
Safe and Secure Software
Ada 2005An Invitation to

Safe Object Oriented Programming

5

Courtesy of

The GNAT Pro Company
John Barnes

43

OOP took programming by storm about twenty years ago. Its supreme merit is
said to be its flexibility. But flexibility is somewhat like freedom discussed in
the Introduction – the wrong kind of flexibility can be an opportunity that
permits dangerous errors to intrude.

The key idea of OOP is that the objects dominate the programming and
subprograms (methods) that manipulate objects are properties of objects. The
other, older, view sometimes called Function-Oriented (or structured)
programming, is that programming is primarily about functional decomposition
and that it is the subprograms that dominate program organization, and that
objects are merely passive things being manipulated by them.

Both views have their place and fanatical devotion to just a strict object view
is often inappropriate.

Ada strikes an excellent balance and enables either approach to be taken
according to the needs of the application. Indeed Ada has incorporated the idea
of objects right from its inception in 1980 through the concept of packages
which encapsulate types and the operations upon them, and tasks that
encapsulate independent activities.

Object-Orientation versus Function-Orientation

We will look at two examples which can be used to illustrate various points.
They are chosen for their familiarity which avoids the need to explain particular
application areas. The examples concern geometrical objects (of which there are
lots of kinds) and people (of which there are only two kinds, male and female).

Consider the geometrical objects first. For simplicity we will consider just
flat objects in a plane. Every object has a position. In Ada we can declare a root
object which has properties common to all objects thus

type Object is tagged
 record
 X_Coord: Float;
 Y_Coord: Float;
 end record;

The word tagged distinguishes this type from a plain record type (such as Date
in Chapter 3) and indicates that it can be extended. Moreover, objects of this
type carry a tag with them at execution time and this tag identifies the type of
the object. We are going to declare various specific object types such as Circle,
Triangle, Square and so on in a moment and these will all have distinct values
for the tag.

We can declare various properties of geometrical objects such as area and
moment of inertia about the centre. Every object has such properties but they

44

vary according to shape. These properties can be defined by functions and they
are declared in the same package as the corresponding type. We can start with

package Geometry is
 type Object is abstract tagged
 record
 X_Coord, Y_Coord: Float;
 end record;

 function Area(Obj: Object) return Float is abstract;
 function Moment(Obj: Object) return Float is abstract;
end Geometry;

We have declared the type and the operations as abstract. We don't actually want
any objects of type Object and making it abstract prevents us from inadvertently
declaring any. We want real objects such as a Circle, which have properties such
as Area. If we did want to discuss a plain point without any areas then we
should declare a specific type Point for this. The functions Area and Moment
have been declared as abstract also. This ensures that when we declare a
genuine type such as Circle then we are forced to declare concrete functions
Area and Moment with appropriate code.

We can now declare the type Circle. It is best to use a child package for this
package Geometry.Circles is
 type Circle is new Object with
 record
 Radius: Float;
 end record;

 function Area(C: Circle) return Float;
 function Moment(C: Circle) return Float;
end;

with Ada.Numerics; use Ada.Numerics; -- to give access to π
package body Geometry.Circles is
 function Area(C: Circle) return Float is
 begin
 return π * C.Radius**2; -- uses Greek letter π
 end Area;

 function Moment(C: Circle) return Float is
 begin
 return 0.5 * C.Area * C.Radius**2;
 end Moment;
end Geometry.Circles;

Note that the code defining the Area and Moment is in the package body. We
recall from the chapter on Safe Architecture that this means that the code can be

Safe and Secure Software: An invitation to Ada 2005

45

changed and recompiled as necessary without forcing recompilation of the
description of the type itself and consequently all those programs that use it.

We could then declare other types such as Square (which has an extra
component giving the length of the side), Triangle (three components giving the
three sides) and so on without disturbing the existing abstract type Object and
the type Circle in any way.

The various types form a hierarchy rooted at Object and this set of types (a
class in Ada terminology) is denoted by Object'Class. Ada carefully
distinguishes between a specific type such as Circle and a class of types such as
Object'Class. This distinction avoids confusion that can occur in other
languages. If we subsequently define other types as extensions of the type Circle
then we can then usefully talk about the class Circle'Class.

The function Moment declared above illustrates the use of the prefixed
notation. We can write either of

C.Area -- prefixed notation
Area(C) -- functional notation

The prefixed notation emphasizes the object model, and indicates that we
consider the object C to be the predominant entity rather than the function Area.

