
Safe and Secure Software
Ada 2005An Invitation to

Safe Memory Management
7

Courtesy of

The GNAT Pro Company
John Barnes

65

The memory of the computer provides a vital part of the framework in which
the program resides. The integrity of the memory contents is necessary for the
health of the program. There is perhaps an analogy with human memory. If the
memory is unreliable then the proper functioning of the person is seriously
impaired.

There are two main problems with managing computer memory. One is that
information can be lost by being improperly overwritten by other information.
The other is that the memory itself can become filled and irrecoverable, so that
no new information can be stored. This is the problem of memory leaks.

Memory leak is an insidious fault since it often does not show up for a long
time. There was an example of a chemical control program that seemed to run
flawlessly for several years. It was restarted every three months because of some
external constraints (a crane had to be moved which necessitated stopping the
plant). But the schedule for the crane changed and the program was then
allowed to run for longer – it crashed after four months. There was a memory
leak which slowly gnawed away at the free storage.

Buffer overflow

Buffer overflow is almost a generic term used to denote the violation of the
security of information. Buffer overflow enables information to be overwritten
or read mistakenly or maliciously.

This is a common fault with C and C++ programs and is typically caused by
the absence of checks in those languages regarding writing or reading outside
the bounds of an array. We illustrated this problem in the chapter on Safe Typing
when discussing the example of throwing a pair of dice.

This problem cannot normally arise in Ada because there are checks that an
array index does not lie outside the range of allowed values. These checks can
be suppressed if we are absolutely sure that the program is perfect, but this is
perhaps an unwise thing to do unless the program has been proved to be correct
by analysis tools such as the SPARK Examiner mentioned in Chapter 11.

Although the absence of range checks is the ultimate cause of buffer overflow
problems in C, it is exacerbated by other language features such as the choice of
indicating the end of a string with a zero byte. This means that programmers
have to test for this value (directly or indirectly) in many string manipulation
routines. It is easy to make mistakes in performing such tests and in any event
the zero value might be accidentally overwritten itself. These secondary
problems are often the key to loopholes which enable viruses to enter a system.

Another common way in which data can be accidentally destroyed is through
the use of incorrect pointers. Pointers in C are treated as addresses and

66

arithmetic can be performed on them. It is therefore easy for a pointer to have a
miscomputed value and so to point to the wrong thing. Writing through the
pointer then destroys some other data.

In the chapter on Safe Pointers we saw that Ada guards against this by
applying strong typing to all pointers, and through the accessibility rules which
ensure that objects do not vanish while being referenced by other objects.

Therefore, basic features of Ada guard against the accidental loss of data
through overwriting memory. The remainder of this chapter addresses the issue
of losing memory itself.

Heap control

Programming languages are typically implemented using three sorts of data
storage
▪ global data that exists throughout the life of the program and can thus be

allocated permanently (and often statically),
▪ data stored on a stack which grows and contracts as the flow of control

passes through various subprograms,
▪ data allocated in a heap and used and discarded in a manner not directly

tied to the flow of control.
Fortran global common is the primeval example of global static storage (this
relates to Fortran as it was in the early days of programming). But global static
storage exists in all languages. In Ada if we declared

package Calendar_Data is
 type Month is (Jan, Feb, Mar, ... , Nov, Dec);
 Days_In_Month: array (Month) of Integer :=
 (Jan => 31, Feb => 28, Mar => 31, Apr => 30,
 May => 31, Jun => 30, Jul => 31, Aug => 31,
 Sep => 30, Oct => 31, Nov => 30, Dec => 31);
end;

then storage for the array Days_In_Month would naturally be declared in fixed
global storage.

The stack is an important storage structure in all modern programming
languages. Note that we are here talking about the underlying stack used by the
implementation and not an object of the type Stack used for illustration in an
earlier chapter. The stack is used for parameter passing in subprogram calls
(actual parameters, the return address, saved registers, and so on) as well as for
local variables within a subprogram. In a multitasking program where several
threads of activity occur in parallel, each task has its own stack.

Safe and Secure Software: An invitation to Ada 2005

67

Now consider the function Nfv_2000 used in the program for interest rates in
the chapter on Safe Pointers

function Nfv_2000 (X: Float) return Float is
 Factor: constant Float := 1.0 + X/100.0;
begin
 return 1000.0 * Factor**2 + 500.0 * Factor – 2000.0;
end Nfv;

The object Factor will typically be stored in the stack. It will come into
existence when the function is called and will cease to exist when the function
returns. This is all managed safely and automatically by the call/return
mechanism. Note that although Factor is marked as a constant nevertheless it is
not static since each call of the function will provide a different value for it.
Moreover, the function might be called by two different tasks at the same time
in a multitasking program and so Factor certainly cannot be stored globally.

