
Safe and Secure Software
Ada 2005An Invitation to

Safe Architecture
4

Courtesy of

The GNAT Pro Company
John Barnes



31

When speaking of buildings, a good architecture is one whose design gives the 
required strength in a natural and unobtrusive manner and thereby provides a 
safe environment  for the people within. An elegant  example is the Pantheon in 
Rome whose spherical shape has enormous strength and provides an uncluttered 
space. Many ancient cathedrals are not so successful, and need buttresses tacked 
on the outside to prop up the walls. In 1624, Sir Henry Wooton summed the 
matter up in his book, The Elements of Architecture, by saying "Well building 
hath three conditions – commoditie, firmenes & delight". In modern terms, it 
should work, be strong and be beautiful as well.

A good architecture in a program should similarly provide unobtrusive safety 
for the detailed workings of the inner parts within a clean framework. It  should 
permit  interaction where appropriate and prevent  unrelated activities from 
accidentally interfering with each other. And a good language should enable the 
writing of programs with a good architecture.

There is perhaps an analogy with the architecture of office spaces. An 
arrangement where everyone has an individual office can inhibit  communication 
and the flow of ideas. On the other hand, an open plan office often causes 
problems because noise and other distractions interfere with productivity.

The structure of an Ada program is based primarily around the concept  of a 
package, which groups related entities together and provides a natural 
framework for hiding implementation details from its clients.

Package specifications and bodies

Early languages such as Fortran have a flat structure with everything essentially 
at  the same level. As a consequence all data (other than that local to a 
subroutine) is visible everywhere. This can be considered as rather like an open 
plan office. The same flat structure appears in C, although C does provide a 
degree of encapsulation by allowing programmer control over the external 
visibility of functions and file-scope variables.

Other languages such as Algol and Pascal have a simple block structure, 
rather like nested Russian dolls. This is a bit  better but  really is no more than 
having an open plan office subdivided into more such offices. There are still big 
problems of communication.

Consider the simple problem of a stack of numbers. The protocol we want  to 
have is that  an item can be added to the stack by calling a procedure Push and 
that the top item can be removed from the stack by calling a function Pop – and 
perhaps also a procedure Clear to set the stack to an empty state. We do not 
want any other means of manipulating the stack since we want this protocol to 
be independent of the way we implement it.



32

Now consider the following implementation of a stack written in Pascal. The 
stack is represented by an array of reals and there are three operations, Push and 
Pop to add items and remove items respectively, and Clear to set it empty. We 
also declare a constant  max and give it  a suitable value such as 100. This avoids 
writing 100 in several places, which would be bad if we changed our minds later 
on about the required size of the stack.

const  max = 100;

var  top : 0 .. max;
 a : array[1..max] of real;

procedure Clear;
begin
 top := 0
end;

procedure Push(x : real);
begin
 top := top + 1;
 a[top] := x
end;

function Pop : real;
begin
 top := top – 1;
 Pop:= a[top + 1]
end

The main trouble with this is that max, top  and a have to be declared outside 
Push, Pop and Clear so that they can all be accessed. And from any part  of the 
program from which we can call Push, Pop and Clear we can also change a and 
top directly and so bypass the protocol and create an inconsistent stack.

This is a source of danger. If we want to monitor how many times the stack is 
changed then adding monitoring statements to count  the calls of Push, Pop  and 
Clear to do this is not adequate. Similarly, if we are reviewing a large program 
and are looking for all places where the stack is changed then we have to track 
all references to top and a as well as the calls of Push, Pop and Clear.

This problem applies to C as well as to Fortran and Pascal. These languages 
to some extent  overcome the problem by adding some form of separate 
compilation facility. Those entities which are to be visible to other separately 
compiled units can then be marked by special statements such as extern or by 
using a header file. However, by its very nature separate compilation is itself flat 
and unstructured. Furthermore, type checking in these languages is weaker 
across compilation units than within a single file.

Safe and Secure Software: An invitation to Ada 2005



33

The technique in Ada is to use a package to encapsulate and hide the data 
shared by Push, Pop  and Clear so that  only those subprograms can access it. A 
package comes in two parts – its specification which describes its interface to 
other units and its body, which describes how it  is implemented. We can 
paraphrase this by saying that the specification says what it  does and the body 
says how it does it. The specification would simply be

package Stack is
   procedure Clear;
   procedure Push(X: Float);
   function Pop return Float;
end Stack;

This just  describes the interface to the outside world. So outside the package all 
that is available are the three subprograms. The specification gives just enough 
information for the external client  to write calls to the subprograms and for the 
compiler to compile the calls. The body could then be written as

package body Stack is

   Max: constant := 100;
   Top: Integer range 0 .. Max := 0;
   A: array (1 .. Max) of Float;

   procedure Clear is
   begin
      Top := 0;
   end Clear;

   procedure Push(X: Float) is
   begin
      Top := Top + 1;
      A(Top) := X;
   end Push;

   function Pop return Float is
   begin
      Top := Top – 1;
      return A(Top + 1);
   end Pop;

end Stack;

The body gives the full details of the subprograms and also declares the hidden 
objects Max, Top and A. Note the initial value of zero for Top.