Suppose now that we have declared various objects, perhaps
A_Circle: Circle := (1.0, 2.0, Radius => 4.5);
My_Square: Square := (0.0, 0.0, Side => 3.7);
The_Triangle: Triangle := (1.0, 0.5, A => 3.0, B => 4.0, C => 5.0);

By way of illustration, we have used named notation for components other than
the x and y coordinates which are common to all the types.

We might have a procedure to output the properties of a general object. We
might write

procedure Print(Obj: Object'Class) is
begin
 Put("Area is "); Put(Obj.Area); -- dispatching call of Area
 ... -- and so on
end Print;

and then
Print(A_Circle);
Print(My_Square);

The procedure Print can take any item in the class Object'Class. Within the
procedure, the call to Area is dynamically bound and calls the function Area
appropriate to the specific type of the parameter Obj. This always works safely

 Safe object-oriented
programming

46

since the language rules are such that every possible object in the class
Object'Class is of a specific type derived ultimately from Object and will have a
function Area. Note that the type Object itself was abstract and so no
geometrical object of that type can be declared – accordingly it does not matter
that the function Area for the type Object is abstract and has no code – it could
never be called anyway.

In a similar way we might have types concerning persons. Consider
package People is
 type Person is abstract tagged
 record
 Birthday: Date;
 Height: Inches;
 Weight: Pounds;
 end record;

 type Man is new Person with
 record
 Bearded: Boolean; -- whether he has a beard
 end record;

 type Woman is new Person with
 record
 Births: Integer; -- how many children she has borne
 end record;

 ... -- various operations
end People;

Since there is no possibility of any additional types of persons we could describe
them by using a variant record, which is more in the line of function-oriented
programming. Thus

type Gender is (Male, Female);

type Person (Sex: Gender) is
 record
 Birthday: Date;
 Height: Inches;
 Weight: Pounds;
 case Sex is
 when Male =>
 Bearded: Boolean;
 when Female =>
 Births: Integer;
 end case;
 end record;

Safe and Secure Software: An invitation to Ada 2005

47

and we might then declare various operations on this version of the type Person.
Each operation would have to have a case statement to take account of the two
sexes.

This might be considered rather old fashioned and inelegant. However, it has
its own considerable advantages.

If we need to add another operation in the Object-Oriented formulation then
the whole structure will need to be recompiled – each type will need to be
revisited in order to implement the new operation. If we need to add another
type (such as a Pentagon) then the existing structure can be left unchanged.

In the case of the Function-Oriented formulation, the situation is completely
reversed (basically we simply interchange the words type and operation).

If we need to add another type in the Function-Oriented formulation then the
whole structure will need to be recompiled – each operation will need to be
revisited to implement the new type (by adding another branch to its case
statement). If we need to add another operation then the existing structure can
be left unchanged.

The Object-Oriented approach has often been lauded as so much safer than
Function-Oriented programming because there are no case statements to
maintain. This certainly is true but sometimes the maintenance is harder if new
operations are added because they have to be added individually for every type.

Ada offers both approaches and both approaches are safe in Ada.

Overriding indicators

One of the dangers of Object-Oriented programming occurs with overriding
inherited operations. When we add a new type to a class we can add new
versions of all the appropriate operations. If we do not add a new operation then
that of the parent is inherited.

The danger is that we might attempt to add a new version but spell it
incorrectly

function Aera(C: Circle) return Float;

or get a parameter or result wrong
function Area(C: Circle) return Integer;

In both cases the existing function Area is not overridden but a totally new
operation added. And then when a class-wide operation dispatches to Area it
will call the inherited version rather than the one that failed to override it. Such

 Safe object-oriented
programming

48

bugs can be very difficult to find – the program compiles quietly and seems to
run but just produces curious answers.

(Actually, Ada has already provided a safeguard here because we declared
Area for Object as abstract and this is a further defensive measure. But if we had
a second generation or had not had the wisdom to make Area abstract then we
would be in trouble.)

In order to guard against such mistakes we can write for example
overriding
function Area(C: Circle) return Float;

and then if we make an error we will not get a new operation but instead the
program will fail to compile. On the other hand, if we did truly want to add a
new operation then we could assert that also by

not overriding
function Aera(C: Circle) return Float;

Such overriding indicators are always optional, largely for compatibility with
earlier versions of Ada.

Languages such as C++ and Java provide less assistance in this area and
consequently subtle errors can remain undetected for some time.

Dispatchless programming

In safety-critical programming, the dynamic selection of code is sometimes
forbidden. Safety is enhanced if we can prove that the flow of control follows a
strict pattern with, for example, no dead code. Traditionally this means that we
have to use a more function-oriented approach, with visible if statements and
case statements to select the appropriate flow path.