The values of any actual parameters such as X are also stored on the stack.
Now consider a more elaborate subprogram which declares a local array

whose size is not known until the program executes – consider for example a
function to return an arbitrary array in reverse order. In Ada we might write

function Rev(A: Vector) return Vector is
 Result: Vector(A'Range);
begin
 for K in A'Range loop
 Result(K) := A(A'First+A'Last–K);
 end loop;
 return Result;
end Rev;

where the type Vector is declared as
type Vector is array (Natural range <>) of Float;

This notation indicates that Vector is an array type but the bounds are not given
except that they must be within the subtype Natural (and so in the range 0 to
Integer'Last). When we declare an actual object of the type Vector we must
supply bounds. So we might have

L: Integer := ... ;
My_Vector, Your_Vector: Vector(1 .. L); -- L need not be static
...
Your_Vector := Rev(My_Vector);

In most programming languages we would be forced to place an object such as
the local variable Result on the heap rather than the stack because its size is not
known until the program executes. This is certainly not necessary because a

 Safe memory management

68

stack is flexible and storage for local variables can always be managed on a last-
in–last-out basis.

But the heap is often used because it requires a bit of thought to design and
manage dynamically sized data efficiently and without care the subroutine
calling mechanism can suffer a loss of performance. Implementations of Ada
always use the stack for local data – an efficient technique is to use both ends of
the stack, one end for return links and fixed local data and the other end for
dynamically sized local data. This enables the location of return addresses to be
computed more efficiently and yet keeps full flexibility. Furthermore, Ada
systems usually guard against the stack running out of storage and raise the
exception Storage_Error if it does (or rather if it is about to).

The above example illustrates a number of nice points about Ada. By contrast
it is quite tricky to write in C. This is because C has no proper abstraction for
arrays and so we cannot pass an array as a parameter but only a pointer to an
array. Moreover C cannot return a result which is anything other than a scalar
value and so cannot pass back the reversed array either. We could of course
simply declare a function that reverses the argument in situ and leave it to the
user to make a copy first. But doing the reverse in situ is tricky since we have to
take care not to destroy the values as we swap them. So perhaps it is best to pass
pointers to both the original array and the result as distinct parameters. The
other difficulty is that C does not know how long its arrays are and so we have
to pass the length of the array as well (or maybe the upper bound). This is yet
another hazard since it is all too easy to pass a length that does not correspond to
that of the array. So we might have

void rev(float *a, float *result, int length);
{
 for (k=0; k<length; k++)
 result[k] = a[length–k–1];
}
...
float my_vector[100], your_vector[100];
...
rev(my_vector, your_vector, 100);

Although this chapter is meant to be about storage management it is perhaps
worth pausing to list some of the risks and difficulties in the above C code.
▪ Arrays in C always have lower bound 0 and so if the application has a

different natural lower bound such as 1 then confusion can arise. Ada
allows any lower bound.

▪ The length of the array has to be passed separately, there is a risk of
getting the length wrong and confusing the length with the upper bound.
In Ada the attributes of the array are passed as part of the array itself.

Safe and Secure Software: An invitation to Ada 2005

69

▪ The address of the result array has to be passed separately. There is the
danger of confusing the two arrays which cannot happen in Ada because
the assignment clarifies which is which.

▪ The loop has to be written out explicitly whereas the Ada notation ties it
to the range of the array automatically.

However, we have strayed from the topic. The key point is that if we did declare
a local array in C++ whose size was not static as in

void f(int n, ...);
{ float a[] = new float [n];
...
}

then the array a will be placed in the heap and not on the stack. In C we would
have to use malloc which does explicitly reveal the use of the heap.

The general danger of using the heap is that storage might be deallocated
when it is still in use or left allocated when it is not needed. Because Ada allows
dynamically sized objects on the stack, the heap is basically only used when
allocators are invoked as mentioned in the chapter on Safe Pointers. This results
in better performance and less chance of memory leaks.

Storage pools

We now turn to the use of the heap in Ada. The proper term is storage pool. If
we do an allocation such as in the procedure Push discussed in the chapter on
Safe Object Construction thus

 procedure Push(S: in out Stack; X: in Float) is
 begin
 S := new Cell'(S, X);
 end Push;

then the space for the new Cell will be taken from a storage pool. There is
always a standard storage pool but we can declare and manage our own storage
pools as well.

LISP was the first language to take storage management out of the hands of
the programmer, and to incorporate a garbage collector in order to reclaim
storage. This approach is used in a number of other languages including Python
and Java. The presence of a garbage collector simplifies programming
substantially, but has its own problems. For example, the garbage collector may
interrupt the execution of the program at unpredictable times, and is therefore
unusable in a real-time environment. A programmer of a real-time system must
retain fine control over memory and deallocation and must be able to reclaim

 Safe memory management

70

memory at some precise time rather than waiting for the garbage collector to do
it. As a consequence a garbage collector is not appropriate for a general purpose
language and especially to one used for low-level, real-time and safety-critical
applications.