In order to make use of the entities declared in a package, the client code 
must mention the package by means of a with clause thus

  Safe architecture

 



34

with Stack;
procedure Some_Client is
   F: Float;
begin
   Stack.Clear;
   Stack.Push(37.4);
   …
   F := Stack.Pop;
...
   Stack.Top := 5;  -- illegal!
end Some_Client;

So now we know that  the required protocol is enforced. The client  cannot 
accidentally or purposely interfere with the inner workings of the stack. Note in 
particular that the direct assignment  to Stack.Top is prevented since Top is not 
visible to the client (it is not mentioned in the specification of the stack).

Observe carefully that there are three entities to consider: the specification of 
the package, its body, and of course the client.

There are important  rules concerning their compilation. The client  cannot be 
compiled without the specification being available and the body also cannot be 
compiled without  the specification being available. But  there are no similar 
constraints relating to the client and the body. If we decide to change the details 
of the implementation and this does not require the specification to be changed 
then the client does not have to be recompiled.

Packages and subprograms at the top level (that  is, not nested inside other 
packages or subprograms) can always be and usually are compiled separately. 
They are often known as library units and said to be at the library level.

Note that  the package Stack is mentioned each time an entity in it  is used. 
This ensures that  the client code is very clear as to what  it is doing. Sometimes 
repeating the package name is tedious and so we can add a use clause thus

with Stack;  use Stack;
procedure Client is
begin
   Clear;
   Push(37.4);
   ...
end Client;

Of course if there were two packages Stack1 and Stack2, both declaring a 
procedure called Clear, and we try to "with" and "use" both of them then the 
code would be ambiguous and the compiler would reject it. In such a case the 
solution is to supply the desired package name explicitly, for example 
Stack2.Clear.

Safe and Secure Software: An invitation to Ada 2005



35

In conclusion, the specification defines a contract between the client and the 
package. The body promises to implement the specification and the client 
promises to use the package as described by the specification. Finally the 
compiler ensures that  both sides stick to the contract. We will come back to 
these thoughts in the last chapter when we look into the ideas behind the SPARK 
toolset.

A vital point  about Ada is that the strong type matching is enforced across 
compilation unit boundaries. Exactly the same checking applies, whether the 
program is just  one compilation unit  or consists of several units distributed 
across various files.

Private types

Another feature of a package is that part  of the specification can be hidden from 
the client. This is done using a so-called private part. The above package Stack 
only implements a single stack. It  might  be more useful to declare a package 
that enabled us to declare many stacks – to do this we need to introduce the 
concept of a stack type.

We might write
package Stacks is     -- visible part
   type Stack is private;     -- private type
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Float);
   procedure Pop(S: in out Stack; X: out Float);

private       -- private part
   Max: constant := 100;
   type Vector is array (1 .. Max) of Float;
   type Stack is       -- full type
      record
         A: Vector;
         Top: Integer range 0 .. Max := 0;
      end record;
end Stacks;

The body would then be
package body Stacks is

   procedure Clear(S: out Stack) is
   begin
      S.Top := 0;
   end Clear;

  Safe architecture

 



36

   procedure Push(S: in out Stack; X: in Float) is
   begin
      S.Top := S.Top + 1;
      S.A(Top) := X;
   end Push;

   -- procedure Pop similarly

end Stacks;

The user can now declare lots of stacks and act on them individually thus
with Stacks; use Stacks;
procedure Main is
   This_One: Stack;
   That_One: Stack;
begin
   Clear(This_One);  Clear(That_One);
   Push(This_One, 37.4);
   ...

The detailed information about the type Stack is given in the private part of the 
package and, although visible to the human reader, is not  directly accessible to 
the code written by the client. So the specification is logically split  into two 
parts, the visible part (everything up to the keyword private) and the private 
part. 

If the private part alone is changed then the text  of the client will not  need 
changing but the client code will need recompiling because the object code 
might change even though the source code does not.