Although dynamic dispatching is at the heart of much of the power of Object-
Oriented programming, other object-oriented features (chiefly code reuse
through inheritance) are valuable. Thus we might value the ability to extend
types and thereby share much coding but declare specific named operations
where no dynamic behavior is required. We might also wish to use the prefixed
notation which has a number of advantages.

Ada has a facility known as pragma Restrictions which enables a programmer
to ensure that specific features of Ada are not used in a particular program. In
this case we write

pragma Restrictions(No_Dispatch);

Safe and Secure Software: An invitation to Ada 2005

49

and this ensures that no use is made of the construction X'Class which in turn
means that no dispatching calls are possible.

Note that this exactly matches the requirements of SPARK which we
mentioned in the Introduction is often used for critical software. SPARK permits
type extension but does not permit class-wide types and operations.

If we do specify the restriction No_Dispatch then the implementation is able
to reduce the code overheads typically associated with OOP. There is of course
no need to generate a dispatch table for each type. (A dispatch table is a look-up
table that contains the addresses of the various specific operations for the type.)
Moreover, there is also no need to store a tag in every record structure.

There are other less obvious benefits as well. In full OOP some of the
predefined operations such as equality are dispatching and so the code
overheads associated with them are also avoided. The net result is that the use of
the pragma minimizes the need for the justification of deactivated code (code
that is present in the executable and that can be traced back to specific
requirements, but which will never be executed) for level A certification.

Interfaces and multiple inheritance

Some have looked upon multiple inheritance as a Holy Grail – an objective
against which languages should be judged. This is not the place to digress on the
history of various techniques that have been used. Rather we will summarize the
key problems.

Suppose that we were able to inherit arbitrarily from two parent types. Recall
that fabulous book Flatland written by Edwin Abbott (the second edition was
published in 1884). It is a satire on class structure (in the sociological, not the
programming sense) and concerns a world in which people are flat geometrical
objects. The working classes are triangles, the middle classes are other
polygons. The aristocracy are circles. Curiously, all females are two-sided and
thus simply a line segment.

So using the two classes Objects and Persons introduced above, we could
conceive of representing the inhabitants of Flatland by a type derived from both
such as

type Flatlander is new Geometry.Object and People.Person;

The question now arises as to what are the properties inherited from the two
parent types? We might expect a Flatlander to have components X_Coord and
Y_Coord inherited from Object and also a Birthday inherited from Person,
although Height and Weight might be dubious for a two-dimensional person.
And certainly we would expect an operation such as Area to be inherited
because clearly a Flatlander has an area and indeed a moment of inertia.

 Safe object-oriented
programming

50

But we see potential problems in the general case. Suppose both parent types
have an operation with the same identifier. This would typically arise with
operations of a rather general nature such as Print, Make, Copy and so on.
Which one is inherited? Suppose both parents have components with the same
identifier. Which one do we get? These problems particularly arise if both
parents themselves have a common ancestor.

Some languages have provided multiple inheritance and devised somewhat
lengthy rules to overcome these difficulties (C++ and Eiffel for example).
Possibilities include using renaming, mentioning the parent name for ambiguous
entities, and giving precedence to the first parent type in the list. Sometimes the
solutions have the flavor of unification for its own sake – one person's
unification is often another person's confusion. The rules in C++ give plenty of
opportunities for the programmer to make mistakes.

The difficulties are basically twofold: inheriting components and inheriting
the implementation of operations from more than one parent. But there is
generally no problem with inheriting the specification of operations. This
solution was adopted by Java and has proved successful and is also the approach
used by Ada.

So the Ada rule is that we can inherit from more than one type thus
type T is new A and B and C with
 record
 ... -- additional components
 end record;

but only the first type in the list (A) can have components and concrete
operations. The other types must be what are known as interfaces which are
essentially abstract types without components and all of whose operations are
abstract or null procedures. (The first type could be an interface as well.)

We can reformulate the type Object as an interface as follows
package Geometry is
 type Object is interface;

 procedure Move(Obj: in out Object;
 New_X, New_Y: in Float) is abstract;
 function X_Coord(Obj: Object) return Float is abstract;
 function Y_Coord(Obj: Object) return Float is abstract;
 function Area(Obj: Object) return Float is abstract;
 function Moment(Obj: Object) return Float is abstract;
end Geometry;

Observe that the components have been deleted and replaced by further
operations. The procedure Move enables an object to be moved – that is it sets

Safe and Secure Software: An invitation to Ada 2005

51

both the x and y coordinates and the functions X_Coord and Y_Coord return its
current position.

