
all – the compiler will reject the program if this is not true.

There are over forty such restrictions in Ada 2005 which can be used to give 
assurance about various aspects of the program. Many are rather specialized and 
relate to multitasking programs. Others which concern storage generally and are 
thus relevant to this chapter are

pragma Restrictions(No_Allocators);
pragma Restrictions(No_Implicit_Heap_Allocations);

The first completely prevents the use of the allocator new  as in new  Cell'( ... ) 
and thus all explicit use of the heap. Just  occasionally some implementations 
might  use the heap temporarily for objects in certain awkward circumstances. 
This is rare and can be prevented by the second pragma.
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