Any necessary recompilation is ensured by the compilation system and can 
be performed automatically if desired. Note carefully that  this is required by the 
Ada language and is not simply a property of a particular implementation. It is 
never left  to the user to decide when recompilation is necessary and so there is 
no risk of attempting to link together a set of inconsistent  units – a big hazard in 
languages that do not specify precisely the interaction between compiling, 
binding and linking.

Finally, note the modes in, out and in out on the parameters. These refer to 
the flow of information and are explained in Chapter 6 on Safe Object 
Construction.

Generic contract model

Templates are an important feature of languages such as C++ (and now Java). 
These correspond to generics in Ada and in fact C++ based its templates partly 

Safe and Secure Software: An invitation to Ada 2005



37

on Ada generics. Ada generics are type-safe because of the so-called contract 
model.

We can extend the stack example to enable us to declare stacks of any type 
and any size (we can do the latter other ways as well). Consider

generic
   Max: Integer;    -- formal generic parameters
   type Item is private;
package Generic_Stacks is
   type Stack is private;  
   procedure Clear(S: out Stack);
   procedure Push(S: in out Stack; X: in Item);
   procedure Pop(S: in out Stack; X: out Item);

private       -- private part
   type Vector is array (1 .. Max) of Item;
   type Stack is 
      record
         A: Vector;
         Top: Integer range 0 .. Max := 0;
      end record;
end Generic_Stacks;

with an appropriate body obtained simply by replacing Float by Item. 
The generic package is just  a template and in order to be used in a program it 

has to be instantiated with appropriate actual parameters corresponding to the 
two generic formal parameters Max and Item. The result  of instantiating a 
generic package is the declaration of an actual package. For example if we want 
stacks of integers with maximum size 50, we write

package Integer_Stacks is
   new Generic_Stacks(Max => 50, Item => Integer);

This declares a package called Integer_Stacks which we can then use in the 
normal way. The essence of the contract  model is that  if we provide parameters 
that correctly match the generic specification then the package obtained from 
the instantiation will compile and execute correctly.

Other languages do not  have this desirable property. In C++, for instance, 
some mismatches are caught  by the linker rather than the compiler and others 
are even left until execution and throw an exception.

There are extensive forms of generic parameters in Ada. Writing: type Item is 
private; permits the actual type to be almost  any type at  all. Writing: type Item 
is (<>); permits the actual type to be any integer type (such as Integer or 
Long_Integer) or an enumeration type (such as Signal). Within the generic we 

  Safe architecture

 



38

can then use all the properties common to all integer and enumeration types with 
the certainty that the actual type will indeed provide these properties.

The generic contract model is very important. It  enables the development of 
flexible but safe general-purpose libraries. An important goal is that  the Ada 
user should not  ever need to pore over the code of the generic body in order to 
puzzle out what went wrong. 

Child units

The overall architecture of an Ada system can have a hierarchical (tree-like) 
structure of units, which provides both flexible information hiding and ease of 
modification. Child units can be public or private. Given a package called 
Parent we can declare a public child thus

package Parent.Child is ...

and a private child thus
private package Parent.Slave ...

Both have bodies and can have private parts as usual. The key difference is that 
a public child essentially extends the specification of the parent (and is thus 
visible to clients) whereas a private child extends the private part  and body of 
the parent  (and thus is not visible to clients). The structure permits 
grandchildren etc to any depth.

There are various rules concerning visibility. Children do not need an explicit 
with clause for their parent  (visibility is automatic). However, the parent body 
can have a with clause for a child if it  needs to use the functionality defined in 
the child. But since the specification of the parent  must  be available before the 
children are compiled (since the children share the name of the parent), the 
parent specification cannot have a normal with clause for a child. More of this 
later.

Another rule is that  the visible part of a private child has visibility of the 
private part of its parent (just  as the body of the parent does). But for a public 
child only its private part  and its body (and not  its visible part) has such 
visibility of the parent. 

A special form of with clause (the private with clause) is permitted on a 
package specification; it  only allows the private part to have visibility of the unit 
concerned. This is useful, for example, where the private part of a public child 
needs information provided by a private child. Thus we might have an 
application package App and two children App.User_View and 
App.Secret_Details thus

Safe and Secure Software: An invitation to Ada 2005



39

private package App.Secret_Details is
   type Inner is ...
   ...  -- various operations on Inner etc
end App.Secret_Details;

private with App.Secret_Details;
package App.User_View is

   type Outer is private;
   ... -- various operations on Outer visible to the user

 -- type Inner is not visible here
private
 -- type Inner is visible here

   type Outer is 
      record
         X: Secret_Details.Inner;
         ...
      end record;
   ...
end App.User_View;

A normal with clause for Secret_Details is not  permitted on User_View because 
this would allow the client  to see information in the package Secret_Details via 
the visible part of User_View. Ada carefully blocks all attempts to bypass the 
strict visibility control.