Note that the prefixed notation means that we can still access the coordinates
by for example A_Circle.X_Coord and The_Triangle.Y_Coord just as when they
were visible components.

So now when we declare a concrete type Circle we have to provide
implementations of all these operations. Perhaps

package Geometry.Circles is
 type Circle is new Object with private; -- partial view

 procedure Move(C: in out Circle; New_X, New_Y: in Float);
 function X_Coord(C: Circle) return Float;
 function Y_Coord(C: Circle) return Float;
 function Area(C: Circle) return Float;
 function Moment(C: Circle) return Float;

 function Radius(C: Circle) return Float;
 function Make_Circle(X, Y, R: Float) return Circle;

private
 type Circle is new Object with -- full view
 record
 X_Coord, Y_Coord: Float;
 Radius: Float;
 end record;
end Geometry.Circles;

package body Geometry.Circles is
 procedure Move(C: in out Circle; New_X, New_Y: in Float) is
 begin
 C.X_Coord := New_X;
 C.Y_Coord := New_Y;
 end Move;

 function X_Coord(C: Circle) return Float is
 begin
 return C.X_Coord;
 end X_Coord;

 -- and similarly Y_Coord and Area and Moment as before
 -- also functions Radius and Make_Circle
end Geometry.Circles;

We have made the type Circle private so that all the components are hidden.
Nevertheless the partial view reveals that it is derived from the type Object and

 Safe object-oriented
programming

52

so must have all the properties of the type Object. Note how we also add
functions to create a circle and to access the radius component.

So the essence of programming with interfaces is that we have to implement
the properties promised. It is not so much multiple inheritance of existing
properties but multiple inheritance of contracts to be satisfied.

Returning now to Flatland, we can declare
package Flatland is
 type Flatlander is abstract new Person and Object with private;

 procedure Move(F: in out Flatlander; New_X, New_Y: in Float);
 function X_Coord(F: Flatlander) return Float;
 function Y_Coord(F: Flatlander) return Float;

private
 type Flatlander is abstract new Person and Object with
 record
 X_Coord, Y_Coord: Float := 0.0; -- at origin by default
 ... -- any new components we wish
 end record;
end;

and the type Flatlander will inherit the components Birthday etc of the type
Person, any operations of the type Person (we didn't show any above) and the
abstract operations of the type Object. However, it is convenient to declare the
coordinates as components since we need to do that eventually and we can then
override the inherited abstract operations Move, X_Coord and Y_Coord with
concrete ones. Note also that we have given the coordinates the default value of
zero so that any flatlander is by default at the origin.

The package body is
package body Flatland is
 procedure Move(F: in out Flatlander; New_X, New_Y: Float) is
 begin
 F.X_Coord := New_X;
 F.Y_Coord := New_Y;
 end Move;

 function X_Coord(F: Flatlander) return Float is
 begin
 return F.X_Coord;
 end X_Coord;

 -- and similarly Y_Coord
end Flatland;

Safe and Secure Software: An invitation to Ada 2005

53

Making Flatlander abstract means that we do not have to implement all the
operations such as Area just yet. And finally we could declare a type Square
suitable for Flatland (when originally written the book was published
anonymously and the author designated as A Square) as follows

package Flatland.Squares is
 type Square is new Flatlander with
 record
 Side: Float;
 end record;

 function Area(S: Square) return Float;
 function Moment(S: Square) return Float;
end Flatland.Squares;

package body Flatland.Squares is

 function Area(S: Square) is
 begin
 return S.Side**2;
 end Area;

 function Moment(S: Square) is
 begin
 return S.Area * S.Side**2 / 6.0;
 end Moment;

end Flatland.Squares.

and all the operations are thereby implemented. By way of illustration we have
made the extra component Side of the type Square directly visible but we could
have used a private type. So we can now declare Dr Abbott as

A_Square: Square := (Flatlander with Side => 3.00);

and he will have all the properties of a square and a person. Note the extension
aggregate which takes the default values for the private components and gives
the additional visible component explicitly.

There are other important properties of interfaces that can only be touched
upon in this overview. An interface can have a null procedure as an operation. A
null procedure behaves as if it has a null body – that is, it can be called but does
nothing. If two ancestors have the same operation then a null procedure
overrides an abstract operation with the same parameters and results. If two
ancestors have the same abstract operation with equivalent parameters and
results then these merge into a single operation to be implemented. If the
parameters and results are different then this results in overloading and both
operations have to be implemented. In summary the rules are designed to
minimize surprises and maximize the benefits of multiple inheritance.

 Safe object-oriented
programming

Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company

	front_5.pdf
	SafeSecureAda2005-final-2008-03-05.pdf
	back.pdf