Ada provides the user with a choice of mechanisms. Storage control can be
done
▪ by hand. That is by programming the release of storage on an individual

basis.
▪ by using storage pools. Individual items can be deleted from a specific

pool and the whole pool can be discarded when no longer required.
▪ by a garbage collector. This might not be available in all

implementations.
In order to return a lump of storage that is no longer used we call an

instantiation of a predefined generic function called Unchecked_Deallocation. In
order to do this we have to use a named access type so we will suppose that the
type Cell is declared by

type Cell;
type Cell_Ptr is access all Cell;

type Cell is
 record
 Next: Cell_Ptr;
 Value: Float;
 end record;

Note that we have an intrinsic circularity here which is broken by first giving an
incomplete declaration of the type Cell. We now write

procedure Free is new Unchecked_Deallocation(Cell, Cell_Ptr);

In order to deallocate storage we simply call the procedure Free with an access
value referring to the storage concerned. Thus the procedure Pop should now be
written as

procedure Pop(S: in out Stack; X: out Float) is
 Old_S: Stack := S;
begin
 X := S.Value;
 S := S.Next;
 Free(Old_S);
end Pop;

Note that we are here using the version of the type Stack that is limited private
and not the version that is controlled.

Safe and Secure Software: An invitation to Ada 2005

71

It might seem that the use of Free is risky. In general it might be that there
was another reference to the deallocated storage. But in this example the user's
view of the type is limited and so the user cannot have made a copy of the
structure. Moreover, the user cannot see the details of the type Stack and in
particular cannot see the types Cell and Cell_Ptr at all and therefore cannot call
Free. Thus once we have assured ourselves that Pop is correct then no trouble is
possible. Finally, the instantiation of Unchecked_Deallocation provides a cross-
check by requiring the use of named access types and thus checks that the
parameters match.

We must also change Clear as well. The easy way is to write
procedure Clear(S: in out Stack) is
 Junk: Float;
begin
 while S /= null loop
 Pop(S, Junk);
 end loop;
end Clear;

Although this technique ensures that storage is deallocated properly whenever
Pop and Clear are called, there is still the risk that the user might declare a stack
and leave its scope when it is not empty. Thus

procedure Do_Something ...
 A_Stack: Stack;
begin
 ... -- play with A_Stack
 ... -- is it empty as we leave?
end Do_Something;

If A_Stack were not null when Do_Something is left then the storage would be
lost. We cannot leave the onus on the user to take care not to lose storage so we
should make the stack a controlled type as illustrated at the end of the chapter on
Safe Object Construction. We can then declare our own procedure Finalize
perhaps simply as

overriding
procedure Finalize(S: in out Stack) is
begin
 Clear(S);
end Finalize;

Note the use of the overriding indicator just to ensure that we have not
misspelled Finalize or mistyped its formal parameters.

Ada also permits users to declare their own storage pools. This is
straightforward but would take too much space to explain in detail here. But the

 Safe memory management

72

general idea is that there is a predefined type Root_Storage_Pool (which itself is
a limited controlled type) and we can declare our own storage pool type by
deriving from it thus

type My_Pool_Type(Size: Storage_Count) is
 new Root_Storage_Pool with private;
overriding
procedure Allocate(...);
overriding
procedure Deallocate(...);
-- also overriding Initialize(...) and Finalize(...);

The procedure Allocate is automatically called when a new object is allocated by
an allocator and Deallocate is automatically called when an object is discarded
by calling Free. The user then writes appropriate code to manage the pool as
desired. Since a pool type is also controlled the procedures Initialize and Finalize
are automatically called when the whole pool is declared and finally goes out of
scope.

In order to create a pool we then declare a pool object in the usual way. And
finally we can link a particular access type to use the pool.

Cell_Ptr_Pool: My_Pool_Type(1000); -- pool size is 1000
for Cell_Ptr'Storage_Pool use Cell_Ptr_Pool;

An important advantage of declaring our own pools is that the risk of
fragmentation can be minimized by keeping different types in different pools.
Moreover, we can write our own storage allocation mechanisms and even do
some storage compaction if we so wish. A further point is that if the access type
concerned is declared locally then the pool can be local as well and will
automatically be discarded so that there can be no possibility of storage being
lost.

Finally, there is a safeguard against misuse of Unchecked_Deallocation and
that is that since it is a predefined library unit, any unit we write that calls it will
have

with Unchecked_Deallocation;

written boldly at the start of the text. This will then be clearly visible to anyone
reviewing the program and especially to our Manager.

Restrictions

There is a general mechanism for ensuring that we do not use certain features of
the language and that is the pragma Restrictions. Thus if we write

Safe and Secure Software: An invitation to Ada 2005

73

pragma Restrictions(No_Dependence => Unchecked_Deallocation);

then we are asserting that the program does not use Unchecked_Deallocation at
all – the compiler will reject the program if this is not true.

There are over forty such restrictions in Ada 2005 which can be used to give
assurance about various aspects of the program. Many are rather specialized and
relate to multitasking programs. Others which concern storage generally and are
thus relevant to this chapter are

pragma Restrictions(No_Allocators);
pragma Restrictions(No_Implicit_Heap_Allocations);

The first completely prevents the use of the allocator new as in new Cell'(...)
and thus all explicit use of the heap. Just occasionally some implementations
might use the heap temporarily for objects in certain awkward circumstances.
This is rare and can be prevented by the second pragma.

 Safe memory management

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_7.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