Unit testing

One of the problems that  confronts the testing of code is to ensure that  the 
testing does not  upset the software being tested. There is an echo here of 
Quantum Mechanics whereby when we make an observation of a particle such 
as an electron, the very observation itself disturbs the state of the particle.

One problem with good software design is that we strive to hide detailed 
information in order to produce good abstractions – by the use of private types 
for example. But then when we test  the system we often want to observe the 
detailed behavior of this hidden material. 

To take a trivial example we might want  to know the value of Top for a 
particular stack declared using the package Stacks (the one where Stack is a 
private type). We have not  provided a means of doing this. We could add a 
function Size to the package Stacks but this would disturb the package and 
require its recompilation and that  of all the client  code. And possibly we might 
introduce errors into the package we were testing or (worse) might make errors 
when we later removed the testing code.

  Safe architecture

 



40

Child units provide a convenient way of overcoming this difficulty. We can 
write

package Stacks.Monitor is
   function Size(S: Stack) return Integer;
end Stacks.Monitor;

package body Stacks.Monitor is
   function Size(S: Stack) return Integer is
   begin
      return S.Top;
   end Size;
end Stacks.Monitor;

This works because the body of a child has visibility of the private part  of its 
parent. So we can now call the function Size at  will for test  purposes and when 
we are satisfied that the software is correct we can delete the child package and 
the parent package Stacks did not have to be disturbed at all.

Mutually dependent types

Many languages have the equivalent of private types especially in connection 
with object-oriented programming. Basically, the intrinsic operations (methods) 
belonging to a type are those declared in a package (or a class) along with the 
type. Thus the intrinsic operations of the type Stack are Clear, Push  and Pop. 
The same structure in C++ would be written as

class Stack {
...  /*  details of stack structure  */
public:
   void Clear();
   void Push(float);
   float Pop();
};

The C++ approach is convenient  in that it only has one level of naming Stack 
whereas in Ada we have both package name and type name, thus Stacks.Stack. 
However, in practice the Ada style is not a burden especially if we apply use 
clauses. (Moreover, Ada users have the option of using a different style by 
giving the type some neutral name such as Object or Data so that they can then 
write Stacks.Object or Stacks.Data.)

On the other hand if we have two types that  wish to share private 
information, it is very easy to write this in Ada. We can write

package Twins is
   type Dum is private;

Safe and Secure Software: An invitation to Ada 2005



41

   type Dee is private;
   ...
private
   ...  -- shared private part
end Twins;

and the private part defines both Dum and Dee and so they have mutual access 
to anything in the private part.

This is not  so easy in other languages and involves constructs such as the 
much-discussed friend mechanism in C++. In Ada there is no possibility of 
getting it  wrong or of breaking privacy in unexpected ways and the mechanism 
is symmetric.

Other examples exhibit  mutual recursion. Suppose we wish to study patterns 
of points and lines where each point has three lines through it and each line has 
three points on it. (This is not an arbitrary example. Two of the most 
fundamental theorems of projective geometry, those of the geometers Pappus 
and Desargues concern such structures.) We use access types. A simple approach 
is a single package

package Points_and_Lines is
   type Point is private;
   type Line is private;
   ...
private
   type Point is 
      record
         L, M, N: access Line;
      end record;
   type Line is
      record
         P, Q, R: access Point;
      end record;
end Points_and_Lines;

If we decided that  each type deserved its own package then we could still define 
their mutually recursive structure using a limited with clause. (Two packages 
cannot have normal with clauses referring to each other because that creates a 
circularity that makes their initialization impossible.) We can write

limited with Lines;
package Points is
   type Point is private;
   ...
private
   type Point is

  Safe architecture

 



42

      record
         L, N, N: access Lines.Line;
      end record;
end Points;

and similarly for the package Lines. A limited with clause gives a so-called 
incomplete view of the types in the package concerned, which means roughly 
that they can only be used to form access types. 

Safe and Secure Software: An invitation to Ada 2005



Courtesy of

North American Headquarters
104 Fifth Avenue, 15th floor
New York, NY 10011-6901, USA
tel +1 212 620 7300
fax +1 212 807 0162
sales@adacore.com
www.adacore.com

European Headquarters
46 rue d’Amsterdam
75009 Paris, France
tel +33 1 49 70 67 16
fax +33 1 49 70 05 52
sales@adacore.com
www.adacore.com The GNAT Pro Company


	front_4.pdf
	Pages from SafeSecureAda2005-final-2008-03-05-9.pdf
	back.pdf

